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Mott physics and collective modes: an atomic approximation of the

four-particle irreducible functional

Thomas Ayral1, ∗ and Olivier Parcollet1

1Institut de Physique Théorique (IPhT), CEA,
CNRS, UMR 3681, 91191 Gif-sur-Yvette, France

We discuss a generalization of the dynamical mean field theory (DMFT) for strongly correlated
systems close to a Mott transition based on a systematic approximation of the fully irreducible four-
point vertex. It is an atomic-limit approximation of a functional of the one- and two-particle Green
functions, built with the second Legendre transform of the free energy with respect to the two-particle
Green function. This functional is represented diagrammatically by four-particle irreducible (4PI)
diagrams. Like the dynamical vertex approximation (DΓA), the fully irreducible vertex is computed
from a quantum impurity model whose bath is self-consistently determined by solving the parquet
equations. However, in contrast with DΓA and DMFT, the interaction term of the impurity model
is also self-consistently determined. The method interpolates between the parquet approximation at
weak coupling and the atomic limit, where it is exact. It is applicable to systems with short-range
and long-range interactions.

I. INTRODUCTION

Strongly correlated electron systems pose a great
challenge to theoretical physics. Not only is the
direct solution of strongly interacting lattice mod-
els thwarted by the exponential size of the Hilbert
space (or the corresponding negative sign problem
in quantum Monte-Carlo simulations), but it is
also difficult to find controlled approximate meth-
ods in regimes of physical interest.

One such class of methods is dynamical mean
field theory1 (DMFT) and its cluster extensions2–6,
which are based on an expansion around the
atomic limit of the two particle irreducible (2PI) or
Luttinger-Ward functional ΦLW. This local expan-
sion is performed by mapping the extended lattice
problem onto an effective impurity problem with
the same interaction vertex as the lattice’s and a
dynamical bath describing the incursions of elec-
trons on and off the impurity. The self-energy of
the impurity is used to approximate the lattice self-
energy.

The dynamical vertex approximation7–9 (DΓA)
proposes to approximate not the self-energy,
but the four-leg vertex function by its impurity
counterpart.10,11 This approximation is based on
numerical hints that the fully irreducible vertex is
more local in space than the self-energy12 and on
the premise that two-particle quantities not only
have an important feedback on one-particle observ-
ables, but are also essential to understand the un-
derlying physical processes.13 In this method, the
local vertex from a converged DMFT computation
– whether the fully irreducible vertex Λimp (“par-
quet DΓA”14,15) or the irreducible vertex in a given
channel, Γr

imp (“ladder DΓA”16–19) – is used to
compute the momentum-dependent self-energy via
the Schwinger-Dyson equation. In principle, this
self-energy can be used to update the bath G of the
impurity model, although this fully self-consistent
version has thus far not been implemented. Con-

trary to DMFT, the DΓA has not been derived as
the local approximation of a functional. The goal
of this paper is to introduce a local approximation
of the vertex guided by a functional construction.
By doing so, we obtain a method similar to DΓA,
with additional self-consistent interactions. One
notable consequence is that this method takes into
account the feedback of collective modes and/or
long-range interactions onto the impurity model.

Functional routes to extend DMFT include
extended DMFT (EDMFT20–22) and the re-
cently introduced triply-irreducible local expan-
sion (TRILEX) method23,24. Both methods rely
on the introduction of auxiliary bosonic variables
and the subsequent approximation of the exact
electron-boson nPI functional by an expansion
around the atomic limit, with n = 2 for EDMFT
and n = 3 for TRILEX. The explicit introduc-
tion of bosonic degrees of freedom allows for direct
insights into the influence of collective modes on
fermionic observables.

In this paper, we generalize the TRILEX idea
to the 4PI level, without resorting to auxiliary
bosonic fields. Starting from a problem with quar-
tic fermionic interactions, we propose to approxi-
mate the functional K4, which is represented by all
four-particle irreducible diagrams, by an expansion
around the atomic limit. We call this approxima-
tion QUADRILEX (for QUADRuply-Irreducible
Local EXpansion) to distinguish it from DΓA. Like
DΓA, this approximation entails the locality of
the fully irreducible vertex. However, contrary to
DΓA, it gives different prescriptions on how to up-
date the action of the impurity model at the level
of the interaction term. The latter is renormalized
in a self-consistent manner. This method can be
regarded as a straightforward extension of DMFT
from the 2PI to the 4PI level.

This paper is organized as follows: in Section II,
we derive the method using functionals. We then
discuss the main implications of this method and
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its relation to known approximations in Section III.

II. DERIVATION OF THE FORMALISM

We focus on a generic electron-electron interaction
problem defined, in a path-integral formalism, by
the following action:

S = −c̄ūG
−1
0,ūvcv +

1

2
Uvūxw̄c̄ūcv c̄w̄cx (1)

Latin indices gather the Bravais lattice site in-
dex, imaginary time and the spin index: u ≡
(Ru, τu, σu). We denote outgoing (resp. ingoing)
points by indices with (resp. without) a bar. Ein-
stein summation over repeated indices is implied,

and
∑

u stands for
∑

R

´ β

0
dτ
∑

σ. c̄ and c are
Grassmann fields. G0,ūv denotes the free prop-
agator of the fermions, while Uvūxw̄ is the four-
fermion bare interaction vertex. This generic ac-
tion encompasses a number of well-known models
for strongly-correlated systems such as the Hub-
bard, extended Hubbard or t-J models.

The partition function is defined as

Z[J, U ] ≡

ˆ

D[c̄c]e−S[U ]+Jūv c̄ūcv (2)

where we have introduced a bilinear source term
Jūv. The free energy is defined as:

Ω[J, U ] ≡ − lnZ[J, U ] (3)

It is a functional of the bilinear source Jūv and
of Uūvw̄x, which can be regarded as a quadrilin-
ear source. Ω[J, U ] is the generating functional of
correlation functions. In particular, the one- and
two-particle Green’s functions are given by:

Guv̄ ≡ −〈cuc̄v̄〉 = −
∂Ω

∂Jv̄u

∣

∣

∣

∣

∣

U

(4)

Gnc
2,ūuv̄v ≡ −〈c̄ūcuc̄v̄cv〉 = −2

∂Ω

∂Uuūvv̄

∣

∣

∣

∣

∣

J

(5)

Gnc
2 contains disconnected as well as connected

terms (hence the superscript nc for “non con-
nected”). We further define the connected four-
point correlator as:

G2,ūuv̄v ≡ Gnc
2,ūuv̄v +GuūGvv̄ −GvūGuv̄ (6)

A. Two-particle irreducible formalism

1. Legendre transformation

By performing a Legendre transformation of the
free energy with respect to the bilinear sources J ,

one gets the Baym-Kadanoff25,26 functional:

Γ2[G,U ] ≡ Ω[J, U ] + TrJG (7)

Γ2 falls into two parts:

Γ2[G,U ] = Γ2,0[G] + ΦLW[G,U ] (8)

ΦLW is the Luttinger-Ward functional27: it is made
up of all two particle-irreducible (2PI) diagrams,
namely all diagrams which do not fall apart if any
two of their lines are cut open. The non-interacting
contribution, Γ2,0, is given by

Γ2,0[G] = −Tr log
[

G−1
]

+Tr
[(

G−1 −G−1
0

)

G
]

(9)

The physical solution is obtained by setting the
source term J to zero, i.e. by requiring the station-
arity of Γ2 stemming from the reciprocity relation:

∂Γ2

∂G
= J = 0 (10)

This condition is equivalent (through Eqs (8-9)) to
the Dyson equation

Σūv = G−1
0,ūv −G−1

ūv (11)

where the self-energy Σ is defined as the derivative
of ΦLW with respect to G:

Σūv =
∂ΦLW

∂Gvū

∣

∣

∣

∣

∣

U

(12)

The 2PI functional allows to generate self-
consistent approximation methods by restricting
ΦLW[G,U ] to a (computable) class of diagrams.
Choosing a particular approximate form of ΦLW

determines an approximate form of Σ[G,U ] and
hence G via Dyson’s equation (although there
are some caveats to this procedure, as recently
demonstrated28).

2. DMFT as an expansion of ΦLW around the
atomic limit

Let us first briefly review the DMFT construction.
DMFT consists in approximating ΦLW by an ex-
pansion around the atomic limit:1

ΦDMFT
LW [GRR′ , U ] ≡

∑

R

ΦLW[GRR, U ] (13)

In the right-hand side, ΦLW[GRR] is shorthand for
ΦLW[GRRδRR′ ].

As a result, the DMFT self-energy is local:

ΣDMFT
RR′ (iω) = ΣRR(iω)δRR′ (14)
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Here, iω denotes a fermionic Matsubara frequency.

The resummation of the infinite class of local dia-
grams in (13) is done by the following construction.

First, one introduces the following auxiliary impu-
rity model:

SDMFT
imp = −

¨

ττ ′

∑

σσ′

c̄τσ
[

G−1(τ − τ ′)
]

σσ′
cτ ′σ′

(15)

+
1

2

ˆ

τ

∑

σ1σ2

σ3σ4

Uσ1σ2σ3σ4
c̄τσ1

cτσ2
c̄τσ3

cτσ4

Its Luttinger-Ward functional Φimp
LW is the same as

the summand in the right-hand side of Eq. (13).

Note that Φimp
LW depends on the full propagator G

and bare interaction U , not on the non-interacting
propagator G.

Second, one adjusts the non-interacting propaga-
tor G of the auxiliary model such that

Gimp[G](iω) = GRR(iω) (16)

where the notation [G] means that Gimp depends
on G through the solution of the impurity model,
Eq.(15). G can be regarded as a Lagrange multi-
plier to enforce the constraint (16).29

Finally, if Eq.(16) is satisfied, then

Φimp
LW [Gimp, U ] = ΦLW[GRR, U ]

and therefore Eq. (14) implies that

ΣDMFT(k, iω) = Σimp(iω) (17)

The determination of the G fulfilling (16) is usually
done in an iterative fashion. We emphasize that
in this construction, U is the same in the lattice
model and in the impurity model. Cluster DMFT
methods,2–6 which consist in introducing an ex-
tended (i.e multi-site) impurity model instead of
Eq. (15), provide a systematic expansion beyond
DMFT.

B. A reminder on vertex functions and the

parquet formalism

In this section, we give a reminder of the parquet
equations30,31 so as to fix our notations (which are
similar to those used in Refs10,11,32–34).

The fully reducible vertex F is defined as the am-
putated, connected four-point function:

Fuūvv̄ ≡ G−1
āuG

−1
ūaG2,āab̄bG

−1
b̄v

G−1
v̄b (18)

F contains all connected diagrams with two outgo-
ing and two ingoing entries. We note that G2 and

ū u

v̄v

G2;ūuv̄v

u ū

vv̄

Fuūvv̄

Figure 1: Graphical representation of the 4-point func-
tions

u ū

vv̄

ā a

b̄b

Γ
ph F

u ū

vv̄

b̄ a

āb

Γ
ph

F

u ū

vv̄

ā b

b̄

Γ
pp F

(a)

(b)

(c)

a

Figure 2: Graphical representation of the reducible ver-

tex Φr in the three channels. (a) Φph (b) Φpp (c) Φph.

F are of slightly different nature: F is of the “ver-
tex” type (it is amputated, i.e. its external points
correspond to bare vertices), while G2 is a “corre-
lator” (it is not amputated, i.e. its external points
correspond to propagator ends). In diagrams, “ver-
tices” can only be connected to “correlators”, and
reciprocally. G2 and F are shown graphically in
Fig. 1.

We next define the irreducible vertex in channel
r, Γr, where r = ph, ph, pp. The irreducible ver-
tex in the particle-hole channel, Γph (resp. irre-
ducible vertex in the horizontal particle-hole chan-

nel, Γph), contains all diagrams that do not fall
apart if two horizontal (resp. vertical) counter-
propagating propagators are cut open. Similarly,
the irreducible vertex in the particle-particle chan-
nel, Γpp, contains all diagrams which do not fall
apart when two propagators going in the same di-
rection are cut open.

These diagrammatic definitions imply that F and
Γr are related by the Bethe-Salpether equation:

Fuūvv̄ = Γr
uūvv̄ +Φr

uūvv̄ (19)

where

Φph
uūvv̄ = Γph

uābv̄GaāGbb̄Faūvb̄ (20a)

Φph
uūvv̄ = Γph

uūab̄
GaāGbb̄Fbāvv̄ (20b)

Φpp
uūvv̄ = Γpp

uāvb̄
GaāGbb̄Fbūav̄ (20c)

The function Φr is called the “reducible vertex in
channel r”. These relations are illustrated in Fig.
2.

Next, we define the (interacting and “open”) bubble
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in channel r, χr, as:

χ
ph
ūuv̄v ≡ GuūGvv̄ (21a)

χ
ph
ūuv̄v ≡ GvūGuv̄ (21b)

χ
pp
ūuv̄v ≡ GvūGuv̄ (21c)

We now introduce a change of notation to unify the
expressions (20a-20b-20c). For “vertex” functions
Vuūvv̄ like F , Γr and Φr, we introduce the following
three hatted functions V̂r:

V̂ph,uv̄,ūv ≡ Vuūvv̄ (22a)

V̂ph,ūu,v̄v ≡ Vuūvv̄ (22b)

V̂pp,uv,ūv̄ ≡ Vuūvv̄ (22c)

Here, the subscript r defines the pairing of the four
indices. This is to be distinguished from super-

scripts (like in Φr), which denote an intrinsic de-

pendence on the channel. Thus F̂r, which is “F
in the r notation”, depends on r (whereas F does

not intrinsically depend on r). Φ̂r
r′ is “Φr in the

r′ notation”, it depends on r′ (subscript) through
the notation and intrinsically on r (superscript).
For “correlator” functions Cūuv̄v (like G2 and χr),
likewise, we introduce the following three hatted
functions:

Ĉph,ūv,uv̄ ≡ Cūuv̄v (23a)

Ĉph,v̄v,ūu ≡ Cūuv̄v (23b)

Ĉpp,ūv̄,uv ≡ Cūuv̄v (23c)

With these notations, Eqs (20a-20b-20c) become a
simple matrix product:

Φ̂r
r,αβ ≡ Γ̂r

r,αγ χ̂
r
r,γδF̂rδβ (24)

Here, Greek indices denote the channel-dependent
combination of two fermionic indices. They only
make sense with a subscript r to specify which pair-
ing of indices is chosen.

We also note (see Appendix B for a proof) for fur-
ther reference that we have, for all r:

Ĝ2 = χ̂rF̂ χ̂r (25)

The passage from the notation in channel r to the
notation in channel r′ is performed via a tensor
ζr

′r
αβ,γδ defined by the following transformation of

“correlators”:

Ĉr′,αβ = ζr
′r

αβ,γδĈr,γδ (26)

Here, we do not sum over r and r′. Some basic
properties of this tensor are summarized in Ap-
pendix A. We further note that the trace of two

operators which do not intrinsically depend on r
does not depend on the choice of notation, i.e.

TrĈV̂ = Ĉr,αβ V̂r,βα = Ĉr′,γδV̂r′,δγ (27)

The transformation from r notation to r′ notation
for vertex functions follows from this property:44

V̂r′,αβ = ζrr
′

δγ,βαV̂r,γδ (28)

In the above expressions, Einstein summation is
performed only on the Greek indices. For the same
reason as above, the inverse of correlators trans-
form like vertex functions.

The Bethe-Salpether equation Eq. (19) can now
be formally inverted. For all r’s, we have:

Γ̂r
r = F̂r(1̂+ χ̂r

rF̂r)
−1 (29)

where inversion is performed in the space of Greek
indices.

Finally, we define the fully irreducible vertex Λ.
It contains all diagrams that are irreducible in the
ph, ph and pp channels. It thus obeys the relation:

F = Λ+
∑

r

Φr (30)

Combining (19) and (30) yields:

Γr = Λ+
∑

r′ 6=r

Φr′ (31)

The parquet equations are obtained by using the
definition of Φr, Eq. (24), and replacing Γr and F
using (30) and (31):

Φ̂r
r =



Λ̂r +
∑

r′ 6=r

Φ̂r′

r



 χ̂r
r

(

Λ̂r +
∑

r′

Φ̂r′

r

)

(32)

The parquet equations relate Λ and Φr (at fixed χr

i.e. fixed G), and thus [through Eqs(30-25)] Λ to
G2. They couple the three channels (the passage

from Φ̂r
r to Φ̂r

r′ is given by Eq.(26)). Conversely,
the inverse parquet equations consist in computing
Γr and Φr from a given G2 or F [via Eq. (29) and
(19)], and eventually [through (30)] Λ. They do
not couple the three channels and are as such much
easier to solve than the direct parquet equations.

The first contribution to Λ is the bare interaction
U . It is thus natural to define the correction of Λ
beyond U as:

δΛ ≡ Λ− U (33)

The lowest-order diagram of δΛ is of order U4. It
is shown in Fig. 3, right panel.
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One can now observe that the parquet equations
formally relate the bare interactions U , the non-
trivial contribution to the fully irreducible vertex,
δΛ, and the (fully reducible) two-particle correla-
tor G2 (the functions Γr and Φr can be regarded as
by-standers). In that sense, they are analogous to
the Dyson equations, which relate the bare correla-
tor G0, the irreducible contribution or self-energy
Σ and the (full) one-particle correlator G.

We note that in a single-orbital context, all the
above-mentioned four-point functions depend on
three momenta and three frequencies in the time-
and space-translation invariant case, as well as or-
bital and spin indices, e.g.

Λσ1σ2σ3σ4
(k,k′,q, iω, iω′, iΩ)

Further simplifications of the spin structure arise
in SU(2) invariant problems (see e.g. Ref. 33 for
more details).

C. Four-particle irreducible formalism

Here, we introduce (subsection II C 1) the Legendre
transform of Γ2[G,U ] with respect to the quartic
sources, as well as its irreducible part K4 and its
properties. We then show that the approximation
K4 = 0 corresponds to the parquet approximation
(subsection II C 3), and finally prove that approxi-
mations on K4 preserve the consistency of the self-
energy given as the derivative as the Luttinger-
Ward functional or by the Schwinger-Dyson equa-
tion (subsection II C 4).

1. Legendre transformation

We define the Legendre transform of Γ2 with re-
spect to U :

Γ4[G,G2] ≡ Γ2[G,U ] +
1

2
Ûr,αβĜ

nc
2,r,βα (34)

Γ4 is a functional of G and G2 (or equivalently of
G and F via (25)) because U is a functional of G
and G2 through the relation:

Gnc
2,ūuv̄v[G,U ] = −2

∂Γ2

∂Uuūvv̄

∣

∣

∣

∣

∣

G

(35)

which follows from Eq. (5) and the properties
of the Legendre transform. Note that the second
term in the definition of Γ4 does not depend on r
due to Eq. (27). The passage from a functional
of the bare interaction U to a functional of the G2

(or F ) has first been proposed in Ref. 31, and is
also investigated in Ref. 35.

Γ4 is the entropy of the system, up to a minus sign
and a shift of the source J − t ← J (where tūv is

∈ K4

∈ δΛ

FG

Figure 3: Left : simplest diagram of K4. Lines denote
G, while red squares denote F . Right : simplest dia-
gram of δΛ.

the hopping integral in the quadratic part of the
Hamiltonian H corresponding to the action defined
in Eq.(1)). Indeed, Eqs (7-34) give the relation:

TΩ = 〈H〉 − T (−Γ4) (36)

where T is the temperature.

Finally, from Eq. (34) and (5) follows the reci-
procity relation:

1

2
Ûr,αβ =

∂Γ4

∂Ĝ2,r,βα

∣

∣

∣

∣

∣

G

(37)

Following Ref 31, we define the following
functional:45

K4[G,G2] ≡ ΦLW[G,U ] +
1

2
Ûr,αβĜ

nc
2,r,βα

+
1

2
F̂r,αβĜ2,r,βα −

1

2

∑

r

Θr[G,G2] (38)

with

Θr[G,G2] ≡ (39)

− Tr
[

ln
(

1̂+ Ĝ2,r (χ̂
r
r)

−1
)

− Ĝ2,r (χ̂
r
r)

−1
]

Thus, using Eqs (8) and (38) in Eq (34), Γ4 can be
written as:

Γ4[G,G2] = Γ2,0[G]−
1

2
F̂r,αβĜ2,r,βα

+
1

2

∑

r

Θr[G,G2] +K4[G,G2] (40)

which highlights the dependence of Γ4 on G and
G2, and its decomposition into explicit terms (the
first three terms) and a nontrivial term, K4.

This definition of K4 ensures that K4 can be rep-
resented diagrammatically by the set of all four-
particle-irreducible (4PI) diagrams, as shown in
Ref. 31 in the case of bosonic fields. The lowest-
order diagram of K4 is shown in Fig. 3.

Moreover, with definition (38), we are to show (in
the next subsection) that the fully irreducible ver-
tex Λ (or δΛ) derives from K4:

δΛ̂r,αβ = −2
∂K4[G,G2]

∂Ĝ2,r,βα

∣

∣

∣

∣

∣

G

(41)
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This is illustrated in Figure 3. This property can
be used to devise various approximations at the
4PI level, as will be illustrated in sections II C 3
and II D.

Eq. (41) remarkably parallels Eq. (12) of the pre-
vious section. At the 2PI level, the stationarity
of Γ2 [Eq (10)] is equivalent to the fulfillment of
Dyson’s equation [Eq(11)] between G0, G, and Σ,
the derivative of the 2PI functional, ΦLW. Simi-
larly, at the 4PI level, the stationarity of Γ4 [Eq.
(37)] is equivalent to the fulfillment of the parquet
equations between U , G2 and δΛ, the derivative of
the 4PI functional K4.

2. Proof of Eq. (41)

Starting from Eq.(37), we use Eqs (34)-(40) as well
as the property (deduced from Eq.(26)):

∂Ĝ2,r′,κη

∂Ĝ2,r,βα

= ζr
′r

κη,βα (42)

and we remember that F is just the amputated G2

(Eq.(18), i.e the “FG2” term is proportional to the
square of G2 at fixed G), to write:

1

2
Ûr,αβ =

∂K4

∂Ĝ2,r,βα

∣

∣

∣

G
− F̂r,αβ

+
1

2

∑

r′

ζr
′r

κη,βα

∂Θr′[G,G2]

∂Ĝ2,r′,κη

(43)

Using the chain rule and Eqs. (25-29), the last
term evaluates to:

∂Θr[G,G2]

∂Ĝ2,r,κη

= −

[

(χ̂r
r)

−1
(

1̂+ Ĝ2 (χ̂
r
r)

−1
)−1

− (χ̂r
r)

−1

]

ηκ

= −
[

(χ̂r
r)

−1
− (χ̂r

r)
−1
(

1̂+ Ĝ2,r (χ̂
r
r)

−1
)]

ηα

×
[

1̂+ Ĝ2,r (χ̂
r
r)

−1
]−1

ακ

= −
[

− (χ̂r
r)

−1
Ĝ2,r (χ̂

r
r)

−1
]

ηα

[

1̂+ Ĝ2,r (χ̂
r
r)

−1
]−1

ακ

= F̂r,ηα

(

1̂+ χ̂r
rF̂r

)−1

ακ

= Γ̂r
r,ηκ (44)

Hence, using Eqs. (19-30), we find, using Eq. (28)
and multiplying (43) by 2:

b ā a b̄

ū c c̄ v

a ā

vū

a

ū

ā

v

Ubācū Fab̄vc̄ Uvūaā Uvāaū

− + −Σūv =

Figure 4: Schwinger-Dyson expression of the self-
energy.

Ûr,αβ = 2
∂K4

∂Ĝ2,r,βα

− 2F̂r,αβ +
∑

r′

ζr
′r

κη,βαΓ̂
r′

r′,ηκ

= 2
∂K4

∂Ĝ2,r,βα

− 2F̂r,αβ +
∑

r′

Γ̂r′

r,αβ (45a)

= 2
∂K4

∂Ĝ2,r,βα

− 2F̂r,αβ +
∑

r′

(

F̂r,αβ − Φ̂r′

r,αβ

)

= 2
∂K4

∂Ĝ2,r,βα

+ F̂r,αβ −
∑

r′

Φ̂r′

r,αβ

= 2
∂K4

∂Ĝ2,r,βα

+ Λ̂r,αβ (45b)

In the last step, we have used Eq. (30). By identi-
fication with Eq. (33), we find the final result, Eq.
(41).

3. The parquet approximation: K4 = 0

The most trivial approximation of K4, namely

Kparquet app.
4 = 0 (46)

corresponds to the parquet approximation. In-
deed, Eq.(46), combined with (41-33), leads to

Λparquet app. = U (47)

By construction, this approximation is limited to
the weak-coupling regime since it neglects higher
order terms. It has been recently applied to the
Hubbard model32. We note that an alternative
functional view on the parquet approximation is
proposed in Ref. 36.

4. Consistency of the self-energy

Any approximation of K4[G,G2] results in (i) an
approximate irreducible vertex δΛ and, via the
parquet equations, approximate fully reducible
vertex F and (ii) an approximate Luttinger-Ward
functional [via. Eq. (38)].

From here, there are a priori two ways of com-
puting the self-energy. The first way is compute
Σ as the derivative of ΦLW with respect to G [Eq.
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(12)]. The second one is to use the Schwinger-
Dyson equation, an exact expression giving Σ as a
function of G, F and U and illustrated in Fig. 4:

Σūv = −UbācūGaāGcc̄Gbb̄Fab̄vc̄+UvūaāGaā−UvāaūGaā

(48)

The last two terms correspond to the Hartree and
Fock terms, respectively.

We prove in Appendix C that provided the ap-
proximation on K4[G,G2] preserves its homogene-
ity properties, both ways of computing the self-
energy are equivalent.

In the next subsection, we introduce, instead of the
simple approximation (46), an atomic approxima-
tion of K4.

D. A quadruply irreducible local expansion:

QUADRILEX

1. A local expansion of the 4PI functional

Similarly to DMFT, we propose to approximate
the 4PI functional by the atomic limit (and later
by a cluster method):

KQUADRILEX
4 [GR1R2

, G2,R1R2R3R4
]

≡
∑

R

K4[GRR, G2,RRRR] (49)

To solve Eq. (49), we propose to follow a similar
procedure as the one used in DMFT (see subsec-
tion II A 2), by replacing ΦLW by K4:

First, we introduce the following model:

S
QUADRILEX
imp = (50)

−

¨

ττ ′

∑

σσ′

c̄τσ
[

G−1(τ − τ ′)
]

σσ′
cτ ′σ′

+
1

2

˘

τ1τ2
τ3τ4

∑

σ1σ2

σ3σ4

Uτ1,τ2,τ3,τ4
σ1σ2σ3σ4

c̄τ1σ1
cτ2σ2

c̄τ3σ3
cτ4σ4

This action describes an impurity embedded in a
noninteracting bath described by the field G and
with dynamical interactions U with three indepen-
dent times. Its functional K4[G,G2] is the same as
the summand of the right-hand side of Eq. (49),
and does not depend on the non-interacting prop-
agator G(iω) and bare interaction U(iω, iω′, iΩ).

Second, we assume that one can adjust the non-
interacting propagator G and bare interaction U of
the auxiliary model such that

Gimp[G,U ](iω) = GRR(iω) (51a)

G2,imp[G,U ](iω, iω
′, iΩ) = G2,RRRR(iω, iω′, iΩ)(51b)

G and U can be thought of as Lagrange multipliers
to enforce the two above constraints.

Finally, if we solve Eqs (51a-51b), then

Kimp
4 [Gimp, G2,imp] = K4[GRR, G2,RRRR]

and therefore Eqs. (41)-(49) imply that

δΛ(k,k′,q, iω, iω′, iΩ) = δΛimp(iω, iω
′, iΩ) (52)

For simplicity, we will henceforth use the follow-
ing shorthand notation for 4-leg functions on the
lattice:

Xlatt ≡ Xσ1σ2σ3σ4
(k,k′,q, iω, iω′, iΩ) (53)

We point out that while DMFT is the approxima-
tion of ΦLW[G,U ], which depends on one full cor-
relator, G, and has correspondingly one “dynam-
ical bath” G, QUADRILEX, an approximation of
K4[G,G2], which depends on two full correlators,
G and G2, involves two dynamical mean fields G
and U corresponding to two constraints, Eqs (51a-
51b).

2. QUADRILEX construction

In dynamical mean field theory, the constraint
Eq.(51a) is used together with the Dyson equa-
tion to determine the self-consistent bath G from
a given impurity self-energy Σimp. This is done as
follows:

(i) the lattice self-energy Σ(k, iω) is approximated
by the impurity self-energy Σimp;

(ii) Σ(k, iω) is plugged into the lattice Dyson equa-
tion (at fixed G0(k, iω)) to get G(k, iω), which is
summed over the Brillouin zone to get Gloc(iω);

(iii) The impurity Dyson equation is inverted to
get G from Σimp and Gloc.

In QUADRILEX, the same procedure is applied
to the get retarded interactions U(iω, iω′, iΩ)
from a given impurity fully irreducible vertex
δΛimp(iω, iω

′, iΩ). Instead of the Dyson equations,
one uses the parquet equations which relate the
bare interactions, the fully irreducible vertex and
the fully reducible vertex (see section II B):

(i) the lattice fully irreducible vertex δΛlatt is ap-
proximated by the impurity fully irreducible vertex
δΛimp(iω, iω

′, iΩ)

(ii) δΛlatt is plugged into the lattice parquet equa-

tions (at fixed lattice bare interactions Û) to get
G2,latt, which is summed over the Brillouin zone to
get G2,loc(iω, iω

′, iΩ)

(iii) The impurity parquet equations are inverted
to get U(iω, iω′, iΩ) from δΛimp and G2,loc.

This construction is remarkable in that the impu-
rity model’s bare interaction Uσ1σ2σ3σ4

(iω, iω′, iΩ)
is a priori different from the lattice’s bare
interaction Uσ1σ2σ3σ4

. The deviation of
Uσ1σ2σ3σ4

(iω, iω′, iΩ) from Uσ1σ2σ3σ4
, both from
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G

δΛlatt ≈ δΛimp

δΛimp

G(k; !)

U

inverse

lattice
parquet

parquet

Σimp

G2;loc

Gloc

[U ]

[δΛimp]

impurity

Σ(k; i!) = Flatt

G2;latt

Dyson

[G0(k; !)]

lattice

Dyson
impurity

[Σimp]

Simp[G(i!);

impurity model

U(i!; i!0; iΩ)]

Figure 5: (color online) The QUADRILEX loop. The parts in black correspond to the DΓA in the parquet
version (the dashed line shows how DΓA proposes to update the Weiss field G(iω)). The parts in red correspond
to the additional steps necessary to update the bare impurity vertex U(iω, iω′, iΩ). For Σ we show only the terms
beyond Hartree-Fock. The terms in square brackets denote the fixed terms in the solution of the Dyson/parquet
equations.

the point of view of the frequency dependence and
from the point of view of the spin structure, is an
interesting topic of investigation. We discuss this
in more detail in section III.

3. Self-consistent loop

Like DMFT, the equations of section II D 1 may be
solved in an iterative way. We propose the follow-
ing self-consistent loop:

1. Start with a given U(iω, iω′,Ω) and G(iω)
and solve the corresponding impurity model,
Eq. (50), for Gimp and G2,imp, from which
one can (through the impurity Dyson and in-
verse parquet equations) compute Σimp(iω)
and δΛimp(iω, iω

′, iΩ);

2. Use Eq. (52) to get a starting point for a par-
quet solver on the lattice. This yields G2,latt;

3. Use G2 (or equivalently F ) to compute
Σ(k, iω) via the Schwinger-Dyson equation
[Eq. (48)], and then G(k, iω) via the Dyson
equation;

4. Compute the new bath G and interactions U :

(a) Take the local part of G(k, iω) to com-
pute the new Weiss field as (black part

in Fig. 5):

G−1 = G−1
loc + Σimp (54)

(b) Take the local part of G2,latt, G2,loc

and use the inverse parquet equations
(at fixed G2,loc and δΛimp) to com-
pute U(iω, iω′, iΩ) (red part), i.e com-

pute Λ
′

imp from the inverse parquet (the

prime emphasizes the fact that Λ
′

imp is
obtained after using lattice quantities,
as opposed to δΛimp which is computed
directly from the impurity model) and
get U as:

U = Λ
′

imp − δΛimp (55)

5. Go back to step 1. until convergence.

This self-consistent cycle is summarized in Fig. 5.
The dynamical vertex approximation (DΓA in its
parquet version) corresponds to the black parts,
namely the computation of G2,latt from a given im-
purity vertex δΛimp(iω, iω

′, iΩ). The computation
of the updated impurity bare interaction is shown
in red.
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III. DISCUSSION

A. A dynamical vertex approximation, and

beyond

The local approximation of the lattice vertex, Eq.
(52), is the essence of the dynamical vertex ap-
proximation (DΓA7,9). In fact, DΓA in its parquet
version can be regarded as a one-shot realization
of the 4PI formalism.

The main difference of QUADRILEX with DΓA is
that in DΓA, the vertex U of the impurity model
is not renormalized, namely in DΓA, Eq. (55) be-
comes:

UDΓA(iω, iω′, iΩ) = U (56)

As will be seen in the next subsection, this con-
dition is a priori valid only in the atomic limit.
As soon as the bandwidth is finite, deviations of U
with respect to U are likely to appear.

Interestingly, the natural variable of the
QUADRILEX approximation is the fully ir-
reducible vertex Λ, which is approximated locally
in the parquet version of the dynamical vertex
approximation. This contrasts with the ladder
version of DΓA, where the local approximation
is done at the level of the irreducible vertex in
one channel, Γr. This vertex derives from another
functional, Θr[G,G2] (Eq.(44)). In this variant of
DΓA, sum rules on the susceptibilities (or equiva-
lently the asymptotic behavior of the self-energy)
are violated unless some corrections (called
“Moriya corrections” in the DΓA literature8) are
made.

Another important consequence of our functional
construction is that the QUADRILEX method can
capture the feedback of long-range interactions
into the impurity model. In DΓA, this feature only
appears in the solution of the lattice parquet equa-
tions (through U , which can in principle have a
nonlocal part). One can expect nonlocal physics
to be reflected by a sizable frequency dependence
of the local interaction, U . This frequency depen-
dence can capture some nonlocal effects of nonlocal
interactions such as charge-ordering phenomena,
as has been observed e.g. in extended DMFT37–39.

B. An interpolation between atomic physics

and collective-mode physics

As a local expansion of the 4PI functional,
QUADRILEX allows to interpolate between the
atomic limit and the limit of the parquet approxi-
mation, which can describe collective modes.

Indeed, in the atomic limit, all momentum depen-
dences drop out and one recovers, by construction,

Uat(iω, iω′, iΩ) = U (57)

since the impurity’s fully irreducible vertex Λimp is
the exact fully irreducible vertex of the lattice.

In the weak-coupling regime, Λimp is roughly equal
to the bare interaction U (the first correction is of
order U4), which corresponds to the parquet ap-
proximation. Although the precise form of the im-
purity’s bare interaction Uimp(iω, iω

′, iΩ) in this
limit is difficult to predict a priori, one may spec-
ulate that already in this limit a differentiation
between the charge and the spin channel occurs.
Such a differentiation has been observed within the
two-particle self-consistent method (TPSC40–43).

C. Avoiding the parquet: bosonic variables

From a technical point of view, the present method
has two difficulties:

1. The solution of parquet equations on the lat-
tice is still a major computational hurdle de-
spite recent progress15,34. This has so far
limited the range of applications of parquet-
based methods such as parquet-DΓA to very
small system sizes.14

2. The impurity model features dynamical in-
teractions with three independent time vari-
ables. Solving such problems is within the
reach of interaction-expansion continuous-
time quantum Monte-Carlo algorithms, but
the severity of the sign problem cannot be
predicted a priori.

An alternative to dealing with the complexity of
the four-fermion interaction is provided by another
class of methods also inspired by DMFT, but rely-
ing on the introduction of auxiliary bosonic degrees
of freedom guided by physical insight into the in-
stabilities of the system. These methods include
the extended DMFT method (EDMFT20–22) and
the recently introduced TRILEX method23,24.

EDMFT is the straightforward extension of DMFT
to electron-boson problems with fermionic fields
(propagator G) and bosonic fields (propagator W ).
In this context, the 2PI functional is denoted as
Ψ[G,W, λ], where λ is the bare electron-boson cou-
pling. All the fermionic equations of DMFT can
be transposed for bosonic variables, namely for the
bosonic propagator W , the bosonic self-energy P

and the bosonic free propagator W0.

TRILEX takes EDMFT from the 2PI level (and
its functional Ψ[G,W, λ]) to the 3PI level and
its functional K3[G,W,χ3], where χ3 is now the
fully three-point electron-boson correlation func-
tion. Similarly to DMFT and QUADRILEX, it
consists in a local expansion of the functional K3.

In this approach, the impurity problem has three
“Lagrange multipliers” or dynamical baths, G, W
and λimp to satisfy the three constaints on Gimp,
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Degree of irreducibility Functional Full correlators Irred. object Bare “bath”

2PI (DMFT) ΦLW[G,U ] : Σ = ∂ΦLW

∂G
G Σ Giω

2PI (EDMFT) Ψ[G,W, λ] : P = −2 ∂Ψ
∂W

G, W Σ,P Giω, UiΩ

3PI (TRILEX) K3[G,W,χ3] : K = −
∂K3

∂χ3
χ3, G, W K λ

imp

iω,iΩ, Giω , UiΩ

4PI (QUADRILEX) K4[G,G2] : δΛ = −2∂K4

∂G2
G2, G δΛ Uiω,iω′,iΩ, Giω

Table I: Comparison of the observables for various degrees of irreducibilities. While 2PI observables are related
via Dyson equations, 3PI observables are simply related by a linear equation, and 4PI observables are related by
parquet equations (see text for definitions).

Wimp and χ3,imp. The atomic approximation of K3

results in a local approximation of the irreducible
vertex

K(k,q, iω, iΩ) = Kimp(iω, iΩ)

Table I summarizes the various methods. Each
method corresponds to the atomic approxima-
tion of the nontrivial part (ΦLW[G,U ], Ψ[G,W, λ],
K3[G,W,χ3] or K4[G,G2] respectively) of a func-
tional (Γ2[G,U ], Γ2[G,W, λ], Γ3[G,W,χ3] or
Γ4[G,G2] respectively). Stationarity of this func-
tional is equivalent to the fulfillment of “boldifica-
tion” equations (fermionic or bosonic Dyson equa-
tion, simple linear relation (Eq. 18 in Ref. 24),
or parquet equations, respectively) relating three
kinds of objects. We will call these objects the
“full” or bold objects (the fermionic or bosonic
Green’s functions G and W , connected three- or
four-point functions χ3 and G2, respectively), the
“irreducible” objects (the self-energy Σ, the polar-
ization P , the irreducible three-leg vertex K or
fully irreducible four-leg vertex δΛ) and the “bare”

objects (G0, W0, λ or U at the lattice level, Giω ,

UiΩ, λimp
iω,iΩ or Uiω,iω′,iΩ at the impurity level).

In each method, the impurity model is used to
compute the irreducible objects, which are used
as an approximation of the corresponding lattice
irreducible object via the atomic approximation of
the corresponding functional. As mentioned be-
fore, the variables of this functional are the full ob-
jects, and the atomic approximation imposes that
the local components of these objects coincide with
their impurity counterparts. The knowledge of the
full and irreducible objects at the impurity level
allows to find, through the boldification equations,
the third object, namely the bare object which is
used as a bath or retarded interaction in the im-
purity model.

IV. CONCLUSION AND PERSPECTIVES

In this paper, we have used the four-particle ir-
reducible formalism to build an expansion of the
4PI functional K4 around the atomic limit. This
approximation implies a local approximation of
the fully irreducible vertex, like in the dynamical
vertex approximation (DΓA). It maps the lattice
model onto an effective local impurity model with
both a dynamical field G and dynamical interac-

tions U with three independent frequencies (con-
trary to DΓA). By construction, this method ex-
trapolates between the atomic limit at strong cou-
pling and the description of collective modes by
parquet equations at weak coupling.

This functional derivation naturally extends the
DMFT idea – a local expansion of the 2PI func-
tional – to the 4PI level and sets up a frame-
work to understand how to generate extensions of
DMFT. In particular, it gives prescriptions as to
how to construct the parameters of the local aux-
iliary model of DMFT-like approaches. It is appli-
cable to models with local, but also nonlocal inter-
actions where we expect the dynamical aspect of
the interactions to play an important role.

This functional construction lays the groundwork
for more advanced inquiries about the preserva-
tion of conservation laws. One may speculate that
going from 2PI self-consistent (“Φ-derivable”) ap-
proximations to “K4-derivable” approximations en-
dows one with better conservation properties.

The actual implementation of this method is
within computational reach and work is in progress
in this direction. On the one hand, the solu-
tion of lattice parquet equations is already part of
the parquet-DΓA method and has benefited from
recent progress.15,34 On the other hand, impu-
rity models with dynamical, three-frequency inter-
actions can be handled by interaction-expansion
continuous-time quantum Monte-Carlo solvers,
provided the sign problem is not too severe.
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check:

Ĉr,αβ V̂r,βα = ζ
rr′

αβ,γδĈr′,γδζ
r′r
δ̄γ̄,αβ V̂r′,γ̄δ̄ = Ĉr′,γδV̂r′,δγ

45 Up to notations and factors, this corresponds to Eq.
(60) of Ref. 31 and the functional L′[G, F ] of Ref.
35

Appendix A: Properties of the ζ tensor

The tensor ζrr
′

is made of 0’s and 1’s, and obeys
the relation (to be read as a matrix product in
combined (αβ) indices):

ζrr
′

· ζr
′r = 1 (A1)

Indeed, for any Ĉ,

Ĉr,γ̄δ̄ = ζrr
′

γ̄δ̄,αβ
Ĉr′,αβ = ζrr

′

γ̄δ̄,αβ
ζr

′r
αβ,γδĈr,γδ

and therefore ζrr
′

γ̄δ̄,αβ
ζr

′r
αβ,γδ = δγ̄,γδδ̄δ.

Appendix B: Relation between G2 and F in

channel notation

In this section, we prove Eq. (25). We have:

χ̂
ph
ph,αδF̂ph,δγ χ̂

ph
ph,γβ = χ̂

ph

ph,āb,ab̄
F̂ph,ab̄,v̄vχ̂

ph
ph,v̄v,uū

= GaāGbb̄Fav̄vb̄Guv̄Gvū

= G2,āuūb

= Ĝ2,ph,āb,uū

= Ĝ2,ph,αβ

χ̂
ph

ph,αδ
F̂ph,δγχ̂

ph

ph,γβ
= χ̂

ph

ph,ūu,v̄v
F̂ph,v̄v,āaχ̂

ph

ph,āa,b̄b

= Guv̄GvūFvv̄aāGab̄Gbā

= G2,ūub̄b

= G2,b̄būu

= Ĝ2,ph,ūu,b̄b

= Ĝ2,ph,αβ

and

χ̂
pp
pp,αδF̂pp,δγ χ̂

pp
pp,γβ = χ̂

pp
pp,ūv̄,uvF̂pp,uv,āb̄χ̂

pp

pp,āb̄,ab

= GvūGuv̄Fuāvb̄Gab̄Gbā

= G2,v̄būa

= G2,ūav̄b

= Ĝ2,pp,ūv̄,ab

= Ĝ2,pp,αβ

We have used the crossing symmetry

G2,ūuv̄v = G2,v̄vūu (B1)

for the last two equalities.

Appendix C: Consistency of the Self-Energy in

the 4PI formalism

Here, we show that Σ given by the Schwinger-
Dyson equation is identical to the derivative of the
Luttinger-Ward functional with respect to G (Eq.
(12)) based on the homogeneity properties of the
4PI functional.

We first express ΦLW as a function of G, U and G2

using Eq. (38):

Φ̃LW[G,U,G2] ≡ R[G,G2]−
1

2
Ûr,αβĜ

nc
2,r,βα (C1)

with

R[G,G2] ≡ K4[G,G2] +
1

2

∑

r

Θr[G,G2]

−
1

2

(

χ̂r
r,αγ

)−1
Ĝ2,γδ

(

χ̂r
r,δβ

)−1
Ĝ2,r,βα (C2)

Then, following (12), Σ is given by:

Σūv =
∂Φ̃LW

∂Gvū

∣

∣

∣

∣

∣

U,G2

+
∂Φ̃LW

∂Ĝ2,r,αβ

∣

∣

∣

∣

∣

U,G

∂Ĝ2,r,αβ

∂Gvū

The second term evaluates to zero. Indeed, we can
first, using Eqs (34) and (8), see that

R[G,G2] = Γ4[G,G2]− Γ2,0[G] (C3)

Then, using Eq. (C3), the fact that Γ2,0 does not
depend on G2 and Eq (37), we obtain:

∂Φ̃LW

∂Ĝ2,r,αβ

∣

∣

∣

∣

∣

U,G

=
∂Γ4

∂Ĝ2,r,αβ

∣

∣

∣

∣

∣

U,G

−
1

2
Ûr,βα = 0 (C4)

Hence:

Σūv =
∂R

∂Gvū

∣

∣

∣

∣

∣

U,G2

+ΣHF
ūv (C5)

where we have defined:

ΣHF
ūv ≡ −

1

2

∂

∂Gvū

[Uaābb̄ (−GaāGbb̄ +Gab̄Gbā)]

=
1

2
Uaābb̄

(

δavδūāGbb̄ +Gaāδvbδūb̄

− δvaδūb̄Gbā −Gab̄δvbδūā

)

=
1

2

(

Uvūbb̄Gbb̄ + UaāvūGaā

− UvābūGbā − Uaūvb̄Gab̄

)

= UvūaāGaā − UvāaūGaā

To obtain the last line, we have used the crossing
symmetry (B1) and relabelled the indices. This is
the Hartree-Fock term.
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Figure 6: (color online) Homogeneity of the lowest-

order diagram of K4 in Ŷ pp. Each colored piece stands
for Ŷ pp = (χ̂pp)−1Ĝ2 = F̂ χ̂pp.

As for the first term of (C5), it can be rewritten
using the homogeneity properties of R. Let us first
show that R is the sum of homogeneous functions
of the function Y r, namely

R[G,G2] =
∑

r

R̃r[Ŷ r] (C6)

with:

Ŷ r ≡ (χ̂r)−1
Ĝ2 (C7)

This property follows from the homogeneity of the
three terms in the definition of R, Eq. (C2). K4

is homogeneous with respect to Y r in the three
channels:

K4[G,G2] = K̃
ph
4 [Y ph] = K̃ph

4 [Y ph] = K̃pp
4 [Y pp]

(C8)

The homogeneity of the lowest diagram of K4 with
respect to Y pp is illustrated in Figure 6. The ho-
mogeneity of Θr with respect to Y r follows from
its definition [Eq.(39)] and the cyclity of the trace:
one can easily check that

Θr[G,G2] = Θ̃r[Ĝ2(χ̂
r)−1] = Θ̃r[(χ̂r)−1Ĝ2] (C9)

The last term in Eq. (C2) is obviously homoge-
neous in Y r for all r’s.

We now use Eq.(C6) to decompose:

∂R

∂Ĝvū

∣

∣

∣

∣

∣

U,G

=
∑

r

∂R̃r

∂Ĝvū

∣

∣

∣

∣

∣

U,G

For a given r, we first use the chain rule to write:

∂R̃r

∂Ĝvū

∣

∣

∣

∣

∣

U,G2

=
∂R̃r

∂ (χ̂r)
−1
r,µν

∂ (χ̂r)
−1
r,µν

∂Ĝvū

(C10)

The first factor evaluates to:

∂R̃r

∂ (χ̂r)
−1
r,αβ

∣

∣

∣

∣

∣

G2

=
∂R̃r

∂Ŷ r
r′,µν

∂Ŷ r
r′,µν

∂ (χ̂r)
−1
r,αβ

= Ĝ2,r′,βν
∂R̃r

∂Ŷ r
r′,αν

In the right-hand side, the first factor evaluates to:

∂R̃r

∂Ŷ r
r,γβ

=
∂R̃r

∂Ĝ2,r,αβ

∣

∣

∣

∣

∣

G

χ̂r
r,αγ (C11)

Indeed,

∂R̃r

∂Ĝ2,r,αβ

∣

∣

∣

∣

∣

G

=
∂R̃r

∂Ŷ r
r,µν

∂Ŷ r
r,µν

∂Ĝ2,r,αβ

= (χ̂r)
−1
r,µα

∂R̃r

∂Ŷ r
r,µβ

Thus, Eq. (C10) becomes:

∂R̃r

∂Ĝvū

∣

∣

∣

∣

∣

U,G

= Ĝ2,r,νγ
∂R̃r

∂Ĝ2,r,αγ

∣

∣

∣

∣

∣

G

χ̂r
r,αµ

∂ (χ̂r)
−1
r,µν

∂Gvū

(C12)

Let us define

Û r
r,γα ≡ 2

∂R̃r

∂Ĝ2,r,αγ

∣

∣

∣

∣

∣

G

(C13)

Plugging Eq.(C12) into Eq.(C5), we thus end up
with [using Eq. (25) and the cyclicity of the trace]:

Σūv − ΣHF
ūv =

∑

r

Tr

[

Ĝ2
1

2
Û rχ̂r ∂ (χ̂

r)
−1

∂Gvū

]

=
1

2

∑

r

Tr

[

F̂ χ̂rÛ rχ̂r ∂ (χ̂
r)

−1

∂Gvū

χ̂r

]

= −
1

2

∑

r

Tr

[

F̂ χ̂rÛ r ∂χ̂r

∂Gvū

]

(C14)

In addition to being homogeneous with respect to
Ŷ r [Eq. (C6)], R is homogeneous with respect to

its transpose
(

Ŷ r
)T

. With this property, the same

steps as above lead to the expression

Σūv − ΣHF
ūv = −

1

2

∑

r

Tr

[

Û rχ̂rF̂
∂χ̂r

∂Gvū

]

(C15)

Expressing Σ − ΣHF as the half sum of the right-
hand sides Eqs (C14) and (C15) and expanding the
latter using the change of notation defined in Eqs
(23a-23b-23c), (22a-22b-22c), we find that:

Σūv − ΣHF
ūv = −

1

2
FbācūGaāGcc̄Gbb̄

(

∑

r

U r
ab̄vc̄

)

−
1

2

(

∑

r

U r
bācū

)

GaāGcc̄Gbb̄Fab̄vc̄

= −
1

2
FbācūGaāGcc̄Gbb̄Uab̄vc̄

−
1

2
UbācūGaāGcc̄Gbb̄Fab̄vc̄ (C16)
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To obtain the last expression, we have used the
identity

∑

r

Û r = Û (C17)

which follows from Eq.(C4).

Eq. (C16) is nothing but the Schwinger-Dyson
equation [Eq.(48)] for the self-energy (the two
terms are equal, see e.g. Ref. 35)


