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The oscillation inception in the single-branch pulsating heat pipe (PHP, called also oscillating heat pipe)
has been studied in the presence of the heat conduction along the PHP tube, with the imposed both evap-
orator heat power and condenser temperature. A start-up regime caused rather by the meniscus/film
evaporation than boiling has been considered. The dynamic equilibrium system state has been analyzed,
where the liquid film is absent and the meniscus is located at a position where the tube temperature
corresponds to the saturation temperature. The temporal evolution of the system responding to an initial
fluctuation shows a non-linear response even for small fluctuations. The stability of the equilibrium state
has been analyzed. The stability threshold corresponds to the start-up criterion. The main result of
the above analysis is the independence of the start-up criterion of the liquid film properties (film shape
and thickness). This result applies to the multi-branch PHP too. Due to the large tube thermal inertia,
influence of the temporal variation of the tube temperature on the threshold can be neglected; only
the equilibrium spatial temperature distribution along the tube matters. The start-up threshold value
is determined for the temperature gradient along the tube, more specifically, its equilibrium value at
the equilibrium meniscus location. It depends only weakly on other system parameters like condenser
temperature or adiabatic section length. An analytical expression for the threshold has been obtained.
The start-up power scales like square root of the tube heat conductivity. The liquid viscous dissipation
is found to be much less important than the energy dissipation via the fluid and solid heat transfer.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The pulsating (or oscillating) heat pipe (PHP) is a looped
capillary tube that meanders between hot and cold spots that form
evaporator and condenser sections, respectively. The tube is filled
with a pure fluid in such a way that liquid plugs and gas bubbles
coexist inside. When the temperature difference between the
evaporator and condenser exceeds a threshold, the self-sustained
oscillations of the plugs and bubbles appear. The PHP is extremely
attractive for various industrial applications because of high
thermal performance and manufacturing simplicity. However the
PHP functioning is not completely understood; the absence of
predictive tools that would allow their dimensioning is a
substantial obstacle to their development. The reason for that is,
on one hand, a multitude of complicated physical phenomena
involved into their functioning [1,2], and on the other, its intrinsic
non-stationarity. Because of the PHP complexity, their one-
dimensional (1D) modeling has been applied initially [3] where
only liquid and gas plugs with dry tube walls were modeled. The
model has been extended later [4] to account for the liquid films
(on the internal tube walls) through which most of the heat and
mass exchange occurs.

The crucial question about the PHPs concerns their start-up, i.e.
the oscillation inception. One can approach this question by direct
simulation [4]. Because of the multitude of parameters that
influence the start-up and different start-up modes [5], direct sim-
ulation of the multi-branch PHP is not the best way to study the
start-up criteria. To gain understanding of the PHP start-up, one
needs to begin with simple PHP geometries. In this article we con-
sider the start-up of the simplest, single branch PHP (Fig. 1) for
which some analytical results are possible to obtain [6,7]. It is a
straight capillary with a sealed end, which is heated (evaporator).
The gas bubble is confined between the sealed end and a liquid
plug. The condenser end of the capillary is connected to a large
reservoir filled partially with the liquid at constant pressure pr .

One can distinguish two main start-up modes: via boiling inside
liquid plugs situating in evaporator or via evaporation from liquid
menisci [5,8]. The first regime is often associated with a strong
evaporator temperature overshoot that appears between the
power switching-on and the oscillation beginning after which the
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Nomenclature

c specific heat [J/(kg�K)]
D thermal diffusion coefficient [m2/s]
d tube diameter [m]
e dimensionless volume element length, base of the

natural logarithm
f dimensionless viscous friction
hlg latent heat [J/kg]
j volume heat supply [W/m3]
k heat conductivity [W/(m�K)]
L length [m]
m mass [kg]
N number of volume elements
P heat power [W]
p pressure [Pa]
q heat flux [W/m2]
R gas constant for gas [J/(kg�K)]
r dimensionless velocity amplitude
S cross-section area [m2]
T temperature [K]
t time [s]
U heat transfer coefficient [W/(K�m2)]
V meniscus velocity [m/s]
x abscissa [m]

Greek symbols
a dimensionless evaporator length
b dimensionless heating power
v; n; f dimensionless constants defined in Eq. (25)
d liquid film thickness [m]
g reduced condenser temperature

c adiabatic index
k dimensionless coordinate
m liquid kinematic viscosity [m2/s]
X dimensionless parameter characterizing the tube

thermal inertia
P oscillation period [s]
w dimensionless gas temperature
q density [kg/m3]
r dimensionless saturation curve slope
s dimensionless time
h;l;/ dimensionless constants defined in Eq. (36)
e reduced adiabatic length
u;j dimensionless phase shifts

Subscripts
c condenser
e evaporator
f film
g gas
l liquid
m meniscus
o outer tube wall
r reservoir
s solid tube wall material, internal tube wall
sat saturation
sens sensible
t total
V at constant volume and for gas phase
0 at t ¼ 0
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temperature drops. It is related to the energy barrier required for
the bubble nucleation. The second regime exhibits a smaller
temperature overshoot (if any) and for this reason is more
advantageous because it provides a better temperature stability.
For this reason, in this article we study this latter regime that we
call ‘‘soft” to distinguish from the ‘‘hard” regime with a bigger
temperature overshoot.

The ‘‘film evaporation–condensation” (FEC) model introduced
in [6] is used here. It is a 1D model. The heat/mass exchange is con-
trolled mainly by the thermal conduction in the liquid films
described by the terms / ðTs � TsatÞ, where Tsat is calculated for
the current gas pressure p and Ts is the temperature of the internal
tube wall. The FEC model describes large amplitude oscillations
during which the meniscus sweeps both the condenser and the
evaporator. The FEC model agrees quantitatively with the experi-
mental results [6] on the single branch PHP. Recently, the FEC
model has been validated against the data obtained with another
experimental set-up [9]. It described most features observed
Le              La                 Lc                    Lr

xm

evaporator                      condenser

pr=constxf

dliquid x
gas doLm

qe

qfluid

Fig. 1. Single branch PHP within the lumped meniscus approximation. The total
tube length Lt ¼ Le þ Lc þ Lr includes an effective length Lr representing an amount
of the liquid in the reservoir that takes part in the oscillating motion; Le and Lc are
the lengths of the respective tube sections.
experimentally (like the intermittency of oscillations observed by
both [6,9]).

In the preceding article [7], the start-up has been studied for the
simplest thermal boundary conditions: the imposed temperature
at the internal tube walls both in the condenser and the evapora-
tor. The temperature varied stepwise along the tube (from
condenser to evaporator) for the case of PHP without adiabatic sec-
tion. In the present article, we consider a more realistic case of the
smooth temperature variation in the presence of adiabatic section.
The thermal boundary conditions approach the experimental
situation. While the condenser temperature Tc is imposed at the
internal tube walls, the thermal conduction along the tube is
introduced so that the tube temperature is allowed to vary both
spatially and temporally. A constant evaporator heat power Pe is
imposed.

When experimentalists consider the PHP start-up, they speak
usually of what happens after the power switching-on. Two
situations are then possible: either PHP begins to oscillate or it
comes to some stationary non-oscillating state of dynamic
equilibrium. One does not need to consider the switching-on
procedure when approaching the start-up problem theoretically.
One needs to find instead an equilibrium state and see if it is
stable or unstable with respect to a small fluctuation. The stable
state corresponds to that found experimentally and means the
absence of oscillation while the instability corresponds to the
oscillation start-up.

The article is structured as follows. The model is summarized in
Section 2. The equilibrium state for such a system is identified
in Section 3. The stability of the equilibrium state is studied in
Section 4. The oscillation threshold (i.e. start-up criterion) is
analyzed in Section 4.3. The results are summarized in Section 5.
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2. Film evaporation–condensation model in the presence of the
tube thermal conduction

The thermal diffusion inside the solid material of the tube is
introduced similarly to [10] where the effect of tube conduction
has been first introduced with the application to PHPs:

@Ts

@t
¼ Ds

@2Ts

@x2
þ js
qscs

: ð1Þ

It is assumed that the tube properties do not vary along the
tube. All other variables related to the heat diffusion depend both
on x and t. The thermal boundary conditions mimic the cryogenic
experiment [11]: the external tube surface in the evaporator and
adiabatic sections is assumed to be thermally isolated from the
environment. The heat is supplied to the tube through its inner
and outer walls. The equivalent 1D volume heat supply to the fluid
is obtained by multiplication of the heat flux by the element of the
respective wall area and division by the tube material volume
element;

js ¼
p
Ss

qedo � qfluidd if 0 < x 6 Le;

�qfluidd if Le < x 6 Le þ La;

(
ð2Þ

where Ss ¼ pðd2
o � d2Þ=4 is the tube material cross-section area. The

heat flux qe applied to the evaporator is distributed uniformly and is
thus constant,

qe ¼
Pe

pdoLe
: ð3Þ

The heat flux qfluid ¼ UfluidðxÞðTs � TfluidÞ is transferred from the
internal tube wall to the fluid. It can vary in time and space. The
significance of Tfluid is

Tfluid ¼
T if x 2 gas bubble;
Tsat if x 2 liquid film;

Tl if x 2 bulk liquid:

8><>: ð4Þ

and heat exchange coefficient Ufluid is either Ug ;Uf or Ul for the
respective regions. All three heat transfer coefficients are assumed
to be constant.

The thermal diffusion in the liquid is described by a similar
equation

@Tl

@t
¼ Dl

@2Tl

@x2
þ pdUl

qlclS
ðTs � TlÞ; ð5Þ

where S ¼ pd2
=4.

The choice of the boundary conditions for the thermal diffusion
problem is of importance. It is assumed here that the condenser is
efficient enough to impose the constant temperature at its
boundary,

Tsðx ¼ Le þ LaÞ ¼ Tc: ð6aÞ
The adiabatic condition is chosen at the sealed end of the tube,

@Ts

@x

����
x¼0

¼ 0: ð6bÞ

The thickness of thermal boundary layer formed near the liquid
meniscus is of the order

ffiffiffiffiffiffiffiffiffi
DlP

p
. It is assumed to be much smaller

than the liquid penetration length into the adiabatic section. We
will see below that such an assumption is justified. This means that
one may choose

Tlðx ¼ Le þ LaÞ ¼ Tc: ð6cÞ
With these assumptions, the integration interval for Eqs. (1) and (5)
may be limited to 0 < x < Le þ La and to xm < x < Le þ La, respec-
tively. The saturation temperature at the liquid meniscus
Tlðx ¼ xmÞ ¼ Tsat : ð6dÞ
provides the remaining boundary condition.

The gas mass exchange is obtained from the energy balance at
the gas–liquid interface that states that the heat flux from the
liquid side is spent for vaporization (or condensation if negative).
The total vaporization rate

_m ¼ _mf þ _mm; ð7Þ
where dot means the time derivative, is obtained by integration of
the flux over the gas–liquid interface. The latter is divided into two
parts. The first is the flat film surface and the corresponding
contribution

_mf ¼ Ufpd
hlg

Z xm

xf

½TsðxÞ � Tsat�dx: ð8Þ

is non-zero if the film exists. The second part of the gas–liquid
interface on which the mass exchange occurs is the meniscus, more
precisely, its small part Lm (Fig. 1) on which the heat flux is
non-negligible [2]. This meniscus part is adjacent to the film. The
corresponding contribution is

_mm ¼ UmLmpd
hlg

½TsðxmÞ � Tsat�: ð9Þ

According to the film evaporation–condensation model [6,4,7],
the film edge dynamics is defined only by the non-negative
evaporation part _mf ;e of _mf ,

_xf ¼
V if xf P xm; V < 0;
_mf ;e=ðqlpddÞ otherwise;

�
ð10Þ

where

_xm ¼ V : ð11Þ
The first line of Eq. (10) corresponds to the meniscus advancing

over the dry evaporator (where xf ¼ xm). In principle, xf 6 xm so
that the condition xf > xm may seem to be unnecessary. It is
however useful when the solution of Eq. (10) becomes slightly
larger than xm both in a numerical calculation (because of the
finiteness of the time step) and in the approximate analytical
approach considered in the Appendix B. The second line of
Eq. (10) corresponds to the Landau-Levich film deposition charac-
teristic to the Taylor bubble motion [2,12] and its evaporation.
Such an expression assumes a constant film thickness d. It will
be shown in the following that the film parameters (shape,
thickness) have no incidence on the PHP start-up.

According to Eq. (8), evaporation occurs on the film portion cor-
responding to xf < x < xsat , where xsat is defined by the condition
Tsðx ¼ xsatÞ ¼ Tsat . The film evaporation rate is then

_mf ;e ¼ Ufpd
hlg

Z xsat

xf

½TsðxÞ � Tsat�dx: ð12Þ

Note that such a formulation provides the film edge pinning at
the point xf ¼ xsat during the film evaporation: if a small positive
‘‘overshoot” xf � xsat occurs due to a numerical error, the back-
wards edge motion is induced due to the second line of Eq. (10).

A thermal boundary layer is allowed to exist in the gas, so that
the temperature T of its bulk may be different from that of the
gas–liquid interface (which is at TsatðpÞ). This is possible due to
the smallness of heat diffusion in the gas [6]. The experiment
[11] shows that the gas temperature is several degrees higher than
TsatðpÞ so that the gas evolves outside the saturation curve. For this
reason its equation of state can be approximated with a good
precision by the ideal gas equation

p ¼ mRT
Sxm

; ð13Þ
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where m is the gas mass. The gas energy balance [13] reads

mcV _T ¼ _mRT þ Psens � pSV : ð14Þ
The sensible heat exchange of the tube with the gas in the

evaporator is accounted for by the term

Psens ¼ Ugpd
Z xf

0
½TsðxÞ � T�dx: ð15Þ

The heat exchange coefficient Ug is proportional to the gas heat
conductivity kg . Because of its smallness, the sensible heat
exchange with the gas is much weaker than the exchange by evap-
oration/condensation. Its impact on the oscillations will be dis-
cussed below. The momentum equation for the liquid plug reads

ml
_V ¼ ðp� prÞS� 8pmqlðLt � xmÞV ; ð16Þ

where

ml ¼ qlðLt � xmÞS ð17Þ
is the liquid mass. The last term of Eq. (16) is the viscous friction
force corresponding to the Poiseuille liquid flow which is the small
velocity term of a more general expression [6]. The small velocity
limit is always applicable at the startup moment. Note that since
the liquid plug is usually long, dissipation in the single branch
PHP is dominated by the flow far from the meniscus where the
Poiseuille flow occurs. This is contrary to the multibranch PHP case
where the dissipation is defined by the recirculation flow caused by
the front and rear menisci [1].

Five governing ordinary differential Eqs. (7), (10), (11), (14), and
(16) of the model need to be solved together with the heat
diffusion problems (1, 5) with the boundary conditions (6) to find
the temporal evolution of the PHP.

3. Equilibrium state

First one needs to identify the equilibrium state (denoted by the
over bar hereafter), the stability of which will be analyzed next.
Strictly speaking, since the heat is supplied and dissipated it is
the dynamic equilibrium rather than truly equilibrium state.
However we will call it ‘‘equilibrium” for the sake of brevity.

3.1. Equilibrium conditions

The equilibrium conditions can be found by putting to zero all
the time derivatives. One deduces from Eqs. (8) and (9) that the
only way to cancel _mf and _mm simultaneously is to choose

�xf ¼ �xm ¼ �xsat; ð18Þ
where �xsat is defined via the equation

�Tsðx ¼ �xsatÞ ¼ �Tsat � Tsatð�pÞ: ð19Þ
This means that the meniscus situates at a point where the

internal wall temperature is equal to that of saturation. Such a
point cannot situate in the condenser because in the opposite case
only the trivial equilibrium solution TsðxÞ ¼ Tc exists only for
Pe ¼ 0, so that

0 < �xsat < Le þ La: ð20Þ
Eqs. (11) and (16) yield

V ¼ 0; �p ¼ pr ð21Þ
and Eq. (10) is satisfied automatically. From Eq. (13) one gets

�m ¼ prS�xsat
R�T

: ð22Þ

The equilibrium liquid mass is
�ml ¼ qlSðLt � �xsatÞ: ð23Þ
Eq. (14) requires that �Psens ¼ 0,Z �xsat

0
½�TsðxÞ � �T�dx ¼ 0: ð24Þ

that should hold for any equilibrium state.

3.2. Dimensionless formulation

The characteristic length L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ssks=ðpdUgÞ

p
of the heat

exchange in the dry tube portion is chosen to make the lengths
dimensionless. All temperatures are made dimensionless with
�Tsat . The following dimensionless parameters are introduced:

k ¼ x=L;

a ¼ Le=L;

e ¼ La=Le;
v ¼ �xsat=Le;

g ¼ ð�Tsat � TcÞ=�Tsat;

w ¼ �T=�Tsat;

b ¼ Pe=ð�TsatLepdUgÞ;
n ¼ Ul=Ug ;

f ¼ ksSs=ðklSÞ:

ð25Þ

The equations for dimensionless equilibrium temperatures
denoted with the hats read

T̂ 00
s þ

w� T̂s; 0 6 k < km
nðT̂ l � T̂sÞ; otherwise

( )
¼ �b; 0 6 k < a

0; otherwise

� �
; ð26aÞ

T̂ 00
l þ nfðT̂s � T̂ lÞ ¼ 0; ð26bÞ

where the primes mean the derivatives over k. The problem for T̂s is

solved for k 2 ½0;að1þ eÞ�, while that for T̂ l is solved for
k 2 ½km;að1þ eÞ�. Note that km ¼ �xsat � av is the dimensionless
equilibrium meniscus position, while að1þ eÞ is the dimensionless
Le þ La value. The boundary conditions (6) yield to

T̂ 0
sð0Þ ¼ 0;

T̂sðað1þ eÞÞ ¼ T̂ lðað1þ eÞÞ ¼ 1� g; ð27Þ
T̂ lðkmÞ ¼ 1: ð28Þ
Eq. (26a) suggests two cases to be considered separately: (A)
1 6 v < 1þ e (meniscus located in adiabatic section at equilib-

rium) and (B) 0 6 v < 1 (meniscus located at evaporator). Consider
first the case A. It is the most commonly encountered case. It
admits an analytical solution,

T̂s ¼
wþ bþ Ce coshðkÞ; if 0 6 k < a;
wþ C1

ae
k þ C2

ae
�k; if a 6 k < km;

1þ g v�k=a
1þe�v ; if km 6 k < að1þ eÞ;

8><>: ð29Þ

where

Ce ¼ 1� w� b cosh½aðv� 1Þ�
coshðavÞ ; ð30aÞ

C1
a ¼ 1� w� b sinhðaÞe�av

2 coshðavÞ ; ð30bÞ

C2
a ¼ 1� wþ b sinhðaÞeav

2 coshðavÞ ; ð30cÞ

w ¼ 1þ b
a coshðavÞ � sinhðaÞ

sinhðavÞ ; ð30dÞ

v ¼ eþ 1� g
ba2 ð30eÞ
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are obtained from Eqs. (27) and (28), the conditions of continuity of

T̂sðkÞ and T̂ 0
sðkÞ at k ¼ km, and the dimensionless counterpart of

Eq. (24). Since T̂s changes linearly along the liquid-covered portion
of the solid, Eq. (26a) requires that

T̂ lðkÞ ¼ T̂sðkÞ for k P km: ð31Þ
Because the last condition means the absence of the solid–

liquid heat transfer, the solution is independent of the liquid
properties, i.e. of the parameters n; f; the temperature distribution
in both liquid and solid is linear, cf. the last line of Eq. (29). Because
of the constraint v 6 1þ e, Eq. (30e) implies g > 0 or �Tsat > Tc in
the dimensional variables. The constraint v > 1 shows also that
the case A corresponds to the criterion

b >
g
a2e

; ð32Þ

i.e., to evaporator power larger than a threshold.
The behavior related to a change of the condenser temperature,

i.e., the reduced parameter g that enters the stability analysis
through the parameter v only seems to be counter-intuitive. One
usually discusses the PHP startup in terms of difference between
the evaporator and condenser temperatures so that a decrease of
Tc is expected to lead to the same result as an increase of Pe. The
actual tendency is however opposite. While an increase of Pe

(i.e., of b) causes an increase of v, a decrease of Tc (increase of g)
causes a decrease of v, cf. Eq. (30e). This situation is caused by
the fact that the pressure imposes the meniscus temperature at
equilibrium and thus becomes an important parameter defining
the temperature distribution along the PHP and thus the startup
conditions. The same feature should hold for the multi-branch
PHP with an open end.

An example for the equilibrium temperature distribution TsðxÞ
along the tube is shown in Fig. 2. Note that Eq. (31) holds for the
case of Fig. 2 because both curves correspond to the case A.

In the opposite case B (i.e. when the evaporator power is small)
one has v < 1. This case is rarely encountered in practice because
of larger startup threshold, see below. The solution for this case
is more complicated because it depends on the fluid properties
(i.e. on the parameters n; f); it is described in the Appendix A.
The temperatures in the solid and the liquid differ and the temper-
ature distributions deviate from linear. Their temperature
difference remains however small because the wall heat exchange
with the liquid is much stronger than with the gas.

The stationary solution is absent for evaporator power smaller
than a threshold value, cf. Appendix A. This occurs because the
0

1
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4
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0 0.5 1 1.5 2 2.5 3

T s

m

T
c
/ T

sat

_

=4.24

evaporator
adiabatic section

condenser

Fig. 2. Equilibrium temperature distribution along the PHP tube computed for
b ¼ 2;a ¼ 2:5; e ¼ 0:05, and g ¼ 0:15 and result in v ¼ 1:04 (case A) and w ¼ 4:24.
tube temperature at the meniscus location is imposed; it is the sat-
uration temperature, cf. Eq. (19). To provide oscillations [7], it
should be larger than Tc. Therefore, the heating power should be
large enough to create high enough evaporator temperature for
the continuity of heat flux along the tube at the meniscus location.
Note that v is determined from Eq. (A.5) which contains a group
g=ðba2Þ that depends on the evaporator power. For example, for
e ¼ 0:15; n ¼ 100 and f ¼ 700, the stationary state is absent if
g=ðba2ÞJ0:55.

The stationary state existence threshold is defined for the
dimensionless group g=ðba2Þ. This means that for fixed Pe, the
stationary state is absent for Tc smaller than some value defined
by the above threshold or, for fixed Pe and Tc , for Le smaller than
some value.

It is evident that if the heating power is insufficient, the gas
recondenses until the meniscus disappears. The oscillation cannot
thus exist in such a case. As such a situation is not of interest, the
recondensation regime boundary is not discussed any more.

3.3. Temperature derivative at the equilibrium meniscus location

It is a priori evident that the parameter T̂ 0
sðkmÞ mentioned in the

title of this section is an important quantity for the oscillation
start-up. Indeed, during a small deviation from the equilibrium
position, the meniscus should evolve in the temperature gradient
given by this quantity. It is given by the expression

T̂ 0
sðkmÞ ¼

�ab; if a2be P g;
�abv; otherwise:

(
ð33Þ

The first of the options corresponding to the case A may be
obtained from the last line of Eq. (29) and Eq. (30e); the second
corresponds to case B and is equivalent to Eq. (A.4).

Such a result is somewhat counter-intuitive because one may
imagine that the temperature gradient is defined by the difference
between the condenser and evaporator temperatures divided by
the sum of the evaporator and adiabatic lengths. However, the
gradient in the most common case A depends neither on the
condenser temperature nor on the adiabatic and evaporator
lengths. It is defined only by the evaporator power.
4. Stability analysis

4.1. Linearization

To study the system stability, one needs to consider small devi-
ations (denoted by D) from the respective equilibrium values, e.g.
p ¼ �pþ Dp. Then such expansions are substituted into the govern-
ing equations and only linear with respect to deviations terms are
kept. Like previously [7], the resulting equations will not be linear
but piece-wise linear (PWL). In what follows the equations written
for deviations are presented in the dimensionless formulation; a
dimensionless deviation is denoted with a tilde unless a special
notation (like k for the dimensionless length) is introduced. The
employed characteristic time and mass scales are, respectively,

ts ¼ qscsSs
pdUg

; ð34Þ

pdUmLm�Tsat
m1 ¼
hlg

ts; ð35Þ

while the pressure and power scales are pr and prSL=ts, respectively.
The time ts may be easily obtained by balancing the tube thermal
inertia and the heat exchange of the gas with dry tube walls and
thus characterizes the dynamics of the tube temperature variation.
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The following additional dimensionless constants appear in the
dynamical problem:

r ¼ @T
@p

����
sat

pr
�Tsat

; ð36aÞ

h ¼ pdUg
�Tsat

prS
ts; ð36bÞ

l ¼ avm1

�m
¼ h

Um

Ug

LmR�Tsatw
Lhlg

; ð36cÞ

f ¼ 8pmts=S; ð36dÞ
/ ¼ Ds

Dl
; ð36eÞ

c ¼ 1þ R=cV : ð36fÞ
The most important feature of the analysis concerns

Eq. (12). The linearization of the integral results in
ðDxsat � Dxf Þ½�Tsð�xsatÞ � �Tsat�, which vanishes because of the condi-
tions (18,19). This means that the film evaporation–condensation
does not contribute to the linearized equations. Therefore, the film
parameters like d do not impact the stability conditions and the
oscillation development is entirely controlled by the meniscus
(and not the film) evaporation–condensation:

_~mf ;e ¼ 0; ð37Þ
D _~m ¼ D _~mm ¼ D~TsðksatÞ � D~Tsat: ð38Þ
In the last expression, one needs to account for the expansion
ksat ¼ km þ Dkm:

DeT sðksatÞ ¼ D~TsðkmÞ þ T̂ 0
sðkmÞDkm

D~Tsat ¼ rD~p;
ð39Þ

that involves the Ts derivative at the equilibrium meniscus position
(33). The pressure variation D~p is determined from Eq. (13),

D~p ¼ l
km

D ~mþ D~T
w

� Dkm
km

: ð40Þ

The remaining equations are

D _km ¼ ~V ; ð41Þ

D _kf ¼
~V if Dkf PDkm and ~V <0;
0 otherwise;

(
ð42Þ

km D
_eT ¼lD _~m� ~Vþh

Z km

½D~TsðkÞ�D~T�dkþDkf ð1�wÞ
� �

; ð43Þ
0

m m

1 2 Ng-1 

eg 2eg

Ng

2eg 2el 2el

Ng+1 Ns-1Ns

2el el

Ns+1 Nt-1 solid liquid 

Fig. 3. The discretization scheme. The open circles are the node points in which the
temperature is defined. The rectangles show the volume 1D elements. The liquid
discretization copies that of the solid in the domain k > km .
wðc�1Þ 0

c _eV ¼kmX
2D~p�cf eV ; ð44Þ

where the dimensionless eigenfrequency is X ¼ ts=tg , the character-
istic time

tg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ql�xsatðLt � �xsatÞ

prc

s
; ð45Þ

being related to the oscillation period [6] via P ¼ 2ptg . There are
five ordinary differential Eqs. (38), (41)–(44) to be solved. Eq. (42)
makes the problem piece-wise linear.

To linearize the heat diffusion problem, one neglects the nonlin-
earity introduced by the moving boundary (i.e. the meniscus) and
considers the problems with two fixed intervals ½0; km� and
½km;að1þ eÞ�,

D
_eT s ¼ D~T 00

s þ
D~T � D~Ts; ifk 2 ½0; km�
nðD~Tl � D~TsÞ; ifk 2 ½km;að1þ eÞ�

(
; ð46Þ

/D
_eT l ¼ D~T 00

l þ nfðD~Ts � D~TlÞ; ð47Þ
with the boundary conditions
D~T 0
sð0Þ ¼ 0; D~Tsðað1þ eÞÞ ¼ 0; ð48Þ

D~TlðkmÞ ¼ D~Tsat; D~Tlðað1þ eÞÞ ¼ 0: ð49Þ
The chosen initial conditions are

eV ¼ eV 0; Dkf ¼ D ~m ¼ DeT ¼ Dkm ¼ DeT sðkÞ ¼ DeT lðkÞ ¼ 0: ð50Þ

In what follows, we use the numerical value eV 0 ¼ 0:01 X.
The temporal evolution of the system can now be simulated.

The right hand sides of the partial differential Eqs. (46) and (47)
are discretized with the finite volume numerical method similarly
to [4], cf. Fig. 3. There are Ng þ 1 1D volume elements within the
part of the solid ½0; km� in contact with the gas, Ns � Ng elements
within the part ½km;að1þ eÞ� in contact with the liquid, and the
remaining elements in the liquid to result in Nt total number of
nodes. The lengths of the inner elements in two above regions
are 2eg and 2el, respectively. The border elements are half-length.
Their temperatures are given by three boundary conditions (48)
so that there are Nt � 3 unknown liquid and solid temperatures
and the same number of the differential equations (written for
each of the Nt � 3 volume elements) that have become ordinary:
the time derivatives are kept. The system of ordinary differential
equations completed by five Eqs. (38), (41)–(44) is solved by the
fourth order Runge–Kutta method using the initial conditions
(50). A strong difference between eg and el (in practice eg ¼ 10el)
is required to resolve a much steeper temperature variation in
the liquid domain. For numerical stability of the algorithm, the
time step should be reduced for a < 1. Both the grid independence
and convergence of such an algorithm have been checked.

For some parameters, the initial velocity fluctuation declines,
for some grows with time. The temporal evolution of

D ~m;DeT ;Dkm;Dkf is presented in Fig. 4a for the unstable case where
the initial fluctuation develops. The evolution is similar to the fixed
temperature case [7]. The nonlinearity of the system manifests
itself through the nonzero quantities averaged over an oscillation
period. While the meniscus always oscillates around the initial
equilibrium position, the average gas temperature grows while
the average gas mass decreases. This occurs because of the asym-
metrical film edge dynamics. The film is left behind the receding
liquid meniscus (Fig. 5a) and is ‘‘eaten up” when the meniscus
advances (Fig. 5b). As a consequence, the gas is in contact with
the hot portion of the tube but not with the cold. Due to the
sensible heat exchange, the gas averaged temperature grows, its
pressure grows too causing condensation and mass decrease.

The evolution of the solid and liquid temperature distributions
along the tube during one oscillation period can be seen in Fig. 6.
Several particularities of the temperature distribution can be
mentioned.

The tube temperature deviation DTs (Fig. 6a) is constant along
the major part of evaporator and only a thin boundary layer exists
englobing the adiabatic section. This means that the tube
temperature is controlled mainly by the gas-tube sensible heat
exchange which is constant along the dry area. In (qualitative)
agreement with the experimental data [5,8], the tube temperature
rises. This rise is monotonous because of large tube thermal inertia
that smoothes out the heat exchange oscillations. The thermal
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boundary layer is caused mainly by the axial heat conduction
toward the condenser. Its thickness grows slowly with time.

A boundary layer exists inside the liquid plug too (Fig. 6b). It is
caused by the variation of the meniscus (saturation) temperature
that follows the oscillating around pr gas pressure. The liquid
boundary layer is much thinner than inside the solid.
liquid(a)   gas

liquid

( )s satT x T ( )s satT x T

satx

(b)   gas

Fig. 5. Asymmetry of oscillations in the PHP during meniscus (a) receding and (b)
advancing stages of oscillation.
4.2. Simplified system: imposed TsðxÞ distribution

One notices that the deviations of temperatures both of the tube
and of the liquid are much smaller than the deviation of other tem-
peratures (in particular, gas temperature), compare D~Tl;s � 10�3 in

Fig. 6 to D~T � 0:1 in Fig. 4a. It is thus reasonable to consider a
simplified system with the imposed spatial variation of
Ts;lðx; tÞ ¼ �Ts;lðxÞ constant in time. This corresponds to the case of
a large thermal inertia of the tube. The solid–gas heat exchange
is insufficiently strong to heat or cool the tube during an oscillation
period. Since the solid–gas heat exchange is characterized by the
time ts and the oscillations, by the time tg , the large thermal inertia
case corresponds to X ¼ ts=tg � 1. This case is often met in
practice. Mathematically, one obtains the simplified equations by
cancelling both D~Ts ¼ 0 from Eq. (43) and D~TsðkmÞ ¼ 0 from
Eq. (39). One mentions that the characteristic time ts becomes
irrelevant. It is evident from the physical point of view. Indeed,
as mentioned before, the time ts characterizes the tube cooling rate
which is irrelevant within the imposed TsðxÞ model. Let us thus
rescale the time with tg . The rescaled equations read
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D _~m ¼ T̂ 0
sðkmÞDkm � r

�l
km

D ~mþ D~T
w

� Dkm
km

 !
; ð51aÞ

km
wðc� 1ÞD

_eT ¼ �lD _~m� ~V þ �h Dkf ð1� wÞ � kmD~T
h i

; ð51bÞ

c _eV ¼ �lD ~mþ km
w

D~T � Dkm � c�f eV ; ð51cÞ

where the mass and velocity are now rescaled by the quantities
m2 ¼ m1=X, and L=tg independent of ts. The rescaled constants
�h ¼ h=X; �l ¼ l=X, and �f ¼ f=X are independent of ts either. The
other characteristic values and constants are not changed. Such a
change corresponds to the replacement of ts by tg in Eqs. (35) and
(36). Together with the expression (33), five ordinary differential
Eqs. (41), (42), and (51) is a closed set to be solved with the initial
conditions (50). The set is not linear (it is piecewise linear, PWL) and
thus its stability cannot be studied with the classical linear stability
analysis. Similarly to [7], the averaging method [14] can be applied.
It consists in the identification of slowly varying (in comparison
with the oscillation frequency) variables and the averaging over
the remaining ‘‘fast” variables.

4.3. Oscillation threshold

The stability boundary (i.e. the oscillation threshold) can be
obtained analytically with the averaging approximation as
described in the Appendix B. It can be presented as a critical value
of one of the parameters (e.g. heating power) as a function of all
others. However we prefer the following formulation:

�T̂ 0
sðkmÞ ¼ w

h
l

ðc� 1Þ2
c

þ rc
avþ f

l
: ð52Þ

One recalls that the gradient of wall temperature at the

equilibrium meniscus position T̂ 0
sðkmÞ is negative (cf. Fig. 2).

One can interpret Eq. (52) as a criterion expressing the critical

value of jT̂ 0
sðkmÞj as a function of various parameters. The instabil-

ity occurs if jT̂ 0
sðkmÞj is larger than this critical value. Such a

criterion formulation is convenient because of the weak depen-
dence of the r.h.s. of Eq. (52) on the system parameters. Indeed,
the dependence on most parameters manifests itself through the
parameters w;v. Both of them do not vary strongly. In particular,
v defines the equilibrium meniscus position: km ¼ av. Most often,
this position is located close to the boundary between evaporator
and adiabatic section (cf. Fig. 9 below) so that one can approxi-
mate v � 1.

The numerical solutions of all three considered above models
(varying Tl;s, imposed Tl;s and averaging approximation of the
latter) can now be compared. One can see that the results of the
varying (Fig. 4a) and imposed (Fig. 4b) Tl;s models almost coincide.
This is expected as Tl;s variation (Fig. 6) is orders of value smaller
than the variation of other temperatures, in particular gas temper-
ature, cf. Fig. 4. Such a smallness is due to the choice of parameters
corresponding to the large thermal inertia of both fluid and solid
which is typical for PHPs. There is some discrepancy between the
fixed Tl;s PWL model and its averaging approximation, see Fig. 4b.
Generally, the discrepancy decreases with the �h decrease, which
is expected since �l is proportional to �h and the approximation
becomes exact in the trivial limit �h; �l! 0. The deviation increases
with the l=h decrease.

The stability boundary for the PWL equations may be found

numerically by comparing the eV oscillation amplitude after some

time (the time 10P has been chosen) to its initial amplitude eV 0,
the boundary corresponds to their equality. It should be mentioned
that the boundary depends slightly upon this time; the boundary
varies by about 1% when the time 20P is chosen. A comparison
of the stability boundaries (as functions of a, the other parameters
being constant) obtained within three considered above models
are shown in Fig. 7. The initial fluctuation declines below the
respective curve and the oscillations develop above it.

One notices several features. (i) The PWL results of the imposed
and varying temperatures virtually coincide. Such an agreement is
expected because the tube thermal inertia is large due to X � 1.
Because of this, the imposed temperature PWL results will be
discussed in the rest of the article. (ii) Although there is a 10%
quantitative deviation of the averaging approximation from the
PWL results, it reproduces well the qualitative tendency. Due to
the analytical oscillation threshold expression (52), the approxima-
tion is thus useful to understand general tendencies. (iii) The
successful power law fit of the averaged approximation boundary
shows that the a dependence of the threshold value is provided
mainly by the second term of Eq. (52). The a dependence of the
threshold can thus be modeled by the term rc=a.

Generally, a system becomes unstable when the energy input
exceeds energy dissipation. There are two energy dissipation
channels: the heat diffusion and the viscous losses. One can com-
pare their contribution by comparing the last (viscous) term of
Eq. (52) to the others. For the chosen parameters, the last term is
of the order 10�5, while the others are of the order 1. One
concludes that the viscosity contribution is negligible unless the
tube diameter is very small (because f � S�1).

The dimensionless threshold for the temperature gradient (33)
is defined for the only dimensionless group ab containing ks and Ss,
which are the essential system parameters absent from other
dimensionless groups. Indeed, the other dimensionless groups f
and / containing them has but a very small impact on the thresh-
old (they impact only v < 1 and DTl;s). Therefore a useful scaling

law can be deduced: the start-up power scales like ðSsksÞ1=2. This
is expected since a larger heat conductivity requires a larger power
to produce the same temperature gradient.

The instability boundary for different adiabatic section lengths
is presented in Fig. 8.
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The instability boundary dependence on the reduced condenser
temperature g is analyzed in Fig. 9 where the v variation is also
shown. One can see that the dependence of g is quite weak. For
large a, this is explained by the independence of the temperature
gradient (33) on g. Indeed, although g increase causes v decrease
(cf. Eq. (30e)), the latter remains to be larger than unity, i.e. the
meniscus remains to be inside the adiabatic section. The gradient
remains invariable because the temperature profile is linear, see
the last line of Eq. (29). For small a;g increase causes v decrease
beyond the unity where the gradient (33) is proportional to v.
Finally the gradient value becomes to be insufficient any more
for the oscillations start-up. Note that, although logical, such a
behavior is counter-intuitive: one would expect a lower threshold
for the lower Tc (i.e. higher difference between evaporator and con-
denser temperatures). Such an effect appears due to the fact that
our PHP is open so that the threshold is defined in terms of the dif-
ference of evaporator and saturation temperatures rather than
evaporator and condenser temperatures. This feature is likely to
be similar to the open multi-branch PHPs.

The numerical studies thus corroborate the result obtained
analytically in the averaging approximation: the gradient critical
value does not change much with other system parameters like
adiabatic length, condenser temperature or liquid volatility
(described by l=ðwhÞ). One can see that the tube temperature
gradient at the equilibrium meniscus position is indeed the right
parameter to describe the stability threshold.
5. Conclusions

The oscillation inception in the single-branch PHP has been
studied in the presence of the axial heat conduction in the PHP
tube. A ‘‘soft” start-up regime caused rather by the meniscus/film
evaporation than boiling has been considered.

First, the dynamic equilibrium system state has been found. At
equilibrium, the liquid film is absent and the meniscus is located at
a position where the tube temperature corresponds to the satura-
tion temperature; the temperature distribution along the tube is
nonlinear. The temporal evolution of the system responding to
an initial fluctuation has been analyzed. The response is not linear
even for small fluctuations because of asymmetry related to the
liquid film deposition during the meniscus receding. During the
initial fluctuation development, overall condensation occurs and
the gas mass decreases. Both gas and tube temperature grow.

Next, the stability of the equilibrium state has been analyzed.
The stability threshold corresponds to the start-up criterion. The
main result of the above analysis is the independence of the
start-up criterion of the liquid film properties. This result is very
different from the previous model [7] and is a direct consequence
of the heat conduction along the tube. Such a result means that the
present analysis is quite universal since it is independent of a
particular liquid film shape (flat, wedge-like, etc.).

The start-up criterion depends weakly on the liquid phase
properties and quite strongly on the gas phase properties.

Among all the multitude of the PHP parameters, we have
identified the most important parameter for which the start-up
criterion should be defined. It is the temperature gradient along
the tube, more specifically, its equilibrium value at the equilibrium
meniscus location. It is related to the evaporator power and
independent of the condenser temperature.

The present analysis shows a strong influence of the tube
material and section on the PHP start-up. The start-up power

scales like ðSsksÞ1=2.
Since the above results have been obtained from the same mass

transfer equations that apply to the multi-branch PHPs, the same
conclusion should apply to them.

It has been found that when the tube thermal inertia is large
(more specifically, when X � 1), influence of the temporal varia-
tion of the tube temperature on the threshold can be neglected;
only the equilibrium spatial temperature distribution along the
tube matters. This is a common situation in experiments. In
addition, such an assumption considerably simplifies the theoreti-
cal treatment.

Dependence of the start-up threshold on several system param-
eters has been analyzed. The threshold depends only weakly on
condenser temperature or adiabatic section length. Such a
situation is characteristic to the open PHP (that connected to a
reservoir) for which the relevant parameter is the saturation
temperature corresponding to the reservoir pressure rather than
the condenser temperature. An analytical expression for the
threshold has been obtained within the averaging approximation.

A PHP starts-up when the evaporator power exceeds energy
dissipation. Two causes of energy dissipation has been considered:
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the heat dissipation by conduction (both in the solid and in the
fluid) and liquid viscous dissipation. Usually the second dissipation
channel is negligibly small with respect to the first. This tendency
can however be inverse for tubes of microscopic diameters which
should have higher start-up thresholds.
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Appendix A. Stationary state for the case of small evaporator
power

The case b < g=ða2eÞ (case B of Section 3.2) where v < 1 will be
considered here. Consider first the dry tube portion 0 6 k < km. The
solution

T̂s ¼ wþ bþ Ce coshðkÞ ðA:1Þ

holds for 0 6 k < km with the condition T̂sðkmÞ ¼ 1 that results in

Ce ¼ 1� w� b
coshðavÞ : ðA:2Þ

The w value is found from the dimensionless counterpart of
Eq. (24):

w ¼ 1þ b½av cothðavÞ � 1�: ðA:3Þ

It is evident that w > 1. By using Eq. (A.1), one obtains

T̂ 0
sðk� av! �0Þ ¼ �abv: ðA:4Þ

Consider the conjugate problem (26), first for the interval

a 6 k 6 að1þ eÞ. Let us use yet unknown T̂s;lðaÞ as given boundary
conditions. Eq. (27) are used as two other boundary conditions. The
solution of the linear set (26) on the above interval may now
be found analytically with Wolfram Mathematica� software. The
solution is straightforward but cumbersome and for this reason
is not written here. For its checking, one may use the fact of the
reduction to the linear function (cf. the last line of Eq. (29)) in

the limit T̂s ! T̂ l. From the obtained solution, one can now find

the derivatives T̂ 0
s;lðaÞ as linear combinations of T̂s;lðaÞ. The obtained

pair of relations may be used as boundary conditions for the set
(26) that needs to be solved now on the interval km 6 k 6 a. The
other pair of boundary conditions is T̂ l;sðkmÞ ¼ 1. Mathematica

can again be used to obtain analytically the solutions T̂ l;sðkÞ which
are now parameter-free. The variable v remains to be the only

unknown. It is found by matching the derivative T̂ 0
sðk� km ! þ0Þ

with the value (A.4). Such a procedure guarantees that the

obtained functions T̂ l;sðkÞ are continuous and smooth.

The resulting equation gðvÞ � T̂ 0
sðk� km ! þ0Þ þ abv ¼ 0 is

nonlinear and needs to be solved numerically. Within a multiplier,
it reads

2 etv � etð Þ etv � etð2eþ1Þ� �þ t
e2tðeþ1Þ � e2tv

e� vþ 1

� 2f e� g
a2b

� 	�
þ2 ev� g

a2b

� 	
þ ð1� vÞ 2vþ fðvþ 1Þ½ �

�
¼ 0

ðA:5Þ

where t ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðfþ 1Þnp

. Fig. A.10 shows examples of f ðvÞ for
different values of g=ða2bÞ at constant e. One can see that for large
b (small g=ða2bÞ) there is always a root corresponding to an
equilibrium state. As required to have a cross-over between the
cases A and B, the root is v ¼ 1 when ba2e ¼ g. When b decreases,
the root value decreases. A second root may appear in a small range
of parameters. The equilibrium states disappear when b becomes
inferior of a critical value.

Appendix B. Application of the averaging method

The consideration below is similar to the fixed temperature case
described earlier [7].

Let us choose first a ground state that provides periodical
oscillations. It can be defined by the equations

D _~m ¼ 0;

D _km ¼ eV ;
D _kf ¼ 0;
km
w

D
_eT ¼ ð1� cÞeV ;

c _eV ¼ km
w

DeT � Dkm þ �lD ~m

ðB:1Þ

obtained from the set (41), (42), and (51) by omitting the terms
responsible for the nonlinearity, mass transfer and energy dissipa-

tion (putting �f ¼ �l ¼ �h ¼ 0). The solutions of Eqs. (B.1) are indeed
periodical with the unit eigenfrequency (cf. Fig. B.11),

eV ¼ r sinj; ðB:2aÞ
Dkm ¼ �r cosjþ C ðB:2bÞ

DeT ¼ w

km
½ðc� 1Þr cosjþ E�; ðB:2cÞ

D ~m ¼ ðC � EÞ=�l; ðB:2dÞ
where j ¼ sþu; s being the dimensionless time; for the moment,

r;u;C; E are arbitrary constants. Eqs. (B.2) show that eV ; km; eT are
the ‘‘fast” variables (those that vary on the dimensional scale tg).
One may now reduce the initial set (51) with the method of varia-
tion of arbitrary constants. Assume now r;u;C; E;Dkf to be s func-
tions and substitute the expressions (B.2) back into Eqs. (41), (51).
A straightforward reduction results in the equations
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1
�l
ð _C � _EÞ ¼ T̂ 0

sðkmÞðC � r cosjÞ � r
km

cr cosj; ðB:3aÞ
_r ¼ _C cosj� �f r sin2 j; ðB:3bÞ
r _u ¼ � _C sinj� �f r sinj cosj; ðB:3cÞ
c _E ¼ Dkf ð1� wÞ � w½ðc� 1Þr cosjþ E�: ðB:3dÞ
�hðc� 1Þ
which are still rigorous. The fifth equation is obtained by the trivial
substitution of Eqs. (B.2a) and (B.2b) into Eq. (42), which results in a
cumbersome expression omitted here. One may check by solving
numerically these five equations together that all the variables
r;u;C; E;Dkf exhibit small oscillations around slowly varying mean
values and are thus the ‘‘slow” variables. Let us average Eqs. (42)
and (B.3) over the oscillation period (i.e. integrate from 0 to 2p
and divide by 2p). While averaging the right hand side of the equa-
tions, r;u; C; E;Dkf (but not their derivatives) are to be assumed
constant over the period. From now on, under r;u;C; E;Dkf we
mean their averaged counterparts. One obtains from Eqs. (B.3):

1
�l
ð _C � _EÞ ¼ T̂ 0

sðkmÞC; ðB:4aÞ

_r ¼ � r
2

�hw
ðc� 1Þ2

c
þ �l T̂ 0

sðkmÞ þ
rc
km


 �
þ �f

( )
; ðB:4bÞ

_E ¼ �h
c� 1
c

½ð1� wÞDkf � wE�; ðB:4cÞ

and the condition _u ¼ 0. Two cases are possible depending on the
relation between Dkf ;C and r. Consider first the case where Dkf is
larger than the minimal value of Dkm over the period (where the
expression (B.2b) for Dkm now uses the averaged values of r;u;C),
i.e. Dkf P C � r, cf. Fig. B.11. This case corresponds to a situation
where the condition Dkf ¼ Dkm may be attained (i.e. the film
disappears during some part of the period), which is justified both
for the unstable regime and at the stability boundary. Indeed, since
the film evaporation is neglected in the first-order approximation,
the equality Dkf ¼ Dkm is attained when the amplitude grows in
time or remains constant. For this case, Fig. B.11 shows that the
averaging of Eq. (42) results in

D _kf ¼ r
2p

Z 2p

jf

sinjdj;

where jf is defined by the condition cosjf ¼ ðC � Dkf Þ=r equivalent
to Dkf ¼ Dkm, cf. Eq. (B.2b).
The integration results in D _kf ¼ � r
2p ð1� cosjf Þ. Finally,

D _kf ¼ � 1
2p

ðr þ Dkf � CÞ: ðB:4dÞ

It is evident that the averaging of Eq. (42) for the case
Dkf < C � r (that means Dkf < Dkm) results in D _kf ¼ 0.

To comply to the initial conditions (50), rð0Þ ¼ eV 0;

Cð0Þ ¼ 0; Eð0Þ ¼ 0, and u ¼ p=2 need to be chosen. The set of
Eqs. (B.4) is solved numerically. The solutions for Dkm and other
original variables is a result of substitution of the obtained
functions rðsÞ;CðsÞ; EðsÞ into Eqs. (B.2).

The stability threshold can be reasonably guessed without a
rigorous analysis of the system (B.4) to be defined by the zero right
hand side of Eq. (B.4b) (which results in the criterion (52)). Such a
guess is based on the independence of this equation (the only one
involving all the dissipation sources) from the others. The rigorous
linear stability analysis done with the Hurwitz stability criterion
(which is somewhat cumbersome and for this reason is not
reproduced here) confirms this guess.
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