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The notion of instability of a turbulent flow is introduced in the case of a von Kármán
flow thanks to the monitoring of the spatio-temporal spectrum of the velocity fluctu-
ations, combined with projection onto suitable Beltrami modes. It is shown that the
large scale coherent fluctuations of the flow obey a sequence of Eckhaus instabilities
when the Reynolds number Re is varied from 102 to 106. This sequence results in
modulations of increasing azimuthal wavenumber. The basic state is the laminar or
time-averaged flow at an arbitrary Re, which is axi-symmetric, i.e., with a 0 azimuthal
wavenumber. Increasing Re leads to non-axisymmetric modulations with increasing
azimuthal wavenumber from 1 to 3. These modulations are found to rotate in the
azimuthal direction. However, no clear rotation frequency can be established until
Re ≈ 4 × 103. Above, they become periodic with an increasing frequency. We fi-
nally show that these modulations are connected with the coherent structures of the
mixing shear layer. The implication of these findings for the turbulence parametriza-
tion is discussed. Especially, they may explain why simple eddy viscosity models
are able to capture complex turbulent flow dynamics. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4855018]

I. INTRODUCTION

In classical phenomenology, turbulence arises after a sequence of symmetry breakings, succes-
sive instabilities, or bifurcations, which however progressively restore the system symmetries in a
statistical sense.1 The study of these instabilities traditionally proceeds from (linear or nonlinear)
perturbations of the so-called “basic state,” the stationary laminar solution of the Navier-Stokes
(NS) equation at low Reynolds number. At finite Reynolds number there is no general well-defined
criterion to discriminate between the turbulent or laminar nature of the flow: one cannot define
clearly a critical threshold beyond which the flow is turbulent and below which it is laminar. The
consensus view is that the flow is turbulent when the Reynolds number is large enough and when
a well established spatio-temporal energy spectrum is observed with broadband power laws. In
such a case, a possible statistical equivalent of the laminar “basic state” can be defined using the
(statistically or time) averaged flow. This flow is stationary by construction, but differs from a usual
basic state in the sense that it is solution of the ensemble averaged Navier-Stokes equation instead
of a solution of the plain Navier-Stokes equation. A natural question then arises: what happens
once the statistically stationary turbulent state is reached? Is this the end of the story or can new
instabilities of the averaged turbulent flow develop? Experimentally, the answer seems to be positive,
since spontaneous bifurcations and flow reversals in fully developed turbulence have already been
observed: (i) in a wake flow, there is a mean pattern transition at a critical Reynolds number. This
corresponds to the so-called “drag-crisis” (see Ref. 2). This leads to a dramatic decrease of the
mean drag of a sphere or a cylinder in a turbulent flow for a critical value of the Reynolds number
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Re ∼ 105. The wake becomes narrower as the mean flow pattern changes. (ii) Spontaneous flow re-
versals have been observed in thermally driven (Rayleigh-Bénard) convection, both experimentally3

and numerically.4, 5 In a cylindrical Rayleigh-Bénard geometry, the reversals of large scale circu-
lation were reported to be induced by reorientation along the azimuthal direction.6 However, it is
difficult to experimentally characterize a bifurcation from a non-stationary or periodic flow. (iii)
In a magnetohydrodynamic turbulence, the large scale magnetic field spontaneously generated in a
liquid metal at Re > 106 was shown7 to undergo spontaneous reversals, with a dynamics governed
by a few magnetic modes despite the strongly turbulent background. This observation led to a simple
model of geodynamos with a few modes undergoing chaotic dynamics.8 An open problem common
to all these situations is to find suitable tools to study and characterize these types of instabilities.

The purpose of this paper is to present some answers to these questions in the specific case of a
von Kármán flow. This flow is generated by two counter-rotating impellers in a cylindrical vessel. At
low Reynolds number, the laminar flow is axi-symmetric and divided into two toric recirculation cells
separated by an azimuthal shear layer. Its transition to turbulence for various counter-rotations and
aspect ratio has been extensively studied theoretically, numerically, and experimentally with smooth
or rough (fitted with blades) impellers (see, e.g., Refs. 9–16 and references therein). The study in
Ref. 13 was performed in the exact-counter-rotating case. It was reported that a first bifurcation from
the stationary and axi-symmetric laminar state occurs at Re = 175, yielding a stationary flow with
an azimuthal modulation, i.e., for which the axisymmetry is broken. This stationary state persists up
to typically Re ∼ 300 where time-dependence arises. The transition to turbulence further proceeds
through plain, modulated, or chaotic traveling waves, until Re ∼ 104, where a “fully developed
turbulent state” seems to have been reached. In that state, the energy spectrum is broad and the
dimensionless dissipation does not depend on Reynolds number anymore.13 In that turbulent state,
the flow once time averaged regains the structure of the basic laminar flow, made of two shearing
toric recirculation cells. In the present paper, we have worked using the same experimental setup.
We demonstrate that the flow is organized into large scale coherent structures. These structures are
subject to a sequence of Eckhaus type instabilities leading to an increasing azimuthal wavenumber
as the Reynolds number varies from 102 to 106, similar to the sequence of instabilities at much lower
Re. Since this sequence of instabilities occurs on coherent structures in a turbulent flow rather than
a laminar “basic state,” we are facing a new paradigm that both require new tools of investigations
and open interesting questions about turbulence parametrization. The tools are presented in Sec. II,
the instability is described in Sec. III and some theoretical consequences are discussed in Sec. IV.

II. TECHNICAL BACKGROUND AND TOOLS

A. Experimental setup

We have worked with a von Kármán flow generated by two coaxial and counter-rotating impellers
in a cylindrical vessel. More details about the experimental setup can be found in Ref. 17. The
cylinder radius and height are R = 100 mm and H = 180 mm, respectively. The impellers consist of
185 mm diameter disks fitted with 16 curved blades of 20 mm height. The impellers are driven by
two independent motors. The motor frequencies are, respectively, set to f1 and f2. In the present
work, the impellers are rotating with the convex face of the blades going forwards, contrarily to
Ref. 13. The working fluid is either pure water, a water-glycerol mixture (26%–74% in weight,
respectively), or pure glycerol. The resulting accessible Reynolds numbers, Re = π (f1 + f2)R2ν−1

with ν the kinematic viscosity, vary from 102 to 106.
This setup is invariant under Rπ rotations around any radial axis passing through the center of

the cylinder. Measurements are done thanks to a Stereoscopic Particle Image Velocimetry (S-PIV)
system. The S-PIV provides time series of the 3 components of the velocity (radial vx (x, z, t), vertical
vz(x, z, t), and azimuthal vy(x, z, t)) on a 63 × 58 points grid in a meridian plane [x, z] composed of
two planes dephased by π in the cylindrical coordinates. x = rcos (ϕ0), with the azimuthal angle ϕ0

= [0, π ] and r the radial distance from the impellers axis. z is the vertical distance from the center
of the cylinder, y is the out-of-plane direction, and t is the time. The azimuthal component is then
written in the cylindrical coordinates using vϕ(x, z, t) = x/|x | vy(x, z, t). The size of the recorded
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FIG. 1. Left, time-averaged velocity field v̄, measured in a meridian plane using S-PIV, at Re = 106 and θ = (f1 − f2)/(f1 +
f2) = 0. x = rcos ϕ0, ϕ0 = [0, π ]. Right, corresponding instantaneous fluctuating component of the velocity field v′ = v − v̄.
The color maps the azimuthal velocity vϕ (normalized by R(f1 + f2)/2) whereas the arrows map the (vx ,vz) velocities.

images is 194.9 × 144.3 mm2 = 58 δR × 63 δZ (where δR = 3.3 mm and δZ = 2.3 mm are the spatial
resolutions of the S-PIV). Time series have sampling frequency in the range fs = 1.7 to 15 Hz and are
composed of N = 1200 to 4200 samples. Each experiment is started with the impellers and the fluid
at rest. The impeller velocities are then suddenly increased to reach their target values. After a few
tens of seconds, a statistically stationary state is reached and S-PIV time series is finally acquired.

B. Experimental perturbation analysis

For low Reynolds number Re ≤ 500, the flow is steady and laminar and only few fluctuations
are present. When θ = (f1 − f2)/(f1 + f2) = 0, the instantaneous flow is composed of two toric
recirculation cells separated by an azimuthal shear layer located at z = 0 reflecting the Rπ -symmetry
of the system. Increasing the Reynolds number, one expects to reach fully developed turbulence
around Re = 104 as observed in Ref. 13, with increasing difference between the instantaneous flow
and the time-averaged flow. Above Re = 500 and at θ = 0, the axisymmetry is broken by fluctuations
of the instantaneous flow. However, this symmetry is restored for the time-averaged flow (cf.
Fig. 1), at any Reynolds number. By construction, this average flow is time-independent and will be
the equivalent of a “basic state.” As the Reynolds number is increased, this “basic state” is subject to
increasingly stronger fluctuations.18 The question we want to address here is: are these fluctuations
purely disorganized as in thermal noise or can we identify a pattern in them when varying the
Reynolds number,19 in a way similar to a sequence of bifurcations of ordinary instabilities? To
answer this question we need two steps: (i) to separate the fluctuations into “organized” motions and
“thermal” noise and (ii) to build a suitable tool to study the temporal behavior of these organized
motions. These steps are described below. For step (i), we use comparison with and projection onto
Beltrami modes. For step (ii), we use spatio-temporal spectra, as used in wave turbulence.20

1. Projection onto Beltrami modes

The measured velocity fields time series are analyzed thanks to a projection on the basis of
Beltrami modes as detailed in Ref. 21. Beltrami modes have been introduced as a general spectral
decomposition basis,22 and any velocity field in a cylindrical geometry can be decomposed as a
superposition of such modes. Given a vector field, v, lying in a cylinder of radius R = 1 and height
H = 2h, with usual cylindrical components v = (vr , vϕ, vz), we first switch to the new components
V = (V+, V−, vz) such that V± = (vr ± ivϕ)/2. The field V can further be decomposed over Beltrami
modes Bnmks as

V =
N∑

n=1

M∑
m=−M

Pk0∑
k=−Pk0

(+)∑
s=(−)

DnmkBnmks, (1)
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FIG. 2. (a) (resp., (b), (c), and (d)) synthetic velocity field bnmk obtained from corresponding Beltrami modes Bnmk in a
meridional plane with n = k/k0 = 1 and m = 0 (resp., m = 1, 2, and 3). Same color and arrow codes as in Fig. 1.

where k0 = π /h, n and m are integer numbers, and (N, M, P) are the number of considered modes
in the (r, ϕ, z) directions, respectively. The Dnmk are complex amplitudes which conjugates verify
D∗

nmk = Dn,−m,−k and the Beltrami modes are given by

Bnmks =

⎛
⎜⎝

Bnmks
+

Bnmks
−

Bnmk
z

⎞
⎟⎠ = 1

2

⎛
⎜⎝

(λs − k) Jm+1(μnmr )

(λs + k) Jm−1(μnmr )

−2iμnm Jm(μnmr )

⎞
⎟⎠ exp(imϕ + ikz). (2)

Here, λs = s
√

μ2
nm + k2 with s = ± and Jm is the Bessel function of order m. The orthogonality

condition is ensured by the fact the μnm coefficients are the nth root of Jm. Equation (1) then
corresponds to a decomposition into solenoidal Beltrami waves with polarization given by the sign
s of λs. From now on, we will omit the s superscript for simplicity. We define the synthetic velocity
field bnmk = (br, bϕ , bz) corresponding to Bnmk = (B+, B−, Bz) using the real parts of, respectively,
br = B− + B+, bϕ = i(B− − B+), and bz = Bz and a fixed sign of λ. Some examples of the synthetic
velocity fields obtained for k/k0 = n = 1 and m = 0, 1, 2, 3 in the two planes ϕ0 = [0, π ] are
provided in Fig. 2. The recirculation cells, the shear layer, and the axi-symmetry of the experimental
time-averaged flow shown in Fig. 1 are well recovered by the ϕ-invariant m = 0 mode shown in
Fig. 2(a). We use the boundary condition explained in Ref. 21. When m > 0 the velocity fields
depend on the azimuthal angle ϕ and the axi-symmetry is lost. However, for each meridian plane at
a fixed [ϕi, ϕi + π ] the velocity field shows mirror (anti-)symmetry with respect to the r = 0-axis.
Even-numbered m velocity fields are found to be symmetric while odd-numbered are found to be
anti-symmetric. Introducing the space average 〈 〉 = ∫ 1

0 rdr
∫ π

−π
dϕ

∫ h
−h dz and using the classical

properties of the Bessel functions, the orthogonality of Bnmk writes

〈
Bnmk · Bn′m′k′∗

〉
=

〈
Bnmk

+ Bn′m ′k ′∗
+ + Bnmk

− Bn′m ′k ′∗
− + Bnmk

z Bn′m ′k ′∗
z

〉
,

= 〈
Bnmk · Bnmk∗〉 δmm ′δnn′δkk ′ . (3)

This means that for any field satisfying the decomposition (1), we have

〈
V · Bnmk∗〉 = Dnmk

〈
Bnmk · Bnmk∗〉 , (4)

which provides a simple way to find the projection of the vector V on Bnmk by spatial average
over the fluid volume. In the experiment, we however have access to velocity measurements in one
plane only, corresponding to ϕ = 0 and ϕ = π . This precludes the exact instantaneous projection
onto given Beltrami modes. We remedy to these problems by two methods: (i) conditional time
averages at a given phase mϕ. This is explained in Sec. III E. (ii) Direct comparison with “synthetic
measurements.” This is described in Sec. III B.

These projections, limited to low order Beltrami modes, allow to reconstruct synthetic veloc-
ity field time series in the full 3D space, accounting for the full spatiotemporal evolution of the
“organized” motions of the turbulent flow.
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2. Spatio temporal spectrum

In traditional instability analysis, it is customary to draw space-time diagrams to detect wavelike
pattern, see Refs. 23 and 24. In a turbulent system with a wide range of scales, a natural generalization
is to resort to spatio-temporal spectra. This approach is routinely used in the field of wave turbulence
(see Ref. 25 for a recent review) and led to computation of dispersion relations, see Ref. 20. To obtain
these spectra from our experimental PIV measurements, we proceed as follows. From time series
of the azimuthal velocity vϕ(x, z, t) in the meridian plane we compute the time-averaged velocity
field v̄ϕ and its fluctuations v′

ϕ(x, z, t) defined by v′
ϕ = vϕ − v̄ϕ . From the corresponding time series,

the full space-time (2D in space and 1D in time) power spectrum E(kx, kz, f) is computed, where
k = K/2π with K the wavevector and f = ω/2π is the frequency. This is done in two steps. First,
the instantaneous spatial (2D) Fourier Transform ṽ′

2D(kx , kz, t) for each time t of the time series
is computed. Then, the temporal Fourier Transform of ṽ′

2D using a window size composed of n
time steps is computed. Finally, ṽ′

3D(kx , kz, f ) is obtained that leads to the spatio-temporal power
spectrum in 3 dimensions E(kx, kz, f):

E(kx , kz, f ) = |ṽ′
3D|2 =

∣∣∣∣
∫

dx dz dtv′
ϕ(x, z, t) ei(ωt+kx x+kz z)

∣∣∣∣
2

. (5)

Spatial (horizontal and vertical) and temporal resolutions of the spectra are comprised in the ranges
(1/(2R),1/(2δR)), (1/H,1/(2δZ)), and (fs/n,fs/2), respectively.

3. Synthetic time series

Direct comparison of the experimental spectra with synthetic ones, based on a synthetic velocity
fields time series, is then performed. The latter were obtained with single Beltrami modes of a given
(cylindrical) geometry. For simplicity, we have restricted our comparison with modes with large-
scale poloidal structure n = k/k0 = 1 and varying azimuthal structure (variable m). As soon as m >

0, the axisymmetry is broken. Like in any rotation-breaking instability, it is natural to expect that the
corresponding perturbation mode will rotate with a frequency fr (that is a priori small with respect
to the impellers rotation rate (f1 + f2)/2). The corresponding Beltrami modes will then have the
structure:

B1mk0 ∼ exp(imϕ + ikz − i fr t). (6)

An artificial time series of such a mode is build in the meridional plane [x, z]. These synthetic data
are then processed like the experimental signal to get synthetic space-time power spectra. Since the
perturbation Beltrami mode is periodic (with m the number of period) in its azimuthal direction, a
peak of energy is located at a frequency f = mfr as can be seen in Fig. 5(h). This peak is well resolved
by setting the sampling frequency to a much higher value, typically 50 × mfr. In the sequel, we will
refer to the spectra obtained using the experimental (resp., synthetic) data by EE (resp., ES).

III. RESULTS

A. Isotropy: Evidence for the Eckhaus instability

A first characterization of the flow perturbation independently of its dynamics can be found by
considering the spatial spectrum E(kx, kz), obtained through the integration of the 3D spectrum E(kx,
kz, f) over all temporal frequencies. An example for an experimental flow at Re ≈ 106 is provided
in Fig. 3. The energy is mainly concentrated along the x-axis at kz ≈ 0 inside an ellipsoidal region,
pointing out the anisotropic structure of the flow. For useful interpretation, we have compared this
isotropy measurements with synthetic data. In Fig. 3, we also show an example obtained with n
= k/k0 = 1, m = 3, and fr = 0.2 Hz synthetic velocity fields time-series. For this field, the overall
shape of the spatial spectrum is close to the experimental one. Both spatial spectrum EE(kx, kz) and
ES(kx, kz) in Fig. 3 display 2 distinct maxima. They are found around kz = 0 for two values of kx

symmetric with respect to kx = 0. As we can see in Fig. 2 using the synthetic velocity fields or in
Fig. 9 using the projection of the experimental fields onto the Beltrami modes, the x-axis traces the
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parity of m. This parity is reproduced through the spectral analysis in this way: in the even-numbered
(resp., odd-numbered) case, the symmetry (resp., anti-symmetry) of the flow with respect to r
= 0 leads to a fundamental wavelength of roughly the size (resp., half of the size) of the vessel. The
wavenumbers kx 	 ±1/(2R) corresponding to the maxima of energy in the symmetric case approach
the resolution limit of the Fourier transform and practically appear as kx 	 0 (see Figs. 5(e) and
5(g)). On the contrary, the anti-symmetric case leads to two distinguishable symmetric peaks at kx

≈ ±1/R (see Figs. 5(f) and 5(h)). Experimentally, these different patterns are reproduced using the
Reynolds number as a driving parameter. Figures 5(a) and 5(c) at Re = 714 and 7200 show the
symmetric (even) case whereas Figs. 5(b) and 5(d) at Re = 1473 and 106 show the anti-symmetric
(odd) case. Consequently, the flow is experiencing successive transitions in parity. To study more
precisely the evolution of this pattern with the Reynolds number, one can concentrate on the 1D-
spatial spectrum EE(kx), obtained through integration of EE(kx, kz) over all kz. This was done for all
values of Re resulting in Fig. 4. One observes clear transitions at Re = 700, 3200, and 8800, where
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FIG. 4. Top, anisotropy factor A = 〈w/h〉 computed from experimental power spectra as a function of the Reynolds number
(see details in the text and illustration in Fig. 3). Marker shapes (◦, ×, +) represent the different working fluids. Bottom,
experimental EE(kx) at θ = 0 as a function of the Reynolds number. Each spectrum is normalized by its maximum. Colors are
log scaled. Vertical white lines mark strong transitions in the EE(kx) spectrum which highlight parity changes in the structure
of the experimental flow. Black and white circles, see Fig. 5.
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the maximum of the 1D-spatial spectrum shifts back and forth between kx = 0 and two symmetric
values kx = ±7 m−1. Therefore, the kind of transitions observed in Fig. 4 is suggestive of successive
azimuthal changes in parity (even-odd-even-odd). This means that the flow is composed of a large
scale coherent structure which is experiencing an Eckhaus type instability in its azimuthal direction
starting from the axi-symmetric time-averaged flow which is a m = 0 mode.

To bring some clues to the upper modes where m > 0 we resort to a different analysis of the
spatial spectrum. The contour line at a fixed iso-energy level was fitted using a centered ellipsoidal
curve, (x/w)2 + (z/h)2 = 1, with the width w and the height h as fitting parameters. As a result
w/h is a measure of the anisotropy of the flow. In order to obtain error bars, the ratio w/h was
computed for various iso-energy levels corresponding to different fractions of the total energy of
the spectra, from 65 to 90% (resp., 75% to 99%) for EE (resp., for ES). The mean value A = 〈w/h〉
and the standard deviation are finally computed to evaluate both the anisotropy and the error. Using
the synthetic data, varying m leads to different values of A which is moreover found not to depend
on fr. Specifically, A = 2.3 ± 0.3, for m = 0. For m = 1, A = 5.2 ± 2.4 reach its maximum.
Increasing m, A tends to decrease, yielding for m = 2, 3, and 4 to A = 2.9 ± 0.8, 2.4 ± 0.3,
and 2.3 ± 0.3, respectively. We have then studied the experimental evolution of the anisotropy
ratio with the Reynolds number. This is shown in Fig. 4. One sees the error bar can be large in
particular below Re = 5000. Consequently, this approach is not precise enough to determine at
which Reynolds number the transitions occurred. However, we clearly distinguish different regimes.
The anisotropy starts from a value of about 1.1 at very low Reynolds number where the amplitude of
the fluctuations reach the resolution limit of our PIV. Increasing the Reynolds number, A increases
up to 2.7 ± 0.7 corresponding to the laminar axi-symmetric (m = 0) case where A = 2.3 or to
the time-averaged flow at any Reynolds number. The amplitude of the anisotropy then reaches a
maximum (4.2 ± 1) at Re = 800. This last value is compatible with the odd-numbered m = 1 mode.
At approximately Re = 5000, A reaches a minimum at 2.3 ± 0.1. Which seems not compatible
with even-numbered m = 2 mode but could be a m = 4 mode. Finally, for Reynolds number larger
than 104, A shows a plateau around A = 2.5, which value is compatible with the odd-numbered
m = 3 mode.

B. Temporal behaviour

A symmetry breaking generally coincides with a propagative instability.26 To check this hy-
pothesis and try to measure the rotating frequency fv of the azimuthal structure of the turbulent flow,
we used the 2D-spatio-temporal spectrum EE(kx, f) which is computed through the integration over
kz of the 3D-spectrum E(kx, kz, f). EE(kx, f) is then compared to the spectrum ES(kx, f) obtained using
a synthetic Beltrami flow for different values of m. This is done in Fig. 5 using different Reynolds
numbers. The rotation frequency fr of the synthetic flows is adjusted to get the best resemblance with
the experimental field which is guessed to rotate at a fv frequency. At Re = 314, the experimental
spectrum is found very close to ES(kx, f) with m = 0. This result can be extended to the time-averaged
flow spectra (not shown) at any Reynolds number since it is similar to the laminar instantaneous
flow. Increasing the Reynolds number to Re = 1473 (resp., Re = 7200) in a region where one (resp.,
two) Eckhaus bifurcation(s) has occurred, we observe a strong similarity with corresponding ES(kx,
f) with m = 1 (resp., m = 2) with a small but non-zero rotation frequency fr = 0.01 Hz. For the last
two cases, the rotation frequency fv of the azimuthal structure of the flow shall be non-zero. How-
ever, it reveals to be smaller than our spectral resolution, typically 0.01 Hz, and therefore remains
unmeasurable. Increasing the Reynolds number the energy is found to remain mainly concentrated
at a 0 frequency up to Re = 4 × 104. In the vicinity of this last Re the energy becomes distributed on
a wider range of frequencies, up to 1.5 Hz. However, no particular frequency is selected. Increasing
further the Reynolds number, peaks at non-zero frequencies come up, as shown for Re = 106. These
peaks are the signature of a fixed rotation frequency at fv = 0.7 Hz. In this case, the experimental
spectrum is regained by ES(kx, f) with m = 3 and fr = 0.2 Hz. Overall, our results are compatible
with a rotating frequency bifurcating from a small but non-zero value around Re = 4 × 104.
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FIG. 5. Top, experimental spatio-temporal spectrum EE(kx, f) at θ = 0 for Re = 314 (a), 1473 (b), 7200 (c), and 106 (d),
corresponding to circles in Fig. 4. Colors are log scaled in the range [−1.5, 0]. Bottom, synthetic spatio-temporal spectrum
ES(kx, f), using n = k/k0 = 1 and fr = 0.01 Hz for m = 0 (e), 1 (f), 2 (g), and fr = 0.2 Hz for m = 3 (h). Colors are log scaled
in the range [−2, 0] for ((e)–(g)) and [−6, 0] for (h). Note the frequency axis range change for (d) and (h).

C. Rotation direction

At large enough Reynolds number, we have seen that a m = 3 perturbation of the “basic state”
of the flow is established with a non-zero rotating frequency. In the perfectly symmetric case there is,
however, no general argument imposing the direction of rotation of the pattern. Experimentally, this
should be the case at θ = 0. However, our setup was not perfectly symmetric what led to observe the
same direction of rotation for all experiments. A slight shift of θ was then introduced to compensate
this lack of symmetry. Using this adjustment we observed for each experiment one or the other
direction of rotation with an equal probability. The direction of rotation is best seen by focusing
on the vertical direction, i.e., looking at the 2D-spatio-temporal spectrum EE(kz, f), as shown in
Fig. 6. One observes either an upward (kz > 0 when f > 0) or a downward (kz < 0 when f > 0) tilt of
the spatio-temporal spectrum. This can be modelled by considering a synthetic Beltrami spectrum
corresponding to m = 3 with two opposite rotation directions, leading to an upward or downward
tilt of the spectrum (also shown Fig. 6).
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FIG. 6. Left, experimental spatio-temporal spectrum EE(kz, f) for (a) θ = 0, Re ≈ 106 and (c) θ = −8 × 10−3, Re ≈ 8 × 105.
Right, synthetic spatio temporal spectrum ES(kz, f) with n = k/k0 = 1, m = 3 and using (b) fv = 0.1 Hz and (d) fv = −0.1
Hz. Colors are log scaled.
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D. Link with the shear layer dynamics

It is tempting to associate the Eckhaus azimuthal instability evidenced in Sec. III A to a Kelvin-
Helmoltz instability of the shear layer. Indeed, this instability was already pointed out as the physical
mechanism for a stability loss of the axi-symmetric steady-state followed by successive flows with
non-zero azimuthal wavenumber. This was numerically observed for small Reynolds number (Re
< 500) in a geometry12 close to ours. Here, we report a similar mechanism but at largely higher
Reynolds numbers. It was also observed that the Kelvin-Helmoltz instability results in a series of
large scale structures taking the shape of radial vortices with well defined azimuthal wavenumber
that can be seen, e.g., through bubble seeding and white light.13, 27 The possibility of changes in m of
this pattern revealing an Eckhaus instability analog to that existing in small dynamical systems was
already mentioned in Ref. 17. To sustain this possibility, we have monitored the 2D-spatial spectrum
at a fixed Reynolds number, as a function of θ . It was already reported (see, for example, Ref. 17) a
shifting of the shear layer toward the slower impeller with increasing |θ |. When |θ | > 0.1 the shear
layer was found to be completely absorbed. If the azimuthal structures we observed are related to the
shear layer, the structure of the 2D-spatial spectrum should also follow θ . This is indeed the case,
as can be seen in Fig. 7 both from the isotropy and from the 1D-spatial spectrum EE(kx, θ ). With
increasing |θ | the two bands of kx merge into one, at kx = 0. At |θ | = 0.1 the isotropy measurement
and the peak at kx = 0 of the spectrum drops suddenly. Further increasing θ , both the isotropy and
the spatial spectrum (not shown) are found to be independent of θ . This is indicative of a transition
into a m = 0 structure, with no azimuthal modulations anymore. This thus proves that the azimuthal
modulation is indeed strongly associated with the shear layer.

E. Visualization of the coherent structure

Finally, the existence of organized motions in the turbulent flow means v′ can be written as the
sum of an in-phase term and a fluctuation term: v′ = vc + v′′, with v′′ the fluctuations and vc the
coherent structure velocity field. A visualization of the spatial structure of one azimuthal mode m
can then be obtained using conditional average of the velocity field v′. The condition is given by
suitable projection onto the corresponding Beltrami mode, see Eq. (4). Due to the geometry of our
PIV device, we however only have access to the velocity field in a meridional plane, i.e., for ϕ0 =
[0, π ]. Since the azimuthal modes are rotating we may however replace the azimuthal integration
in the scalar product by a suitable time integration. This is made possible for high enough Reynolds
number where the rotation frequency of the coherent structure is resolved. We used conditional
average as follows: we first compute for each instantaneous experimental field v′ the quantity:

am(t) =
∫ 1

−1
x dx

∫ h/R

−h/R
dz v′(t) · B1mk0 (x, ϕ0, z), (7)
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FIG. 8. (a) am (t) = ∫
xdx

∫
dzv′ · B1mk0 with m = 3 and Re = 106 at a fixed angle ϕ (corresponding to the angle of

Fig. 2(c)) as a function of time. am(t) was computed using v′(t) from the time-series used in Fig. 5(d) and was finally low-pass
filtered at 4 Hz. Horizontal lines, see Fig. 9. (b) Power spectrum Eam ( f ) of am(t) (+ solid line) for the data shown in (a) and
for other Reynolds numbers: Re/1000 = 41 (thin red/gray line), 21 (thin black line), 12 (thick black line), 7 (◦). The arrow
marks the main peak evolution with decreasing Re.

keeping the azimuthal wavenumber m and the angle ϕ constant. A result is shown in Fig. 8(a)
obtained using the same experimental data shown in Fig. 5(d) at Re = 106 and the synthetic velocity
field as in Fig. 2(d) at m = 3. One sees quasi-sinusoidal fluctuations in the signal am(t). We propose
that these fluctuations correspond to the coherent structures passing through the PIV plane. This is
corroborated by looking at Eam ( f ), the temporal power spectrum of am(t) in Fig. 8(b). The rotation
frequency measured using the 2D-spectrum of the velocity field and the main peak frequency of
Eam (f = 0.73 Hz in this experiment) are found identical. Secondary peak is a sub-harmonic at
f = 0.37 Hz. For lower Reynolds number, below Re = 4 × 104, both amplitudes of these peaks
decrease and are shifted toward lower frequencies. Simultaneously, the energy becomes roughly
equally distributed along a plateau, which amplitude is increasing and width is decreasing with the
Reynolds number. Down to Re = 104 a peak at small amplitude can still be distinguished at f ≈ 0.5
Hz. For the lower Reynolds number, the plateau vanishes and the energy is mainly concentrated in
the vicinity of f = 0. This confirms the behavior described in Sec. III B.

The velocity field v′ was then averaged over times for which am lies in a given range of values
[am > ε], representative of a given phase of the velocity field. An example is provided in Fig. 9 for
ε = 0.2 and m = 3 from am(t) shown in Fig. 8. One sees the presumable m = 3 coherent structure
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FIG. 9. Velocity fields obtained with the conditional average (left) v′(t[am (t) > ε]) in the plane ϕ = [0; π ] and (right)
v′(t[am (t) < −ε]) in the orthogonal plane ϕ = [π /2; 3π /2]. Both are computed using the signal am(t) and the horizontal lines
represented in Fig. 8(a) for Re = 106, m = 3, and ε = 0.2. We clearly distinguish two pairs of azimuthal vortices, rotating
around the azimuthal axis. The observed discontinuity at x = 0 is due to a slight shift of our S-PIV laser sheet from the center
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in two planes, dephased by π . One indeed sees large scale structures looking like pairs of azimuthal
vortices. By reproducing this conditional average using different phase ϕ0 for B1mk0 at a fixed m, we
obtained the complete movie (see Fig. 9) of the rotation of this pair of vortices (see the Multimedia
view). The physical mechanism leading to this vortices can be the Kelvin-Helmoltz instability laying
in the shear layer, a secondary or related instability or the centrifugal instability. It is interesting to
compare this result with the m = 3 velocity field shown in Fig. 2(d) using the same phase ϕ0 as in
Fig. 9(a). Both the anti-symmetric nature of the velocity field with respect to the r = 0 vertical axis
and v(r = 0) = 0 are recovered.

IV. SOME THEORETICAL CONSEQUENCES

In 1970, Kraichnan wrote a paper entitled “Instability in fully developed turbulence,”28 in
which he focuses on the propagation of errors from one range of scale to another. This problem
is related to predictability of turbulence. In the present work, we consider another aspect of the
same problem related to the stability of the unsteady coherent structures of a turbulent flow (in
other words, to the dynamic of the perturbation of this given coherent structures). We have shown
that using spatio-temporal spectra, and comparison or projection onto suitable Beltrami modes, it is
possible to identify coherent perturbations to the time-averaged flow. This is liable to an Eckhaus
instability analog to what is observed in systems in the laminar limit, with a few degrees of freedom.
In classical phenomenology of turbulence the number of degrees of freedom scales like Re9/4. Given
our range of Reynolds number (from 102 to 106), we thus can expect our system to be described by
a number of degrees of freedom in the range 7 × 104 to 3 × 1013. Our results thus prove that a huge
number of degrees of freedom are irrelevant to describe the instability of our turbulent flow. This
sets a number of interesting questions that we list below.

In the present paper, we have characterized experimentally the instability of the basic state. Is
there any analytical or numerical way to explain our observations? Classical instability analysis for
a given velocity field v(x, t) starts from stationary solutions of the Navier-Stokes equation:

∂ jv j = 0,

(8)

∂tvi + v j∂ jvi = − 1

ρ
∂i p + fi + ν∂k∂kvi .

In our case, we consider the instability of a time-average basic state v̄(x, t) that obeys the equation:

∂ j v̄ j = 0,

(9)

∂t v̄ + v̄ j∂ j v̄i = − 1

ρ
∂i p̄ + f̄i + ν∂k∂k v̄i + ∂ j Ri j ,

where ρ Ri j = ρ (v̄i v̄ j − viv j ) is the Reynolds stress tensor. This Reynolds stress represents the
influence of all the degrees of freedom of the flow onto its average, and can, in general, only be
computed via full solution of the NS equation. Therefore, the problem of instability of a mean
turbulent flow cannot be tackled analytically or is too demanding numerically, unless a prescription
(parametrization) of the Reynolds stress is provided. In the case of the plane Couette turbulent flow,
for example, this was attempted by Tuckerman et al.29 via the K-� closure model. They calculate
steady 1D solution profiles of the K-� model and their linear stability to 3D perturbations, but find
no correspondence between this analysis and the onset of turbulent-laminar bands in experiments
and simulations. In the same way, Legras and Villone30 address the problem of Kolmogorov flow
instability when molecular viscosity is replaced by a Smagorinsky parametrization for small-scale
turbulence. Such a parametrization represents the motion at scales smaller than the large scale
Kolmogorov flow. They claim that it may provide hints on large-scale instabilities at large Re and,
hopefully, on the character of such instabilities, but it has never been checked. In our case, it was
observed that the sequence of Eckhaus instability resembles the sequence of instability observed at
much lower Reynolds number.12 This suggests that the replacement of the Reynolds stress by an eddy-
viscosity might be a suitable parametrization by increasing the dissipation, and therefore decreasing
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the effective Reynolds number (and the effective number of degrees of freedom). Theoretically, we
note that the special geometry of our experiment and its parity symmetry properties make it plausible
that the first term in the expansion of the Reynolds stress as a function of the velocity gradient is
indeed quadratic, resulting in a non-isotropic eddy-viscosity tensor (in other words, there is probably
no anisotropic kinetic alpha (AKA) term in the Reynolds stress expansion).31 It is, however, not
clear that the correct parameters of the instability (threshold, wavenumbers) can be captured with
a simple eddy-viscosity model, since this procedure fails in the case of a plane Couette flow.29 An
interesting alternative would be to derive directly the mean state as the critical points of a suitable
Arnold functional, making the problem liable to traditional tolls of bifurcation theory. Such strategy
was followed in Ref. 32, resulting in a full description of a spontaneous parity-breaking turbulent
bifurcation. The generalization of this model to non-axisymmetric mean state is however an open
problem.

Summarizing, we have shown that the fluctuations of a turbulent von Kármán flow obey a
sequence of Eckhaus-like instabilities with varying Reynolds number that is similar to the sequence
of Eckhaus instability observed in the laminar flow, at much lower Reynolds number and that may be
explained through a suitable parametrization by increasing the dissipation, and therefore decreasing
the effective Reynolds number (and the effective number of degrees of freedom). If this is indeed
true, it may have interesting implications for other fields, especially astrophysics and geophysics
where Reynolds number are huge and our interest is mainly in the dynamics of the large-scale mean
flow. For example, current climate models that have presently very low effective Reynolds number
may be able to capture efficiently certain types of instabilities of the mean (climatic) turbulent state.
They may, therefore, be more predictable that Kraichnan thought, in a very different meaning.
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