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ABSTRACT: The fabrication of oriented crystalline thin films is essential for a
range of applications ranging from semiconductors to optical components, sensors,
and catalysis. Here we show by depositing micrometric crystal particles on a liquid
interface from an aerosol phase that the surface tension of the liquid alone can drive
the crystallographic orientation of initially randomly oriented particles. The X-ray
diffraction patterns of the particles at the interface are identical to those of a
monocrystalline sample cleaved along the {104} (CaCO3) or {111} (CaF2) face.
We show how this orientation effect can be used to produce thin coatings of
oriented crystals on a solid substrate. These results also have important implications
for our understanding of heterogeneous crystal growth beneath amphiphile
monolayers and for 2D self-assembly processes at the air−liquid interface.

The first crystals to grow from a supersaturated aqueous
solution often nucleate at the air−water interface. This

can happen for a variety of reasons. When crystallization is
induced by cooling of a hot, saturated salt solution, for example,
faster cooling at the air−water interface makes the super-
saturation highest at this location. CaCO3 nucleation from hard
water occurs first at the interface because gaseous CO2 resulting
from the reaction Ca2+ + 2 HCO3

− → CaCO3 + CO2 + H2O
escapes from the air−water interface, driving the formation of
CaCO3 rafts.1 Heterogeneous nucleation at the air−water
interface can also be thermodynamically favored because it
provides a lower nucleation barrier compared with bulk
nucleation. In particular, amphiphilic molecules deposited at
the air−water interface can dramatically reduce the nucleation
barrier and provide a 2D template for 3D crystal growth from
solution.2,3 Several investigators have relied on this system to
provide insights into fundamental mechanisms of heteroge-
neous nucleation such as the epitaxial growth of ice crystals
below alcohol monolayers,4 single-crystal ZnO nanosheet
growth at the air−water interface,5 organic−inorganic epitaxial
growth of calcite below sulfate monolayers,6 CaCO3 polymorph
control,7 recognition8 by peptide monolayers, and template-
crystal adaptability.9 These findings have fundamental
implications for our understanding of the complex heteroge-
neous crystal nucleation phenomena occurring during bio-
mineralization.10 They hold great promise to better control or
prevent crystal formation in situations where nucleation should
by all means be avoided (ice nucleation on airplane sensors,
CaCO3 scale formation in hardwater pipes11). Last but not
least, the fabrication of oriented mineral coatings and thin
oriented crystals films12 is essential for a wide range of
applications ranging from semiconductors to sensors, optical

components, paper manufacturing, paint, cosmetics, and skin
care.
The orientation of 3D crystals growing beneath 2D

amphiphile monolayers is usually ascribed to epitaxial or
headgroup stereochemical matching mechanisms13,14 between
the 3D crystal and the 2D template. We were interested in
knowing whether surface tension forces could play a role in
orienting the crystals at the interface as well, as suggested by
DiMasi et al.15 We started from a configuration where the
crystallites were randomly oriented by forming a cloud
(aerosol) of CaCO3 particles. This cloud of calcite crystals
(average size 1−10 μm) was formed by collecting a small
quantity of calcite powder with a brush and by shaking it above
a Petri dish filled with liquid (Figure 1a). The crystal film at the
interface was at first homogeneous. After 1 day, the particles at
the air−water interface had aggregated to form a fractal-like
network (Figure 1b). The formation of these networks has
been studied in detail by Nakayama et al.16

We then compared the θ-2θ X-ray diffraction pattern of the
floating calcite crystal layers with the usual powder pattern from
a thick pellet of dry powder (obtained by compressing the
powder in a ∼5 mm high cylindrical hole).
The relative X-ray diffraction intensities (Figure 2a) of the

dry powder were consistent with those reported in the Mincryst
powder diffraction database.17 For the floating calcite crystal
layer, all peaks but 104 almost completely vanished from the X-
ray diffraction spectrum (Figure 2b). This indicates that the
crystals at the air−water interface have their {104} face oriented
parallel to the air−water interface. A similar diffraction pattern
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would be obtained for a monocrystalline calcite crystal cleaved
along the {104} plane. Microscopy images of the crystals
(Figure 2c) clearly show some rhombohedra lying flat on their
{104} face, but the extent of the orientation effect (Figure 2b)
could not have been inferred from the mere visual inspection of
the crystals at the interface.

The crystal films we form from an aerosol are thin, and {104}
is the most conspicuous and energetically stable face of calcite.
The crystal habit of calcite is to form rhombohedra with six
external {104} faces (Figure 2c inset). It is conceivable that the
observed orientation could simply result from the fact that
rhombohedra tend to rest with their most expressed {104}
facet parallel to the substrate surface instead of being jammed
in random positions as in a compact powder. To examine this
possibility, we measured the XRD patterns of calcite particles
that settled on a solid (glass) substrate (Figure 3a).

All of the diffraction peaks could be readily distinguished
when the crystals settled at a solid interface (Figure 3a), unlike
what we observed at a liquid interface. The relative intensities
of some of the peaks of these thin calcite layers were changed
compared with a bulk powder pellet (Figure 2a), indicating
some degree of orientation. For example, for the diffraction
pattern shown in Figure 3a, we found I113/I104 = 0.2, whereas
this relative intensity for a bulk powder (Figure 2a) is 0.27
(consistent with Mincryst17 data, which indicates a theoretical
peak intensity ratio of 0.278). The orientation effect on a solid
substrate is, however, clearly much less pronounced that the
one observed on a liquid surface. We conclude that the fact that
the interface is liquid plays a key role in driving the orientation
of the crystallites once they have settled at the air−liquid
interface. More precisely, orientation could be due to (1) the
increased in-plane mobility of the particles at a liquid interface
or (2) surface tension, which could reorient crystals at the
interface. We challenged hypothesis (1) by dispersing the
particles on very viscous liquids, glycerol (η = 1.4 Pa·s) or a
thin (∼1 mm) layer of very viscous glue (Uhu, η = 10−100 Pa·
s). Lateral mobility was considerably reduced on glycerol as,
after 1 day, the particles gathered in 10−30 small clusters but
the clusters remained well separated because of their low
mobility. On glue motility was abolished; we did not observe
any aggregate formation. On both glycerol and glue, we found
complete <104> orientation (Figure 3b,c) just 30 min after the
particles were deposited at the interface. We therefore conclude

Figure 1. (a) Scheme of the method applied to form thin crystalline
films at the air−liquid interface. The photograph of the shaving brush
is reproduced here with kind permission of the company Alepia. (b)
Top view of CaCO3 crystals on water 1 day after they were deposited
at the interface. The surface area occupied by crystals after powdering
is ∼10%. Inset: fractal aggregate detail.

Figure 2. (a) θ-2θ diffraction pattern obtained from a CaCO3 powder
pellet (in air). (b) Diffraction pattern of CaCO3 crystals at the air−
water interface after aggregation of the crystals. (c) Micrograph of
CaCO3 crystals floating at the air−water interface, after aggregation of
the crystals. The arrow shows a crystal with a typical rhombohedral
morphology, having its {104] plane parallel to the interface. Inset:
calcite rhombohedron habit, composed of six {104} faces.

Figure 3. Diffraction pattern 30 min after forming a thin film of
powder by settling of particles on (a) a solid glass substrate, (b)
glycerol, (c) a ∼1 mm thick layer of viscous glue, and (d) oil. In panels
c and d, we performed the 2θ scan only in the vicinity of the three
most intense peaks (104, 113, and 108) of the powder diffraction
pattern.
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that the surface tension of the liquid drives the orientation of
the crystals at the interface. We also observed that for some
samples, on water and glycerol, other peaks (113, 108, 116)
could sometimes be distinguished, indicating a less marked
<104> orientation (Figure S1). This variability might be due to
the fact that upon settling at the interface, and depending on
the density of crystals in the aerosol, some crystals come to sit
on top of other crystals, forming multilayers. Crystals in such
multilayers might not be in contact with the liquid and would
therefore not be oriented by surface tension. We also
investigated the effects of changing the polarity of the liquid
by dispersing the particles on silicone oil. Complete <104>
orientation of the particles at the interface could be obtained on
oil as well (Figure 3d).
We examined whether we could capture the dynamics of

crystal orientation by taking XRD spectra at 5 min time
intervals (time required for a scan). We found that the XRD
spectra did not vary in time for all liquids used (water, glycerol,
glue); that is, the orientation of the crystallites took place
within at most 5 min after settling of the crystals at the liquid
interface. In particular, orientation of the crystals occurred well
before they had assembled to form visible aggregates (on water
and glycerol).
We further questioned whether the surface-tension driven

orientation effect was specific to calcite or could be observed
using other crystals. We used fluorite (CaF2), which has a
simple cubic crystal structure and is almost insoluble. We found
that settling of the CaF2 particles at the air−water interface led
to an extinguishing of all peaks except 111 (Figure 4a,b). The

same orientation effect occurred at the air−oil interface (Figure
4c). Similarly to {104} for calcite, {111} is the most stable and
widely expressed plane of CaF2. The CaF2 crystals were bigger
(5−50 μm) than the CaCO3 crystals, and they have a simple,
plate-like morphology. We found that the platelets lie flat, on
their {111} face, on the liquid interface (insets of Figure 4b,c).
This was especially clear at the oil interface, where crystals were
well separated from each other (Figure 4c). The separation
between the CaF2 crystals dispersed on oil very likely results
from electrical repulsion, possibly due to charge transfer with
the keratine of the brush hair; the day after, we found that the
crystals had aggregated, most likely because the electrical charge
had dissipated.
An important question is whether this capillary orientation

effect can be used to form oriented crystalline films on solid
substrates. To this end we dispersed CaCO3 crystals on a film
of ethanol spread on a piece of glass (Figure 5 inset). The

crystals dispersed on ethanol undergo a vivid motion (Figure
S2) because quick evaporation of the ethanol cools the surface,
driving convection currents from the bottom of the container
and at the surface of the liquid.18 As a result, on ethanol the
crystals quickly aggregate to form one dense (not fractal) layer.
We then let the ethanol evaporate and measured the θ-2θ XRD
diffraction pattern of the dry, compact crystal layer deposited
on a glass substrate. We found that the <104> orientation of
the crystals was conserved (Figure 5) after drying; the resulting
thin films feature properties similar to those of mesocrystals.19

The experiments we conducted lead us to suggest a simple
mechanism of how crystals orient at an air−liquid interface.
Most minerals are characterized by a few low-energy cleavage
planes, which make up most of the surface area of the ground
powder. For calcite and fluorite, these are, respectively, {104}
and {111}. When a mineral particle lands on the liquid
interface, capillary forces exert a torque that tends to reorient
the crystallite so that the cleavage plane lies parallel to the air−
liquid interface (Figure 6).
The characteristic time for reorientation is obtained by

equating viscous and capillary torques, yielding τ = ηa/γ, where
η is the dynamic viscosity of the liquid, γ is its surface tension,
and a is the size of the crystal (see the Supporting Information
for details on the derivation of this relation). For water (γ = 72
mN/m, η = 10−3 Pa·s), we find τ on the order of 0.1 to 1 μs.

Figure 4. (a) θ-2θ diffraction pattern obtained from a CaF2 powder
pellet (in air). Diffraction pattern of CaF2 crystals dispersed (b) at the
air−water interface and (c) at the air−oil interface. 2θ scans in panels
b and c have been performed in the vicinity of the six peaks found in
panel a. Insets: micrographs of the crystals at the liquid interface.

Figure 5. Oriented thin-film fabrication procedure. Step I: Crystallites
are dispersed on a film of ethanol on a glass slide. Step II: The crystals
are oriented by surface tension and the ethanol evaporates. Step III:
The glass slide is coated with a thin film of oriented crystallites. The θ-
2θ diffraction of the resulting dry mineral coating (step III) is shown.
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For glycerol and glue, τ is, respectively, 0.1 to 1 ms and 10−100
ms. This shows that even on the most viscous liquid (glue)
reorientation occurs within less than a second. This explains
why we were not able to resolve the orientation dynamics using
our setup. The orientation of crystals occurred over a wide
range of surface tension as oriented films could be obtained on
ethanol (γ = 22 mN/m), oil (γ = 15−22 mN/m), and water (γ
= 72 mN/m).
We demonstrated that orientation of a thin film of crystallites

on a solid substrate could be achieved by depositing the
particles on a volatile liquid and letting the latter evaporate.
This simple procedure could be integrated to other ceramics
manufacturing processes such as sintering of the oriented
particles, addition of an organic component, and multilayering
for the fabrication of nacre mimics20 or surface-mineralized
implants.21 The oriented particle films could also be used as
templates for further oriented crystal overgrowth or for contact-
angle measurement of sessile drops on well-defined crystallo-
graphic planes. Knowing and controlling the orientation of the
particles at the air−water interface is also important to
understand the self-assembly behavior of submicron particles
at an interface, which is governed by competing capillary,
dielectric, electric, or magnetic interactions between the
particles.22−24 Our work finally demonstrates that surface
tension alone is sufficient to orient crystals along a particular
crystallographic axis: This should be critically assessed when
studying the capacity of amphiphiles to direct crystal growth at
the air−water interface.15

■ EXPERIMENTAL METHODS
Calcite powder (CaCO3, Sigma) was dispensed in a dish and
collected with a brush. The brush was struck a few times above
a Petri dish filled with liquid (distilled water, silicone oil,
glycerol, or ethanol). The cloud of particles (aerosol) settled on
the liquid interface. The same procedure was subsequently
repeated with CaF2 (ground from a geological source). We
then put the Petri dish on the XRD (Siemens D5000) sample
holder and adjusted the z-position so that the liquid interface
was at the center of the circle formed by the rotating X-ray
source and detector arms. Crystal orientations at the liquid
interface or on a solid substrate were determined by X-ray
diffraction (Siemens D5000) in θ−2θ mode. In this mode, only
crystallographic planes that are parallel to the substrate surface
are detected. At least three replicate scans were obtained for
each liquid-crystal pair. We used an angular step Δθ = 0.01°.
To accelerate data acquisition, some scans (Figures 3 and 4)
were performed only in the vicinity of the three (six) most
intense diffraction peaks of CaCO3 (CaF2). Crystals at the
interface were additionally imaged by optical or phase contrast
microscopy (Leica). The surface concentration of crystals was
∼10%; this was deduced by measuring the surface area

occupied by white aggregates (Figure 1, right, low magnifica-
tion) on a dark background, on the next day, after aggregation
had occurred.
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