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We discuss a generalization of the dynamical mean field theory (DMFT) for strongly correlated systems close
to a Mott transition based on a systematic approximation of the fully irreducible four-point vertex. It is an atomic-
limit approximation of a functional of the one- and two-particle Green functions, built with the second Legendre
transform of the free energy with respect to the two-particle Green function. This functional is represented
diagrammatically by four-particle irreducible (4PI) diagrams. Like the dynamical vertex approximation (D�A),
the fully irreducible vertex is computed from a quantum impurity model whose bath is self-consistently determined
by solving the parquet equations. However, in contrast with D�A and DMFT, the interaction term of the impurity
model is also self-consistently determined. The method interpolates between the parquet approximation at weak
coupling and the atomic limit, where it is exact. It is applicable to systems with short-range and long-range
interactions.

DOI: 10.1103/PhysRevB.94.075159

I. INTRODUCTION

Strongly correlated electron systems pose a great challenge
to theoretical physics. Not only is the direct solution
of strongly interacting lattice models thwarted by the
exponential size of the Hilbert space (or the corresponding
negative sign problem in quantum Monte Carlo simulations),
but it is also difficult to find controlled approximate methods
in regimes of physical interest.

One such class of methods is dynamical mean field theory
(DMFT) [1] and its cluster extensions [2–6], which are
based on an expansion around the atomic limit of the two-
particle irreducible (2PI) or Luttinger-Ward functional �LW.
This local expansion is performed by mapping the extended
lattice problem onto an effective impurity problem with the
same interaction vertex as the lattice’s and a dynamical bath
describing the incursions of electrons on and off the impurity.
The self-energy of the impurity is used to approximate the
lattice self-energy. Despite a number of successes in describing
important features of strongly correlated electron systems,
cluster DMFT methods are limited by the maximal cluster
size attainable by quantum Monte Carlo solvers, and cannot
describe the effect of collective modes with a range exceeding
the size of the cluster.

The dynamical vertex approximation (D�A) [7–9] pro-
poses to approximate not the self-energy, but the four-leg
vertex function by its impurity counterpart [10,11]. This
approximation is based on numerical hints that the fully
irreducible vertex is more local in space than the self-
energy [12] and on the premise that two-particle quantities not
only have an important feedback on one-particle observables,
but are also essential to understand the underlying physical
processes [13,14]. In this method, the local vertex from a
converged DMFT computation—whether the fully irreducible
vertex �imp (“parquet D�A” [15,16]) or the irreducible vertex
in a given channel �r

imp (“ladder D�A” [17–20]; see also
Ref. [21] for a simplified version of this approximation)—is

*thomas.ayral@cea.fr

used to compute the momentum-dependent self-energy via
the Schwinger-Dyson equation. In principle, this self-energy
can be used to update the bath G of the impurity model,
although this fully self-consistent version has thus far not
been implemented. A similar approximation of the irreducible
vertex in a given channel is introduced in Ref. [22] and solved
self-consistently.

Contrary to DMFT, D�A has not been derived as the local
approximation of a functional. This paper intends to fill this
gap. By giving a functional footing to the local approximation
of the vertex, we clarify the links of D�A with the parquet
formalism. Most importantly, we obtain precise prescriptions
to construct the impurity model in a way that is consistent
with the local vertex approximation. The method we obtain
is similar to D�A, with additional self-consistent interactions
that can take into account the feedback of collective modes
and/or long-range interactions onto the impurity model.

Functional routes to extend DMFT include extended
DMFT (EDMFT [23–25]) and the recently introduced triply
irreducible local expansion (TRILEX) method [26,27]. Both
methods rely on the introduction of auxiliary bosonic variables
and the subsequent approximation of the exact electron-boson
nPI functional by an expansion around the atomic limit,
with n = 2 for EDMFT and n = 3 for TRILEX. The explicit
introduction of bosonic degrees of freedom allows for direct
insights into the influence of collective modes on fermionic
observables. Alternative methods include the GW+EDMFT
method [28–30], which supplements the atomic expansion of
the 2PI functional with nonlocal diagrams, and the dual boson
method [31–33], which resorts to another type of auxiliary
bosonic fields to describe nonlocal fluctuations beyond DMFT
and EDMFT.

In this paper we generalize the TRILEX idea to the 4PI
level, without resorting to auxiliary bosonic fields. Starting
from a problem with quartic fermionic interactions, we pro-
pose to approximate the functionalK4, which is represented by
all four-particle irreducible diagrams, by an expansion around
the atomic limit. We call this approximation QUADRILEX
(for quadruply irreducible local expansion) to distinguish it
from D�A. Like D�A, this approximation entails the locality
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of the fully irreducible vertex. However, contrary to D�A, it
gives different prescriptions on how to update the action of the
impurity model at the level of the interaction term. The latter
is renormalized in a self-consistent manner. This method can
be regarded as a straightforward extension of DMFT from the
2PI to the 4PI level.

This paper is organized as follows: in Sec. II we derive the
method using functionals. We then discuss the main implica-
tions of this method and its relation to known approximations
in Sec. III.

II. DERIVATION OF THE FORMALISM

We focus on a generic electron-electron interaction problem
defined, in a path-integral formalism, by the following action:

S = −c̄ūG
−1
0,ūvcv + 1

2Uvūxw̄c̄ūcvc̄w̄cx. (1)

Latin indices gather the Bravais lattice site index, imaginary
time, and the spin index: u ≡ (Ru,τu,σu). We denote outgoing
(ingoing) points by indices with (without) a bar. Einstein
summation over repeated indices is implied, and

∑
u stands

for
∑

R

∫ β

0 dτ
∑

σ . c̄ and c are Grassmann fields. G0,uv̄

denotes the free propagator of the fermions, while Uvūxw̄ is
the four-fermion bare interaction vertex. This generic action
encompasses a number of well-known models for strongly
correlated systems such as the Hubbard, extended Hubbard, or
t-J models.

The partition function is defined as

Z[J,U ] ≡
∫

D[c̄c]e−S[U ]+Jūv c̄ūcv , (2)

where we have introduced a bilinear source term Jūv . The free
energy is defined as

�[J,U ] ≡ − ln Z[J,U ]. (3)

It is a functional of the bilinear source Jūv and of Uūvw̄x ,
which can be regarded as a quadrilinear source. �[J,U ] is the
generating functional of correlation functions. In particular,
the one- and two-particle Green’s functions are given by

Guv̄ ≡ −〈cuc̄v̄〉 = − ∂�

∂Jv̄u

∣∣∣∣
U

, (4)

Gnc
2,ūuv̄v ≡ −〈c̄ūcuc̄v̄cv〉 = −2

∂�

∂Uuūvv̄

∣∣∣∣
J

, (5)

Gnc
2 contains disconnected as well as connected terms (hence

the superscript nc for “nonconnected”). We further define the
connected four-point correlator as

G2,ūuv̄v ≡ Gnc
2,ūuv̄v + GuūGvv̄ − GvūGuv̄. (6)

A. Two-particle irreducible formalism

1. Legendre transformation

By performing a Legendre transformation of the free energy
with respect to the bilinear sources J , one gets the Baym-
Kadanoff [34,35] functional:

�2[G,U ] ≡ �[J,U ] + TrJG. (7)

�2 falls into two parts:

�2[G,U ] = �2,0[G] + �LW[G,U ]. (8)

�LW is the Luttinger-Ward functional [36]: it is made
up of all two-particle-irreducible (2PI) diagrams, namely all
diagrams which do not fall apart if any two of their lines are
cut open. The noninteracting contribution �2,0 is given by

�2,0[G] = −Tr log[G−1] + Tr
[(

G−1 − G−1
0

)
G

]
. (9)

The physical solution is obtained by setting the source term
J to zero, i.e., by requiring the stationarity of �2 stemming
from the reciprocity relation

∂�2

∂G
= J = 0. (10)

This condition is equivalent [through Eqs. (8) and (9)] to
the Dyson equation


ūv = G−1
0,ūv − G−1

ūv , (11)

where the self-energy 
 is defined as the derivative of �LW

with respect to G:


ūv = ∂�LW

∂Gvū

∣∣∣∣
U

. (12)

The 2PI functional allows us to generate self-consistent
approximation methods by restricting �LW[G,U ] to a (com-
putable) class of diagrams. Choosing a particular approximate
form of �LW determines an approximate form of 
[G,U ]
and hence G via Dyson’s equation (although there are some
caveats to this procedure, as recently demonstrated [37]).

2. DMFT as an expansion of �LW around the atomic limit

Let us first briefly review the DMFT construction. DMFT
consists in approximating �LW by an expansion around the
atomic limit [1]:

�DMFT
LW [GRR′ ,URR′′R′′′R′′′′ ] ≡

∑
R

�LW[GRR,URRRR]. (13)

On the right-hand side, �LW[GRR] is shorthand for
�LW[GRRδRR′ ] (and similarly for U ). The form of this
approximation shows that DMFT is best suited for local
interactions (URR′′R′′′R′′′′ = UδRR′′R′′′R′′′′ ).1

As a result, the DMFT self-energy is local:


DMFT
RR′ (iω) = 
RR(iω)δRR′ . (14)

Here iω denotes a fermionic Matsubara frequency.
The resummation of the infinite class of local diagrams

in (13) is done by the following construction.
First, one introduces the following auxiliary impurity

model:

SDMFT
imp = −

∫∫
ττ ′

∑
σσ ′

c̄τσ [G−1(τ − τ ′)]σσ ′cτ ′σ ′

+ 1

2

∫
τ

∑
σ1σ2
σ3σ4

Uσ1σ2σ3σ4 c̄τσ1cτσ2 c̄τσ3cτσ4 . (15)

1In the DMFT approximation, nonlocal interactions only contribute
at the Hartree level [38].
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Its Luttinger-Ward functional �
imp
LW is the same as the

summand on the right-hand side of Eq. (13). Note that �
imp
LW

depends on the full propagator G and bare interaction U , not
on the noninteracting propagator G.

Second, one adjusts the noninteracting propagator G of the
auxiliary model such that

Gimp[G](iω) = GRR(iω), (16)

where the notation [G ] means that Gimp depends on G through
the solution of the impurity model, Eq. (15). G can be regarded
as a Lagrange multiplier to enforce the constraint (16) [39].

Finally, if Eq. (16) is satisfied, then

�
imp
LW[Gimp,U ] = �LW[GRR,U ]

and therefore Eq. (14) implies that


DMFT(k,iω) = 
imp(iω). (17)

The determination of the G fulfilling (16) is usually done
in an iterative fashion. We emphasize that in this construction,
U is the same in the lattice model and in the impurity model.
Cluster DMFT methods [2–6], which consists in introducing
an extended (i.e., multisite) impurity model instead of Eq. (15),
provide a systematic expansion beyond DMFT.

B. A reminder on vertex functions and the parquet formalism

In this section we give a reminder of the parquet equa-
tions [40,41] so as to fix our notations (which are similar to
those used in Refs. [10,11,42–44]).

The fully reducible vertex F is defined as the amputated,
connected four-point function:

Fuūvv̄ ≡ G−1
āu G−1

ūa G2,āab̄bG
−1
b̄v

G−1
v̄b . (18)

F contains all connected diagrams with two outgoing and
two ingoing entries. We note that G2 and F are of slightly
different nature: F is of the “vertex” type (it is amputated,
i.e., its external points correspond to bare vertices), while G2

is a “correlator” (it is not amputated, i.e., its external points
correspond to propagator ends). In diagrams, “vertices” can
only be connected to “correlators,” and reciprocally. G2 and F

are shown graphically in Fig. 1.
We next define the irreducible vertex in channel r , �r , where

r = ph,ph,pp. The irreducible vertex in the particle-hole
channel �ph (irreducible vertex in the horizontal particle-hole
channel �ph), contains all diagrams that do not fall apart if two
horizontal (vertical) counterpropagating propagators are cut
open. Similarly, the irreducible vertex in the particle-particle
channel �pp contains all diagrams which do not fall apart when
two propagators going in the same direction are cut open.

FIG. 1. Graphical representation of the four-point functions.

FIG. 2. Graphical representation of the reducible vertex �r in the
three channels. (a) �ph, (b) �pp, and (c) �ph.

These diagrammatic definitions imply that F and �r are
related by the Bethe-Salpether equation

Fuūvv̄ = �r
uūvv̄ + �r

uūvv̄, (19)

where

�
ph
uūvv̄ = �

ph
uābv̄GaāGbb̄Faūvb̄, (20a)

�
ph
uūvv̄ = �

ph
uūab̄

GaāGbb̄Fbāvv̄, (20b)

�
pp
uūvv̄ = �

pp
uāvb̄

GaāGbb̄Fbūav̄. (20c)

The function �r is called the “reducible vertex in channel
r .” These relations are illustrated in Fig. 2.

Next, we define the (interacting and “open”) bubble in
channel r , χr , as

χ
ph
ūuv̄v ≡ GuūGvv̄, (21a)

χ
ph
ūuv̄v ≡ GvūGuv̄, (21b)

χ
pp
ūuv̄v ≡ GvūGuv̄. (21c)

We now introduce a change of notation to unify the
expressions (20a), (20b), and (20c). For vertex functions Vuūvv̄

like F , �r , and �r , we introduce the following three hatted
functions V̂r :

V̂ph,uv̄,ūv ≡ Vuūvv̄, (22a)

V̂ph,ūu,v̄v ≡ Vuūvv̄, (22b)

V̂pp,uv,ūv̄ ≡ Vuūvv̄. (22c)

Here the subscript r defines the pairing of the four indices.
This is to be distinguished from superscripts (like in �r ),
which denote an intrinsic dependence on the channel. Thus
F̂r , which is “F in the r notation,” depends on r (whereas
F does not intrinsically depend on r). �̂r

r ′ is “�r in the r ′
notation,” it depends on r ′ (subscript) through the notation and
intrinsically on r (superscript). For correlator functions Cūuv̄v

(like G2 and χr ), likewise, we introduce the following three
hatted functions:

Ĉph,ūv,uv̄ ≡ Cūuv̄v, (23a)

Ĉph,v̄v,ūu ≡ Cūuv̄v, (23b)

Ĉpp,ūv̄,uv ≡ Cūuv̄v. (23c)
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With these notations, Eqs. (20a), (20b), and (20c) become
a simple matrix product:

�̂r
r,αβ ≡ �̂r

r,αγ χ̂ r
r,γ δF̂r,δβ . (24)

Here Greek indices denote the channel-dependent combi-
nation of two fermionic indices. They only make sense with a
subscript r to specify which pairing of indices is chosen.

We also note (see Appendix B for a proof) for further
reference that we have, for all r:

Ĝ2 = χ̂ r F̂ χ̂ r . (25)

The passage from the notation in channel r to the notation
in channel r ′ is performed via a tensor ζ r ′r

αβ,γ δ defined by the
following transformation of correlators:

Ĉr ′,αβ = ζ r ′r
αβ,γ δĈr,γ δ. (26)

Here we do not sum over r and r ′. Some basic properties of
this tensor are summarized in Appendix A. We further note that
the trace of two operators which do not intrinsically depend
on r does not depend on the choice of notation, i.e.,

TrĈV̂ = Ĉr,αβV̂r,βα = Ĉr ′,γ δV̂r ′,δγ . (27)

The transformation from r notation to r ′ notation for vertex
functions follows from this property:2

V̂r ′,αβ = ζ rr ′
δγ,βαV̂r,γ δ. (28)

In the above expressions, Einstein summation is performed
only on the Greek indices. For the same reason as above, the
inverse of correlators transform like vertex functions.

The Bethe-Salpether equation (19) can now be formally
inverted. For all r’s we have

�̂r
r = F̂r

(
1̂ + χ̂ r

r F̂r

)−1
, (29)

where inversion is performed in the space of Greek indices.
Finally, we define the fully irreducible vertex �. It contains

all diagrams that are irreducible in the ph, ph, and pp channels.
It thus obeys the relation

F = � +
∑

r

�r . (30)

Combining (19) and (30) yields

�r = � +
∑
r ′ �=r

�r ′
. (31)

The parquet equations are obtained by using the definition
of �r , Eq. (24), and replacing �r and F using (30) and (31):

�̂r
r =

(
�̂r +

∑
r ′ �=r

�̂r ′
r

)
χ̂ r

r

(
�̂r +

∑
r ′

�̂r ′
r

)
. (32)

The parquet equations relate � and �r (at fixed χr , i.e.,
fixed G), and thus [through Eqs. (30) and (25)] � to G2.
They couple the three channels [the passage from �̂r

r to �̂r
r ′ is

2Indeed, using Eq. (A1) of Appendix A, one can check

Ĉr,αβ V̂r,βα = ζ rr ′
αβ,γ δĈr ′,γ δζ

r ′r
δ̄γ̄ ,αβ

V̂r ′,γ̄ δ̄ = Ĉr ′,γ δV̂r ′,δγ .

FIG. 3. (a) Simplest diagram of K4, (b) an example of a four-
particle-reducible diagram, (c) simplest diagram of δ�, and (d) an
example of a reducible four-leg diagram. Lines denote G, while red
squares denote F .

given by Eq. (26)]. Conversely, the inverse parquet equations
consists in computing �r and �r from a given G2 or F [via
Eqs. (29) and (19)], and eventually [through (30)] �. They do
not couple the three channels and are as such much easier to
solve than the direct parquet equations.

The first contribution to � is the bare interaction U . It is
thus natural to define the correction of � beyond U as

δ� ≡ � − U. (33)

The lowest-order diagram of δ� is of order U 4. It is shown
in Fig. 3, right panel.

One can now observe that the parquet equations formally
relate the bare interactions U , the nontrivial contribution to
the fully irreducible vertex δ�, and the (fully reducible)
two-particle correlator G2 (the functions �r and �r can be
regarded as bystanders). In that sense, they are analogous
to the Dyson equations, which relate the bare correlator G0,
the irreducible contribution or self-energy 
, and the (full)
one-particle correlator G.

We note that in a single-orbital context, all the above-
mentioned four-point functions depend on three momenta and
three frequencies in the time- and space-translation invariant
case, as well as orbital and spin indices, e.g.,

�σ1σ2σ3σ4 (k,k′,q,iω,iω′,i�).

Further simplifications of the spin structure arise in SU(2)
invariant problems (see, e.g., Ref. [43] for more details).

C. Four-particle irreducible formalism

Here we introduce (Sec. II C 1) the Legendre transform
of �2[G,U ] with respect to the quartic sources, as well as
its irreducible part K4 and its properties. We then show that
the approximation K4 = 0 corresponds to the parquet approx-
imation (Sec. II C 3), and finally prove that approximations
on K4 preserve the consistency of the self-energy given as
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the derivative as the Luttinger-Ward functional or by the
Schwinger-Dyson equation (Sec. II C 4).

1. Legendre transformation

We define the Legendre transform of �2 with respect to U :

�4[G,G2] ≡ �2[G,U ] + 1
2 Ûr,αβĜnc

2,r,βα. (34)

�4 is a functional of G and G2 [or equivalently of G and F

via (25)] because U is a functional of G and G2 through the
relation

Gnc
2,ūuv̄v[G,U ] = −2

∂�2

∂Uuūvv̄

∣∣∣∣
G

, (35)

which follows from Eq. (5) and the properties of the Legendre
transform. Note that the second term in the definition of �4

does not depend on r due to Eq. (27). The passage from a
functional of the bare interaction U to a functional of the G2

(or F ) has been proposed in Ref. [41], and is also investigated
in Ref. [45].

�4 is the entropy of the system, up to a minus sign and a
shift of the source J -t ← J [where tūv is the hopping integral
in the quadratic part of the Hamiltonian H corresponding to
the action defined in Eq. (1)]. Indeed, Eqs. (7)–(34) give the
relation

T � = 〈H 〉 − T (−�4), (36)

where T is the temperature.
Finally, from Eqs. (34) and (5) follow the reciprocity

relation

1

2
Ûr,αβ = ∂�4

∂Ĝ2,r,βα

∣∣∣∣
G

. (37)

Following Ref. [41] we define the following functional:3

K4[G,G2] ≡ �LW[G,U ] + 1

2
Ûr,αβĜnc

2,r,βα

+ 1

2
F̂r,αβĜ2,r,βα − 1

2

∑
r

�r [G,G2], (38)

with

�r [G,G2] ≡ −Tr
[

ln
(
1̂ + Ĝ2,r

(
χ̂ r

r

)−1)− Ĝ2,r

(
χ̂ r

r

)−1]
. (39)

Thus, using Eqs. (8) and (38) in Eq. (34), �4 can be written
as

�4[G,G2] = �2,0[G] − 1

2
F̂r,αβĜ2,r,βα

+ 1

2

∑
r

�r [G,G2] + K4[G,G2], (40)

which highlights the dependence of �4 on G and G2, and its
decomposition into explicit terms (the first three terms) and a
nontrivial term K4.

This definition of K4 ensures that K4 can be represented
diagrammatically by the set of all four-particle-irreducible
(4PI) diagrams, as shown in Ref. [41] in the case of bosonic

3Up to notations and factors, this corresponds to Eq. (60) of Ref. [41]
and the functional L′[G,F ] of Ref. [45].

fields. A diagram is said to be 4PI if for any set of four lines
whose cutting leads to the separation of the diagram into two
disconnected pieces, one and only one of the pieces is a simple
four-leg vertex F . The lowest-order diagram of K4 is shown
in Fig. 3(a). In Fig. 3(b), for instance, cutting lines 3, 4, 7, and
8 leads to the separation of the diagram into two disconnected
pieces, none of which is a simple four-leg vertex F ; therefore,
this diagram is not 4PI.

Moreover, with definition (38), we are to show (in the next
subsection) that the fully irreducible vertex � (or δ�) derives
from K4:

δ�̂r,αβ = −2
∂K4[G,G2]

∂Ĝ2,r,βα

∣∣∣∣
G

. (41)

This is illustrated in Fig. 3(c), which corresponds to the
graphical derivative of the diagram of Fig. 3(a). This property
can be used to devise various approximations at the 4PI level,
as will be illustrated in Secs. II C 3 and II D.

Equation (41) remarkably parallels Eq. (12) of the previous
section. At the 2PI level, the stationarity of �2 [Eq. (10)] is
equivalent to the fulfillment of Dyson’s equation [Eq. (11)]
between G0, G, and 
, the derivative of the 2PI functional
�LW. Similarly, at the 4PI level, the stationarity of �4 [Eq. (37)]
is equivalent to the fulfillment of the parquet equations between
U , G2, and δ�, the derivative of the 4PI functional K4.

2. Proof of Eq. (41)

Starting from Eq. (37), we use Eqs. (34)–(40) as well as the
property [deduced from Eq. (26)]

∂Ĝ2,r ′,κη

∂Ĝ2,r,βα

= ζ r ′r
κη,βα (42)

and we remember that F is just the amputated G2 [Eq. (18),
i.e., the “FG2” term contains two G2’s at fixed G], to write

1

2
Ûr,αβ = ∂K4

∂Ĝ2,r,βα

∣∣∣∣
G

− F̂r,αβ

+ 1

2

∑
r ′

ζ r ′r
κη,βα

∂�r ′
[G,G2]

∂Ĝ2,r ′,κη

. (43)

Using the chain rule and Eqs. (25)–(29), the last term
evaluates to

∂�r [G,G2]

∂Ĝ2,r,κη

= −[(
χ̂ r

r

)−1(
1̂ + Ĝ2

(
χ̂ r

r

)−1)−1 − (
χ̂ r

r

)−1]
ηκ

= −[(
χ̂ r

r

)−1 − (
χ̂ r

r

)−1(
1̂ + Ĝ2,r

(
χ̂ r

r

)−1)]
ηα

× [
1̂ + Ĝ2,r

(
χ̂ r

r

)−1]−1
ακ

= −[−(
χ̂ r

r

)−1
Ĝ2,r

(
χ̂ r

r

)−1]
ηα

[
1̂ + Ĝ2,r

(
χ̂ r

r

)−1]−1
ακ

= F̂r,ηα

(
1̂ + χ̂ r

r F̂r

)−1
ακ

= �̂r
r,ηκ . (44)
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Hence, using Eqs. (19)–(30) we find, using Eq. (28) and
multiplying (43) by 2,

Ûr,αβ = 2
∂K4

∂Ĝ2,r,βα

− 2F̂r,αβ +
∑
r ′

ζ r ′r
κη,βα�̂r ′

r ′,ηκ

= 2
∂K4

∂Ĝ2,r,βα

− 2F̂r,αβ +
∑
r ′

�̂r ′
r,αβ (45a)

= 2
∂K4

∂Ĝ2,r,βα

− 2F̂r,αβ +
∑
r ′

(
F̂r,αβ − �̂r ′

r,αβ

)

= 2
∂K4

∂Ĝ2,r,βα

+ F̂r,αβ −
∑
r ′

�̂r ′
r,αβ

= 2
∂K4

∂Ĝ2,r,βα

+ �̂r,αβ . (45b)

In the last step we have used Eq. (30). By identification
with Eq. (33), we find the final result, Eq. (41).

3. The parquet approximation: K4 = 0

The most trivial approximation of K4, namely

Kparquet app.

4 = 0 (46)

corresponds to the parquet approximation. Indeed, Eq. (46),
combined with Eqs. (33)–(41), leads to

�parquet app. = U. (47)

By construction, this approximation is limited to the weak-
coupling regime since it neglects higher order terms. It has
been recently applied to the Hubbard model [42]. We note that
an alternative functional view on the parquet approximation is
proposed in Ref. [46].

4. Consistency of the self-energy

Any approximation of K4[G,G2] results in (i) an approx-
imate irreducible vertex δ� and, via the parquet equations,
approximate fully reducible vertex F and (ii) an approximate
Luttinger-Ward functional [via. Eq. (38)].

From here there are a priori two ways of computing the
self-energy. The first way is compute 
 as the derivative of
�LW with respect to G [Eq. (12)]. The second one is to use the
Schwinger-Dyson equation, an exact expression giving 
 as a
function of G, F , and U and illustrated in Fig. 4:


ūv = −UbācūGaāGcc̄Gbb̄Fab̄vc̄

+UvūaāGaā − UvāaūGaā. (48)

FIG. 4. Schwinger-Dyson expression of the self-energy.

The last two terms correspond to the Hartree and Fock
terms, respectively.

We prove in Appendix C that provided the approximation
on K4[G,G2] preserves its homogeneity properties, both ways
of computing the self-energy are equivalent.

In the next subsection we introduce, instead of the simple
approximation (46), an atomic approximation of K4.

D. A quadruply irreducible local expansion: QUADRILEX

1. A local expansion of the 4PI functional

Similarly to DMFT, we propose to approximate the 4PI
functional by the atomic limit (and later by a cluster method)

KQUADRILEX
4 [GR1R2 ,G2,R1R2R3R4 ] ≡

∑
R

K4[GRR,G2,RRRR].

(49)

To solve Eq. (49) we propose to follow a similar procedure
as the one used in DMFT (see Sec. II A 2), by replacing �LW

by K4.
First, we introduce the following model:

SQUADRILEX
imp

= −
∫∫

ττ ′

∑
σσ ′

c̄τσ [G−1(τ − τ ′)]σσ ′cτ ′σ ′

+ 1

2

∫∫∫∫
τ1τ2
τ3τ4

∑
σ1σ2
σ3σ4

U τ1,τ2,τ3,τ4
σ1σ2σ3σ4

c̄τ1σ1cτ2σ2 c̄τ3σ3cτ4σ4 . (50)

This action describes an impurity embedded in a noninter-
acting bath described by the field G and with dynamical
interactions U with three independent times. Its functional
K4[G,G2] is the same as the summand of the right-hand side of
Eq. (49), and does not depend on the noninteracting propagator
G(iω) and bare interaction U(iω,iω′,i�).

Second, we assume that one can adjust the noninteracting
propagator G and bare interaction U of the auxiliary model
such that

Gimp[G,U](iω) = GRR(iω), (51a)

G2,imp[G,U](iω,iω′,i�) = G2,RRRR(iω,iω′,i�). (51b)

G and U can be thought of as Lagrange multipliers to
enforce the two above constraints.

Finally, if we solve Eqs. (51a) and (51b), then

Kimp
4 [Gimp,G2,imp] = K4[GRR,G2,RRRR]

and therefore Eqs. (41)–(49) imply that

δ�(k,k′,q,iω,iω′,i�) = δ�imp(iω,iω′,i�). (52)

For simplicity, we will henceforth use the following
shorthand notation for four-leg functions on the lattice:

Xlatt ≡ Xσ1σ2σ3σ4 (k,k′,q,iω,iω′,i�). (53)

We point out that while DMFT is the approximation of
�LW[G,U ], which depends on one full correlator G, and
has correspondingly one “dynamical bath” G, QUADRILEX,
an approximation of K4[G,G2], which depends on two full
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correlators G and G2 involves two dynamical mean fields G
and U corresponding to two constraints, Eqs. (51a) and (51b).

2. QUADRILEX construction

In dynamical mean field theory, the constraint Eq. (51a)
is used together with the Dyson equation to determine the
self-consistent bath G from a given impurity self-energy 
imp.
This is done as follows:

(i) the lattice self-energy 
(k,iω) is approximated by the
impurity self-energy 
imp;

(ii) 
(k,iω) is plugged into the lattice Dyson equation [at
fixed G0(k,iω)] to get G(k,iω), which is summed over the
Brillouin zone to get Gloc(iω);

(iii) the impurity Dyson equation is inverted to get G from

imp and Gloc.

In QUADRILEX, the same procedure is applied to get the
retarded interactionsU(iω,iω′,i�) from a given impurity fully
irreducible vertex δ�imp(iω,iω′,i�). Instead of the Dyson
equations, one uses the parquet equations which relate the bare
interactions, the fully irreducible vertex and the fully reducible
vertex (see Sec II B):

(i) the lattice fully irreducible vertex δ�latt is approximated
by the impurity fully irreducible vertex δ�imp(iω,iω′,i�);

(ii) δ�latt is plugged into the lattice parquet equations (at
fixed lattice bare interactions Û ) to get G2,latt, which is summed
over the Brillouin zone to get G2,loc(iω,iω′,i�);

(iii) the impurity parquet equations are inverted to get
U(iω,iω′,i�) from δ�imp and G2,loc.

This construction is remarkable in that the impurity model’s
bare interaction Uσ1σ2σ3σ4 (iω,iω′,i�) is a priori different
from the lattice’s bare interaction Uσ1σ2σ3σ4 . The deviation of
Uσ1σ2σ3σ4 (iω,iω′,i�) from Uσ1σ2σ3σ4 , both from the point of
view of the frequency dependence and from the point of view
of the spin structure, is an interesting topic of investigation.
We discuss this in more detail in Sec III.

3. Self-consistent loop

Like DMFT, the equations of Sec. II D 1 may be solved
in an iterative way. We propose the following self-consistent
loop:

(1) Start with a givenU(iω,iω′,�) and G(iω) and solve the
corresponding impurity model, Eq. (50), for Gimp and G2,imp,
from which one can (through the impurity Dyson and inverse
parquet equations) compute 
imp(iω) and δ�imp(iω,iω′,i�).

(2) Use Eq. (52) to get a starting point for a parquet solver
on the lattice. This yields G2,latt.

(3) Use G2 (or equivalently F ) to compute 
(k,iω) via
the Schwinger-Dyson equation [Eq. (48)],4 and then G(k,iω)
via the Dyson equation.

(4) Compute the new bath G and interactions U :
(a) Take the local part of G(k,iω) to compute the new

Weiss field as (black part in Fig. 5)

G−1 = G−1
loc + 
imp. (54)

4For stability reasons, one may also compute 
(k,iω) and G(k,iω)
simultaneously with the solution of the lattice parquet equations
(step 2).

FIG. 5. The QUADRILEX loop. The parts in black correspond
to the D�A in the parquet version [the dashed line shows how D�A
proposes to update the Weiss field G(iω)]. The parts in red correspond
to the additional steps necessary to update the bare impurity vertex
U(iω,iω′,i�). For 
 we show only the terms beyond Hartree-Fock.
The terms in square brackets denote the fixed terms in the solution of
the Dyson/parquet equations.

(b) Take the local part of G2,latt, G2,loc and use the
inverse parquet equations (at fixed G2,loc and δ�imp) to
compute U(iω,iω′,i�) (red part), i.e., compute �

′
imp from

the inverse parquet (the prime emphasizes the fact that �
′
imp

is obtained after using lattice quantities, as opposed to δ�imp

which is computed directly from the impurity model) and
get U as

U = �′
imp − δ�imp. (55)

(5) Go back to step 1 until convergence.
This self-consistent cycle is summarized in Fig. 5. The

dynamical vertex approximation (D�A in its parquet version)
corresponds to the black parts, namely the computation of
G2,latt from a given impurity vertex δ�imp(iω,iω′,i�). The
computation of the updated impurity bare interaction is shown
in red.

III. DISCUSSION

A. A dynamical vertex approximation, and beyond

The local approximation of the lattice vertex, Eq. (52), is the
essence of the dynamical vertex approximation (D�A [7,9]). In
fact, D�A in its parquet version can be regarded as a one-shot
realization of the 4PI formalism.

The main difference of QUADRILEX with D�A is that in
D�A, the vertex U of the impurity model is not renormalized,
namely in D�A, Eq. (55) becomes

UD�A(iω,iω′,i�) = U. (56)

As will be seen in the next subsection, this condition is a
priori valid only in the atomic limit. As soon as the bandwidth
is finite, deviations of U with respect to U are likely to appear.

Interestingly, the natural variable of the QUADRILEX
approximation is the fully irreducible vertex �, which is

075159-7



THOMAS AYRAL AND OLIVIER PARCOLLET PHYSICAL REVIEW B 94, 075159 (2016)

approximated locally in the parquet version of the dynamical
vertex approximation. This contrasts with the ladder version
of D�A, where the local approximation is done at the level of
the irreducible vertex in one channel �r . This vertex derives
from another functional �r [G,G2] [Eq. (44)]. In this variant
of D�A, sum rules on the susceptibilities (or equivalently the
asymptotic behavior of the self-energy) are violated unless
some corrections (called “Moriya corrections” in the D�A
literature [8]) are made.

Another important consequence of our functional construc-
tion is that the QUADRILEX method can capture the feedback
of long-range interactions into the impurity model. In D�A,
this feature only appears in the solution of the lattice parquet
equations (through U , which can in principle have a nonlocal
part). One can expect nonlocal physics to be reflected by a
sizable frequency dependence of the local interaction U . This
frequency dependence can capture some nonlocal effects of
nonlocal interactions such as charge-ordering phenomena, as
has been observed, e.g., in extended DMFT [30,47,48].

B. An interpolation between atomic physics
and collective-mode physics

As a local expansion of the 4PI functional, QUADRILEX
allows us to interpolate between the atomic limit and the limit
of the parquet approximation, which can describe collective
modes.

Indeed, in the atomic limit, all momentum dependencies
drop out and one recovers, by construction,

U at(iω,iω′,i�) = U, (57)

since the impurity’s fully irreducible vertex �imp is the exact
fully irreducible vertex of the lattice.

In the weak-coupling regime, �imp is roughly equal to
the bare interaction U (the first correction is of order U 4),
which corresponds to the parquet approximation. Although the
precise form of the impurity’s bare interactionUimp(iω,iω′,i�)
in this limit is difficult to predict a priori, one may speculate
that already in this limit a differentiation between the charge
and the spin channel occurs. Such a differentiation has
been observed within the two-particle self-consistent method
(TPSC [49–52]).

C. Avoiding the parquet: Bosonic variables

From a technical point of view, the present method has two
difficulties:

(i) The solution of parquet equations on the lattice is still
a major computational hurdle despite recent progress [16,44].
This has so far limited the range of applications of parquet-
based methods such as parquet-D�A to very small system
sizes [15].

(ii) The impurity model Eq. (50) features dynamical
interactions with three independent time variables. A straight-
forward extension of the existing implementations [53] of the
interaction-expansion continuous-time quantum Monte Carlo
algorithm [54] allows us to handle this type of problem. It
consists in using interaction vertices depending on four time
variables instead of one in the Monte Carlo configurations.
However, one cannot foretell the severity of the minus sign
problem in the expansion of interaction with three independent

frequencies, which could limit the practical applicability
of the method. We nonetheless note that in some physical
regimes, one may expect the frequency dependence of U
to be restricted to the bosonic frequency. In this case, the
hybridization expansion solver with dynamical interactions,
which is sign-problem-free in the single-band, density-density
case, can be used [55].

An alternative to dealing with the complexity of the four-
fermion interaction is provided by another class of methods
also inspired by DMFT, but relying on the introduction of
auxiliary bosonic degrees of freedom guided by physical
insight into the instabilities of the system. These methods
include the extended DMFT method (EDMFT [23–25]) and
the recently introduced TRILEX method [26,27].

EDMFT is the straightforward extension of DMFT to
electron-boson problems with fermionic fields (propagator
G) and bosonic fields (propagator W ). In this context, the
2PI functional is denoted as �[G,W,λ], where λ is the bare
electron-boson coupling. All the fermionic equations of DMFT
can be transposed for bosonic variables, namely for the bosonic
propagator W , the bosonic self-energy P , and the bosonic free
propagator W0.

The TRILEX method takes EDMFT from the 2PI level (and
its functional �[G,W,λ]) to the 3PI level and its functional
K3[G,W,χ3], where χ3 is now the three-point electron-boson
correlation function. Similarly to DMFT and QUADRILEX,
it consists in a local expansion of a functional, which is, in the
case of TRILEX, the 3PI functional K3.

In this approach, the impurity problem has three “Lagrange
multipliers” or dynamical baths, G, W , and λimp to satisfy
the three constraints on Gimp, Wimp, and χ3,imp. The atomic
approximation of K3 results in a local approximation of the
irreducible vertex

K(k,q,iω,i�) = Kimp(iω,i�).

Table I summarizes the various methods. Each method
corresponds to the atomic approximation of the nontrivial part
(�LW[G,U ], �[G,W,λ], K3[G,W,χ3], or K4[G,G2], respec-
tively) of a functional (�2[G,U ], �2[G,W,λ], �3[G,W,χ3],
or �4[G,G2], respectively). Stationarity of this functional
is equivalent to the fulfillment of “boldification” equations
[fermionic or bosonic Dyson equation, simple linear relation
(Eq. (18) in Ref. [27]), or parquet equations, respectively]
relating three kinds of objects. We will call these objects
the “full” or bold objects (the fermionic or bosonic Green’s
functions G and W , connected three- or four-point functions
χ3 and G2, respectively), the “irreducible” objects (the self-
energy 
, the polarization P , the irreducible three-leg vertex
K , or fully irreducible four-leg vertex δ�) and the “bare”
objects (G−1

0 , W−1
0 , λ, or U at the lattice level, G−1

iω , U−1
i� ,

λ
imp
iω,i�, or Uiω,iω′,i� at the impurity level).5

In each method, the impurity model is used to compute
the irreducible objects, which are used as an approximation
of the corresponding lattice irreducible object via the atomic
approximation of the corresponding functional. As mentioned
before, the variables of this functional are the full objects, and

5We use the inverse propagators G−1
0 and W−1

0 since these are the
objects appearing in the quadratic part of the action.
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TABLE I. Comparison of the observables for various degrees of irreducibilities. While 2PI observables are related via Dyson equations,
3PI observables are simply related by a linear equation, and 4PI observables are related by parquet equations (see text for definitions).

Degree of irreducibility Functional Full correlators Irred. object Bare “bath”

2PI (DMFT) �LW[G,U ] : 
 = ∂�LW
∂G

G 
 G−1
iω

2PI (EDMFT) �[G,W,λ] : P = −2 ∂�

∂W
G, W 
,P G−1

iω , U−1
i�

3PI (TRILEX) K3[G,W,χ3] : K = − ∂K3
∂χ3

χ3,G,W K λ
imp
iω,i�, G−1

iω , U−1
i�

4PI (QUADRILEX) K4[G,G2] : δ� = −2 ∂K4
∂G2

G2, G δ� Uiω,iω′,i�, G−1
iω

the atomic approximation imposes that the local components
of these objects coincide with their impurity counterparts. The
knowledge of the full and irreducible objects at the impurity
level allows us to find, through the boldification equations, the
third object, namely the bare object which is used as a bath or
retarded interaction in the impurity model.

Other recent methods use bosonic variables to avoid
the solution of parquet equations. A recent example is the
dual boson method [31–33]: it introduces different auxiliary
bosonic degrees of freedom, and relies on the solution of
the same impurity model as extended DMFT (with updated
baths in the self-consistent version of the method), and the
subsequent resummation of a selected subclass of self-energy
diagrams built with the lowest-order impurity vertices.

IV. CONCLUSION AND PERSPECTIVES

In this paper we have used the four-particle irreducible
formalism to build an expansion of the 4PI functional K4

around the atomic limit. This approximation implies a local
approximation of the fully irreducible vertex, like in the
dynamical vertex approximation (D�A). It maps the lattice
model onto an effective local impurity model with both a
dynamical field G and dynamical interactions U with three
independent frequencies (contrary to D�A). By construction,
this method extrapolates between the atomic limit at strong
coupling and the description of collective modes by parquet
equations at weak coupling.

This functional derivation naturally extends the DMFT
idea—a local expansion of the 2PI functional—to the 4PI
level and sets up a framework to understand how to generate
extensions of DMFT. In particular, it gives prescriptions as to
how to construct the parameters of the local auxiliary model of
DMFT-like approaches. It is applicable to models with local,
but also nonlocal interactions where we expect the dynamical
aspect of the interactions to play an important role.

This functional construction lays the groundwork for more
advanced inquiries about the preservation of conservation
laws. One may speculate that going from 2PI self-consistent
(“�-derivable”) approximations to “K4-derivable” approxi-
mations endows one with better conservation properties.

The actual implementation of this method is within compu-
tational reach and work is in progress in this direction. On the
one hand, the solution of lattice parquet equations is already
part of the parquet-D�A method and has benefited from recent
progress [16,44]. On the other hand, impurity models with
dynamical, three-frequency interactions can be handled by
interaction-expansion continuous-time quantum Monte Carlo
solvers, provided the sign problem is not too severe.
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APPENDIX A: PROPERTIES OF THE ζ TENSOR

The tensor ζ rr ′
is made of 0’s and 1’s, and obeys the relation

[to be read as a matrix product in combined (αβ) indices]

ζ rr ′
ζ r ′r = 1. (A1)

Indeed, for any Ĉ,

Ĉr,γ̄ δ̄ = ζ rr ′
γ̄ δ̄,αβ

Ĉr ′,αβ = ζ rr ′
γ̄ δ̄,αβ

ζ r ′r
αβ,γ δĈr,γ δ

and therefore ζ rr ′
γ̄ δ̄,αβ

ζ r ′r
αβ,γ δ = δγ̄ ,γ δδ̄δ .

APPENDIX B: RELATION BETWEEN
G2 AND F IN CHANNEL NOTATION

In this Appendix we prove Eq. (25). We have

χ̂
ph
ph,αδF̂ph,δγ χ̂

ph
ph,γβ = χ̂

ph
ph,āb,ab̄

F̂ph,ab̄,v̄vχ̂
ph
ph,v̄v,uū

= GaāGbb̄Fav̄vb̄Guv̄Gvū

= G2,āuūb

= Ĝ2,ph,āb,uū

= Ĝ2,ph,αβ,

χ̂
ph
ph,αδ

F̂ph,δγ χ̂
ph
ph,γβ

= χ̂
ph
ph,ūu,v̄v

F̂ph,v̄v,āaχ̂
ph
ph,āa,b̄b

= Guv̄GvūFvv̄aāGab̄Gbā

= G2,ūub̄b

= G2,b̄būu

= Ĝ2,ph,ūu,b̄b

= Ĝ2,ph,αβ,

and

χ̂
pp
pp,αδF̂pp,δγ χ̂

pp
pp,γβ = χ̂

pp
pp,ūv̄,uvF̂pp,uv,āb̄χ̂

pp
pp,āb̄,ab

= GvūGuv̄Fuāvb̄Gab̄Gbā

= G2,v̄būa

= G2,ūav̄b

= Ĝ2,pp,ūv̄,ab

= Ĝ2,pp,αβ .
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We have used the crossing symmetry

G2,ūuv̄v = G2,v̄vūu (B1)

for the last two equalities.

APPENDIX C: CONSISTENCY OF THE SELF-ENERGY
IN THE 4PI FORMALISM

Here we show that 
 given by the Schwinger-Dyson
equation is identical to the derivative of the Luttinger-Ward
functional with respect to G [Eq. (12)] based on the homo-
geneity properties of the 4PI functional.

We first express �LW as a function of G, U , and G2 using
Eq. (38):

�̃LW[G,U,G2] ≡ R[G,G2] − 1
2 Ûr,αβĜnc

2,r,βα, (C1)

with

R[G,G2] ≡ K4[G,G2] + 1

2

∑
r

�r [G,G2]

− 1

2

(
χ̂ r

r,αγ

)−1
Ĝ2,γ δ

(
χ̂ r

r,δβ

)−1
Ĝ2,r,βα. (C2)

Then, following (12), 
 is given by


ūv = ∂�̃LW

∂Gvū

∣∣∣∣
U,G2

+ ∂�̃LW

∂Ĝ2,r,αβ

∣∣∣∣
U,G

∂Ĝ2,r,αβ

∂Gvū

.

The second term evaluates to zero. Indeed, we can first,
using Eqs. (34) and (8), see that

R[G,G2] = �4[G,G2] − �2,0[G]. (C3)

Then, using Eq. (C3), the fact that �2,0 does not depend on
G2 and Eq. (37), we obtain

∂�̃LW

∂Ĝ2,r,αβ

∣∣∣∣
U,G

= ∂�4

∂Ĝ2,r,αβ

∣∣∣∣
U,G

− 1

2
Ûr,βα = 0. (C4)

Hence


ūv = ∂R

∂Gvū

∣∣∣∣
U,G2

+ 
HF
ūv , (C5)

where we have defined


HF
ūv ≡ −1

2

∂

∂Gvū

[Uaābb̄(−GaāGbb̄ + Gab̄Gbā)]

= 1

2
Uaābb̄(δavδūāGbb̄ + Gaāδvbδūb̄

− δvaδūb̄Gbā − Gab̄δvbδūā)

= 1

2
(Uvūbb̄Gbb̄ + UaāvūGaā

−UvābūGbā − Uaūvb̄Gab̄)

= UvūaāGaā − UvāaūGaā.

To obtain the last line, we have used the crossing symme-
try (B1) and relabeled the indices. This is the Hartree-Fock
term.

As for the first term of (C5), it can be rewritten using the
homogeneity properties of R. Let us first show that R is the

FIG. 6. Homogeneity of the lowest-order diagram of K4 in Ŷ pp.
Each colored piece stands for Ŷ pp = (χ̂ pp)−1Ĝ2 = F̂ χ̂ pp.

sum of homogeneous functions of the function Y r , namely

R[G,G2] =
∑

r

R̃r [Ŷ r ], (C6)

with

Ŷ r ≡ (χ̂ r )−1Ĝ2. (C7)

This property follows from the homogeneity of the three
terms in the definition of R, Eq. (C2). K4 is homogeneous
with respect to Y r in the three channels:

K4[G,G2] = K̃ph
4 [Y ph] = K̃ph

4 [Y ph] = K̃pp
4 [Y pp]. (C8)

The homogeneity of the lowest diagram of K4 with respect
to Y pp is illustrated in Fig. 6. The homogeneity of �r with
respect to Y r follows from its definition [Eq. (39)] and the
cyclicity of the trace: one can easily check that

�r [G,G2] = �̃r [Ĝ2(χ̂ r )−1] = �̃r [(χ̂ r )−1Ĝ2]. (C9)

The last term in Eq. (C2) is obviously homogeneous in Y r for
all r’s.

We now use Eq. (C6) to decompose

∂R

∂Ĝvū

∣∣∣∣
U,G

=
∑

r

∂R̃r

∂Ĝvū

∣∣∣∣
U,G

.

For a given r , we first use the chain rule to write

∂R̃r

∂Ĝvū

∣∣∣∣
U,G2

= ∂R̃r

∂(χ̂ r )−1
r,μν

∂(χ̂ r )−1
r,μν

∂Ĝvū

. (C10)

The first factor evaluates to

∂R̃r

∂(χ̂ r )−1
r,αβ

∣∣∣∣
G2

= ∂R̃r

∂Ŷ r
r ′,μν

∂Ŷ r
r ′,μν

∂(χ̂ r )−1
r,αβ

= Ĝ2,r ′,βν

∂R̃r

∂Ŷ r
r ′,αν

.

On the right-hand side, the first factor evaluates to

∂R̃r

∂Ŷ r
r,γβ

= ∂R̃r

∂Ĝ2,r,αβ

∣∣∣∣
G

χ̂r
r,αγ . (C11)

Indeed,

∂R̃r

∂Ĝ2,r,αβ

∣∣∣∣
G

= ∂R̃r

∂Ŷ r
r,μν

∂Ŷ r
r,μν

∂Ĝ2,r,αβ

= (χ̂ r )−1
r,μα

∂R̃r

∂Ŷ r
r,μβ

.

Thus, Eq. (C10) becomes

∂R̃r

∂Ĝvū

∣∣∣∣
U,G

= Ĝ2,r,νγ

∂R̃r

∂Ĝ2,r,αγ

∣∣∣∣
G

χ̂r
r,αμ

∂(χ̂ r )−1
r,μν

∂Gvū

. (C12)
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Let us define

Û r
r,γ α ≡ 2

∂R̃r

∂Ĝ2,r,αγ

∣∣∣∣
G

. (C13)

Plugging Eq. (C12) into Eq. (C5), we thus end up with
[using Eq. (25) and the cyclicity of the trace]


ūv − 
HF
ūv =

∑
r

Tr

[
Ĝ2

1

2
Û r χ̂ r ∂(χ̂ r )−1

∂Gvū

]

= 1

2

∑
r

Tr

[
F̂ χ̂ r Û r χ̂ r ∂(χ̂ r )−1

∂Gvū

χ̂ r

]

= −1

2

∑
r

Tr

[
F̂ χ̂ r Û r ∂χ̂ r

∂Gvū

]
. (C14)

In addition to being homogeneous with respect to Ŷ r

[Eq. (C6)], R is homogeneous with respect to its transpose

(Ŷ r )
T

. With this property, the same steps as above lead to the
expression


ūv − 
HF
ūv = −1

2

∑
r

Tr

[
Û r χ̂ r F̂

∂χ̂ r

∂Gvū

]
. (C15)

Expressing 
 − 
HF as the half sum of the right-hand
sides Eqs. (C14) and (C15) and expanding the latter using

the change of notation defined in Eqs. (23) and (22), we find
that


ūv − 
HF
ūv = −1

2
FbācūGaāGcc̄Gbb̄

(∑
r

Ur
ab̄vc̄

)

− 1

2

(∑
r

Ur
bācū

)
GaāGcc̄Gbb̄Fab̄vc̄

= −1

2
FbācūGaāGcc̄Gbb̄Uab̄vc̄

− 1

2
UbācūGaāGcc̄Gbb̄Fab̄vc̄. (C16)

To obtain the last expression, we have used the identity

∑
r

Û r = Û , (C17)

which follows from Eq. (C4).
Equation (C16) is nothing but the Schwinger-Dyson equa-

tion [Eq. (48)] for the self-energy (the two terms are equal,
see, e.g., Ref. [45]).
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