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We consider the flow of a Newtonian fluid in a three-dimensional domain, rotating about
a vertical axis and driven by a vertically invariant horizontal body-force. This system
admits vertically invariant solutions that satisfy the 2D Navier-Stokes equation. At high
Reynolds number and without global rotation, such solutions are usually unstable to
three-dimensional perturbations. By contrast, for strong enough global rotation, we prove
rigorously that the 2D (and possibly turbulent) solutions are stable to vertically depen-
dent perturbations.
We first consider the 3D rotating Navier-Stokes equation linearized around a statisti-

cally steady 2D flow solution. We show that this base flow is linearly stable to vertically
dependent perturbations when the global rotation is fast enough: under a Reynolds-
number-dependent threshold value Roc(Re) of the Rossby number, the flow becomes
exactly 2D in the long-time limit, provided that the initial 3D perturbations are small.
We call this property linear two-dimensionalization. We compute explicit lower bounds
on Roc(Re) and therefore determine regions of the parameter space (Re,Ro) where such
exact two-dimensionalization takes place. We present similar results in terms of the forc-
ing strength instead of the root-mean-square velocity: the global attractor of the 2D
Navier-Stokes equation is linearly stable to vertically dependent perturbations when the
forcing-based Rossby number Ro(f) is lower than a Grashof-number-dependent threshold

value Ro
(f)
c (Gr).

We then consider the fully nonlinear 3D rotating Navier-Stokes equation and prove

absolute two-dimensionalization: we show that, below some threshold value Ro
(f)
abs(Gr)

of the forcing-based Rossby number, the flow becomes two-dimensional in the long-time
limit, regardless of the initial condition (including initial 3D perturbations of arbitrarily
large amplitude).
These results shed some light on several fundamental questions of rotating turbulence:

for arbitrary Reynolds number Re and small enough Rossby number, the system is at-
tracted towards purely 2D flow solutions, which display no energy dissipation anomaly
and no cyclone-anticyclone asymmetry. Finally, these results challenge the applicability of
wave turbulence theory to describe stationary rotating turbulence in bounded domains.

1. Introduction

Global rotation is ubiquitous in geophysical, astrophysical and industrial flows. Uni-
form solid body rotation at angular frequency Ω affects the fluid motion through the ac-
tion of the Coriolis force, and allows for inertial waves: in an inviscid and incompressible
fluid, an infinitesimal wave-like velocity disturbance obeys the inertial-wave dispersion
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relation,

σ = ±2Ω
kz
k

, (1.1)

where σ is the angular frequency, k is the wave vector, k = |k|, and kz is the component
of the wave vector along the axis of global rotation (denoted as the vertical z-axis by
convention).

Both the linear and fully nonlinear behaviors of the flow are therefore affected by
global rotation. For turbulent flows, the strength of global rotation can be characterized
by the Rossby number Ro, defined as the ratio of the global rotation period to the
large-scale eddy turnover time. When the Rossby number is low, global rotation induces
strong anisotropy: the flow tends to become two-dimensional, with flow structures weakly
dependent on the coordinate along the rotation axis (Davidson 2013). This result is
usually referred to as Taylor-Proudman theorem, which considers the asymptotic limit of
vanishing Rossby number (infinite global rotation rate): fluid motion with characteristic
time much larger than the rotation period is independent of the vertical.

Turbulent flows at large Reynolds number Re contain a broad range of spatial scales
and temporal frequencies, including frequencies very large compared with the inverse
large-scale eddy turnover time. While the large-scale and low-frequency structures of the
flow become 2D for strong enough global rotation, the fate of small-scale high-frequency
structures is less clear, and whether the latter become 2D as well for rapid global rotation
is an open issue of rotating turbulence. This constitutes the central question of this study:
are rotating flows more and more 2D as Ro decreases, with a nonzero but decreasing
fraction of the total energy contained in fully 3D flow structures, or do they become
exactly two-dimensional under a critical value of the Rossby number, with no dependence
at all along the vertical?

This central question is related to many of the fundamental questions addressed by
experimental and numerical studies on rotating turbulence:

• How much power per unit mass ǫ does a rotating turbulent flow dissipate? For
stationary rotating turbulence with root-mean-square velocity U and length scale ℓ,
does ǫ display a dissipation anomaly, with limRe→∞

ǫℓ
U3 > 0, like in classical 3D tur-

bulence (Frisch 1995; Doering & Foias 2002), or does it behave like 2D flows, with
limRe→∞

ǫℓ
U3 = 0 (Alexakis & Doering 2006)?

• Why does rotating turbulence display less intermittency than its non-rotating coun-
terpart (Baroud at al. 2003; Müller et al. 2007; Seiwert et al. 2008; Mininni et al. 2009)?
• Global rotation induces an asymmetry of the vertical vorticity distribution. Such

cyclone-anticyclone asymmetry is observed in experimental and numerical studies at
moderately low values of the Rossby number (Bartello at al. 1994; Bourouiba & Bartello
2007; Smith & Waleffe 1999; Morize et al. 2005; Sreenivasan & Davidson 2008; Moisy et al.
2011; Deusebio et al. 2014; Gallet et al. 2014; Naso 2015). Does cyclone-anticyclone
asymmetry persist for very low Rossby number, or is it a finite-Rossby-number effect?
• Can low-Rossby-number rotating turbulence be described in the framework of weak

turbulence of inertial waves (Galtier 2003; Cambon et al. 2004; Yarom & Sharon 2014;
Scott 2015)?

Although these questions have been thoroughly addressed experimentally and numer-
ically, exact mathematical results on this matter are scarce. Such exact results can be
very valuable to test the various rotating turbulence models that have been proposed
(see for instance Sagaut & Cambon (2008)): the model has to be compatible with the
exact mathematical result in the range of parameters where the latter is valid.

In this paper we use rigorous analysis and estimates to answer the central question
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raised above: we consider the flow of a Newtonian fluid driven by a vertically invariant
horizontal body force, and subject to steady global rotation about the vertical axis.
We focus on domains that are periodic in the horizontal and bounded vertically by
stress-free surfaces, although the results carry over to domains that are periodic in the
three directions. Such boundary conditions are fashionable among numericists and more
amenable to analysis than more realistic domains with no-slip boundary conditions. The
system admits purely 2D (vertically invariant) solutions, either laminar or turbulent. In
the absence of global rotation, such solutions are usually unstable to vertically dependent
perturbations, so the flow is fully three-dimensional. By contrast, here we prove that, for
strong enough global rotation, the 2D flow solutions are stable with respect to three-
dimensional perturbations.

We first consider infinitesimal vertically dependent perturbations on a statistically-
steady 2D base flow and prove linear two-dimensionalization: using a Reynolds number
Re and a Rossby number Ro based on the r.m.s. velocity (see section 2 for the exact
definitions), we show that, for any given value of Re, there is a critical value Roc(Re) of
the Rossby number under which the – possibly turbulent – 2D flow is linearly stable to 3D
perturbations. We compute some lower bounds on Roc(Re) and we therefore determine
a region of the parameter space (Re,Ro) where such exact two-dimensionalization takes
place. For generic time-independent forcing the lower bound Ro< on Roc is given by (6.9);
it scales as Ro< ∼ Re−6 ln−2 (Re) × (L/H)3, where H/L is the vertical aspect ratio of
the domain. This bound can be slightly improved if the forcing is of “single-mode” type,
i.e., if it contains a single wavenumber (see equation (6.10)). We obtain similar results
in terms of dimensionless numbers that involve the forcing strength instead of the r.m.s.
velocity (exact definitions in section 2): when the forcing-based Rossby number Ro(f) is

lower than a Grashof-number-dependent threshold value Ro
(f)
c (Gr), the global attractor

of the 2D Navier-Stokes equation is linearly stable to 3D perturbations. We determine
regions of the parameter space (Gr,Ro(f)) where exact two-dimensionalization takes

place by deriving a lower bound Ro
(f)
< on Ro

(f)
c , given by expression (6.11). It scales as

Ro
(f)
< ∼ Gr−7/2 ln−2 (Gr) × (L/H)3.

We then consider the fully nonlinear rotating 3D Navier-Stokes equation, with arbitrar-
ily large initial 3D velocity perturbations. Using a theorem from Babin et al. (2000) on
the existence of a global attractor for the 3D rotating Navier-Stokes equation, we prove
absolute two-dimensionalization: when the forcing-based Rossby number is lower than a

threshold value Ro
(f)
abs(Gr), the flow becomes 2D in the long-time limit, regardless of the

initial condition. This indicates that the global attractor of the 2D Navier-Stokes equation

is the only attractor of the 3D rotating Navier-Stokes equation when Ro(f) < Ro
(f)
abs(Gr).

The analysis consists in studying the stability of a (possibly turbulent) 2D base flow
to vertically dependent 3D perturbations. The procedure is very different from a usual
stability analysis, because we do not know the exact expression for this base flow, nor
do we know its precise spatial and temporal dependence. The proofs therefore rely on
rigorous upper bounds for several quantities associated with such 2D flows. These bounds
provide sufficient information to determine regions of the (Re,Ro) parameter space where
the 2D flow is stable to fully 3D perturbations.

A somewhat similar stability analysis of a possibly turbulent 2D base flow was per-
formed in Gallet & Doering (2015), in the context of low-magnetic-Reynolds-number
(Rm) magnetohydrodynamic (MHD) turbulence subject to a strong external magnetic
field. However, we stress the fact that the proof of stability is very different in the two
situations: in the low-Rm MHD case, the proof relies on Ohmic dissipation strongly
damping the 3D perturbations and therefore stabilizing the 2D flow. By contrast, for
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rotating flows the Coriolis force does not do work and global rotation does not appear
directly in the energy budget. The essence of the proof is that global rotation strongly
reduces the energy transfers from the 2D base-flow to the 3D perturbations: for strong
enough rotation, these transfers are too weak to overcome viscous damping, and the 3D
perturbations decay in the long-time limit. As a result, the 2D base-flow is stable.
The fact that global rotation reduces the transfers between the 2D and the vertically

dependent 3D modes has been known since Greenspan (1990) and Waleffe (1993): in
the asymptotic limit of low Rossby number, the 3D modes can be described in terms
of weakly nonlinear inertial waves, and the dominant interaction between such waves
consists of resonant triads. However, such resonant triads cannot transfer energy from
the 2D modes to the 3D ones. This key result is obtained through a perturbative analysis
and is valid to lowest order in Rossby number only. At higher order in Rossby number,
near-resonant triads and four-wave interactions can transfer energy between the 2D and
3D modes (Smith & Waleffe 1999).
In the field of mathematical analysis, similar results were obtained by Babin et al.

(1997, 2000), who translated into rigorous and exact analysis the concept of averaging
over the fast rotation period, to study the regularity of solutions to the rotating Euler and
Navier-Stokes equations. The proof of absolute two-dimensionalization that we present
in section 7 makes extensive use of their theorem on the existence of bounded solutions
to the rapidly rotating 3D Navier-Stokes equation (theorem 1 in Babin et al. (2000)).
Along the way to proving this theorem, they provide a decomposition of rotating flows

on a time interval [0, T ] into three components: a 2D flow satisfying the 2D Navier-
Stokes equation, some inertial waves that are advected and sheared by the 2D flow, and
a small remainder. The wave part follows a reduced system of equations with coefficients
depending on the 2D flow, and can be solved for exactly in some cases. The remainder
decreases as Ω−1/2 but increases rapidly (typically exponentially) with the length T of
the time interval. This decomposition is useful when the remainder is indeed small, that
is to say, in the limit of very fast rotation, for a given time interval. However, it cannot
be used as is in the long-time limit (T → ∞) to answer the central question raised above.
Here we therefore address stability to 3D perturbations head-on.
In the framework of geophysical fluid dynamics, the 2D base-flow corresponds to “bal-

anced” fluid motion in the 2D slow manifold, while instability with respect to 3D per-
turbations corresponds to spontaneous wave generation (Vanneste 2013). The present
study focuses on body forces that input energy directly into the 2D modes: we prove that
the corresponding (possibly turbulent) flow settles exactly in the 2D slow manifold for
low enough Rossby number, with no spontaneous wave generation.
We introduce the setup and notations in section 2, before describing the two-dimensional

solutions to the three-dimensional problem. In sections 3 to 6, we consider the 3D rotat-
ing Navier-Stokes equation linearized about such a 2D base flow, and we prove the linear
stability of these 2D solutions to 3D perturbations, for rapid global rotation: we derive
sufficient criteria for such linear stability, either in terms of the Reynolds and Rossby
numbers, or in terms of the Grashof and forcing-based Rossby numbers. The proof itself
consists of 5 steps:
• Write the evolution equation for the kinetic energy of the 3D perturbation.
• Introduce a cut-off wavenumber K, and control the small scales of the perturbation

(wave numbers larger than K) with the viscous damping term (section 3).
• Decompose the perturbation into helical modes (section 4).
• Using an integration by parts in time, show that the transfer of energy from the 2D

base flow to the large scales of the 3D perturbation (wave numbers smaller than K) is
inversely proportional to the rotation rate Ω (section 5).
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∂zux = 0, ∂zuy = 0, uz = 0

ex

ey

ez

f(x, y)
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ℓ

Figure 1. Flow of a Newtonian fluid in a frame rotating at angular velocity Ω around the
vertical z axis. It is driven by a horizontal body-force f that is independent of the vertical. We
assume periodic boundary-conditions in the horizontal, and stress-free boundaries at z = 0 and
z = H .

• For rapid global rotation, this transfer term is therefore weaker than the viscous
damping of the 3D perturbation, hence the stability criterion (section 6).

In section 7, we consider arbitrary initial conditions for the velocity field, with arbitrar-
ily large vertically-dependent perturbations. We repeat the steps listed above to prove
absolute two-dimensionalization for fast enough global rotation.
On first reading, one may want to go directly from the end of section 2 to the concluding

section 8, where we comment on the physical implications of these results.

2. Rotating turbulence in a periodic domain and 2D solutions

2.1. Body-forced rotating turbulence

The setup is sketched in figure 1: an incompressible fluid of kinematic viscosity ν flows
inside a domain (x, y, z) ∈ D = [0, L]× [0, L]× [0, H ] with a Cartesian frame (ex, ey, ez).
The fluid is subject to background rotation at a rate Ω around the z axis, referred to as
the vertical axis by convention. It is stirred by a steady divergence-free two-dimensional
horizontal body-force f(x, y) = (fx, fy, 0) that is periodic on a scale ℓ, an integer fraction
of L. That is, f(x, y) = Fφ(xℓ ,

y
ℓ ), where φ is periodic of period 1 in each dimensionless

variable, has vanishing spatial mean, and r.m.s. magnitude 1. We refer to F as the
amplitude, and φ as the shape of the force. We consider periodic boundary conditions in
the horizontal directions, and stress-free boundary conditions in the vertical (although
the proofs of the present study easily carry over to a 3D periodic domain). The velocity
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field u(x, y, z, t) follows the rotating Navier-Stokes equation,

∂tu+ (u ·∇)u+ 2Ωez × u = −∇p+ ν∆u+ f , (2.1)

together with the following boundary conditions at the top and and bottom boundaries,

∂zux = 0 , ∂zuy = 0 , uz = 0, at z = 0 and z = H . (2.2)

We consider the solutions of equation (2.1) that have vanishing total momentum initially,
and therefore at any subsequent time: the spatial average of the velocity field u is zero
at all time. From equation (2.1) we define the Reynolds number and the Rossby number
based on the root-mean-square velocity U of the flow, where the mean is performed over
space and time:

Re =
Uℓ

ν
, Ro =

U

ℓΩ
. (2.3)

We stress the fact that these dimensionless numbers combine the root-mean-square
velocity U of the solution with the forcing scale ℓ, instead of the typical scale of the
velocity field (the integral scale). While the integral scale is probably close to ℓ for non-
rotating 3D turbulence, it may increase very greatly and even reach the domain size
L for strong rotation, because of two-dimensionalization and enhanced inverse energy
transfers. Nevertheless, the Reynolds and Rossby numbers defined in (2.3) are familiar
to the theory of rotating turbulence, as well as to experimentalists: single-point velocity
measurements usually lead to a good estimate of the root-mean square velocity and allow
one to estimate Re and Ro. Without loss of rigor, we will therefore present some results
in terms of Re and Ro defined in (2.3).
We also introduce dimensionless numbers based on the strength F of the forcing. The

Grashof number and the forcing Rossby number are

Gr =
Fℓ3

ν2
, Ro(f) =

√
F√
ℓΩ

. (2.4)

In contrast with Re and Ro, Gr and Ro(f) are control parameters: they do not require
knowledge of the solution to be evaluated. For instance, Gr and Ro(f) can be specified at
the outset of a numerical simulation. In the following we present both results expressed
in terms of Re and Ro, which are useful for qualitative comparison with boundary-driven
experiments, and results expressed with Gr and Ro(f), which are useful for comparison
with body-forced numerical simulations or experiments.
In the following we use many inequalities. To alleviate the algebra somewhat, we make

extensive use of the notation ., where a . b means that there is a dimensionless constant
c > 0 such that a ≤ cb, where the constant c is independent of the parameters of the
problem: ν, F , U , ℓ, L, H , etc. This constant can depend only on the precise choice of
the dimensionless shape function φ of the forcing. In the following, we denote as c any
such positive O(1) constant, and we sometimes use the same symbol c to denote different
constants in successive lines of algebra. Numbered constants ci (c̃i in the appendix) keep
the same value between different lines of algebra.
Finally, we consider only domains that are cubic or shallower than a cube, H ≤ L,

and because we focus on the large-Reynolds-number behavior of the system, we restrict
attention to Re ≥ 2 and Gr ≥ 2.

2.2. Two-dimensional solutions

Equation (2.1) with the boundary conditions (2.2) admits vertically invariant 2D so-
lutions u(x, y, z, t) = V(x, y, t), where V satisfies the two-dimensional Navier-Stokes
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equation,

∂tV+ (V ·∇)V = −∇p+ ν∆V+ f . (2.5)

Note that, in the 2D Navier-Stokes equation, the Coriolis force is a gradient that can be
absorbed into the pressure term: Ω disappears from the equation (and we keep using p
to denote the modified pressure). V(x, y, t) is a horizontal velocity field, with vanishing
vertical component (for periodic boundary conditions in the vertical, the vertical com-
ponent of V satisfies a sourceless advection-diffusion equation and therefore vanishes in
the long-time limit).
Rigorous bounds on the time-averaged enstrophy and enstrophy dissipation rate can

be computed for solutions of the 2D Navier-Stokes equation (2.5). The derivation of these
bounds is recalled in appendix A. In terms of the forcing amplitude F , and denoting as
ω the vertical vorticity of the 2D flow V, we obtain

〈

‖ω‖22
〉

.
F 2ℓ2L2H

ν2
, (2.6)

〈

‖∇ω‖22
〉

.
F 2L2H

ν2
, (2.7)

where 〈. . .〉 denotes time average, and ‖ . . . ‖2 is the standard L2 norm in 3D:

‖h‖22 =
∫

D
|h|2 d3x . (2.8)

Alternate bounds were obtained by Alexakis & Doering (2006) in terms of the r.m.s.
velocity U . Using our notations, their equations (23) and (19) translate into

〈

‖ω‖22
〉

.
HL2U2

ℓ2

√
Re , (2.9)

〈

‖∇ω‖22
〉

.
HL2U2

ℓ4
Re , (2.10)

where we restrict attention to Re ≥ 2.
These bounds for 2D flows can be further reduced if the forcing contains a single

wavenumber in Fourier space, i.e., if it is such that f is an eigenmode of the Laplacian
operator (see Constantin et al. (1994) for a description of 2D turbulence driven by such
forcing). These forcings are sometimes called “single-mode”, or Kolmogorov forcings. For
such forcings the improved bounds on the enstrophy and enstrophy dissipation rate are

〈

‖ω‖22
〉

.
HL2U2

ℓ2
, (2.11)

〈

‖∇ω‖22
〉

.
HL2U2

ℓ4
. (2.12)

3. Linear perturbation to the 2D solution

Consider a 2D solution V(x, y, t) lying on the attractor of the 2D Navier-Stokes equa-
tion (2.5). Our goal is to prove linear two-dimensionalization: we wish to show that,
for strong enough global rotation Ω, this solution is stable with respect to infinites-
imal 3D perturbations. We therefore consider the evolution of an infinitesimal per-
turbation v(x, y, z, t) to the two-dimensional flow V(x, y, t). We write u(x, y, z, t) =
V(x, y, t) + v(x, y, z, t), where v ≪ V is infinitesimal, and consider the linearized evolu-
tion equation for v:

∂tv+ (V ·∇)v+ (v ·∇)V+ 2Ωez × v = −∇p′ + ν∆v , (3.1)
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where p′ is the pressure perturbation. Because the base-flow is independent of the ver-
tical, different vertical Fourier modes of v evolve independently. We therefore consider
a perturbation that has a single wavenumber K > 0 in the vertical. More precisely, we
consider the following Fourier decomposition of the perturbation,

v(x, y, z, t) =
∑

k∈S3D

vk(t) e
ik·x , (3.2)

where the wave vector k takes the values (kx, ky, kz) = (nx
2π
L , ny

2π
L ,±K), with (nx, ny) ∈

Z
2. We denote this set of wave vectors as S3D.
Dotting v into (3.1) and integrating over the domain leads to the evolution equation

for the L2 norm of the perturbation:

dt

(

1

2
‖v‖22

)

= −
∫

D
v · (∇V) · vd3x− ν‖∇v‖22 , (3.3)

which we divide by ‖v‖22 to obtain

1

2
dt
(

ln ‖v‖22
)

=
−
∫

D v · (∇V) · vd3x− ν‖∇v‖22
‖v‖22

. (3.4)

Our goal is to prove that, for large-enough Ω, the time average of the right-hand-side of
(3.4) is negative, and therefore ‖v‖2 decays to zero in the long-time limit.

3.1. Large versus small horizontal scales of the perturbation

From the spatial Fourier transform (3.2) of v, we define a cut-off K for the wavenumber
k = |k|, and we write v = v<+v>, where v< contains all the Fourier modes with k ≤ K
and v> contains all the Fourier modes with k > K. Equation (3.4) becomes

1

2
dt
(

ln ‖v‖22
)

=
1

‖v‖22

[

−
∫

D
[v< · (∇V) · v< + v< · (∇V) · v> + v> · (∇V) · v<(3.5)

+ v> · (∇V) · v>] d
3x− ν‖∇v‖22

]

,

We now bound all the terms on the right-hand side that involve v>. Using successively
Hölder’s, the Cauchy-Schwarz, and Young’s inequalities together with an optimization,

∣

∣

∣

∣

∫

D
[v< · (∇V) · v> + v> · (∇V) · v< + v> · (∇V) · v>] d

3x

∣

∣

∣

∣

(3.6)

≤ ‖∇V‖∞
[

2‖v<‖2‖v>‖2 + ‖v>‖22
]

≤ νK2

4
‖v>‖22 +

4

νK2
‖∇V‖2∞‖v<‖22 +

νK2

4
‖v>‖22 +

1

νK2
‖∇V‖2∞‖v>‖22

≤ νK2

2
‖v>‖22 +

4

νK2
‖∇V‖2∞‖v‖22 ,

where ‖ . . . ‖∞ denotes the standard L∞ norm in space. From Poincaré’s inequality,

‖∇v>‖22 ≥ K2‖v>‖22 and ‖∇v‖22 ≥ π2

H2 ‖v‖22, hence

− ν‖∇v‖22 ≤ −ν

4
‖∇v‖22 −

νK2

2
‖v>‖22 −

νπ2

4H2
‖v‖22 . (3.7)

Inserting inequalities (3.6) and (3.7) in (3.5) results in

1

2
dt
(

ln ‖v‖22
)

≤ 1

‖v‖22

[

−
∫

D
v< · (∇V) · v< d3x− ν

4
‖∇v‖22

]

+ λ1(t) , (3.8)
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where λ1(t) =
4

νK2 ‖∇V‖2∞ − νπ2

4H2 . Notice that the triple velocity product in (3.8) does
not involve v> anymore. In the following we choose the value

K =

√
32H

πν

√

〈‖∇V‖2∞〉 , (3.9)

which leads to the following time-average of λ1(t),

〈λ1〉 = − νπ2

8H2
(3.10)

which is sufficient control over small horizontal scales v> of the perturbation. The quan-
tity

〈

‖∇V‖2∞
〉

is bounded from above in appendix A, which provides an upper bound
on K,

K .

√
H

ν

√

〈‖∇ω‖22〉 ln1/2
(

Gr
L

ℓ

)

, (3.11)

where the right-hand-side involves the time-averaged enstrophy dissipation rate of the
2D base flow, which can be bounded in terms of its r.m.s. velocity U using (2.10) or
(2.12), or in terms of the forcing strength F using (2.7).

4. Helical wave decomposition

We perform a standard helical wave decomposition of the Fourier amplitudes of the
velocity perturbation (Cambon & Jacquin 1989; Waleffe 1993),

vk(t) = b+(k, t)e
iσ+(k)t h+(k) + b−(k, t)e

iσ−(k)t h−(k) , (4.1)

where σsk(k) = sk2Ωkz/k is the frequency of a linear inertial wave with spatial structure
hsk(k). For non-vertical wave vectors, the latter is given by

hsk(k) =
1√
2

[

(ez × ek)

|ez × ek|
× ek + isk

(ez × ek)

|ez × ek|

]

, (4.2)

with ek the unit vector along k, and sk = ± a sign coefficient. For vertical wave vectors,
the structure of the helical modes is hsk(k) = 1√

2
(ex + isk

kz

k ey). These vectors are

parallel to their curl, ik× hsk = skkhsk , and they are normalized, |hsk | = 1.
To obtain a similar decomposition for the z-independent base-flow V, we first write it

as a Fourier series,

V(x, y, t) =
∑

k∈S2D

Vk(t) e
ik·x , (4.3)

where the set S2D contains all the horizontal wave vectors of the periodic domain: k =
(kx, ky, kz) = (nx

2π
L , ny

2π
L , 0), with (nx, ny) ∈ Z

2 \ {(0, 0)} (recall that V has a vanishing
average over the domain, see section 2.1). Because the frequency σsk(k) vanishes for
horizontal wave vectors, the helical decomposition of each Fourier amplitude Vk yields
simply

Vk = B+(k, t)h+(k) +B−(k, t)h−(k) , (4.4)

and because V is a horizontal flow, we get the additional relations

B+(k, t) +B−(k, t) = 0 , (4.5)

|Vk|2 = 2|B+(k, t)|2 = 2|B−(k, t)|2 . (4.6)

For brevity, in the following we often write bsk , Bsk and σsk only to designate respec-
tively bsk(k, t), Bsk(k, t) and σsk(k).
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The oscillatory phases in the decomposition (4.1) absorb the Coriolis force: inserting
the decompositions (3.2), (4.1), (4.3) and (4.4) into the curl of (3.1), we obtain

∂tbsk = −νk2bsk +
∑

p+q+k=0
sp;sq

b∗spB
∗
sqe

−i(σsp+σsk
)t C

skspsq
kpq , (4.7)

where the sum is over all p ∈ S3D and q ∈ S2D such that p+q+k = 0 and over the two
sign coefficients sp = ±1 and sq = ±1. The following algebra involves many similar sums
over wave vectors. In such sums, we omit to mention the sets in which the wave vectors
are. In section 5, a sum over k involving a base-flow component Bsk implies k ∈ S2D,
while a sum over k involving a perturbation component bsk implies k ∈ S3D. We only
mention the additional constraints under the sum symbol, e.g., p+q+k = 0. In section
7, we consider perturbations of arbitrary amplitude, and the sums over k involving a
perturbation component bsk are over wave vectors k = (kx, ky, kz) = (nx

2π
L , ny

2π
L , nz

π
H ),

with (nx, ny, nz) ∈ Z× Z× (Z \ {0}), unless otherwise stated under the sum sign.
The coupling coefficient in (4.7) is

C
skspsq
kpq = 2(spp− sqq)g

skspsq
kpq , (4.8)

with

g
skspsq
kpq =

1

2
(h∗

sk
× h∗

sq) · h
∗
sp . (4.9)

Using the decompositions (4.1) and (4.4), the triple velocity product in (3.8) reads
∫

D
v< · (∇V) · v< d3x = L2H

∑

p+q+k=0
k≤K;p≤K
sp;sq;sk

Bsqbskbspskke
i(σsk

+σsp )t2g
∗sqsksp
qkp , (4.10)

or, because k and p have symmetrical roles,
∫

D
v< · (∇V) · v< d3x = L2H

∑

p+q+k=0
k≤K;p≤K
sp;sq;sk

Bsqbskbspe
i(σsk

+σsp )t(skk − spp)g
∗sqsksp
qkp

. (4.11)

Because the sum is over p+ q+ k = 0, pz = −kz, and we can write
∫

D
v< · (∇V) · v< d3x = −L2H

∑

p+q+k=0
k≤K;p≤K
sp;sq;sk

Bsqbskbspe
i(σsk

+σsp )tskspkp
σsk + σsp

2Ωkz
g
∗sqsksp
qkp .(4.12)

We see in this equation the result of Waleffe (1993) and Greenspan (1990): the coupling
coefficient between the 2D base-flow and a couple of inertial waves is proportional to
σsk + σsp , and therefore it vanishes for resonant triads, i.e., for σsk + σsp = 0.

5. Control over the large scales of the perturbation

Integrate (3.8) from time t = 0 to t = T and divide by T to obtain

1

T
ln

‖v‖2(t = T )

‖v‖2(t = 0)
≤ − 1

T

∫ t=T

t=0

∫

D v< · (∇V) · v< d3x

‖v‖22
dt (5.1)

− ν

4T

∫ t=T

t=0

‖∇v‖22
‖v‖22

dt+
1

T

∫ t=T

t=0

λ1(t)dt .
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Our goal is to show that the right-hand-side of this inequality is negative in the long-
time-T limit provided that Ω is large enough: this ensures that ‖v‖2 decays. The key
step is to prove that the contribution from the triple velocity product is small when
Ω is large. To wit, we insert the expression (4.12) of the triple velocity product, before
performing an integration by parts in time, where we integrate the oscillatory exponential
(and differentiate the rest of the integrand). This gives

− 1

T

∫ t=T

t=0

∫

D v< · (∇V) · v< d3x

‖v‖22
dt =

L2H

2Ωkz
(T1 + T2 + T3 + T4) , (5.2)

where

T1 =
1

T

∫ t=T

t=0













∑

p+q+k=0
k≤K;p≤K;σsk

+σsp 6=0
sp;sq;sk

∂t(Bsq)
bskbsp
‖v‖22

ei(σsk
+σsp )tiskspkp g

∗sqsksp
qkp













dt (5.3)

T2 =
1

T

∫ t=T

t=0













∑

p+q+k=0
k≤K;p≤K;σsk

+σsp 6=0
sp;sq;sk

Bsq

bsp∂tbsk + bsk∂tbsp
‖v‖22

ei(σsk
+σsp )tiskspkp g

∗sqsksp
qkp













dt(5.4)

T3 =
1

T

∫ t=T

t=0













∑

p+q+k=0
k≤K;p≤K;σsk

+σsp 6=0
sp;sq;sk

Bsqbspbske
i(σsk

+σsp )tiskspkp g
∗sqsksp
qkp

−dt(‖v‖22)
‖v‖42













dt (5.5)

T4 =
1

T













∑

p+q+k=0
k≤K;p≤K;σsk

+σsp 6=0
sp;sq;sk

Bsq

bskbsp
‖v‖22

ei(σsk
+σsp )t(−i)skspkp g

∗sqsksp
qkp













t=T

t=0

. (5.6)

To bound these terms, we use two inequalities on the coupling coefficients:

• Because the helical vectors hsk are normalized, |gsqskspqkp | . 1. For wave vectors such
that k ≤ K, and p ≤ K, we therefore have

|kp gsqsksp
qkp

| . K2 . (5.7)

• Using |gsqskspqkp | . 1 we also obtain

|Cskspsq
kpq | . p+ q . (5.8)

Because the domain has a finite vertical extent H , the vertical wavenumber satisfies
K ≥ π

H for stress-free top and bottom boundaries (and K ≥ 2π
H for periodic boundary

conditions). In either case, K & 1/H . Let us make use of (5.7) and the Cauchy-Schwarz
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inequality to bound T1:

|T1| .
K2

T

∫ t=T

t=0













∑

p+q+k=0
k≤K;p≤K
sp;sq;sk

|∂t(Bsq)|
|bsk ||bsp |
‖v‖22













dt (5.9)

.
K2

L2HT

∫ t=T

t=0







∑

q,q≤2K
sq

|∂t(Bsq(q))|






dt .

Taking the limit T → ∞,

lim
T→∞

|T1| .
K2

L2H

〈

∑

q,q≤2K
sq

|∂t(Bsq )|
〉

. (5.10)

The time-averaged quantity appearing in the right-hand side is bounded in appendix A
in terms of the time-averaged energy and enstrophy dissipation rates inside the 2D base
flow (see A.5). The resulting bound on limT→∞ |T1| is

lim
T→∞

|T1| .
K2

L2H

[

FL2

ℓ2
+

(

1

H

√

〈‖ω‖22〉 〈‖∇ω‖22〉+
〈

‖∇ω‖22
〉

)

ln

(

Gr
L

ℓ

)]

,

(5.11)

and after substituting the bound (3.11) on K,

lim
T→∞

|T1| .
1

ν2L2

〈

‖∇ω‖22
〉

ln

(

Gr
L

ℓ

)

×
[

FL2

ℓ2
+

(

1

H

√

〈‖ω‖22〉 〈‖∇ω‖22〉+
〈

‖∇ω‖22
〉

)

ln

(

Gr
L

ℓ

)]

, (5.12)

We now move on to term T2. Replacing the time-derivative of bsk by its expression
(4.7), and p by |k+ q|,

|T2| .
1

T

∫ t=T

t=0







K
‖v‖22

∑

q;q≤2K
sq

|Bsq(q)|

∑

k,k≤K,|k+q|≤K
sp;sk

|k+ q||bsp(−k− q)|

∣

∣

∣

∣

∣

∣

∣

−νk2bsk +
∑

m+l+k=0
sm;sl

b∗slB
∗
sme−i(σsl

+σsk
)tCskslsm

klm

∣

∣

∣

∣

∣

∣

∣









dt

.
1

T

∫ t=T

t=0









νK2

‖v‖22

∑

q,q≤2K
sq

|Bsq |
∑

k,k≤K,|k+q|≤K
sp;sk

|k+ q||bsp(−k− q)|k|bsk |









dt

+
K
T

∫ t=T

t=0









1

‖v‖22

∑

q,q≤2K
sq

|Bsq |
∑

k,k≤K,|k+q|≤K
sp

|k+ q||bsp(−k− q)|
∑

m+l+k=0
sm;sl;sk

|bsl ||Bsm ||Cskslsm
klm |









dt .

(5.13)
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Using inequality (5.8) and the Cauchy-Schwarz inequality,

∑

m+l+k=0
sm;sl;sk

|bsl ||Bsm ||Cskslsm
klm | .

∑

m+l+k=0
sm;sl;sk

|bsl ||Bsm |(l +m) (5.14)

.

√

∑

l;sl

l2|bsl |2
√

∑

m;sm

|Bsm |2 +
√

∑

l;sl

|bsl |2
√

∑

m;sm

m2|Bsm |2

.
‖∇v‖2‖V‖2 + ‖v‖2‖ω‖2

L2H
,

and using the Cauchy-Schwarz inequality again,

∑

k,k≤K,|k+q|≤K
sp

|k+ q||bsp(−k− q)| .
√

∑

k,k≤K;sp

|k+ q|2|bsp(−k− q)|2
√

∑

k,k≤K
1

.
K‖∇v<‖2√

H
. (5.15)

The sum over q is bounded using the Cauchy-Schwarz inequality once again,

∑

q,q≤2K
sq

|Bsq | ≤
√

√

√

√

∑

q,q≤2K
sq

q2|Bsq |2
√

√

√

√

∑

q,q≤2K
sq

1

q2
. ‖ω‖2

√

ln(2KL)

H
. (5.16)

Using successively the inequalities (5.14), (5.15) and (5.16), we bound the last time
integral in (5.13) according to

K
T

∫ t=T

t=0









1

‖v‖22

∑

q,q≤2K
sq

|Bsq |
∑

k,k≤K,|k+q|≤K
sp

|k+ q||bsp(k+ q)|
∑

m+l+k=0
sm;sl;sk

|bsl ||Bsm ||Cskslsm
klm |









dt

.
K2
√

ln(2KL)

L2H2T

∫ t=T

t=0

[‖ω‖2‖∇v‖2
‖v‖22

(‖V‖2‖∇v‖2 + ‖ω‖2‖v‖2)
]

dt

.
K2
√

ln(2KL)

L2H2T

∫ t=T

t=0

[‖ω‖2‖∇v‖2
‖v‖22

(‖V‖2‖∇v‖2 +H‖ω‖2‖∇v‖2)
]

dt

.
K2
√

ln(2KL)

L2H2
sup
t

(

‖V‖2‖ω‖2 +H‖ω‖22
) 1

T

∫ t=T

t=0

‖∇v‖22
‖v‖22

dt

.
K2ℓL2F 2

√

ln(2KL)

Hν2

(

1 +
H

ℓ

)

1

T

∫ t=T

t=0

‖∇v‖22
‖v‖22

dt , (5.17)

where we used the bounds on the suprema of the energy and enstrophy of the 2D base
flow computed in appendix A.

The first time integral in (5.13) is bounded using the Cauchy-Schwarz inequality and
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(5.16),

1

T

∫ t=T

t=0









νK2

‖v‖22

∑

q,q≤2K
sq

|Bsq |
∑

k,k≤K,|k+q|≤K
sp;sk

|k+ q||bsp(k+ q)|k|bsk |









dt

.
1

T

∫ t=T

t=0







νK2

‖v‖22

∑

q,q≤2K
sq

|Bsq |
‖∇v‖22
L2H






dt

.
1

T

∫ t=T

t=0

[

νK2
√

ln(2KL)

L2H3/2
‖ω‖2

‖∇v‖22
‖v‖22

]

dt

.
νK2

√

ln(2KL)

L2H3/2
sup
t

(‖ω‖2)
1

T

∫ t=T

t=0

‖∇v‖22
‖v‖22

dt

.
K2F

√

ln(2KL)

H

1

T

∫ t=T

t=0

‖∇v‖22
‖v‖22

dt , (5.18)

where we used once again the bound (A21) on the supremum of the enstrophy. Summing
(5.17) and (5.18) gives the following bound on T2,

|T2| .
K2F

√

ln(2KL)

H

[

1 +

(

1 +
H

ℓ

)(

L

ℓ

)2

Gr

]

1

T

∫ t=T

t=0

‖∇v‖22
‖v‖22

dt

. Gr
(H + ℓ)L2K2F

√

ln(2KL)

ℓ3H

1

T

∫ t=T

t=0

‖∇v‖22
‖v‖22

dt . (5.19)

From the bound (3.11) onK and the bounds on the time-averaged enstrophy dissipation
rate, one can easily see that KL has at most a power-law dependence in Gr and L/ℓ,
and because we restrict attention to Gr ≥ 2 we have

ln(2KL) . lnGr + ln
L

ℓ
. ln

(

Gr
L

ℓ

)

. (5.20)

Using this inequality and (3.11) we finally bound |T2| as

|T2| . Gr2
(H + ℓ)L2

〈

‖∇ω‖22
〉

ℓ6
ln3/2

(

Gr
L

ℓ

)

1

T

∫ t=T

t=0

‖∇v‖22
‖v‖22

dt . (5.21)

We now wish to bound T3. From equation (3.3) and using Hölder’s inequality,

∣

∣dt
(

‖v‖22
)∣

∣ ≤ 2‖∇V‖∞‖v‖22 + 2ν‖∇v‖22 . (5.22)

Using successively this inequality, (5.7), the Cauchy-Schwarz, (5.16), and Hölder’s in-
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equality, we obtain

|T3| .
1

T

∫ t=T

t=0













∑

p+q+k=0
k≤K;p≤K
sp;sq;sk

|Bsq ||bsp ||bsk |kp |g
sqsksp
qkp | ‖∇V‖∞‖v‖22 + ν‖∇v‖22

‖v‖42













dt (5.23)

.
K2

T

∫ t=T

t=0













‖∇V‖∞‖v‖22 + ν‖∇v‖22
‖v‖42

∑

p+q+k=0
k≤K;p≤K
sp;sq;sk

|Bsq ||bsp ||bsk |













dt

.
K2

L2HT

∫ t=T

t=0







(

‖∇V‖∞ + ν
‖∇v‖22
‖v‖22

)

∑

q,q≤2K
sq

|Bsq |






dt

.
K2
√

ln(2KL)

L2H3/2T

∫ t=T

t=0

‖ω‖2
(

‖∇V‖∞ + ν
‖∇v‖22
‖v‖22

)

dt

.
νK2

√

ln(2KL)

L2H3/2
sup
t

(‖ω‖2)
1

T

∫ t=T

t=0

‖∇v‖22
‖v‖22

dt+
K2
√

ln(2KL)

L2H3/2T

∫ t=T

t=0

‖ω‖2‖∇V‖∞dt .

Inserting the bound (A21) on supt (‖ω‖2), and the bounds (3.11) and (5.20) on K and
ln(2KL), we get

|T3| .
〈

‖∇ω‖22
〉

ℓ3
Gr ln3/2

(

Gr
L

ℓ

)

1

T

∫ t=T

t=0

‖∇v‖22
‖v‖22

dt

+

〈

‖∇ω‖22
〉

L2
√
Hν2

ln3/2

(

Gr
L

ℓ

)

1

T

∫ t=T

t=0

‖ω‖2‖∇V‖∞dt . (5.24)

We finally bound the integrated term T4: from (5.7), the Cauchy-Schwarz inequality and
(5.16), we have

|T4| .

∣

∣

∣

∣

∣

∣

∣

K2

L2HT
sup
t







∑

q,q≤2K
sq

|Bsq |







∣

∣

∣

∣

∣

∣

∣

(5.25)

.
K2
√

ln(2KL)

L2H3/2T
sup
t

‖ω‖2 , (5.26)

so this integrated term vanishes in the limit T → ∞.

6. Sufficient conditions for two-dimensionalization

6.1. Combining the bounds on the four terms

Inserting (5.2) into (5.1), with K ≥ π/H ≥ 1/H , leads to the following inequality,

1

T
ln

‖v‖2(t = T )

‖v‖2(t = 0)
≤ L2H2

2Ω
(|T1|+ |T2|+ |T3|+ |T4|)

− ν

4T

∫ t=T

t=0

‖∇v‖22
‖v‖22

dt+
1

T

∫ t=T

t=0

λ1(t)dt .
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Our goal is to show that the right-hand side of this inequality is negative in the limit
T → ∞, provided that Ω is large enough. We substitute the bounds (5.21) and (5.24) on
|T2| and |T3|, which indicate that there are two positive dimensionless constants c2 and
c3 such that

1

T
ln

‖v‖2(t = T )

‖v‖2(t = 0)
≤ 1

T

∫ t=T

t=0

λ1(t)dt+
L2H2

2Ω
(|T1|+ |T4|) (6.1)

+c3
H3/2

〈

‖∇ω‖22
〉

Ων2
ln3/2

(

Gr
L

ℓ

)

1

T

∫ t=T

t=0

‖ω‖2‖∇V‖∞dt

+

[

L2H2
〈

‖∇ω‖22
〉

ℓ3Ω
Gr ln3/2

(

Gr
L

ℓ

)(

c3 + c2Gr
L2(H + ℓ)

ℓ3

)

− ν

4

]

1

T

∫ t=T

t=0

‖∇v‖22
‖v‖22

dt .

Because we focus on Gr ≥ 2, we have c3 + c2GrL2(H+ℓ)
ℓ3 ≤ c4GrL2(H+ℓ)

ℓ3 , with c4 =
max(c2; c3). Hence a sufficient condition for the square bracket in (6.1) to be negative is

Ω ≥ Ω1 = 4c4
L4H2(H + ℓ)

ℓ6

〈

‖∇ω‖22
〉

ν
Gr2 ln3/2

(

Gr
L

ℓ

)

. (6.2)

When this condition is satisfied, one can drop the last term in (6.1). Then upon taking
the limit T → ∞, using the Cauchy-Schwarz inequality for the middle line together with
〈λ1(t)〉 = −νπ2/(8H2), limT→∞ |T4| = 0, the bound (5.12) on limT→∞ |T1|, and (A 34),

lim
T→∞

1

T
ln

‖v‖2(t = T )

‖v‖2(t = 0)
≤ 〈λ1(t)〉+

L2H2

2Ω

(

lim
T→∞

|T1|+ lim
T→∞

|T4|
)

+c3
H3/2

〈

‖∇ω‖22
〉

Ων2
ln3/2

(

Gr
L

ℓ

)

√

〈‖ω‖22〉 〈‖∇V‖2∞〉

≤ − νπ2

8H2
+

c1H
2

ν2Ω

〈

‖∇ω‖22
〉

ln

(

Gr
L

ℓ

)

(6.3)

×
[

FL2

ℓ2
+

(

1

H

√

〈‖ω‖22〉 〈‖∇ω‖22〉+
〈

‖∇ω‖22
〉

)

ln

(

Gr
L

ℓ

)]

+c3
H3/2

〈

‖∇ω‖22
〉

Ων2
ln3/2

(

Gr
L

ℓ

)

√

〈‖ω‖22〉 〈‖∇V‖2∞〉

≤ − νπ2

8H2
+

H2

ν2Ω

〈

‖∇ω‖22
〉

ln

(

Gr
L

ℓ

)

(6.4)

×
[

c1
FL2

ℓ2
+

(

c1 + c3
√
c̃2

H

√

〈‖ω‖22〉 〈‖∇ω‖22〉+ c1
〈

‖∇ω‖22
〉

)

ln

(

Gr
L

ℓ

)]

,

where c1 is a dimensionless constant. A sufficient condition for the right-hand side of this
inequality to be negative is

Ω ≥ Ω2 = c5
H4
〈

‖∇ω‖22
〉

ν3
ln

(

Gr
L

ℓ

)

×
[

FL2

ℓ2
+

(

1

H

√

〈‖ω‖22〉 〈‖∇ω‖22〉+
〈

‖∇ω‖22
〉

)

ln

(

Gr
L

ℓ

)]

,

(6.5)

where c5 = c1 + c3
√
c̃2.

To summarize, if Ω > Ω1 and Ω > Ω2, where Ω1 and Ω2 are defined in (6.2) and (6.5)
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respectively, then

lim
T→∞

1

T
ln

‖v‖2(t = T )

‖v‖2(t = 0)
< 0 , (6.6)

and therefore limt→∞ ‖v‖2(t) = 0: the 2D base flow is linearly stable to 3D perturbations.
As a matter of fact, using the bounds (2.6) and (2.7) one can prove that Ω2 .

Ω1 ln
1/2
(

GrL
ℓ

)

. Hence Ω ≥ cΩ1 ln
1/2
(

GrL
ℓ

)

is a sufficient condition to have both Ω ≥ Ω1

and Ω ≥ Ω2. We therefore obtain the following sufficient condition for the flow to be lin-
early stable to 3D perturbations,

Ω ≥ Ω3 = c6

〈

‖∇ω‖22
〉

ν
Gr2 ln2

(

Gr
L

ℓ

)

L4H2(H + ℓ)

ℓ6
, (6.7)

where c6 is a dimensionless constant.

6.2. Criteria based on the root-mean-square velocity

The sufficient condition (6.7) indicates unambiguously that the flow is linearly stable to
three-dimensional perturbations above a critical value of the rotation rate Ω. However,
the quantity

〈

‖∇ω‖22
〉

appearing in this criterion is difficult to measure or evaluate. We
therefore use the bounds (2.10) and (2.12) on the time-averaged enstrophy dissipation
rate, together with (A 2) and (A 11), to produce alternate sufficient conditions for two-
dimensionalization that are expressed in terms of the r.m.s. velocity U .
The bound (2.10) gives

ℓΩ3

U
. Re6 ln2

(

Re
L

ℓ

)

L6H3(H + ℓ)

ℓ10
, (6.8)

hence the two-dimensional flow is stable if the inverse Rossby number is greater than the
right-hand side of this inequality, i.e., if

Ro ≤ Ro< = c7Re−6 ln−2

(

Re
L

ℓ

)

ℓ10

L6H3(H + ℓ)
, (6.9)

where c7 is a dimensionless constant that depends on the shape of the forcing only.
A somewhat less stringent criterion for two-dimensionalization can be obtained when

the forcing is of single-mode type: bounding
〈

‖∇ω‖22
〉

in Ω3 using (2.12), we obtain the
following sufficient condition for the decay of infinitesimal 3D perturbations,

Ro ≤ Ro
(SM)
< = c8Re−5 ln−2

(

Re
L

ℓ

)

ℓ10

L6H3(H + ℓ)
, (6.10)

where c8 is yet another dimensionless constant that depends on the shape of the forcing
only.

6.3. Criterion based on the forcing strength

We can derive an alternate sufficient criterion for two-dimensionalization in terms of the
forcing strength instead of the r.m.s. velocity. Inserting the upper bound (2.7) on the
time-averaged enstrophy dissipation rate into the expression for Ω3 leads to a criterion
in terms of the Grashof and forcing Rossby numbers:

Ro(f) ≤ Ro
(f)
< = c9Gr−7/2 ln−2

(

Gr
L

ℓ

)

ℓ10

L6H3(H + ℓ)
, (6.11)

where c9 is a dimensionless constant that depends on the shape of the forcing only.
When (6.11) is satisfied, the global attractor of the 2D Navier-Stokes equation is stable
to infinitesimal 3D perturbations.
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7. Absolute two-dimensionalization

We now prove two-dimensionalization starting from arbitrary initial conditions: the
initial 2D part of the flow is not necessarily on the attractor of the 2D Navier-Stokes
equation, and the vertically-dependent part of the velocity field can be arbitrarily large
initially. We use a theorem proven by Babin, Mahalov and Nicolaenko on the existence
of a global attractor for the 3D rotating Navier-Stokes equations, when the rotation rate
is sufficiently large (Babin et al. 2000). For the setup considered here, their theorem 1
says the following: consider given values of F , ν, ℓ, L, H , a smooth shape of the forcing
function and some α > 1/2. Then above some value Ω′(F, ν, ℓ, L,H, α) of the rotation
rate, and for any initial condition u0 = u(t = 0), there is a time T0 after which spatial
derivatives of u of order up to α are bounded in the L2 sense by a constant that is
independent of time, of Ω, and of the initial condition u0. The time T0 does depend on
u0, F , ν, ℓ, L and H . We stress the fact that Ω′ is independent of the initial condition
u0. For large times, t > T0, and provided that Ω > Ω′, we have

sup
t>T0

‖∇βu‖2 < C(α, F, ν, ℓ, L,H) , (7.1)

for 0 ≤ β ≤ α. The key point is that the quantity C on the right-hand side is independent
of Ω and of the initial condition u0. It depends only the parameters indicated above, as
well as on the shape function of the forcing. In the following, we only need control over
the first few derivatives of u, so we now fix α to some large value (for instance α = 10).

We wish to prove that, for any value of the Grashof number, there is a threshold value
of the forcing Rossby number below which the 3D part of the velocity field decays at
least exponentially in the long-time limit, regardless of its initial amplitude: the flow two-
dimensionalizes in the long-time limit, starting from arbitrarily large 3D perturbations.
We call this property absolute two-dimensionalization.

We only wish to prove the existence of the threshold forcing Rossby number for absolute
two-dimensionalization, and we do not determine its precise dependence on the Grashof
number and geometry of the system. Therefore, to alleviate the algebra, in the following
we denote as C any quantity that is independent of time, of Ω, and of the initial condition
u0. A quantity denoted as C is only a function of F , ν, ℓ, L, and H . C denotes the generic
such quantity: it is not necessarily dimensionless, and it can change value and dimension
from one line of algebra to the next. By contrast, numbered quantities Ci are similar to
C but keep the same value throughout the algebra.

We are interested in the long-time behavior of the system, when global rotation is
fast. In the following, we therefore restrict attention to Ω > Ω′, and to t > T0. Under
these conditions, we can use the inequality (7.1) above to bound the L2 norm of velocity
gradients of order up to α by Ω-independent quantities. Using Agmon’s inequality, (7.1)
also implies that the L∞ norm of gradients of u is bounded by some Ω-independent and
time-independent quantity C:

sup
t>T0

‖∇βu‖∞ < C(α, F, ν, ℓ, L,H) , (7.2)

for 0 ≤ β ≤ α − 2. Because we have fixed α to some large value, in the following we
bound the spatial derivatives of u using (7.2) when needed.
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7.1. Evolution of the three-dimensional part of the velocity field

We consider the evolution of an initially 3D velocity field under the fully nonlinear 3D
rotating Navier-Stokes equation (2.1). Define the vertical average of a field h as

h̄(x, y, t) =
1

H

∫ z=H

z=0

h(x, y, z, t) dz , (7.3)

and decompose the velocity field into

u = V(x, y, t) + v(x, y, z, t), with V = ū, and v = u−V . (7.4)

In the following we call V (resp. v) the two-dimensional (resp. three-dimensional) part
of the velocity field. In contrast with the previous sections, here the 3D part v of the
velocity field need not be small. Our goal is to find a criterion that insures the decay of
v. The evolution equation for the two-dimensional part of the velocity field is obtained
by vertically-averaging equation (2.1),

∂tV+ (V ·∇)V+ (v ·∇)v = −∇P + ν∆V+ f(x, y) , (7.5)

where P includes the vertically averaged pressure and the vertically averaged Coriolis
force, which is a gradient.
By subtracting this equation to the rotating Navier-Stokes equation, we get the evo-

lution equation for the three-dimensional part of the flow:

∂tv+(V ·∇)v+(v ·∇)V+(v ·∇)v− (v ·∇)v+2Ωez ×v = −∇(p−P )+ ν∆v . (7.6)

Incompressibility imposes ∇ ·V = 0 and ∇ · v = 0.

7.2. Control over the small scales of the 3D part of the velocity field

One can obtain the same equation as (3.4) for the evolution of the kinetic energy of the
3D part of the velocity field, where V and v are now solutions of (7.5) and (7.6). Like in
section 3.1, we introduce a cut-off wavenumber Kabs and decompose the 3D part of the
velocity field into v = v< + v>, distinguishing between wave numbers that are lower or
greater than Kabs. We then repeat the steps (3.5) to (3.8), and obtain

1

2
dt
(

ln ‖v‖22
)

≤ 1

‖v‖22

[

−
∫

D
v< · (∇V) · v< d3x− ν

4
‖∇v‖22

]

+
4

νKabs
2 ‖∇V‖2∞ − νπ2

4H2
.

(7.7)

We choose the following value of the cut-off wavenumber:

Kabs =
4H

νπ
sup
t>T0

‖∇V‖∞ , (7.8)

which we know is a finite quantity thanks to equation (7.2). This ensures that the sum
of the last two terms in (7.7) is negative and can be discarded (again for t > T0), which
leads to

1

2
dt
(

ln ‖v‖22
)

≤ 1

‖v‖22

[

−
∫

D
v< · (∇V) · v< d3x− ν

4
‖∇v‖22

]

. (7.9)

From (7.2), the cut-off wave number (7.8) is bounded by an Ω-independent and time-
independent quantity:

Kabs ≤
4H

νπ
sup
t>T0

‖∇u‖∞ ≤ C . (7.10)
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7.3. Control over the large scales of the 3D part of the velocity field

Decompose v and V on the basis of helical modes as in (4.1) and (4.4). Inserting these
decompositions into the evolution equation (7.6) and projecting onto each helical mode
leads to the evolution equation for the helical amplitudes of v:

∂tbsk = −νk2bsk +
∑

p+q+k=0
sp;sq

C
skspsq
kpq

[

b∗spB
∗
sqe

−i(σsp+σsk
)t +

1

2
b∗spb

∗
sqe

−i(σsp+σsk
+σsq )t

]

,

(7.11)

where C
skspsq
kpq is still given by (4.8). Using the vorticity equation for the 2D part of the

flow, we get the following evolution equation for the helical amplitudes of V:

∂tBsk =
−sk√
2k

[

−ik · {ωV}k + (ik× {v× (∇ × v)}k) · ez − νk2ωk + (ik× fk) · ez
]

,

(7.12)

where fk and ωk are the Fourier amplitudes of f and ω, using Fourier series similar to
(3.2) and (4.3). Similarly, {. . . }k denotes the Fourier amplitude of its argument on the
wave vector k.
In contrast with the proof of linear two-dimensionalization, here the 3D part of the

velocity field contains many Fourier modes in z, the evolution of which is coupled. Writing
the vertical component of k as kz = nπ

H with n ∈ Z6=0 = Z\{0}, the triple velocity product
becomes
∫

D
v< · (∇V) · v< d3x (7.13)

= −L2H
∑

n∈Z 6=0

∑

p+q+k=0
kz=

nπ

H
;k≤Kabs;p≤Kabs
sp;sq;sk

Bsqbskbspe
i(σsk

+σsp )tskspkp
σsk + σsp

2Ωkz
g
∗sqsksp
qkp

= −L2H2

π

∑

n∈Z 6=0

1

n

∑

p+q+k=0
kz=

nπ

H
;k≤Kabs;p≤Kabs
sp;sq;sk

Bsqbskbspe
i(σsk

+σsp )tskspkp
σsk + σsp

2Ω
g
∗sqsksp
qkp ,

which differs from (4.12) by an infinite sum over the vertical Fourier modes of v.
Integrate (7.9) from time t = T0 to t = T0 + T and divide by T to obtain

1

T
ln

‖v‖2(t = T0 + T )

‖v‖2(t = T0)
≤ − 1

T

∫ t=T0+T

t=T0

∫

D v< · (∇V) · v< d3x

‖v‖22
dt (7.14)

− ν

4T

∫ t=T0+T

t=T0

‖∇v‖22
‖v‖22

dt .

Insert the expression (7.13) of the triple velocity product, before performing an inte-
gration by parts in time, integrating the oscillatory exponential and differentiating the
rest of the integrand. This gives

− 1

T

∫ t=T0+T

t=T0

∫

D v< · (∇V) · v< d3x

‖v‖22
dt =

L2H2

2πΩ

∑

n∈Z 6=0

1

n

(

T (n)
1 + T (n)

2 + T (n)
3 + T (n)

4

)

,

(7.15)

where T (n)
1 , T (n)

2 , T (n)
3 and T (n)

4 are given by expressions identical to (5.3)-(5.6), only for
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two minor changes: the bounds for the time integrations (and for the boundary terms of

T (n)
4 ) are now T0 to T0 + T , and the sums are now restricted to wave vectors such that

kz = nπ/H , k ≤ Kabs and p ≤ Kabs (see for instance the second sum on the right-hand
side of (7.13)).
Using inequalities (7.1) and (7.2), we prove in appendix B that:

∣

∣

∣

∣

∣

∣

∑

n∈Z 6=0

1

n
T (n)
1

∣

∣

∣

∣

∣

∣

≤ C1 , (7.16)

∣

∣

∣

∣

∣

∣

∑

n∈Z 6=0

1

n
T (n)
2

∣

∣

∣

∣

∣

∣

≤ C2 , (7.17)

∣

∣

∣

∣

∣

∣

∑

n∈Z 6=0

1

n
T (n)
3

∣

∣

∣

∣

∣

∣

≤ C3 +
C4

T

∫ t=T0+T

t=T0

‖∇v‖22
‖v‖22

dt (7.18)

lim
T→∞

∣

∣

∣

∣

∣

∣

∑

n∈Z 6=0

1

n
T (n)
4

∣

∣

∣

∣

∣

∣

= 0 , (7.19)

where the Ci are Ω-independent and T -independent quantities. Inserting these bounds
in (7.15) we obtain

∣

∣

∣

∣

∣

1

T

∫ t=T0+T

t=T0

∫

D v< · (∇V) · v< d3x

‖v‖22
dt

∣

∣

∣

∣

∣

≤ C5

Ω
+

L2H2

2πΩ

∣

∣

∣

∣

∣

∣

∑

n∈Z 6=0

1

n
T (n)
4

∣

∣

∣

∣

∣

∣
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+
L2H2C4

2πΩT

∫ t=T0+T

t=T0

‖∇v‖22
‖v‖22

dt .

Using Poincaré’s inequality on (half of) the viscous term in (7.14), we obtain

− ν

4T

∫ t=T0+T

t=T0

‖∇v‖22
‖v‖22

dt ≤ − νπ2

8H2
− ν

8T

∫ t=T0+T

t=T0

‖∇v‖22
‖v‖22

dt , (7.21)

and inserting (7.20) and (7.21) in (7.14) gives

1

T
ln

‖v‖2(t = T0 + T )

‖v‖2(t = T0)
≤
(

C5

Ω
− νπ2

8H2

)

+

(

L2H2C4

2πΩ
− ν

8

)

1

T

∫ t=T0+T

t=T0

‖∇v‖22
‖v‖22

dt

+
L2H2

2πΩ

∣

∣

∣

∣

∣

∣

∑

n∈Z 6=0

1

n
T (n)
4

∣

∣

∣

∣

∣

∣

. (7.22)

If Ω is large enough to satisfy

Ω > C6 = max

{

8C5H
2

νπ2
;
4L2H2C4

πν

}

, (7.23)

then the two parentheses on the right-hand side of (7.22) are negative, and these two
first terms can be discarded. Upon taking the limit T → ∞ and using (7.19), we finally
obtain

lim
T→∞

1

T
ln

‖v‖2(t = T0 + T )

‖v‖2(t = T0)
< 0 , (7.24)
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which shows that the three-dimensional part of the velocity field decays in the long-time
limit.
To summarize, we have proven that if Ω is larger than the value C6(F, ν, ℓ,H, L) de-

fined in (7.23), then the flow becomes 2D in the long-time limit, regardless of the initial
condition, and even if the 3D part of the velocity field is arbitrarily large initially. Recall
that we also restricted attention to Ω ≥ Ω′, to use (7.1) and (7.2). In terms of dimension-

less parameters, this proves the existence of a finite threshold value Ro
(f)
abs(Gr, ℓ/L,H/L)

of the forcing Rossby number under which absolute two-dimensionalization takes place:

for Ro(f) < Ro
(f)
abs(Gr, ℓ/L,H/L), the flow two-dimensionalizes in the long-time limit,

regardless of the initial condition u0 for the velocity field.

8. Discussion

The central result of the present study is the fact that rapidly rotating flows driven by
a vertically invariant horizontal body force admit exactly two-dimensional solutions that
are robust to 3D perturbations. We have first considered the 3D rotating Navier-Stokes
equation linearized around a 2D and possibly turbulent base flow, to prove linear two-
dimensionalization: defining a Reynolds number Re and a Rossby number Ro based on
the r.m.s. velocity, we have determined a region of the parameter space (Re,Ro) where
the (possibly turbulent) two-dimensional flow is linearly stable to three-dimensional per-
turbations. More precisely, for any Reynolds number, there is a threshold value of the
Rossby number Roc(Re) under which the flow ends up in the attractor of the 2D Navier-
Stokes equation, provided that the initial 3D perturbations are weak. Similar results
have been obtained in terms of the control parameters of the system: there is a Grashof-

number-dependent threshold value of the forcing-based Rossby number Ro
(f)
c (Gr) under

which the flow ends up in the attractor of the 2D Navier-Stokes equation, provided that
the initial 3D perturbations are weak.
We then came back to the fully nonlinear 3D rotating Navier-Stokes equation and

proved absolute two-dimensionalization: under a Grashof-number-dependent threshold

value Ro
(f)
abs(Gr) of the forcing-based Rossby number, the flow becomes 2D in the long-

time limit, regardless of the initial condition, including initial velocity fields that have
very strong vertically dependent structures.

To summarize, when Ro(f) < Ro
(f)
c , our study indicates that the global attractor of

the 2D Navier-Stokes equation is an attractor of the 3D rotating system. If Ro
(f)
abs ≤

Ro(f) ≤ Ro
(f)
c , this attractor may coexist in phase space with fully 3D attractors, and

the fate of the flow may depend on the initial condition. By contrast, when rotation is

so fast that Ro(f) < Ro
(f)
abs, the global attractor of the 2D Navier-Stokes equation is the

only attractor of the 3D rotating system, and any initial condition becomes exactly 2D
in the long-time limit.
We have determined conservative lower bounds on Roc(Re), given by Ro< in (6.9)

for generic time-independent forcing, and by Ro
(SM)
< in (6.10) for single-mode forcing.

Similarly, we obtained a lower bound on Ro
(f)
c (Gr), given by Ro

(f)
< (Gr) in (6.11). These

lower bounds might be improved using finer estimates and inequalities. The rapid de-

crease of the lower bounds Ro< and Ro
(SM)
< (resp. Ro

(f)
< (Gr)) with increasing Reynolds

(resp. Grashof) number stems from the fact that small-scale perturbations are more
difficult to control when viscosity is low. How fast the true threshold-Rossby-numbers
Roc(Re) really decreases with Re could be determined through careful numerical simu-
lations. These bounds also indicate unambiguously that two-dimensionalization is more
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easily achieved in shallow domains: as H decreases with fixed L and ℓ, the bounds Ro<,

Ro
(SM)
< and Ro

(f)
< increase as H−3 and therefore the criterion for two-dimensionalization

is more easily met (using another bounding strategy than the one presented here, the
better scaling H−5 can be obtained, but at the expense of the scalings in Re or Gr).
This result is qualitatively compatible with the numerical observations of Smith et al.
(1996) and Deusebio et al. (2014), who report that, for fixed rotation rate, the large
scales of turbulent flows in shallow domains are approximately 2D and exhibit an inverse
energy cascade, whereas in deep domains the system displays no inverse cascade. The
comparison with these studies is only qualitative, for two reasons: first, they are focused
on the transient behavior only and they do not consider the statistically steady state
attained in the long-time limit. Second, they consider the two-dimensionalization of the
large scales of the flow only, whereas we are interested in exact two-dimensionalization,
where the system becomes 2D at every horizontal scale.

The fact that the attractor of the 2D Navier-Stokes equation (2.5) is an attractor for
the 3D rotating flow when rotation is fast enough allows to give precise answers to the
questions raised at the outset of this study:

• First, in the two-dimensional attractor, the system exhibits no energy dissipation
anomaly. As proven by Alexakis and Doering (see also appendix A), the time-averaged

energy dissipation per unit mass ǫ is bounded from above by ǫ . Re−1/2U3

ℓ and therefore
ǫℓ/U3 vanishes in the infinite Reynolds number limit.
• Second, these results shed some light on the decrease of intermittency with global

rotation: experimental and numerical studies of the moments of the velocity structure
functions report that intermittency is reduced by global rotation (Baroud at al. 2003;
Müller et al. 2007; Seiwert et al. 2008; Mininni et al. 2009). For a given large value
of the Reynolds number and without global rotation, the body-forced flows considered
in this study are three-dimensional, and most likely turbulent and intermittent (Frisch
1995). With global rotation, however, if the Rossby number is lower than Roc(Re) the
flow has a (possibly turbulent) 2D attractor, and the belief is that the energy transfers
of such 2D flows do not display intermittency (Paret & Tabeling 1998; Boffetta et al.
2000).
• Third, the system has a symmetric vorticity distribution: cyclone-anticyclone asym-

metry disappears completely in this 2D attractor. Indeed, in the 2D Navier-Stokes equa-
tions the Coriolis force is absorbed by the pressure gradient and Ω disappears from the
equation: there is no preferred direction of rotation and no asymmetry of the vorticity
distribution.

Finally, these results can be discussed in the context of wave turbulence. For the
last decade, there has been a debate over whether rapidly rotating turbulence can be
described in terms of weak turbulence of inertial waves (Galtier 2003; Cambon et al.
2004; Yarom & Sharon 2014; Scott 2015). This theory describes the energy transfers
of rapidly rotating turbulence through the weakly nonlinear three-wave interaction of
inertial waves. Such a weak nonlinearity assumption is satisfied if the period of the inertial
waves is much shorter than the characteristic time of nonlinear energy transfers between
waves. In this framework, purely two-dimensional modes – the 2D “vortex” mode – are
therefore discarded, because they correspond to vanishing inertial frequency (a recent
attempt to include them is described in Scott (2015), but this study only considers 2D
flows at much larger scales than the waves: this is the limit of an almost uniform 2D flow
Doppler-shifting the waves). As mentioned in the introduction, a key point of the theory
is that three-wave interactions do not transfer energy from the inertial waves to the 2D
vortex mode: if the latter is zero initially, it remains zero through three-wave interactions.
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This is only valid for short times, however, because for longer times – or equivalently, at
next order in the weakly nonlinear expansion – quasi-resonances and quartets of inertial
waves come into play, and can transfer energy from the three-dimensional waves to two-
dimensional motion (Smith & Waleffe 1999).
Weak inertial-wave turbulence therefore seems to be a good candidate to describe the

initial evolution of a rapidly rotating 3D flow, provided the initial condition contains
negligible energy in purely 2D modes. However, it is unlikely to apply to stationary
rotating turbulence. As a matter of fact, experimental and numerical studies of stationary
rotating turbulence depart strongly from the predictions of wave turbulence, with a large
fraction of the energy of the system accumulating in the two-dimensional vortex mode
(Baroud at al. 2003; Alexakis 2015; Gallet et al. 2014; Campagne et al. 2014, 2015).
An explanation that is often given is that the Rossby number of these studies is not
low enough to enter the weakly nonlinear regime where inertial-wave turbulence would
apply. However, we believe that energetic two-dimensional motions are a generic feature
of stationary rotating turbulence in bounded domains, which challenges the applicability
of weak-turbulence theory.
Indeed, one can think of two extreme types of body-forced turbulence: the case where

the forcing inputs energy in 3D modes only, and the case where it inputs energy into 2D
motion only. The first situation is addressed in the thorough numerical study of Alexakis
(2015), who considers 3D forcing of the Taylor-Green type: in the rapidly rotating and
low-viscosity regime, the numerical solution consists either in a quasi-2D condensate
whose root-mean-square velocity adapts to reach Ro ≃ 1, or in a bursting behavior with
long phases of quasi-2D motion and short and intermittent bursts of fully 3D turbulence.
In any case, 2D motions play a key role in the dynamics.
The second situation is the one considered in the present study: when the forcing

inputs energy directly into two-dimensional motion, then one can reach the regime of
high-Reynolds number Re and low-Rossby number Ro. However, for fixed system size
and any given Reynolds number, we have proven rigorously that there is a critical value
of the Rossby number under which the flow ends up in a purely 2D attractor, with no
inertial waves at all.
The author thanks F. Moisy, W.R. Young, A. Alexakis, C.R. Doering, P.-P. Cortet

and A. Campagne for insightful discussions. This research is supported by Labex PALM
ANR-10-LABX-0039.

Appendix A. Bounds for body-forced 2D turbulent flows

In this appendix only, the L2 norms refer to integration over the 2D periodic domain
(x, y) ∈ D2 = [0, L]2. Like in the main body of the paper, we restrict attention to Re ≥ 2.

A.1. The analysis of Alexakis and Doering

Following Alexakis and Doering, take the dot product of 2D Navier-Stokes equation (2.5)
with φ, integrate over the 2D domain, divide by L2 and time-average to get

F = − ν

L2

〈∫

D2

V ·∆φd2x

〉

+
1

L2

〈∫

D2

((V ·∇)V) · φd2x
〉

≤ ν

L2
‖∆φ‖2 〈‖V‖2〉+

1

L2
‖∇φ‖∞

〈

‖V‖22
〉

.
νU

ℓ2
+

U2

ℓ
.

U2

ℓ
(A 1)

where we performed several integrations by parts before using the Cauchy-Schwarz,
Hölder’s and Jensen’s inequalities, and we keep restricting attention to Re ≥ 2. (A 1)
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can be easily recast as an inequality between the Grashof and the Reynolds number:

Gr . Re2 . (A 2)

The bound on the enstrophy dissipation rate is obtained by taking the curl of (2.5),
multiplying it by ω, integrating over the domain and time-averaging. This leads to the
enstrophy budget, which we divide by ν to obtain

〈

‖∇ω‖22
〉

=
1

ν

〈∫

D2

(∇× f) · ezωd2x
〉

≤ ‖f‖2
ν

〈‖∇ω‖2〉 ≤
‖f‖2
ν

√

〈‖∇ω‖22〉 .
FL

ν

√

〈‖∇ω‖22〉 , (A 3)

where we integrated by parts before using the Cauchy-Schwarz and Jensen’s inequalities.
Squaring the last inequality and dividing by

〈

‖∇ω‖22
〉

leads to

〈

‖∇ω‖22
〉

.
F 2L2

ν2
. (A 4)

Similarly, the bound on the time-averaged enstrophy is obtained by considering the time-
averaged energy budget divided by ν

〈

‖ω‖22
〉

=
1

ν

〈∫

D2

f · ud2x
〉

(A 5)

Since f is divergence-free, we can write f = ∇× ξ where the vector potential ξ satisfies
∇ · ξ = 0, and because f has spatial period ℓ, Poincaré’s inequality yields ‖ξ‖2 ≤
ℓ‖f‖2/(2π). After an integration by parts,

〈

‖ω‖22
〉

≤ ‖ξ‖2
ν

〈‖ω‖2〉 ≤
‖ξ‖2
ν

√

〈‖ω‖22〉 .
FℓL

ν

√

〈‖ω‖22〉 , (A 6)

(A 7)

and after squaring and dividing by
〈

‖ω‖22
〉

,

〈

‖ω‖22
〉

.
F 2ℓ2L2

ν2
. (A 8)

The inequalities (2.6) and (2.7) correspond to (A 8) and (A 4), with an extra prefactor
H , because ‖ . . . ‖2 denotes the 2D L2 norm throughout this appendix, and the 3D one
in the main body of the paper. Inserting the Poincaré inequality in (A 8) gives

L2U2 =
〈

‖u‖22
〉

. L2
〈

‖ω‖22
〉

.
F 2ℓ2L4

ν2
, (A 9)

hence

Re .
L

ℓ
Gr . (A 10)

With Re ≥ 2 and Gr ≥ 2, this inequality and (A2) lead to both

ln

(

Re
L

ℓ

)

. ln

(

Gr
L

ℓ

)

and ln

(

Gr
L

ℓ

)

. ln

(

Re
L

ℓ

)

. (A 11)

We now reproduce the analysis of Alexakis and Doering to obtain bounds in terms of
the r.m.s. velocity U . Once again, the bound on the enstrophy dissipation rate is obtained
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by considering the enstrophy budget, which we divide by ν to obtain

〈

‖∇ω‖22
〉

=
1

ν

〈∫

D2

(∇× f) · ezωd2x
〉

= − 1

ν

〈∫

D2

V ·∆fd2x

〉

.
1

ν
‖∆f‖2 〈‖V‖2〉 .

FL2U

νℓ2
.

L2U3

ℓ3ν
, (A 12)

where we made use of (A 1) to get the last inequality. The bound on the time-averaged
enstrophy is obtained from an integration by parts together with the Cauchy-Schwarz
inequality,

〈

‖ω‖22
〉

≤ 〈‖V‖2‖∇ω‖2〉 ≤ LU
√

〈‖∇ω‖22〉 .
L2U2

ℓ2

√
Re . (A 13)

The inequalities (2.9) and (2.10) correspond to (A 13) and (A 12), with an extra prefactor
H , because ‖ . . . ‖2 denotes the 2D L2 norm throughout this appendix, and the 3D one
in the main body of the paper.
In the case of single-mode forcing, we have ∆f(x, y) = − c̃1

ℓ2 f(x, y), where c̃1 is a di-
mensionless constant. The energy budget is obtained by dotting V into (2.5), integrating
over the whole domain and time-averaging. This leads to

〈

‖ω‖22
〉

=
1

ν

〈∫

D2

f ·Vd2x

〉

=
−ℓ2

c̃1ν

〈∫

D2

∆f ·Vd2x

〉

=
ℓ2

c̃1

〈

‖∇ω‖22
〉

, (A 14)

where the last equality originates from (A12). Using the Cauchy-Schwarz inequality
together with (A 14),

〈

‖ω‖22
〉

≤
√

〈‖V‖22〉
√

〈‖∇ω‖22〉 .
LU

ℓ

√

〈‖ω‖22〉 (A 15)

hence

〈

‖ω‖22
〉

.
L2U2

ℓ2
, and

〈

‖∇ω‖22
〉

=
c̃1
ℓ2
〈

‖ω‖22
〉

.
L2U2

ℓ4
. (A 16)

These inequalities correspond to (2.11) and (2.12), up to a prefactor H to go from the
2D L2 norm of this appendix to the 3D one used in the main body of the paper.

A.2. Bounds on the suprema in time of energy and enstrophy

The base-flow V(x, y, t) lies on the attractor of the body-forced 2D Navier-Stokes equa-
tion. Consider a time t0 > 0 for which the supremum of ‖V‖22 is achieved (the proof could
easily be adapted if the supremum were not achieved). The energy evolution equation at
t = t0 reads:

dt

(‖V‖22
2

)∣

∣

∣

∣

t=t0

= 0 =

∫

D2

f ·Vd2x− ν ‖ω‖22
∣

∣

t=t0
(A 17)

Since f is divergence-free, we write f = ∇×ξ where the vector potential ξ satisfies∇·ξ =
0, and because f has spatial period ℓ, Poincaré’s inequality yields ‖ξ‖2 ≤ ℓ‖f‖2/(2π).
After an integration by parts,

ν ‖ω‖22
∣

∣

t=t0
=

∫

D2

f ·Vd2x ≤
∫

D2

|ξ||ω|d2x ≤ ‖ξ‖2 ‖ω‖2|t=t0
. LℓF ‖ω‖2|t=t0

,(A 18)

hence

‖ω‖2|t=t0
.

LℓF

ν
. (A 19)
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From Poincaré’s inequality, ‖V‖2 . L‖ω‖2, hence

sup
t

‖V‖2 = ‖V‖2|t=t0 .
L2ℓF

ν
.

L2U2

ν
, (A 20)

where we used (A 1) to get the last inequality.

A very similar analysis performed on the enstrophy conservation equation leads to the
following upper bound,

sup
t

‖ω‖2 .
FL2

ν
.

U2L2

ℓν
. (A 21)

A.3. A (loose) bound on
〈

‖∆ω‖22
〉

Let us write the palinstrophy evolution equation,

dt

(‖∇ω‖22
2

)

=

∫

D2

(V ·∇ω)∆ωd2x− ν‖∆ω‖22 −
∫

D2

(∇ × ωez) ·∆fd2x , (A 22)

time-average it, and use successively Hölder’s, the Cauchy-Schwarz and Young’s inequal-
ities,

ν
〈

‖∆ω‖22
〉

≤ ν

2

〈

‖∆ω‖22
〉

+
1

2ν

〈∫

D2

|V|2|∇ω|2d2x
〉

+ 〈‖V‖2〉 ‖∆2f‖2 . (A 23)

To bound the quartic term, use the Cauchy-Schwarz and Ladyzhenskaya’s inequalities
(Ladyzhenskaya 1963),

〈∫

D2

|V|2|∇ω|2d2x
〉

≤
〈

(∫

D2

|V|4d2x
∫

D2

|∇ω|4d2x
)1/2

〉

(A 24)

. 〈‖V‖2‖ω‖2‖∇ω‖2‖∆ω‖2〉

. sup
t

(‖ω‖2) sup
t

(‖V‖2)
√

〈‖∇ω‖22〉
√

〈‖∆ω‖22〉

≤ ν2

2

〈

‖∆ω‖22
〉

+
c

ν2
sup
t

(

‖ω‖22
)

sup
t

(

‖V‖22
) 〈

‖∇ω‖22
〉

.

Inserting this inequality in (A 23),

〈

‖∆ω‖22
〉

.
FL2U

νℓ4
+

supt
(

‖V‖22
)

supt
(

‖ω‖22
)

ν4
〈

‖∇ω‖22
〉

, (A 25)

and using the bounds (A 1), (A 20) and (A 21),

〈

‖∆ω‖22
〉

〈‖∇ω‖22〉
.

(

U3L2

νℓ5 〈‖∇ω‖22〉
+

U8L8

ℓ2ν8

)

. (A 26)

After another use of Poincaré’s inequality,
〈

‖∇ω‖22
〉

≥ 16π4U2/L2, so that

L2
〈

‖∆ω‖22
〉

〈‖∇ω‖22〉
≤ c

(

L

ℓ

)10

Re8 . (A 27)



28 Basile Gallet

In the next subsection we are interested in the logarithm of this quantity which can be
bounded as

ln

(

L2
〈

‖∆ω‖22
〉

〈‖∇ω‖22〉

)

. ln

(

c
L10

ℓ10
Re8

)

= ln(c) + 10 ln

(

L

ℓ

)

+ 8 lnRe

. ln

(

Re
L

ℓ

)

. ln

(

Gr
L

ℓ

)

, (A 28)

where we use Re ≥ 2, and therefore lnRe ≥ ln 2 > 0, to remove ln(c). We have also used
(A 11) for the last step, assuming Gr ≥ 2.

A.4. A bound on
〈

‖∇V‖2∞
〉

Let us consider an arbitrary cut-off wavenumber Q > 0 and write

‖∇V‖∞ ≤
∑

k

k|Vk| =
∑

k<Q

k|Vk|+
∑

k≥Q

k|Vk| (A 29)

≤
√

∑

k<Q

k4|Vk|2
√

∑

k<Q

1

k2
+

√

∑

k≥Q

k6|Vk|2
√

∑

k≥Q

1

k4

Now sums that are independent of V can be bounded by integrals, with the following
result

∑

k<Q

1

k2
. L2 ln(QL) , (A 30)

∑

k≥Q

1

k4
.

L2

Q2
,

hence

‖∇V‖∞ ≤
∑

k

k|Vk| .
1

Q
‖∆ω‖2 +

√

ln(QL)‖∇ω‖2 , (A 31)

and after squaring, time-averaging and using Young’s inequality,

〈

‖∇V‖2∞
〉

≤
〈(

∑

k

k|Vk|
)2〉

.
1

Q2

〈

‖∆ω‖22
〉

+ ln(QL)
〈

‖∇ω‖22
〉

. (A 32)

Upon picking Q =
√

〈‖∆ω‖22〉 / 〈‖∇ω‖22〉 we obtain

〈

‖∇V‖2∞
〉

≤
〈(

∑

k

k|Vk|
)2〉

.
〈

‖∇ω‖22
〉

[

1 + ln

(

L2
〈

‖∆ω‖22
〉

〈‖∇ω‖22〉

)]

. (A 33)

The combination of (A 33) with the bound (A28) implies that there is a constant c̃2
(depending on the shape of the forcing only), such that, for Gr ≥ 2,

〈

‖∇V‖2∞
〉

≤
〈(

∑

k

k|Vk|
)2〉

≤ c̃2
〈

‖∇ω‖22
〉

ln

(

Gr
L

ℓ

)

. (A 34)

We use this inequality to bound the cutoff wavenumber K chosen in (3.9), which leads
to (3.11).
The same method can be used to determine a bound on

〈

‖V‖2∞
〉

as well, with the
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following result,

〈

‖V‖2∞
〉

≤
〈(

∑

k

|Vk|
)2〉

.
〈

‖ω‖22
〉

ln

(

Re
L

ℓ

)

.
〈

‖ω‖22
〉

ln

(

Gr
L

ℓ

)

. (A 35)

Recall that throughout this appendix ‖ . . . ‖2 refers to the L2 norm in 2D.

A.5. A bound on

〈

∑

k,k≤2K;sk

|∂tBsk |
〉

Using the helical decomposition (4.4) together with (4.6) and ik×hsk = skkhsk , we can
write a Fourier component of the vorticity as

ωk = ik×Vk · ez = k [B+(k)h+(k) −B−(k)h−(k)] · ez = kB+(k)[h+(k) + h−(k)] · ez
= −

√
2kB+(k) =

√
2kB−(k) , (A 36)

where we use the same convention as in (4.3) for all the Fourier series considered in this
section. We therefore obtain

∑

k;k≤2K
sk

|∂tBsk | =
√
2
∑

k;k≤2K

|∂tωk|
k

, (A 37)

the right hand-side of which can be bounded using the 2D vorticity evolution equation
written for a single Fourier component,

|∂tωk| ≤ |k · {ωV}k|+ νk2|ωk|+ |k× fk| . (A 38)

In this expression, {ωV}k denotes the Fourier amplitude of the product ωV. After di-
viding by k, summing over k such that k ≤ 2K, and time-averaging,

1√
2

〈

∑

k;k≤2K
sk

|∂tBsk |
〉

≤
〈

∑

k;k≤2K
|{ωV}k|

〉

+ ν

〈

∑

k;k≤2K
k|ωk|

〉

(A 39)

+
∑

k;k≤2K
|fk| .

The contribution from the nonlinear term in (A 39) is bounded according to

∑

k;k≤2K
|{ωV}k| ≤

∑

k;k≤2K

∑

p

|ωp||Vk−p| ≤
(

∑

p

|ωp|
)(

∑

k

|Vk|
)

, (A 40)

and after time-averaging and using the Cauchy-Schwarz inequality,

〈

∑

k;k≤2K
|{ωV}k|

〉

≤

√

√

√

√

〈(

∑

p

p|Vp|
)2〉

√

√

√

√

〈(

∑

k

|Vk|
)2〉

. (A 41)

and using the bounds (A 35) and (A 34),
〈

∑

k;k≤2K
|{ωV}k|

〉

.

√

〈‖ω‖22〉 〈‖∇ω‖22〉 ln
(

Gr
L

ℓ

)

. (A 42)
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The viscous contribution is bounded according to

ν

〈

∑

k;k≤2K
k|ωk|

〉

. νK
〈

∑

k;k≤2K
|ωk|

〉

. νK
√

ln(KL)
√

〈‖∇ω‖22〉

. H
〈

‖∇ω‖22
〉

ln

(

Gr
L

ℓ

)

, (A 43)

where we used the Cauchy-Schwarz inequality, and the bounds (3.11) and (5.20) on K
and ln(KL), recalling that ‖ . . . ‖2 denotes the 2D L2 norm in this appendix.
The forcing term is bounded as follows,

∑

k;k≤2K
|fk| . F

∑

k;k≤2K
|φk| . F

√

∑

k

k4|φk|2
√

∑

k

1

k4
. FL‖∆φ‖2 .

FL2

ℓ2
. (A 44)

Using the bounds (A 42), (A 43) and (A44) on the three terms on the right-hand-side
of (A 39), together with the bound (3.11) on the cut-off wavenumber K, we obtain

〈

∑

k;k≤2K
sk

|∂tBsk |
〉

.
FL2
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√
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)
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(
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)

.

(A 45)

Recall that throughout this appendix ‖ . . . ‖2 refers to the L2 norm in 2D.

Appendix B. Bounds for absolute two-dimensionalization

The term T (n)
1 is bounded using the Cauchy Schwarz inequality,

|T (n)
1 | . K2

abs

T

∫ t=T0+T

t=T0













∑

p+q+k=0
kz=

nπ

H
;k≤Kabs;p≤Kabs

sp;sq;sk

|∂t(Bsq)|
|bsk ||bsp |
‖v‖22













dt (B 1)

.
K2

abs

T

∫ t=T0+T

t=T0

∑

q;q≤2Kabs
sq

|∂t(Bsq)|







∑

k,kz=
nπ

H

|vk|2

‖v‖22






dt .

and therefore

∑

n∈Z 6=0

|T (n)
1 | . K2

abs

L2HT

∫ t=T0+T

t=T0

∑

q;q≤2Kabs
sq

|∂t(Bsq)|dt (B 2)

.
K4

abs

H
sup

t>T0;q≤2Kabs;sq

|∂t(Bsq)|

∂t(Bsq) is given by (7.12). For q ≤ 2Kabs, the terms on the right-hand side of this
equation can be easily bounded by Ω-independent and time-independent quantities using
(7.1), (7.2) and the Cauchy-Schwarz inequality. With Kabs bounded in (7.10), we finally
get

∑

n∈Z 6=0

|T (n)
1 | ≤ C , (B 3)
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where C still denotes the generic Ω-independent and time-independent quantity (it may
depend on F , ν, H , ℓ, L, and the shape of the forcing).

We now bound the term T (n)
2 using the Cauchy-Schwarz inequality
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2 | . K2
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


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.
K4

absL
2

T
sup

t>T0;q≤2Kabs;sq

(|Bsq |)
∫ t=T0+T

t=T0

√

∑

k≤Kabs,kz=
nπ

H
sk

|bsk |2
√

∑

k≤Kabs,kz=
nπ

H
sk

|∂tbsk |2

‖v‖22
dt ,

and after summing over n and using the Cauchy-Schwarz inequality

∑

n∈Z 6=0

|T (n)
2 | . K4

absL√
HT

sup
t>T0;q≤2Kabs;sq

(|Bsq |)
∫ t=T0+T

t=T0

√

∑

k≤Kabs
sk

|∂tbsk |2

‖v‖2
dt . (B 5)

Using (7.2) we obtain

∑

n∈Z 6=0

|T (n)
2 | . C

T

∫ t=T0+T

t=T0

√

∑

k≤Kabs
sk

|∂tbsk |2

‖v‖2
dt . (B 6)

We now bound the sum inside the square-root using equation (7.11) and the Cauchy-
Schwarz inequality:

√

√

√

√

∑

k≤Kabs
sk

|∂tbsk |2 ≤
∑

k≤Kabs
sk

|∂tbsk | (B 7)

≤
∑

k≤Kabs
sk

νk2|bsk |+
∑

k≤Kabs
sk

∑

q;sq;sp

|bsp(−q− k)|(|bsq |+ |Bsq |)(q + |q+ k|)

≤
√

√

√

√

∑

k≤Kabs
sk

ν2k4
√

√

√

√

∑

k≤Kabs
sk

|bsk |2

+







∑

k≤Kabs
sk

1







√

∑

q;sq

(2q +Kabs)2(2|bsq |2 + 2|Bsq |2)
√

∑

q;sq

|bsq |2 ,
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which using (7.2) and (7.10) yields
√

√

√

√

∑

k≤Kabs
sk

|∂tbsk |2 ≤ C

√

∑

k;sk

|bsk |2 (B 8)

≤ C‖v‖2 .
Inserting this inequality in (B 6) finally gives

∑

n∈Z 6=0

|T (n)
2 | ≤ C . (B 9)

We now take care of T (n)
3 using (3.3), which holds for v of arbitrary amplitude, and the

Cauchy-Schwarz inequality:

∑

n∈Z 6=0

|T (n)
3 | . 1

T

∫ t=T0+T

t=T0













∑

p+q+k=0
k≤Kabs;p≤Kabs

sp;sq;sk

|Bsq ||bsp ||bsk |kp |g
sqsksp
qkp | ‖∇V‖∞‖v‖22 + ν‖∇v‖22

‖v‖42













dt

.
K2

abs

L2HT

∫ t=T0+T

t=T0

∑

q;q≤2Kabs
sq

|Bsq |
(

‖∇V‖∞ + ν
‖∇v‖22
‖v‖22

)

dt

. C3 +
C4

T

∫ t=T0+T

t=T0

‖∇v‖22
‖v‖22

dt , (B 10)

where we used (7.1) and (7.10) for the last step.

T (n)
4 is given by

∑

n∈Z 6=0

T (n)
4 =

1

T













∑

p+q+k=0
k≤Kabs;p≤Kabs;σsk

+σsp 6=0
sp;sq;sk

Bsq

bskbsp
‖v‖22

ei(σsk
+σsp )t(−i)skspkp g

∗sqsksp
qkp













t=T0+T

t=T0

.(B 11)

Isolating the sum over q and using the Cauchy-Schwarz inequality for the sum over k

and p,

∑

n∈Z 6=0

|T (n)
4 | . K2

abs

L2HT

∑

q≤2Kabs;sq

[

|Bsq |(T0) + |Bsq |(T0 + T )
]

(B 12)

≤ C

T
,

where the last step consists in using the Cauchy-Schwarz inequality for the sum over q,
followed by (7.1) and (7.10). This shows that

lim
T→∞

∑

n∈Z 6=0

|T (n)
4 | = 0 . (B 13)

Expressions (B 3), (B 9), (B 10) and (B 13) imply (7.16)-(7.19).
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P. Bartello, O. Métais, and M. Lesieur. Coherent structures in rotating three-dimensional
turbulence. J. Fluid Mech 273, 1 (1994).

G. Boffetta, A. Celani and M. Vergassola. Inverse energy cascade in two-dimensional
turbulence: deviations from Gaussian behavior. Phys. Rev. E, 61, 1 (2000).

L. Bourouiba & P. Bartello. The intermediate Rossby number range and two-dimensional
three-dimensional transfers in rotating decaying homogeneous turbulence. J. Fluid Mech.
587, 139 (2007).

C. Cambon & L. Jacquin. Spectral approach to non-isotropic turbulence subjected to rotation.
J. Fluid Mech., 202, 295-317 (1989).

C. Cambon, R. Rubinstein and F.S. Godeferd. Advances in wave turbulence: rapidly ro-
tating flows. New J. Phys., 6, 73 (2004).

A. Campagne, B. Gallet, F. Moisy, and P.-P. Cortet. Direct and inverse energy cascades
in a forced rotating turbulence experiment. Phys. Fluids, 26, 125112 (2014).

A. Campagne, B. Gallet, F. Moisy, and P.-P. Cortet. Disentangling inertial waves from
eddy turbulence in a forced rotating turbulence experiment. Phys. Rev. E, 91, 043016 (2015).

P. Constantin, C. Foias, O.P. Manley. Effects of the forcing function spectrum on the
energy spectrum in 2-D turbulence. Phys. Fluids, 6, 427 (1994).

P.A. Davidson. Turbulence in rotating, stratified and electrically conducting fluids. Cambridge
University press (2013).

E. Deusebio, G. Boffetta, E. Lindborg, and S. Musacchio. Dimensional transition in
rotating turbulence. Phys. Rev. E, 90, 023005 (2014).

C.R. Doering & C. Foias. Energy dissipation in body-forced turbulence. J. Fluid Mech., 467,
289-306, (2002).

U. Frisch. Turbulence: the legacy of A.N. Kolmogorov. Cambridge University Press, (1995).

B. Gallet, A. Campagne, P.-P. Cortet, and F. Moisy. Scale-dependent cyclone-anticyclone
asymmetry in a forced rotating turbulence experiment. Phys. Fluids 26, 035108 (2014).

B. Gallet & C.R. Doering. Exact two-dimensionalization of low-magnetic-Reynolds-number
flows subject to a strong magnetic field. J. Fluid Mech., 773, 154-177, (2015).

S. Galtier. Weak inertial-wave turbulence theory. Phys. Rev. E 68, 015301 (2003).

H.P. Greenspan. The theory of rotating fluids. Breukelen, Brookline, MA (1990).
O.A. Ladyzhenskaya. The mathematical theory of viscous incompressible flow. Gordon and

Breach, (1963).

P.D. Mininni, A. Alexakis and A. Pouquet. Scale interactions and scaling laws in rotating
flows at moderate Rossby numbers and large Reynolds numbers. Phys. Fluids, 21, 015108
(2009).

C. Morize, F. Moisy and M. Rabaud. Decaying grid-generated turbulence in a rotating tank.
Phys. Fluids 17 (9), 095105 (2005).

F. Moisy, C. Morize, M. Rabaud, and J. Sommeria. Decay laws, anisotropy and cyclone-
anticyclone asymmetry in decaying rotating turbulence. J. Fluid Mech. 666, 5 (2011).

W.C. Müller & M. Thiele. Scaling and energy transfer in rotating turbulence. Europhys.
Lett., 77, 3 (2007).

A. Naso. Cyclone-anticyclone asymmetry and alignment statistics in homogeneous rotating
turbulence. Phys. Fluids, 27, 035108 (2015).

J. Paret & P. Tabeling. Intermittency in the two-dimensional inverse cascade of energy:
experimental observations. Phys. Fluids, 10, 3126 (1998).

P. Sagaut & C. Cambon. Homogeneous turbulence. Cambridge University press (2008).

J.F. Scott. Wave turbulence in a rotating channel. J. Fluid Mech. 741, 316-349 (2015).



34 Basile Gallet

J. Seiwert, C. Morize and F. Moisy. On the decrease of intermittency in decaying rotating
turbulence. Phys. Fluids, 20, 071702 (2008).

L.M. Smith, J.R. Chasnov, and F. Waleffe. Crossover from two- to three-dimensional
turbulence. Phys. Rev. Lett., 77, 2467 (1996).

L.M. Smith & F. Waleffe. Transfer of energy to two-dimensional large scales in forced,
rotating three-dimensional turbulence. Phys. Fluids, 11, 6 (1999).

B. Sreenivasan & P.A. Davidson. On the formation of cyclones and anticyclones in a rotating
fluid. Phys. Fluids, 20, 085104 (2008).

J. Vanneste. Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid
Mech., 45, 147-172, (2013).

F. Waleffe. Inertial transfers in the helical decomposition. Phys. Fluids A, 5, 677, (1993).
E. Yarom & E. Sharon. Experimental observation of steady inertial wave turbulence in deep

rotating flows. Nature Physics, 10, 510-514 (2014).


	1. Introduction
	2. Rotating turbulence in a periodic domain and 2D solutions
	2.1. Body-forced rotating turbulence
	2.2. Two-dimensional solutions

	3. Linear perturbation to the 2D solution
	3.1. Large versus small horizontal scales of the perturbation 

	4. Helical wave decomposition
	5. Control over the large scales of the perturbation
	6. Sufficient conditions for two-dimensionalization
	6.1. Combining the bounds on the four terms
	6.2. Criteria based on the root-mean-square velocity
	6.3. Criterion based on the forcing strength

	7. Absolute two-dimensionalization 
	7.1. Evolution of the three-dimensional part of the velocity field
	7.2. Control over the small scales of the 3D part of the velocity field
	7.3. Control over the large scales of the 3D part of the velocity field

	8. Discussion
	Appendix A
	A.1. The analysis of Alexakis and Doering
	A.2. Bounds on the suprema in time of energy and enstrophy
	A.3. A (loose) bound on <"026B30D  "026B30D 22 >
	A.4. A bound on <"026B30D  bold0mu mumu V "026B30D 2 >
	A.5. A bound on <  k, k2K ; sk |t Bsk| > 

	Appendix B

