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ABSTRACT

While a wide range of different, sometimes heterogeneous
test coverage criteria have been proposed, there exists no
generic formalism to describe them, and available test au-
tomation tools usually support only a small subset of them.
We introduce a unified specification language, called HTOL,
providing a powerful generic mechanism to define test ob-
jectives, which permits encoding numerous existing criteria
and supporting them in a unified way. HTOL comes with
a formal semantics and can express complex requirements
over several executions (using a novel notion of hyperlabels),
as well as alternative requirements or requirements over a
whole program execution. A novel classification of a large
class of existing criteria is proposed. Finally, a coverage mea-
surement tool for HTOL objectives has been implemented.
Initial experiments suggest that the proposed approach is
both efficient and practical.

CCS Concepts

•Software and its engineering → Dynamic analysis;
Software testing and debugging; Software reliability;
Domain specific languages;

Keywords
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1. INTRODUCTION

Context. In current software engineering practice, testing
[36, 35, 50, 3] remains the primary approach to find bugs in
a piece of code. We focus here on white-box software test-
ing, in which the tester has access to the source code – as
it is the case for example in unit testing. As testing all the
possible program inputs is intractable in practice, the soft-
ware testing community has notably defined code-coverage
criteria (a.k.a. adequacy criteria or testing criteria) [50, 3],
to select test inputs to be used. In regulated domains such
as aeronautics, these coverage criteria are strict normative
requirements that the tester must satisfy before delivering
the software. In other domains, coverage criteria are recog-
nized as a good practice for testing, and a key ingredient of
test-driven development.

A coverage criterion fundamentally specifies a set of test
requirements or objectives, which should be fulfilled by the
selected test inputs. Typical requirements include for exam-
ple covering all statements (statement coverage criterion) or

all branches in the code (decision coverage criterion). These
requirements are essential to an automated white-box test-
ing process, as they are used to guide the selection of new
test cases, decide when testing should stop and assess the
quality of a test suite (i.e., a set of test cases including test
inputs). In automated white-box testing, a coverage mea-
surement tool is used to establish which proportion of the
requirements are actually covered by a given test suite, while
a test generation tool tries to generate automatically a test
suite satisfying the requirements of a given criterion.

Problem. Dozens of code-coverage criteria have been pro-
posed in the literature [50, 3], from basic control-flow or
data-flow [31] criteria to mutations [13] and MCDC [10],
offering notably different ratios between testing thorough-
ness and effort. However, from a technical standpoint, these
criteria are seen as very dissimilar bases for automation,
so that most testing tools (coverage measurement or test
generation) are restricted to a very small subset of criteria
(cf. Table 1) and that supporting a new criterion is time-
consuming. As a consequence, the wide variety and deep
sophistication of code-coverage criteria in the academic lit-
erature is barely exploited in practice, and academic criteria
have a weak penetration into the industrial world.

Goal and challenges. We intend to bridge the gap be-
tween the potentialities offered by the huge body of academic
work on (code-)coverage criteria on one side, and their lim-
ited use in the industry on the other side. In particular, we
aim at proposing a well-defined and unifying specification
mechanism for these criteria, enabling a clear separation
of concerns between the precise declaration of test require-
ments on one side, and the automation of white-box testing
on the other side. This is a fruitful approach that has been
successfully applied for example with SQL for databases and
with temporal logics for model checking. This is also a chal-
lenging task as such a mechanism should be, at the same
time: (1) well-defined, (2) very expressive (to encode test
requirements from most existing criteria), and (3) amenable
to automation (coverage measurement and test generation).

Proposal. We introduce hyperlabels, a generic specification
language for white-box test requirements. Technically, hy-
perlabels are a major extension of labels proposed by Bardin
et al. [6]. While labels can express a large range of criteria
[6] (including a large part of weak mutations [26] and a weak
variant of MCDC [38]), they are still too limited in terms of
expressiveness, not being able for example to express strong
variants of MCDC [10] or most dataflow criteria [31]. In
contrast, hyperlabels are able to encode all criteria from the
literature [3] but full mutations [13, 26].



We also propose a universal coverage measurement tool
supporting hyperlabels, and demonstrate that the label-ba-
sed test generation algorithm from [6] yields acceptable (and
automatic) coverage results for hyperlabels.

Contribution. The four main contributions of this paper
are the following:
1. We introduce a novel taxonomy of coverage criteria (Sec-
tion 3), orthogonal to both the standard classification [50]
and the one by Ammann and Offutt [3]. Our classification
is semantical, based on the nature of the reachability con-
straints underlying a given coverage criterion. This view is
sufficient for classifying all existing criteria but mutations,
and yields new insights into coverage criteria, emphasiz-
ing the complexity gap between a given criterion and ba-
sic reachability. A visual representation of this taxonomy is
proposed, the cube of coverage criteria1;
2. We propose HTOL, a formal specification language for
test objectives (Section 4) based on hyperlabels. While labels
reside in the cube origin, our language adds new constructs
in order to combine (atomic) labels, allowing us to encode
any criterion from the cube taxonomy. We present the syn-
tax of the language and give a formal semantics in terms
of coverage. Finally, we give a few encodings of criteria be-
yond labels. Notably, HTOL can express subtle differences
between the variants of MCDC (Section 4.4.1);
3. As a first application of hyperlabels, and in order to
demonstrate their expressiveness, we provide in Section 5 a
list of encodings for almost all code coverage criteria defined
in the Ammann and Offutt book [3], including many criteria
beyond labels (cf. Table 2). The only missing criteria are
strong mutations and weak mutations, yet a large subset of
weak mutations can be encoded [6].
4. As a second application of hyperlabels, and in order to
demonstrate their practicality, we present the design and im-
plementation of a universal and easily extensible code cov-
erage measurement tool (Section 6) based on HTOL. The
tool already supports in a unified way fourteen coverage cri-
teria, including all criteria from Table 1 and six which are
beyond labels. We report on several experiments demon-
strating that the approach is efficient enough and combines
well with label-based automatic test generation.

Potential impact. Hyperlabels provide a lingua franca
for defining, extending and comparing criteria in a clearly
documented way, as well as a specification language for writ-
ing universal, extensible and interoperable testing tools. By
making the whole variety and sophistication of academic
coverage criteria much more easily accessible in practice, hy-
perlabels help bridging the gap between the rich variety of
academic results in criterion-based testing and their limited
use in the industry. We intend to develop a test generation
tool dedicated to hyperlabels in a middle term.

2. BACKGROUND

2.1 Basics: Programs, Tests and Coverage
We give here a formal definition of coverage and coverage

criteria, following [6].
Given a program P over a vector V of m input variables

taking values in a domain D , D1×· · ·×Dm, a test datum t

for P is a valuation of V , i.e. t ∈ D. A test suite TS ⊆ D is a

1By analogy to the λ-cube of functional programming.

Tool / Criterion FC BBC DC CC DCC MCDC BPC

Gcov X X X

Bullseye X X

Parasoft X X X X X X

Semantic Designs X X

Testwell CTC++ X X X X

FC: functions, BBC: basic blocks, DC: decisions, CC: conditions,
DCC: decision condition, MCDC: modified decision condition, BPC:
basis paths

Table 1: Criteria supported in some coverage tools

finite set of test data. A (finite) execution of P over some t,

denoted P (t), is a (finite) run σ , 〈(loc0, s0), . . . , (locn, sn)〉
where the loci denote successive (control-)locations of P (≈
line of code) and the si denote the successive internal states
of P (≈ valuation of all global and local variables and of
all memory-allocated structures) after the execution of each
loci (loc0 refers to the initial program state).

A test datum t reaches a location loc at step k with in-
ternal state s, denoted t ;k

P 〈loc, s〉, if P (t) has the form
σ · 〈loc, s〉 · ρ where σ is a partial run σ of length k. When
focusing on reachability, we omit k and write t;P 〈loc, s〉.

Given a test objective c, we write t ;P c if test datum
t covers c. We extend the notation for a test suite TS and
a set of test objectives C, writing TS ;P C when for any
c ∈ C, there exists t ∈ TS such that t ;P c. A (source-
code based) coverage criterion C is defined as a systematic
way of deriving a set of test objectives C = C(P ) for any
program under test P . A test suite TS satisfies (or achieves)
a coverage criterion C if TS covers C(P ). When there is no
ambiguity, we identify the coverage criterion C for a given
program P with the derived set of test objectives C = C(P ).

These definitions are generic and leave the exact definition
of “covering” to the considered coverage criterion. For exam-
ple, test objectives derived from the Decision Coverage cri-
terion are of the form c , (loc,cond) or c , (loc,!cond),
where cond is the condition of the branching statement at
location loc, and t;P c if t reaches some (loc, S) such that
cond evaluates to true (resp. false) in S.

Finally, for a test suite TS and a set C of test objectives,
the coverage score of TS w.r.t. C is the ratio of the number
of test objectives in C covered by TS to its cardinality |C|.
The coverage score of TS w.r.t. a coverage criterion C is
then its coverage score w.r.t. the set C = C(P ).

2.2 A Quick Tour of Coverage Criteria
A wide variety of criteria have been proposed in the liter-

ature [35, 3, 50]. We briefly review in this section the main
criteria used throughout the paper.

Control-flow graph coverage criteria include basic block
coverage (BBC, equivalent to statement coverage), branch
coverage (BC) and several path-based criteria (where each
one specifies a particular set of paths to cover in the graph)
such as edge-pair (EPC), prime path (PPC), basis path
(BPC), simple/complete round trip (SRTC/CRTC) and
complete/specified path (CPC/SPC) coverage.

Call graph coverage criteria include notably function cov-
erage (FC, all the call graph nodes, i.e. each program func-
tion should be called at least once) and call coverage (FCC,
all the graph edges, i.e. each function should be called at



least once from each of its callers).

Data-flow coverage [31] concerns checking that each value
defined in the tested program is actually used, either by one
of its possible uses (all-defs), or by all of them (all-uses),
or even along any of its def-use paths (all-du-paths).

Logic coverage criteria focus on exercising various truth
value combinations for the logical predicates (i.e. branching
conditions) of the tested program. The most basic criteria
here are decision coverage (both values for each predicate,
DC – equivalent to BC), (atomic) condition coverage (both
values for each literal in each predicate, CC) and multiple
condition coverage (all literal value combinations for each
predicate, MCC). Advanced criteria include MCDC [10]
and its variants [2, 3] GACC, CACC (masking MCDC)
and RACC (unique-cause MCDC), as well as their inactive
clause coverage counterparts GICC and RICC. Other cri-
teria consider the disjunctive normal form of the predicates
[3, Chap. 3.6], such as implicant coverage IC, unique true
point coverage UTPC and corresponding unique true point
and near false point pair coverage CUTPNFP [9].

Finally, in mutation coverage [13], test requirements ad-
dress the ability to detect that each of slight syntactic vari-
ants of the tested program (the mutants) behaves differently
from the original code. In strong mutation coverage (SMC),
the divergence must be detected in the program outputs,
whereas in weak mutation coverage (WMC) [26] the diver-
gence must be detected just after the mutation. Both SMC
and WMC are very powerful coverage criteria [4, 37].

2.3 Criterion Encoding with Labels
In previous work, Bardin et al. have introduced labels [6],

a code annotation language to encode concrete test objec-
tives, and shown that several common coverage criteria can
be simulated by label coverage, i.e. given a program P and
a criterion C, the concrete test objectives instantiated from
C for P can always be encoded using labels. As our main
contribution is a major extension of labels into hyperlabels,
we recall here basic results about labels.

Labels. Given a program P , a label ℓ ∈ Labs is a pair
〈loc, ϕ〉 where loc is a location of P and ϕ is a predicate over
the internal state at loc, that is, such that: (1) ϕ contains
only variables and expressions defined at location loc in P ,
and (2) ϕ contains no side-effect expressions. There can be
several labels defined at a single location, which can possibly
share the same predicate.

We say that a test datum t covers a label ℓ , 〈loc, ϕ〉 in

P , denoted t L
;P ℓ, if there is a state s such that t reaches

〈loc, s〉 (i.e. t ;P 〈loc, s〉) and s satisfies ϕ. An annotated
program is a pair 〈P,L〉 where P is a program and L ⊆
Labs is a set of labels for P . Given an annotated program
〈P,L〉, we say that a test suite TS satisfies the label coverage

criterion (LC) for 〈P,L〉, denoted TS L
;〈P,L〉 LC, if TS

covers every label of L (i.e. ∀ℓ ∈ L : ∃t ∈ TS : t L
;P ℓ).

Criterion Encoding. Label coverage simulates a coverage
criterion C if any program P can be automatically anno-
tated with a set of labels L in such a way that any test suite
TS satisfies LC for 〈P,L〉 if and only if TS covers all the
concrete test objectives instantiated from C for P .

It is shown in [6] that label coverage can notably simu-
late basic-block coverage (BBC), branch coverage (BC) and
decision coverage (DC), function coverage (FC), condition

coverage (CC), decision condition coverage (DCC), multi-
ple condition coverage (MCC) as well as the side-effect-free
fragment of weak mutations. The encoding of GACC can
also be deduced from [38]. Figure 1 illustrates the simulation
of some criteria with labels on sample code.

statement_1;

if(x==y && a<b)

{...};

statement_3;

→

statement_1;

//! l1: x==y

//! l2: x!=y

//! l3: a<b

//! l4: a>=b

if(x==y && a<b)

{...};

statement_3;

statement_1;

//! l1: x==y && a<b

//! l2: x!=y && a<b

//! l3: x==y && a>=b

//! l4: x!=y && a>=b

if(x==y && a<b)

{...};

statement_3;

Condition
Coverage (CC)

Multiple Conditon
Coverage (MCC)

Figure 1: Encoding of standard test requirements
with labels (from [6])

The main benefit of labels is to unify the treatment of test
requirements belonging to different classes of coverage crite-
ria in a transparent way, thanks to the automatic insertion
of labels in the program under test.

Limits. A label can only express the requirement that an
assertion at a single location in the code must be covered
by a single test execution. This is not expressive enough
to encode the test objectives coming from path-based cri-
teria, data-flow criteria, strong variants of MCDC or full
mutations.

Our goal. In this work, we aim at extending the expres-
sive power of labels towards all the criteria presented in Sec-
tion 2.2 (except WMC and SMC). The proposed extension
should preserve the automation capabilities of labels.

3. A NEW TAXONOMY: THE CUBE
We propose a new taxonomy for code coverage criteria,

based on the semantics of the associated reachability prob-
lem2. We take standard reachability constraints as a basis,
and consider three orthogonal extensions:

Basis location-based reachability, constraining a single pro-
gram location and a single test execution at a time,

Ext1 reachability constraints relating several executions of
the same program (hyperproperties [12]),

Ext2 reachability constraints along a whole execution path
(safety [34]),

Ext3 reachability constraints involving choices between sev-
eral objectives.

The basis corresponds to criteria that can be encoded with
labels. Extensions 1, 2 and 3 can be seen as three euclidean
axes that spawn from the basis and add new capabilities to
labels along three orthogonal directions. This gives birth to
a visual representation of our taxonomy as a cube, depicted
in Figure 2, where each coverage criterion from Section 2.2
(but mutations) is arranged on one of the cube vertices, de-
pending on the expressiveness of its associated reachability
constraints. We can also classify test objectives correspond-
ing to the the violation of security properties such as non-
interference (cf. Example 4, Section 4.2).

2More precisely: the reachability problem of the test re-
quirements associated to the coverage criterion.



BBC, BC, DC
CC, GACC, GICC
Function Cov., etc.

CACC, RACC
RICC

CUTPNFP

all-uses, all-du-paths
Path Coverage

Call
Coverage

Security
Non-interference

Violations

all-defs, SRTC

?

?

safety

disjunction

hyperprop
labels

Figure 2: The “cube” taxonomy of coverage criteria

This taxonomy is interesting in several respects. First, it
is semantic, in the sense that it refers to the reachability
problems underlying the test requirements rather than to
the artifact which the test requirements are drawn from. In
that sense it represents a progress toward abstraction com-
pared to the older taxonomies [3, 50], the one of [3] being
already more abstract than [50]. Second, it is very concise
(only three basic parameters) and yet almost comprehensive,
yielding new insights on criteria, through their distance to
basic reachability. Interestingly, many standard criteria re-
quire two extensions, yet we do not have any example of
criterion involving the three extensions.

4. HYPERLABELS
The previous section shows that our semantic taxonomy is

suitable to represent the whole set of coverage criteria we are
interested in. Since labels correspond to basic reachability
constraints, we seek to extend them in the three directions
of axes in order to build a universal test requirement de-
scription language. We detail here the principle, syntax and
semantics of the proposed language, called HTOL (Hyper-
label Test Objective Language).

4.1 Principles
HTOL is based on labels [6] (referred to as atomic now)

to which we add five constructions, namely: bindings, se-
quences, guards, conjunctions and disjunctions. By com-
bining these operators over atomic labels, one builds new
objectives to be covered, which we call hyperlabels.

• Bindings ℓ � {v1 ← [ e1; . . .} store in meta-variable(s)
v1, . . . the value of well-defined expression(s) e1, . . . at
the state at which atomic label ℓ is covered;

• Sequence ℓ1
φ
−→ ℓ2 requires two atomic labels ℓ1 and

ℓ2 to be covered sequentially by a single test run, con-
straining the whole path section between them by φ;

• Conjunction h1 · h2 requires two hyperlabels h1, h2 to
be covered by (possibly distinct) test cases, enabling
to express hyperproperties about sets of tests;

• Disjunction h1 + h2 requires to cover at least one of
hyperlabels h1, h2. This enables to simulate criteria
involving disjunctions of objectives;

• Guard 〈h | ψ〉 expresses a constraint ψ over meta-
variables observed (at different locations and/or during
distinct executions) when covering labels underlying h.

4.2 First Examples
We present here a first few examples of criterion encodings

using hyperlabels. They are presented in an informal way, a
formal semantics of hyperlabels being given in Section 4.3.

Example 1 (MCDC) We start with conjunction, bind-
ings and guards. Consider the following code snippet:

statement_0;
// loc_1
if (x==y && a<b) {...};
statement_2;

The (strong) MCDC criterion requires to demonstrate

here that each atomic condition c1 , x==y and c2 ,a<b

alone can influence the whole branch decision d , c1 ∧ c2.
For c1, it comes down to providing two tests where the truth
value of c2 at loc1 remains the same, while values of c1 and
d change. The requirement for c2 is symmetric. This can be
directly encoded with hyperlabels h1 and h2 as follows:

l , (loc1, true)� {c1 ← [ x==y; c2 ← [ a<b; d ← [ x==y&&a<b}

l
′
, (loc1, true)� {c

′
1 ← [ x==y; c′2 ← [ a<b; d ′ ← [ x==y&&a<b}

h1 , 〈l · l′ | c1 6= c′1 ∧ c2 = c′2 ∧ d 6= d ′〉

h2 , 〈l · l′ | c1 = c′1 ∧ c2 6= c′2 ∧ d 6= d ′〉

h1 requires that the test suite reaches loc1 twice (through
the · operator), with one or two tests. The values taken by
the atomic conditions and the decision when loc1 is reached
are bound (through �) to metavariables c1, c2, d for the first
execution and to c′1, c

′
2, d

′ for the second one. Moreover,
these recorded values must satisfy the guard c1 6= c′1 ∧ c2 =
c′2∧d 6= d ′, meaning that c1 alone can influence the decision.
Similarly, h2 ensures the desired test objective for c2.

Example 2 (Call coverage) Let us continue by showing
the interest of the disjunction operator. Consider the fol-
lowing code snippet where f and g are two functions.

int f() {
if (...) { /* loc_1 */ g(); }
if (...) { /* loc_2 */ g(); }
}

The function call coverage criterion (FCC) requires a test
case going from f to g, i.e. passing either through loc1 or
loc2. This is exactly represented by hyperlabel h3 below:

h3 , (loc1, true) + (loc2, true)

Example 3 (all-uses) We illustrate now the sequence op-

erator
·
−→. Consider the following code snippet.

/* loc_1 */ a := x;
if (...) /* loc_2 */ res := x+1;
else /* loc_3 */ res := x-1;

In order to meet the all-uses dataflow criterion for the
definition of variable a at line loc1, a test suite must cover the
two def-use paths from loc1 to loc2 and to loc3. These two
objectives are represented by hyperlabels h4 , (loc1, true) −→
(loc2, true) and h5 , (loc1, true) −→ (loc3, true).

Example 4 (Non-interference) Last, we present a more
demanding example that involves bindings, sequences and
guards. Non-interference is a strict security policy model
which prescribes that information does not flow between



sensitive data (high) towards non-sensitive data (low). This
is a typical example of hypersafety property [12, 11]. Hy-
perlabels can express the violation of such a property in a
straighforward manner. Consider the code snippet below.

int flowcontrol(int high, int low) {
// loc 1
{...}
// loc 2
return res;

}

Non-interference is violated here if and only if two execu-
tions with the same low input exhibit different output (res)
– because it would mean that a difference in the high input
is observable. This can be encoded with hyperlabel h6:

l1 , (loc1, true)� {lo ← [ low} → (loc2, true)� {r ← [ res}

l2 , (loc1, true)� {lo
′ ← [ low} → (loc2, true)� {r

′ ← [ res}

h6 , 〈l1 · l2 | lo = lo
′ ∧ r 6= r

′〉

4.3 Formal definition
We now formally define HTOL’s syntax and semantics.

Syntax. The syntax is given in Figure 3, where:

• ℓ , 〈loc, ϕ〉 ∈ Labs is an atomic label.

• B ∈ Bindingsloc is a partial mapping between arbi-
trary metavariable names v ∈ HVars and well-defined
expressions e at the program location loc;

• l, l1, · · · , li, · · · , ln are atomic labels with bindings;

• φi is a predicate over the metavariable names defined
in the bindings of labels l1, . . . , li, over the current pro-
gram location pc (≈ program counter) and over the
variable names defined in all program locations that
can be executed in a path going from loci to loci+1.

• h, h1, h2 ∈ Hyps are hyperlabels;

• ψ is a predicate over the set nm(h) of h-visible names
(i.e. metavariable names guaranteed to be recorded by
h’s bindings), defined as follows:

nm(ℓ�B) , all the names defined in B

nm([l1
φ1−→ · · · ln]) , nm(l1) ∪ · · · ∪ nm(ln)

nm(〈h | ψ〉) , nm(h)

nm(h1 · h2) , nm(h1) ∪ nm(h2)

nm(h1 + h2) , nm(h1) ∩ nm(h2);

Well-formed hyperlabels. In general, a name can be
bound multiple times in a single hyperlabel, which would
result in ambiguities when evaluating guards. To prevent
this issue, we define a well-formed predicate wf(·) over hy-
perlabels, whose definition is given in Figure 4.

In particular, on well-formed hyperlabels, nm is compati-
ble with distributivity of · and +. For instance, if we have
wf(h) with h , h1 · (h2 + h3), then, with h′ , (h1 · h2) +
(h1 · h3), we have wf(h′) and nm(h) = nm(h′).

In the remaining part of this paper, we will only consider
well-formed hyperlabels.

h ::= l label

| [l1
φ1−−→ {li

φi−−→ }* ln] sequence of labels

| 〈h | ψ〉 guarded hyperlabel

| h1 · h2 conjunction of hyperlabels

| h1 + h2 disjunction of hyperlabels

l ::= ℓ� B atomic label with bindings

B ::= {v1 ← [ e1; . . .} bindings

Figure 3: Syntax of Hyperlabels

no redundant names in B

wf(ℓ�B)

wf(h)

wf(〈h | ψ〉)

∀i, j, i 6= j ⇒ nm(li) ∩ nm(lj) = ∅

wf([l1
φ1−→ · · · ln])

wf(h1) wf(h2) nm(l1) ∩ nm(l2) = ∅

wf(h1 · h2)

wf(h1) wf(h2) nm(l1) = nm(l2)

wf(h1 + h2)

Figure 4: Well-formed hyperlabels

Semantics. HTOL is given a semantics in terms of cover-
age. This is an extension of the semantics of atomic labels
of Bardin et al. [6].

A primary requirement for covering hyperlabels is to cap-
ture execution states into the variables defined in bindings.
For that, we introduce the notion of environment. An envi-
ronment E ∈ Envs is a partial mapping between names and
values, that is, Envs , HVars 9 Values. Given an execu-
tion state s at the program location loc and some bindings
B ∈ Bindingsloc , the evaluation of B at state s, noted JBKs
is an environment E ∈ Envs such that E(v) = val iff B(v)
evaluates to val considering the execution state s.

We can now define hyperlabel coverage. A test suite TS
covers a hyperlabel h ∈ Hyps, noted TS H

;P h, if there exists
some environment E ∈ Envs such that the pair 〈TS , E〉 covers

h, noted 〈TS , E〉 H
;P h, defined by the inference rules of

Figure 5. An annotated program is a pair 〈P,H〉 where P is
a program and H ⊆ Hyps is a set of hyperlabels for P . Given
an annotated program 〈P,H〉, we say that a test suite TS
satisfies the hyperlabel coverage criterion (HLC) for 〈P,H〉,

noted TS H
;〈P,H〉 HLC if the test suite TS covers every

hyperlabel from H (i.e. ∀h ∈ H : TS H
;P h).

The notion of criterion simulation introduced for labels [6]
can then be generalized to hyperlabels. Hyperlabel cover-
age simulates a coverage criterion C if any program P can
be automatically annotated with a set of hyperlabels H , so
that, for any test suite TS, TS satisfies HLC for 〈P,H〉 if
TS fulfils all the concrete test objectives instantiated from
C for P and conversely.

Disjunctive Normal Form. Any well-formed hyperlabel



Label

t ∈ TS t;
k
P 〈loc, s〉 s � ϕ E ⊇ JBKs

t;
k
E 〈loc, ϕ〉�B 〈TS , E〉 H

;P 〈loc, ϕ〉�B

Guard

〈TS , E〉 H
;P h E � ψ

〈TS , E〉 H
;P 〈h | ψ〉

Conjunction

〈TS , E〉 H
;P h1 〈TS , E〉 H

;P h2

〈TS , E〉 H
;P h1 · h2

Disjunction Left

〈TS , E〉 H
;P h1

〈TS , E〉 H
;P h1 + h2

Disjunction Right

〈TS , E〉 H
;P h2

〈TS , E〉 H
;P h1 + h2

Sequence

t ∈ TS ∀i ∈ [1, n] , t;ki
E li ∀i ∈ [1, n− 1] , ki < ki+1

∀i ∈ [1, n− 1] , ∀j ∈ ]ki, ki+1[ , (locj , sj) = P (t)j ∧ φi(E , locj , sj)

〈TS , E〉 H
;P [l1

φ1−→ {li
φi−→ }* ln]

Naming convention: TS test suite; E hyperlabel environment; h, h1, h2 hyperlabels; ψ hyperlabel guard predicate; n positive integer; l1, . . . , ln

atomic labels with bindings; t test datum; k, k1, . . . , kn execution step numbers; locj , loc program locations; sj , s execution states; P (t)j the

j-th step of the program run P (t) of P on t; φ1, . . . , φn predicates over sequences of labels; ϕ label predicate; B hyperlabel bindings.

Figure 5: Inference rules for hyperlabel semantics

h can be rewritten into a disjunctive normal form (DNF), i.e
a coverage-equivalent hyperlabel hdnf arranged as a disjunc-
tion hdnf , c1 + · · ·+ ci + · · ·+ cn of guarded conjunctions
ci , 〈ls

i
1 · . . . · ls

i
p | ψ(Blsi

1

, · · · , Blsip
)〉 over atomic labels or

sequences. The equivalence between h and hdnf is stated as

∀ TS ⊆ D ∀ E ∈ Envs, 〈TS , E〉 H
;P h⇔ 〈TS , E〉 H

;P hhnf .

We provide a DNF normalization algorithm in Section 6.1
(Algorithm 6). DNF will prove convenient for defining our
coverage measurement algorithm (Section 6.1).

4.4 Advanced Examples
We illustrate now a few more advanced encodings.

4.4.1 Playing with MCDC variants

We have given in Example 1 an encoding of the strongest
version of MCDC (a.k.a. RACC). Yet, weaker variants
exist. Encoding them into hyperlabels helps clarifying the
subtle differences between those variants.

GACC (General Active Clause Coverage) is the weakest
variant of MCDC. It is also the sole variant to be encod-
able with atomic labels [38]. Let us assume that we have
a predicate p composed of n atomic conditions c1, . . . , cn.
GACC requires that for each ci, the test suite triggers two
distinct executions of the predicate: one where ci is true,
one where ci is false, and both such that the truth value of
ci impacts the truth value of the whole predicate. Yet, it is
not required that switching the value of ci is indeed feasible,
and the two executions do not have to be correlated. Going
back to the code snippet of Example 1, GACC requirement
for c1 can be simulated by the two atomic labels l3 and l4
l3 , (loc1, c1 ∧ ((true ∧ c2) 6= (false ∧ c2)))
l4 , (loc1,¬c1 ∧ ((true ∧ c2) 6= (false ∧ c2)))

CACC (Correlated Active Clause Coverage), or masking
MCDC is stronger than GACC. It includes every require-
ment from GACC and additionally requires that for each
clause ci, the two executions are such that if p is true (resp.
false) in the first one, then it is false (resp. true) in the
second one. CACC cannot be encoded into atomic labels
because of this last requirement that correlates the two ex-
ecutions together. Yet, it can be encoded with hyperlabels.

Using the same code as in Example 1, CACC requirement
for c1 can be simulated by the following hyperlabel h7, built
on the two atomic labels l3 and l4 defined for GACC:
h7 , 〈l3 � {r ← [ d} · l4 � {r

′ ← [ d} | r 6= r′〉

4.4.2 More DataFlow criteria

The all-defs coverage criterion requires that each defini-
tion of a variable must be connected to one of its uses. The
criterion adds a disjunction of objectives to the all-uses cri-
terion. Going back to Example 3, the all-defs requirement
for the definition of variable a at line loc1 can be simply
simulated by hyperlabel h8 , h4 + h5, where h4 and h5 are
the hyperlabels defined in Example 3.

Finally, we show that data-flow criteria can be refined to
consider the definition and use of single array cells,
while the standard approach considers arrays as a whole.
This is not a trivial refinement as the index of the cell ma-
nipulated at one location may not be known statically, mak-
ing it impossible to relate defs and uses, as well as to define
def-free paths without dynamic information. For example,
in the following code, the path from loc1 to loc3 is a valid
du-path iff i = k 6= j, which cannot be known statically:

int foo(int i,int j,int k){
/* loc_1 */ a[i] = x;
/* loc_2 */ a[j] = y;
/* loc_3 */ z = a[k] + 1;

}

Such a test objective can however be perfectly encoded
with hyperlabels, by adding bindings to the atomic labels
for saving the values of i and j and using the guard operator
to force them being equal. The encoding for the previous
code is given below, where pc represents the current line of
code:
l5 , (loc1, true) l6 , (loc3, true)

h9 , 〈l5 � {v1 ← [ i}

pc=loc2
⇒j 6=v1−−−−−→ l6 � {v2 ← [ k} | v1 = v2〉

4.4.3 Path-based Criteria

Most test objectives coming from path-based criteria can
be encoded in a straightforward way with the −→ operator.
Typically, complete path coverage can be encoded by
considering that S is the set of all paths in P . As soon
as there is a loop in P , this will produce an infinite set of
hyperlabels. This is coherent with the fact that complete
coverage is not finitely applicable and thus not feasible in
general. A few path-based criteria require also the + op-
erator for expressing choices between several paths, such as
simple round trip coverage.

5. EXTENSIVE CRITERIA ENCODING



As a first application of hyperlabels, we perform an ex-
tensive literature review and we try to encode all coverage
criteria with hyperlabels. Especially, we have been able to
encode all criteria from the Ammann and Offutt book [3],
but strong mutations and (full) weak mutations. These re-
sults are summarized in Table 2, where we also specify which
criteria can be expressed by atomic labels alone, and the re-
quired hyperlabel operators otherwise.

Encodable by See Sec.

la
b
e
ls hyperlabels or ref.

using
φ
−→ |ψ〉 · +

Control-flow graph coverage

Statement,Basic-Block, Branch X [6]
Path coverage:

EPC,PPC,CRTC,CPC, SPC • 4.4.3
Simple Round Trip coverage • • 4.4.3

Call-graph coverage

Function coverage (all nodes) X 2.3
Call coverage (all edges) • 2
Data-flow coverage

All Definitions (all-defs) • • 4.4.2
+ array cell definitions • • • 4.4.2

All Uses (all-uses) • 3
+ array cell definitions • • 4.4.2

All Def-Use Paths (all-du-paths) • 4.4.3
+ array cell definitions • • 4.4.2

Logic expression coverage

BBC, CC, DCC, MCC X [6]
MCDC variants:

GACC, GICC X 4.4.1, [38]
CACC, RACC, RICC • • 4.4.1

DNF-based criteria:
IC, UTPC X
CUTPNFPPC • •

Mutation coverage

Side-effect-free Weak Mut. X [6]
(Full) Weak Mut., Strong Mut. not encodable

X: expressible by atomic labels •: required hyperlabel operators

Table 2: Simulation of criteria from [3]

Interestingly, many criteria fall beyond the scope of atomic
labels, and many also require to combine two or three HTOL
operators. This is a strong a posteriori evidence that the lan-
guage of hyperlabel is both necessary and (almost) sufficient
to encode state-of-the-art coverage criteria.

All detailed encodings will be made publicly available in a
technical report once the paper is accepted for publication.

6. COVERAGE MEASUREMENT TOOL
As a second application, we describe a universal coverage

measurement tool, built on HTOL. This tool is to hyper-
labels what LTest [5] is to atomic labels. Namely, we first
design a coverage measurement procedure for test suites on
programs annotated with hyperlabels (instead of atomic la-
bels), then universality is achieved through providing hyper-
labeling encodings of standard criteria (cf. Section 5).

This prototype is the first coverage measurement tool able
to handle all coverage criteria from [3] (but strongest mu-
tation variants) in a unified way. Fourteen criteria are sup-
ported so far. While our coverage measurement algorithm
runs in worst-case exponential time, experiments demon-
strate that the tool is efficient enough on existing coverage
criteria beyond simple labels. Finally, we show that current
automatic test generation tools can already be lifted (in a
weak but still useful sense) from labels to hyperlabels, by
combining them with our coverage measurement tool.

6.1 Computing the coverage of a test suite
Given an annotated program 〈P,H〉 and a test suite TS,

our coverage measurement algorithm follows three steps:

normalization First, each hyperlabel h ∈ H is rewritten
into its disjunctive normal form (cf. Section 4.3).

harvesting Second, each test case t from TS is run on P .
Every atomic label and label sequence covered during
the run is saved on-the-fly, together with the environ-
ment (values of metavariables) that instantiate the la-
bel’s bindings at the coverage points.

consolidation Third, the collected coverage information is
propagated within the syntax tree (in DNF) of every
h ∈ H , in order to establish if TS covers h or not.

These steps are now described in more details.

Normalization. As stated in Section 4.3, any (well-formed)
hyperlabel h can be rewritten into an equivalent hyperlabel
hdnf in disjunctive normal form. This form of labels is both
very convenient for coverage measurement and very com-
mon in practice. This is done by applying the rewrite rules
of Figure 6 bottom-up from the leaves of the hyperlabel tree.
The proof of equivalence between h and hdnf can easily be
obtained by induction on h.

l ; 〈l|true〉 s ; 〈s|true〉

h ;

∑

i

〈πi|ψi〉
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Figure 6: Rewriting hyperlabel into DNF

Environment harvesting. Once hyperlabels in DNF have
been obtained, each test t from the suite TS is run on P ,
and the coverage information for basic labels, sequences and
binding values is collected. Note that we need to store all
possible binding values encountered along the execution of
t, not just the first one. While this is easy for basic labels,
the case of sequences must be treated with care, as there
are some non deterministic choices there. Due to space lim-
itations, we do not describe this point here, since it is a
common issue in runtime monitoring3.

Consolidating coverage result. Once the coverage infor-
mation for basic labels, sequences and binding values is fully
collected, we can compute the whole hyperlabel-coverage in-
formation. This is straightforward on DNF hyperlabels:

• atomic labels and sequences with no guard are covered
iff they have been covered in the harvesting step;

3A detailed description will be available in a separate tech-
nical report once the paper is accepted for publication.



• a guarded conjunction c , 〈ls1·...·lsp | ψ(Bls1 , ...Blsp )〉
is covered iff each label or sequence lsj , j ∈ 1..p is
saved as covered in E and there is at least one set of
environments Ej ∈ E (one for every lsj with bindings)
such that ψ(E1, · · · , Ep) is true;

• a disjunction hhnf , c1 + · · ·+ ci + · · ·+ cn is covered
iff at least one of the ci is covered.

In practice, the tool tries every possible combination of Ej
from E for every ci, until it finds one which makes ψ true
(in which case TS covers h) or proves that none exists (in
which case h is not covered by TS).

Optimizations. We first preprocess hyperlabels under con-
sideration in order to remove all unused metavariables ap-
pearing in bindings. Then, during harvesting, we ensure that
each binding is recorded only once, avoiding duplicated val-
ues. Finally, we perform conjunction and disjunction evalu-
ation in a lazy way, in order to avoid unnecessary combina-
torial reasoning on guarded conjunctions.

About complexity. The algorithm presented so far runs
in worst-case exponential time, mainly because of three fac-
tors: (1) normalization may yield an exponential-size hy-
perlabel, (2) consolidation for guarded conjunctions may
lead to checking a number of solutions exponential in the
size of the conjunction, and (3) monitoring sequences of la-
bels may include harvesting a number of environments ex-
ponential in the length of the considered run.

Yet, in practice, our algorithm appears to perform well
on existing classes of testing requirements (cf. Section 6.3).
Here are a few explanations. First, criteria as encoded in
the previous sections are naturally in DNF, hence we do not
have any normalization cost. Second, the critical parameters
indicated above have very strong limitations on hyperlabels
coming from existing criteria: conjunctions are of length
2; sequences are either of length 2, or they do not use bind-
ings –in that case, environment harvesting becomes a simple
coverage check, linear with the length of the sequence; the
domain of metavariables is often small (boolean).

6.2 Implementation
We have implemented a basic hyperlabel support in the

open-source testing tool LTest [5], an all-in-one testing plat-
form for C programs annotated with labels, developed as
a Frama-C [29] plugin. LTest is built around standard la-
bels, and provides labeling functions to automatically en-
code the requirements from common coverage criteria, as
well as coverage measurement, automatic coverage-oriented
test generation and automatic detection of infeasible test
requirements. The tool is written in OCaml, and relies on
PathCrawler [48] for test generation and on Frama-C for
static analysis.

We have extended the labeling mechanism into an hyperla-
beling mechanism, and we have lifted the coverage measure-
ment part from labels to hyperlabels. Moreover, we have
implemented hyperlabeling functions for criteria CACC,
RACC, all-def, all-use, FCC and BPC in addition to the
criteria already available in LTest4; support for other criteria
is in progress. Finally, we show in Section 6.3 how LTest test
generation can be combined with our new hyperlabel-based
coverage measurement algorithm.

4Namely: FC, BBC, DC, CC, DCC, MCC, GACC, and
a subset of WM.

Our prototype will be available in open-source when the
paper is accepted for publication.

6.3 Experimentations

Objectives. We assess the practical applicability of our
tool and evaluate its integration with label-based test gen-
eration from LTest. The addressed research questions are:

[RQ 1 ] Is the proposed unified approach practical and
efficient enough? More precisely, how does the tool scale
with large test suites on criteria beyond labels?

[RQ 2 ] Does combining our tool with label-directed test
generation (LTest) yield an effective full-featured test tool
for criteria beyond labels?

Protocol. We consider five standard benchmark C pro-
grams from the LTest paper [6], mainly taken from the
Siemens test suite [14] (tcas), the Verisec benchmark [30]
(get_tag and full_bad from Apache source code) and
MediaBench [33] (gd from libgd).

For [RQ 1 ], a set of 1000 test cases is randomly gener-
ated for each program. Our tool is successively run with 10,
50, 100, 250, 500, 750 and all of these test cases. Each tool
run is repeated six times. First, tests are executed with-
out measurement (baseline), and then measuring coverage
for the CC and GACC label-encodable criteria (witness).
Second, tests are run and measured for the CACC, RACC
and all-defs criteria, which involve the five operators from
hyperlabels.

For [RQ 2 ], LTest test generation is used on each program
to produce test suites tailored for the label-encodable CC,
MCC and GACC criteria. Our tool then measures the
coverage achieved by these test suites and by random test
generation (1000 test cases per program, serving as witness),
for criteria CACC and RACC.

All the experiments are performed under Ubuntu Linux
14.04 on an Intel Core i7-4712HQ CPU at 2.30GHz × 8,
with 16GB of RAM.

Results and discussion. Part of our results are presented
in Table 3, Figure 7 and Figure 8. Detailed test data and
results will be available in open-source when the paper is ac-
cepted for publication.

[RQ 1 ] Table 3 details, for each program and encoded cri-
terion, the number of defined hyperlabels and labels as well
as the coverage measurement time and level for 10 and 1000
test cases. Figure 7 plots, for each criterion and the baseline
(no-cov), the mean measurement time for all programs, as a
function of the test suite size. In all cases, the measurement
time grows linearly with the number of test cases, but the
slope is sharper for the criteria involving hyperlabel oper-
ators. The time overhead, w.r.t. GACC, is very small for
CACC and RACC, which are encoded with labels close to
those of GACC, more some bindings, guards and conjunc-
tions. all-defs is encoded using sequences and disjunctions,
but its tangible time overhead, compared to the other crite-
ria, is due to the higher number of test objectives that this
criterion defines.

Conclusion. These results indicate that upgrading labels
with hyperlabels makes it possible to build an (almost) uni-
versal coverage measurement tool, without blowing practical
applicability off. The measurement time for criteria beyond
labels is acceptable and remains linear with the size of the
test suite. Moreover, as our tool implementation is not opti-



cc gacc cacc racc all-defs

trityp #hlab 34 34 17 17 15
50 loc #lab 34 34 34 34 178

10 t.c.
time 0.49s 0.49s 0.54s 0.52s 0.64
cover 6/34 2/34 0/17 0/17 4/15

1000 t.c.
time 36.54s 39.05s 43.14s 41.1s 54.16s
cover 16/34 15/34 5/17 5/17 7/15

tcas #hlab 58 58 29 29 47
124 loc #lab 58 58 58 58 170

10 t.c.
time 0.64s 0.63s 0.64s 0.61s 0.71s
cover 33/58 32/58 10/29 10/29 38/47

1000 t.c.
time 47.21s 48.56s 52.22s 49.45s 58.86s
cover 51/58 46/58 19/29 19/29 41/47

get tag #hlab 48 48 24 24 34
240 loc #lab 48 48 48 48 306

10 t.c.
time 0.68s 0.71s 0.69s 0.67s 1.21s
cover 25/48 25/48 9/24 9/24 12/34

1000 t.c.
time 49.75s 52.22s 56.31s 55.58s 97.67s
cover 28/48 28/48 12/24 12/24 12/34

full bad #hlab 32 32 16 16 24
219 loc #lab 32 32 32 32 158

10 t.c.
time 0.56s 0.57s 0.62s 0.62s 0.83s
cover 25/32 25/32 9/16 9/16 19/24

1000 t.c.
time 42.11s 44.47s 50.67s 48.41s 62.18s
cover 29/32 29/32 13/16 13/16 19/24

gd #hlab 76 76 38 38 64
319 loc #lab 76 76 76 76 728

10 t.c.
time 0.65s 0.68s 0.74s 0.72s 1.61s
cover 21/76 19/76 7/38 7/38 14/64

1000 t.c.
time 51.77s 54.02s 60.9s 58.84s 141.48s
cover 49/76 46/76 19/38 17/38 33/64

Table 3: Scalability of Cov. Measurement (Details)

mized, there is still room for a strong reduction of coverage
measurement time, when using the approach in a more in-
dustrial context.

[RQ 2 ] Figure 8 shows the total percentage, for all the
programs, of CACC and RACC objectives that are cov-
ered by the generated test suites. Label-directed test gener-
ation provides a significantly better coverage than random
generation. Coverage is also better with MCC and GACC
tests than with CC tests, the two former criteria being much
stronger than the latter. The minimal and maximalRACC-
coverage obtained on a program with GACC-directed test
generation are 61% and 94%, with a mean of 72% (random:
minimum 29%, maximum 81%, mean 53%). Note also that
these figures may take into account infeasible test objectives,
artificially lowering the achieved coverage results.

Conclusion. Combining our tool with LTest test genera-
tion provides a full-featured test tool, in the sense that it
handles both coverage measurement and (label-based) test
generation, for almost all the criteria from the literature.
The previous results indicate that this full-featured tool can
provide an above-random and often good coverage ratio for
beyond-label criteria.

7. RELATED WORK
The two closest works to ours are labels [6] and FQL. Since

the difference with labels has already been presented (Sec-
tions 2.3 and 4.1, Table 2), we focus here on FQL.

Specification of white-box coverage criteria. The Fs-
hell Query Language (FQL) by Holtzer et al. [24] for test
suite specification and the associated Fshell [23] tool repre-
sent the closest work to ours. FQL enables encoding code
coverage criteria into an extended form of regular expres-
sions, whose alphabet is composed of elements from the
control-flow graph of the tested program. Fshell takes ad-
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vantage of an off-the-shell model-checker to generate from a
C program a test suite satisfying a given FQL specification.

The scope of criteria that can be encoded in FQL is incom-
parable with the one offered by HTOL, as FQL handles com-
plex safety-based test requirements but no hyperproperty-
based requirement. As an important example, FQL cannot
encode MCDC. FQL also offers the interesting ability to
encode, in an elegant and standardized way, generic cover-
age criteria (independently of any concrete program), where
HTOL is designed to encode concrete test objectives (i.e.
particular instantiations of coverage criteria for a concrete
program).

In future work, a promising research direction would be to
use HTOL and FQL in a complementary way, by enabling
the instantiation of the generic (extended) FQL specification
of a criterion into a set of hyperlabels for the program to test.

Note also that FShell focus on test generation, where the
tool proposed in this paper focus on coverage measurement.
We intend to develop a test generation tool dedicated to
hyperlabels in a middle term.

Specification of model-based coverage criteria. The
work by Blom et al. [7] proposes to specify test objectives
on extended finite state machines (EFSMs) as observer au-
tomata with parameters. Test case generation can then be
expressed as a reachability problem, which can be solved
with the Upaal Cover state-space exploration tool [22]. Hong
et al. [25] also consider EFSM testing, but they encode cov-
erage criteria as sets of formulas in the CTL temporal logic.
Both papers provide encoding examples for some classical
control-flow and data-flow criteria (on EFSM models). Al-



though they are theoretically more expressive than HTOL
for safety-related test requirements, HTOL already offers a
sufficient subset of features to encode common coverage cri-
teria from the literature. On the other hand, these languages
do not support requirements involving multiple related ex-
ecutions (hyperproperties), which do appear in industrial
context (MCDC, non-interference).

Formal encodings have been proposed for several coverage
criteria in different other formalisms, like set theory [16],
graph theory [40], predicate logic [44, 1], OCL [17] and Z
[47]. However, for each formalism, the scope of supported
criteria is narrow and often limited to simple criteria.

Coverage objectives and hyperproperties. Test re-
quirements from the strongest MCDC variants can be seen
as examples of hyperproperties, i.e. software properties over
several different traces of the system to verify. Testing hy-
perproperties is a rising issue, notably in the frame of se-
curity [28]. However, research in the topic still remains ex-
ploratory. Rayadurgam et al. [41] suggests thatMCDC can
be encoded with temporal logics, by writing the formulas for
a self-composition of the tested model with itself. The paper
reports that model-checking the obtained formulas rapidly
faces scalability issues. Clarkson et al. [11] introduces Hy-
perLTL and HyperCTL*, which are extensions of temporal
logics for hyperproperties, as well as an associated model-
checking algorithm. This work makes no reference to test
criterion encoding, but the proposed logics could be used to
provide [25] with the ability to encode criteria like MCDC.
However, the complexity results and first experiments [11]
indicate that the automation of such an approach still faces
strong scalability limits.

In future work, we intend to explore how HTOL formally
compares to HyperLTL and HyperCTL*. As an intuition,
we think that these languages are theoretically more expres-
sive than HTOL. But while HTOL remains sufficient for en-
coding common code coverage criteria (including MCDC),
it is also a strong starting point for a more general but still
lightweight support of hyperproperty testing, like shown in
Example 4 with non-interference.

Test description languages. Some languages have been
designed to support the implementation of test harnesses at
the program (TSTL [21], UDITA [19]) or model (TTCN-3
[20], UML Testing Profile [42]) level. A test harness is the
helper code that will execute the testing process in practice,
which notably includes test definition, documentation, exe-
cution and logging. These languages offer general primitives
to write and execute easily test suites, but independently of
any explicit reference to a coverage criterion.

Coverage measurement tools. Code coverage is used
extensively in the industry. As a result, there exists a lot
of testing tools that embed some sort of coverage measure-
ment. For instance, in 2007, a survey [49] found ten tools
for programs written in the C language: Bullseye [8], Code-
TEST, Dynamic [15], eXVantage, Gcov (part of GCC) [18],
Intel Code Coverage Tool [27], Parasoft [39], Rational Pu-
rifyPlus, Semantic Designs [43], TCAT [45]. To this date
(April 2016), there are even more tools, such as COVTOOL,
LDRAcover [32], and Testwell CTC++ [46]. Most existing
tools only support basic coverage criteria such as statement
and branch coverage. For instance, only a few like Testwell
CTC++, Parasoft, and LDRAcover support MCDC.

As a rule of thumb, current coverage measurement tools
support a limited number of test criteria in a hard-coded,
non-generic manner. Table 1 (Section 1) summarizes im-
plemented criteria for some popular tools. Our prototype
already supports all these criteria in a generic and extensi-
ble way, plus seven other criteria (cf. Section 6.2).

Moreover, the lack of formalization in the reportedly sup-
ported coverage criteria prevents users to know with cer-
tainty the actually supported criteria. For example, the way
shortcut logical operators are supported, or which actual fla-
vor of MCDC is supported, are often left unspecified in the
tools’ documentation.

However, to be fair, code coverage tools also aim at caus-
ing as little overhead as possible. In contrast, as a first step,
we only aim at getting a reasonable overhead.

8. CONCLUSIONS
To sum up, HTOL proposes a unified framework for de-

scribing and comparing most existing test coverage criteria.
This enables in particular implementing generic tools that
can be used for a wide range of criteria. Furthermore, as
shown in our first experiments on coverage measurements,
the overhead of such tools is sufficiently low to not be a con-
cern in practice. Future work includes the efficient lifting of
automatic test generation technologies to hyperlabels, the
identification of uncoverable hyperlabels, the extension of
HTOL to handle mutation-based criteria, as well as the use
(and extension) of HTOL for general hyperproperty testing.
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