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We study the fate of the so-called �II -loop-current order that breaks both time-reversal and parity symmetries
in a two-dimensional hot spot model with antiferromagnetically mediated interactions, using Fermi surfaces
relevant to the phenomenology of the cuprate superconductors. We start from a three-band Emery model
describing the hopping of holes in the CuO2 plane that includes two hopping parameters tpp and tpd , local
onsite Coulomb interactions Ud and Up , and nearest-neighbor Vpd couplings between the fermions in the
copper [Cu(3dx2−y2 )] and oxygen [O(2px) and O(2py)] orbitals. By focusing on the lowest-energy band, we
proceed to decouple the local interaction Ud of the Cu orbital in the spin channel using a Hubbard-Stratonovich
transformation to arrive at the interacting part of the so-called spin-fermion model. We also decouple the
nearest-neighbor interaction Vpd to introduce the order parameter of the �II -loop-current order. In this way,
we are able to construct a consistent mean-field theory that describes the strong competition between the
composite order parameter made of a quadrupole-density wave and d-wave pairing fluctuations proposed
in Efetov et al. [Nat. Phys. 9, 442 (2013)] with the �II -loop-current order parameter that is argued to be
relevant for explaining important aspects of the physics of the pseudogap phase displayed in the underdoped
cuprates.

DOI: 10.1103/PhysRevB.92.075123 PACS number(s): 74.20.Mn, 71.10.Hf

I. INTRODUCTION

The physics of the pseudogap phase of cuprate supercon-
ductors remains one of the most enduring open problems of
condensed matter physics. There are recent pervasive hints that
the pseudogap phase in most underdoped cuprate superconduc-
tors might involve one or more symmetry-breaking “hidden”
orders, whose precise microscopic mechanisms are still elusive
to this date. State-of-the-art experiments such as nuclear
magnetic resonance [1,2], pulsed-echo ultrasound experiments
[3], x-ray scattering [4–6], and scanning tunneling microscopy
[7,8] performed in non-lanthanum-based materials established
the emergence of a dome-shaped short-range incommensurate
d-wave [9,10] charge-density wave (CDW) at low hole doping
with a modulation described by the wave vectors Qx = (Q0,0)
and Qy = (0,Q0) oriented along the principal axes of the
CuO2 unit cell (with Q0 � 0.255 in reciprocal lattice units
[11,12]). Quite surprisingly, the peak of this short-range
charge-order dome occurs approximately at the universal hole
doping x � 0.12 for several compounds [13], despite their
differences in material-specific properties. This could suggest
that simple, low-energy effective models may potentially
capture the essence of the physics of these materials [14–17].
We will follow this point of view in this work. Moreover, by
applying pressure on these systems, the charge order can be
completely suppressed, while the pseudogap phase remains
unaffected [13]. This clearly indicates that such a CDW order
emerges on top of an already-formed pseudogap phase, instead
of being its driving force. On the other hand, at very high
magnetic fields, the d-wave superconducting phase displayed
by these materials is destroyed and the short-range CDW turns
into a long-range order. In this context, it plays a central role
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in reconstructing the Fermi surface of these compounds into
pockets, as is evidenced in quantum oscillation experiments
[18,19].

In addition to these salient features taking place within the
pseudogap phase, another form of “hidden” order representing
potentially one of the driving forces of quantum criticality in
these systems (that may even coexist with CDW order and d-
wave superconductivity at lower-temperature scales T < T ∗)
is suggested by a different set of equally ground-breaking
experiments: spin-polarized neutron scattering [20,21] and
Kerr-rotation experiments [22,23] indicate spontaneous break-
ing of both time-reversal and parity symmetries in this phase
at temperatures that are reasonably close to T ∗ over a wide
doping range. This phase transition has thus been referred to
as the Kerr transition in the literature. This transition was given
a theoretical framework in the proposal by Varma [24] (see also
an interesting, alternative proposal put forward in Ref. [25])
that orbital loop current order (we shall specialize in this work
to the so-called �II phase) may account for the observed
properties in these materials since it naturally preserves
the translational symmetry of the lattice and, additionally,
it leads to the breaking of the correct discrete symmetries
consistent with spin-polarized neutron scattering experiments
[26]. This theoretical description requires starting from at least
a three-band model, in which one includes besides the usually
considered copper dx2−y2 orbital, also the oxygen px and py

orbitals of the CuO2 unit cell. Such a minimal model turns
out to be essential to describe intra-unit-cell loop currents
involving charge transfer between oxygen orbitals that appear
in the aforementioned �II phase. This theoretical proposal is
physically appealing but it has one potential disagreement with
experiments: it is hard to obtain the result that the underlying
Fermi surface gaps out at all since the phase transition does
not break translational symmetry near the hot spots (i.e., the
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points in momentum space where the Fermi surface intersects
the antiferromagnetic Brillouin zone boundary). Moreover, it
is important to mention that recently a quantum critical point
(QCP) was revealed in the cuprates at a hole doping xcrit �
0.18 via an analysis of the quasiparticle mass enhancement
using quantum oscillation experiments [27]. Interestingly, this
critical point may represent approximately the termination
of the Kerr transition line, the charge-order dome, and an
as-yet-unidentified third phase competing with the previous
two orders at a doping level reasonably close to optimal
doping.

On the theoretical front, the hot spot model emerges as an
interesting, minimal low-energy effective model that captures
qualitative aspects of the physics of the high-Tc cuprates from
a weak-to-moderate coupling perspective. In this respect, an
important work by Metlitski and Sachdev [15] consisted in
the elegant demonstration that, if the energy dispersion of
this model is linearized, an exact emergent SU(2) pseudospin
symmetry relating a d-wave singlet superconducting (SSC)
order to a d-wave quadrupole-density-wave (QDW) order at
wave vectors along the Brillouin zone diagonal (±Q0, ± Q0)
is verified at the spin-density-wave (SDW) quantum critical
point. This degeneracy between these two orders effectively
produces a composite order parameter (denoted by QDW/SSC)
with both bond order and preformed pairs at high temperatures
as shown by Efetov et al. [16] and the properties of this
state have been explored in connection with the physics
of the cuprates using different approaches in many works
[28–37]. In addition to this fact, another emergent SU(2)
degeneracy relating two additional orders, a superconducting
order with a finite Cooper-pair center-of-mass momentum [the
so-called pair-density wave (PDW) [38–40]] and a d-wave
CDW at the experimentally observed wave vectors Qx and
Qy, has also been recently verified in the model in the work
by Pépin et al. [41] and explored further by Wang et al.
[42]. This additional degeneracy generates another compos-
ite order parameter (denoted by PDW/CDW) with similar
energy scales that also competes with the QDW/SSC order
[41–43].

In this work, we will consider the relevant scenario in which
yet another order parameter (the �II -loop-current order) com-
petes with the QDW/SSC order in an effective hot spot model.
The purpose of this study is to demonstrate the possibility
that, due to this competition, QSW/SSC is strongly affected
by the �II -order parameter that breaks both time-reversal and
parity symmetries, but instead preserves their product. This
opens an interesting avenue for future research and could be
an explanation as to why the charge-order signal in the cuprates
is always observed along the axial vectors (i.e., Qx and Qy)
and never along the diagonal direction. In order to perform
this investigation, we will construct a mean-field theory by
including both �II -loop-current order and the QDW/SSC
composite order parameter in such an effective model. As
will become clear shortly, we will confirm in this analysis the
strong competition between �II -loop-current order and the
QDW/SSC entangled order, with one order parameter being
clearly always detrimental to the other. Then, we proceed to
discuss the physical implications of this strong competition for
the physics of the underdoped cuprates, in light of the recent
experiments performed in these materials.

Technically speaking, we will introduce a three-band model
(Emery model) describing hopping of holes in the CuO2

plane which includes two hopping parameters tpp and tpd ,
onsite Ud and Up local interactions, and nearest-neighbor Vpd

couplings between the fermions in the copper (dx2−y2 ) and
oxygen (px and py) orbitals. By focusing on the lowest-energy
band, we will decouple the local interaction Ud of the Cu
orbital in the spin channel using a conventional Hubbard-
Stratonovich transformation to arrive at the interacting part
of the so-called spin-fermion model. Then, we will follow
closely the methodology explained in full detail in the paper
by Efetov et al. [16] to define the composite order parameter
associated with the QDW/SSC fluctuations. In addition to this,
we will also decouple the nearest-neighbor interaction Vpd of
the model to introduce the order parameter associated with
the �II -loop-current order. Lastly, we will proceed to derive
analytically and then solve numerically the resulting mean-
field equations, which describes the competition between these
two order parameters.

This paper is organized as follows. In Sec. II, we define
the three-band model that we will be interested in and we
show how to decouple the interactions to obtain the resulting
mean-field equations describing the competition between the
two orders. Since the interactions that promote QDW/SSC and
�II -loop-current order turn out to be different, this decoupling
is unambiguous. In Sec. III, we solve numerically the self-
consistent mean-field equations and then we discuss our main
results. Finally, Sec. IV is devoted to our conclusions.

II. THREE-BAND MODEL

We start this section by writing both the noninteracting
and interacting Hamiltonians of the so-called three-band
(Emery) model following Refs. [44–47] in order to describe
the underdoped cuprates as follows:

H0 = −tpd

∑
i,σ

∑
ν

(d̂†
i,σ p̂i+ν̂/2,σ + H.c.)

− tpp

∑
i,σ

∑
〈ν,ν ′〉

(p̂†
i+ν̂/2,σ p̂i+ν̂ ′/2,σ + H.c.)

+ (εd − μ)
∑
i,σ

n̂d
i,σ + 1

2
(εp − μ)

∑
i,σ

∑
ν

n̂
p

i+ν̂/2,σ ,

(1)

Hint = Ud

∑
i

n̂d
i,↑n̂d

i,↓ + Up

2

∑
i,ν

n̂
p

i+ν̂/2,↑n̂
p

i+ν̂/2,↓

+ Vpd

∑
i,ν

∑
σ,σ ′

n̂d
i,σ n̂

p

i+ν̂/2,σ ′ . (2)

This model Hamiltonian describes the fermionic motion on
the copper [Cu(3dx2−y2 )] and oxygen [O(2px) and O(2py)]
orbitals that are located in the CuO2 unit cell (see Fig. 1). The
quantities d̂

†
i,σ , d̂i,σ , p̂†

i+ν̂/2,σ , and p̂i+ν̂/2,σ are, respectively, the
creation and annihilation operators of fermions situated on the
site i with spin σ of the Cu orbital and the the creation and
annihilation operators of fermions on the site i + ν̂/2 (ν =
x,y) with spin σ of the O orbitals. Besides, n̂d

i,σ and n̂
p

i+ν̂/2,σ

correspond, respectively, to the fermionic number operators
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FIG. 1. (Color online) Orbital structure and the interactions of
the three-band model in the CuO2 unit cell.

for particles located on the Cu and O orbitals. The model
also takes into account pair hopping (tpd and tpp), onsite (Ud

and Up), and nearest-neighbor (Vpd ) interactions involving the
fermions on the Cu and O orbitals. The parameters εd and εp

are, respectively, the Cu and O orbital energies and μ is the
chemical potential which controls the electronic density in the
system.

Following Abanov and Chubukov [14], we first decouple
the Ud part of the interacting Hamiltonian in the spin channel
using a conventional Hubbard-Stratonovich transformation.
The resulting action becomes

S (1)

int[d, 	φ] = λ

∫
dτ

∑
i

d
†
i,σ

	φi · 	σσ,σ ′di,σ ′eiQ·ri + 1

2

∫
dτ d2r

×
[

1

v2
s

(∂τ
	φ)2 + (∇ 	φ)2 + ma

	φ2 + g

2
[( 	φ)2]2

]
,

(3)

where the bosonic field 	φi = (φx
i ,φ

y

i ,φz
i ) is the spin-density-

wave (SDW) order parameter at the antiferromagnetic wave
vector Q = (π,π ), vs is the spin-wave velocity, and ma is
the spin-wave bosonic mass which vanishes at the quantum
critical point (QCP) of the theory. The σa (a = x,y,z) are
the usual Pauli matrices. Notice that in Eq. (3) we have
partially integrated out the high-energy fermions in order
to derive an effective theory S (1)

int[d, 	φ] that corresponds to
the so-called spin-fermion model describing the coupling
between the itinerant low-energy fermionic excitations and
the antiferromagnetic SDW fluctuations. Another possibility
in order to investigate the Emery model is to start from a more
localized picture by mapping the model defined in Eqs. (1) and
(2) onto an effective three-band t-J model [48]. We, however,
will not follow this latter route in this work. For this reason,
we would like to state clearly from the outset that our starting
point here will be a more itinerant picture.

Now, we turn our attention to the Vpd interaction term in
Eq. (2). This can be rewritten as

Vpd

∑
i,ν

∑
σ,σ ′

n̂d
i,σ n̂

p

i+ν̂/2,σ ′ = −Vpd

∑
i,j

∑
σ,σ ′

A†(j )
i,σ A(j )

i,σ ′, (4)

FIG. 2. (Color online) Loop-current pattern in the CuO2 unit
cell for the �I - and �II -loop-current phases [panels (a) and (b),
respectively] proposed by Varma to explain the physical properties of
the pseudogap state in high-Tc cuprate superconductors. The symbols
(
) and (⊗) represent the orientation of the local magnetic moments
generated by the loop currents.

with the field operators on the right-hand-side of the above
equality being

A†(1,2)
i,σ = 1

2
[(d̂†

i,σ p̂i+x̂/2,σ + d̂
†
i,σ p̂i−x̂/2,σ )

± (d̂†
i,σ p̂i+ŷ/2,σ + d̂

†
i,σ p̂i−ŷ/2,σ )], (5)

A†(3,4)
i,σ = i

2
[(d̂†

i,σ p̂i+x̂/2,σ − d̂
†
i,σ p̂i−x̂/2,σ )

± (d̂†
i,σ p̂i+ŷ/2,σ − d̂

†
i,σ p̂i−ŷ/2,σ )]. (6)

As first shown by Varma [24], only the order parameters
associated with A(2)

i,σ , A(3)
i,σ , and A(4)

i,σ lead to states with the
presence of stationary-loop currents on the CuO2 plane and, of
course, to time-reversal-symmetry breaking. The loop-current
order with order parameter defined in terms of A(2)

i,σ is
conventionally called the �I -loop-current phase, while the
loop-current order with order parameter given in terms of
A(3)

i,σ , and A(4)
i,σ are known as the �II -loop current phase (see

Fig. 2). In view of the interpretation of some experiments
on the pseudogap phase of the cuprate superconductors as
an evidence in favor of the �II -loop-current phase [20,26],
we will analyze henceforth only this type of order. In this
way, the decoupling of the interacting term in Eq. (4) using
a Hubbard-Stratonovich transformation yields the following
expression:

exp

{
Vpd

∫
dτ

∑
i

∑
σ,σ ′

A†(3)
i,σ A(3)

i,σ ′

}

=
∫

D[RII ,�II ] exp

{∫
dτ

∑
i,σ

[
− R2

II

2Vpd

+ RII e
i�IIA†(3)

i,σ + RII e
−i�IIA(3)

i,σ

]}
, (7)

where RII e
i�II = Vpd

∑
σ 〈A(3)

i,σ 〉 is a complex order parame-
ter. The mean-field value of the phase �II was determined in
Ref. [24] as being equal to ±π/2. In what follows, we will
choose for simplicity the positive value of �II since it has
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0

FIG. 3. (Color online) Representation of the Brillouin zone with
the underlying noninteracting Fermi surface (that encloses the blue
area) which characterizes the underdoped cuprate superconductors.
The small black circles denote the so-called hot spots which are
defined as the intersection of the Fermi surface with the antiferro-
magnetic zone boundary. For instance, the hot spot labeled as 1 has a
wave vector k1 = (K−,K+) in momentum space with the constraint
K− + K+ = π . The wave vectors of all the other hot spots in the
Brillouin zone are obtained by simple symmetry operations.

been shown in Ref. [24] that this choice minimizes the energy
for the present case.

At this point, we would like to point out that we will
consider only the lowest-energy band of the noninteracting

Hamiltonian defined in Eq. (1). For physically motivated
choices of the parameters in the present model, the low-energy
band will naturally give rise to a Fermi surface shown in Fig. 3.
The most singular contribution in this effective model will
arise from the points at the Fermi surface (the so-called hot
spots) that represent the intersection of this surface with the
antiferromagnetic zone boundary. Therefore, we will restrict
the analysis of the present model to the vicinity of these
important hot spot points in the considerations that follow.
With this in mind and to set up our notation, we now define
the following 16-component fermionic spinors:

d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
(d1

d2

)
�(d3

d4

)
�

⎞⎟⎟⎠
�⎛⎜⎜⎝

(d5

d6

)
�(d7

d8

)
�

⎞⎟⎟⎠
�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
L

, px(y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
(px(y)1

px(y)2

)
�(px(y)3

px(y)4

)
�

⎞⎟⎟⎠
�⎛⎜⎜⎝

(px(y)5

px(y)6

)
�(px(y)7

px(y)8

)
�

⎞⎟⎟⎠
�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
L

, (8)

where di = (
di,↑
di,↓

)
σ

and px(y)i = (
px(y)i,↑
px(y)i,↓

)
σ

are also spinors

in the spin space σ . The symbols �, �, and L represent
independent pseudospin spaces that are generated by the Pauli
matrices [16]. By making use of the results in Eqs. (1), (3), (7),
and (8) and linearizing the excitation spectrum of three-band
model around the hot spots, we obtain that the total action of
the system yields

S[px,py,d, 	φ; np,RII ] =S0[px,py,d] + S (1)
int [d, 	φ] + S (2)

int [px,py,d; np,RII ]

=
∫

(p†
x(X), p

†
y(X), d†(X))

⎛⎜⎜⎝
∂τ + ξp �̂1 + �̂2(−i∇) �̂1x − �̂2xi∂x

�̂1 + �̂2(−i∇) ∂τ + ξp �1y − �2yi∂y

�̂
†
1x − �̂

†
2xi∂x �̂

†
1y − �̂

†
2yi∂y ∂τ + ξd

⎞⎟⎟⎠
⎛⎝px(X)

py(X)
d(X)

⎞⎠dX

+ 1

2

∫ [
1

v2
s

(∂τ
	φ)2 + (∇ 	φ)2 + ma

	φ2 + g

2
( 	φ2)2

]
dX + λ

∫
[d†(X)�1 	φ(X)	σd(X)]dX

+
∫ (

R2
II

Vpd

− n2
p

8
Up

)
dX, (9)

where ξp ≡ εp + np

4 Up − μ, ξd ≡ εd − μ, and both time and space coordinates have been collected in terms of the variable
X = (τ,r). The matrices �̂1, �̂2, �̂1x(y), and �̂2x(y) appearing in Eq. (9) are diagonal in the � ⊗ � ⊗ L pseudospin space and
depend on all the parameters of the three-band model and also on the order parameter RII for the �II -loop-current phase (see
the Appendix A to check their definition). Here, we follow Ref. [16] and introduce the 32-component fermionic spinors in the
particle-hole space τ as

� = 1√
2

(
d∗

iσ2d

)
τ

, �† = 1√
2

(−dt , −d†iσ2)
τ
, (10)

Px = 1√
2

(
p∗

x

iσ2px

)
τ

, P †
x = 1√

2

(
−pt

x, −p
†
xiσ2

)
τ
, (11)

Py = 1√
2

(
p∗

y

iσ2py

)
τ

, P †
y = 1√

2

(−pt
y, −p

†
yiσ2

)
τ
. (12)

In addition to the fermionic fields defined above, we also introduce the charge-conjugated vectors as

�̄ = �†τ3, P̄x = P †
x τ3, P̄y = P †

y τ3, (13)
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where τ3 is the usual Pauli matrix defined in the τ space. Hence, by making use of these last definitions, the action in Eq. (9) can
be naturally rewritten as

S[Px,Py,�, 	φ; np,RII ]

=
∫

(P̄x(X), P̄y(X), �̄(X))

⎛⎜⎜⎝
−∂τ + ξpτ3 �̂1τ3 − �̂2(−i∇) �̂1xτ3 + �̂2xi∂x

�̂1τ3 − �̂2(−i∇) −∂τ + ξpτ3 �̂1yτ3 + �̂2yi∂y

�̂
†
1xτ3 + �̂

†
2xi∂x �̂

†
1yτ3 + �̂

†
2yi∂y −∂τ + ξdτ3

⎞⎟⎟⎠
⎛⎝Px(X)

Py(X)
�(X)

⎞⎠dX

+ λ

∫
[�̄(X)�1 	φ(X)	σ t�(X)]dX + 1

2

∫ [
1

v2
s

(∂τ
	φ)2 + (∇ 	φ)2 + ma

	φ2 + g

2
( 	φ2)2

]
dX +

∫ (
R2

II

Vpd

− n2
p

8
Up

)
dX. (14)

In order to derive the thermodynamical properties of the present model, we should first integrate out the bosonic field in the
functional integral

Z =
∫

exp{−S[Px,Py,�, 	φ; np,RII ]}D[Px,Py,�, 	φ] =
∫

exp{−S[Px,Py,�; np,RII ]}D[Px,Py,�]. (15)

However, before proceeding with that, we will neglect from now on the spin-density-wave interaction g in the present model
since this coupling effectively renormalizes to zero under the RG flow in the low-energy limit [16]. As a result, the partition
function of the three-band model may be computed in closed form giving rise to the low-energy effective action

S[Px,Py,�; np,RII ]

=
∫

(P̄x(X), P̄y(X), �̄(X))

⎛⎜⎜⎝
−∂τ + ξpτ3 �̂1τ3 − �̂2(−i∇) �̂1xτ3 + �̂2xi∂x

�̂1τ3 − �̂2(−i∇) −∂τ + ξpτ3 �̂1yτ3 + �̂2yi∂y

�̂
†
1xτ3 + �̂

†
2xi∂x �̂

†
1yτ3 + �̂

†
2yi∂y −∂τ + ξdτ3

⎞⎟⎟⎠
⎛⎝Px(X)

Py(X)
�(X)

⎞⎠dX

− λ2

2

∫
[�̄(X)�1 	σ t�(X)]D(X − X′)[�̄(X′)�1 	σ t�(X′)]dXdX′ +

∫ (
R2

II

Vpd

− n2
p

8
Up

)
dX. (16)

Here, the function D(X − X′) that appears as a potential function in the fermionic quartic interaction is the bare bosonic
propagator. Its Fourier transform is given by D(ω,k) = (ω2/v2

s + |k|2 + ma)−1 with ma standing for the spin-wave boson mass
that vanishes at the QCP, vs is the spin-wave velocity, and ω denotes the Matsubara bosonic frequency.

Next, we decouple the fermionic quartic term of the action in Eq. (16) by using a composite order parameter M(X,X′) for
both the quadrupole density wave (QDW) and the d-wave singlet superconducting (SSC) orders, as was described in full detail
in Ref. [16]. This is achieved by considering the renormalization of bosonic propagator D(ω,k) by the fermions at the hot spots
which leads to the appearance of the effective spin-wave propagator Deff(ω,k) = (γ |ω| + |k|2 + ma)−1, where γ is naturally the
Landau damping term. As a consequence, the low-energy effective action that describes the present system may be represented
as follows:

Seff[Px,Py,�; np,RII ,M]

=
∫

(P̄x(X), P̄y(X), �̄(X))

⎛⎝ −∂τ + ξpτ3 �̂1τ3 − �̂2(−i∇) �̂1xτ3 + �̂2xi∂x

�̂1τ3 − �̂2(−i∇) −∂τ + ξpτ3 �̂1yτ3 + �̂2yi∂y

�̂
†
1xτ3 + �̂

†
2xi∂x �̂

†
1yτ3 + �̂

†
2yi∂y −∂τ + ξdτ3

⎞⎠⎛⎝Px(X)
Py(X)
�(X)

⎞⎠dX

− i

∫
�̄(X)M(X,X′)�(X′)dXdX′ + 1

2

∫
J−1(X − X′)Tr[M(X,X′)�1M(X′,X)�1]dXdX′ +

∫ (
R2

II

Vpd

− n2
p

8
Up

)
dX,

(17)

where we have written J (X − X′) = 3λ2Deff(X − X′) instead
of the spin-wave propagator in order to simplify the notation.
The order parameter M(X,X′) for the QDW/SSC composite
order is given by

M(X,X′) = b(X,X′)�3

(
0 ûτ

−û†
τ 0

)
�

, (18)

with ûτ =
(

�− �+
−�∗

+ �∗
−

)
τ

. (19)

Here, �+ and �− are, respectively, the d-wave singlet
superconducting (SSC) and quadrupole density wave (QDW)
components of the order parameter defined above. We also
point out that the matrices ûτ belong to the SU(2) group [16]
which lead to the constraint |�+|2 + |�−|2 = 1 involving both
the SSC and QDW sectors. Although we have constructed
an effective spin-fermion model for the CuO2 unit cell
by considering only the Cu atoms, we point out that the
QDW/SSC order parameter in Eq. (18) does not lead to
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a charge modulation located on the Cu orbitals. In fact, it
can be shown [16,28,29] that this composite order parameter
generates a charge modulation with a checkerboard pattern
residing on the oxygen O sites, which is described by
incommensurate wave vectors with respect to the lattice.

The effective action in Eq. (17) now has a quadratic form
and the free energy of the system can be obtained as follows:
First, one has to integrate out the fermionic fields in the
functional integral for the partition function and then apply the
formulas Tr ln G−1 = ln det(G−1). Following this procedure,
we determine that the free energy in space-time coordinates
evaluates to

F [T ,np,RII ,M]

T

= −
∫

Tr ln[G−1(X,X′)]dX dX′

+ 1

2

∫
J−1(X − X′)Tr[M(X,X′)�1M(X′,X)�1]

× dX dX′ +
∫ (

R2
II

Vpd

− n2
p

8
Up

)
dX, (20)

where the matrix G−1(X,X′) is the Fourier transform of
G−1(iεn,k). This latter function is given by⎛⎜⎜⎝

−iεn + ξpτ3 �̂1τ3 − �̂2(k) �̂1xτ3 − �̂2xkx

�̂
†
1τ3 − �̂

†
2(k) −iεn + ξpτ3 �̂1yτ3 − �̂2yky

�̂
†
1xτ3 − �̂

†
2xkx �̂

†
1yτ3 − �̂

†
2yky −iεn + ξdτ3 − iM(εn,k)

⎞⎟⎟⎠.

(21)

The self-consistency equation for b(X,X′) is derived by
minimizing the free energy F [T ,np,RII ,M] with respect
to this order parameter. As a consequence, we obtain the
following equation:

− Tr

{
1

G−1(X,X′)
∂G−1(X,X′)
∂b(X,X′)

}
+ J−1(X − X′)b(X,X′)

× Tr

{
�3

(
0 ûτ

−û†
τ 0

)
�

�1�3

(
0 ûτ

−û†
τ 0

)
�

�1

}
= 0.

(22)

By performing the trace operation over the space � ⊗ � ⊗
L ⊗ τ for the second term on the left-hand-side of the equation
above, the order parameter b(X,X′) can be simply expressed
as

b(X,X′)

= 1

16
J (X − X′)Tr

{
G(X,X′)

∂G−1(X,X′)
∂b(X,X′)

}
= 1

16
J (X − X′)Tr

{
G(X,X′)i�3�3

(
0 ûτ

−û†
τ 0

)
�

}
,

(23)

where �3 is a projector for the three-band-model space which
is defined as

�3 =
⎛⎝0 0 0

0 0 0
0 0 1

⎞⎠. (24)

At this point, we will make use of the ansatz b(X,X′) =
b(X − X′) [and G(X,X′) = G(X − X′)] and Fourier trans-
form Eq. (23) to momentum-frequency space. As a result, we
get the expression

b(εn,k) = T

16

∑
ε′
n

∫
J (εn − ε′

n,k − k′)

× Tr

{
[G−1(iε′

n,k
′)]−1 ∂G−1(iε′

n,k
′)

∂b(ε′
n,k′)

}
dk

(2π )2
.

(25)

In order to express b(εn,k) in a convenient form, we need
to evaluate the trace that appears in the above equation. This
problem can be circumvented by using the following identity:

Tr

{
[G−1(iε′

n,k
′)]−1 ∂G−1(iε′

n,k
′)

∂b(ε′
n,k′)

}
= 1

det[G−1(iε′
n,k′)]

∂ det[G−1(iε′
n,k

′)]
∂b(ε′

n,k′)
. (26)

Then, by substituting Eq. (26) into Eq. (25), we finally arrive
at the self-consistency equation

b(εn,k) = 3λ2T

16

∑
ε′
n

∫
Deff(εn − ε′

n,k − k′)
det[G−1(iε′

n,k′)]

× ∂ det[G−1(iε′
n,k

′)]
∂b(ε′

n,k′)
dk

(2π )2
, (27)

where we have set J (εn − ε′
n,k − k′) = 3λ2Deff(εn − ε′

n,

k − k′).
We now turn our attention to the evaluation of

det[G−1(iεn,k)]. In order to do this, we will need to use the
set of determinant formulas

det

(
Â B̂

Ĉ D̂

)
= det(Â) det(D̂ − ĈÂ−1B̂), (28)

det(Â ⊗ D̂) = [det(Â)]m[det(D̂)]n, (29)

where Â and D̂ are, respectively, n- and m-square matrices
and det(Â) is different from zero. In this way, by neglecting
the SSC sector of the QDW/SSC order parameter (�+ =
0) and applying these reduction formulas to the matrix
G−1(iεn,k), we obtain, after some algebraic manipulations,
that det[G−1(iεn,k)] evaluates formally to

det[G−1(iεn,k)] =
2∏

l=1

2∏
m=1

D(m)
l (iεn,k), (30)

where D(m)
l (iεn,k) are well-behaved functions of the three-

band-model parameters, which are computed in detailed form
in Appendixes B and C. Thus, by inserting the result displayed
in Eq. (30) into Eq. (27), the mean-field equation for b(εn,k)
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in terms of D(m)
l (iεn,k) finally reads as

b(εn,k) = 3λ2T

16

2∑
l,m=1

∑
ε′
n

∫
Deff(εn − ε′

n,k − k′)

D(m)
l (iε′

n,k′)

× ∂D(m)
l (iε′

n,k
′)

∂b(ε′
n,k′)

dk′

(2π )2
. (31)

We note that, since we have set �+ = 0, the above self-
consistency equation describes only the QDW sector of the
fluctuations in the present system.

As a consequence of the result in Eq. (30), we determine
after Fourier transforming the right-hand side of Eq. (20)
that the free energy of the present model has the following
analytical form:

F [T ,np,RII ,b]

= −T

2∑
l,m=1

∑
εn

∫
ln

[
D(m)

l (iεn,k)
] dk

(2π )2

+ 8T

3λ2

∑
εn

∫
b(εn,k)

dk
(2π )2

[
T

∑
ε′
n

∫
b(ε′

n,k
′)

× D−1
eff (εn − ε′

n,k − k′)
dk′

(2π )2

]
+ R2

II

Vpd

− n2
p

8
Up, (32)

where we have set the volume of the system to unity. In order
to self-consistently determine the mean-field order parameter
RII , we need also minimize the free energy with respect to it.
In this way, the self-consistency equation for RII in turn reads
as

RII = VpdT

2

2∑
l,m=1

∑
εn

∫
1

D(m)
l (iεn,k)

∂D(m)
l (iεn,k)

∂RII

dk
(2π )2

.

(33)

The solutions of both Eqs. (31) and (33) will be obtained in
the next section, following a numerical procedure described in
great detail in Appendixes B and C.

III. MEAN-FIELD RESULTS

In order to investigate the interplay between both �II -loop-
current (LC) and QDW orders in the present three-band model,
we solve numerically the mean-field equations for RII and b.
The present numerical approach consists in the discretization
of the Brillouin zone with a mesh of 320 × 320 points. We
also make the assumption that the order parameter b(εn,k)
does not depend crucially on the frequency and momentum. In
this way, we will only investigate the ground-state properties
of the present model, which therefore allows us to evaluate
the Matsubara sums that appear in the mean-field equations
exactly. We perform this calculation by either varying the
spin-fermion coupling λ or the nearest-neighbor interaction
Vpd between O and Cu orbitals. In addition, we fix all other
couplings in the theory. The corresponding results are shown
in Figs. 4(a) and 4(b). For physically realistic parameters in the
present model (here we choose, e.g., ma = 10−2, γ = 10−5,
tpd = 1, tpp = 0.5, Up = 3, and εd − εp = 3), we observe in
Fig. 4(a) that the order parameter RII grows continuously from
zero to positive values as the interaction Vpd is increased for
λ fixed. It can be very interesting at this point to make a rough
estimate of the magnetic moment associated with the loop
currents described by RII obtained here at mean-field level.
From Fig. 4(a), we can estimate numerically that the ratio of
the critical parameters is given approximately by (Rc

II /V c
pd ) ∼

0.2. Hence, by following the same calculation procedure
that was explained in detail in Ref. [48], we may conclude
that the �II -loop-current phase in our present theory yields
a magnetic moment per unit cell of approximately MLC ∼
0.19μB . Quite surprisingly, this result agrees qualitatively with
the experimental estimate of Mexpt ∼ 0.05μB − 0.1μB found

FIG. 4. (Color online) (a) Mean-field values of RII and b as a function of the nearest-neighbor interaction Vpd in the limit of zero temperature
for λ = 20. (b) Mean-field values of RII and b as a function of the spin-fermion coupling λ in the limit of zero temperature for Vpd = 14.
Both solutions in (a) and (b) were obtained by performing numerical integration in momentum space of the self-consistency equations given
by Eqs. (31) and (33) with a mesh of 320 × 320 points in the Brillouin zone. Here, ma = 10−2, γ = 10−5, and the other interactions are set to
tpd = 1, tpp = 0.5, Up = 3, and εd − εp = 3. The fermionic density on the O orbital is given by np = 0.6 and the position of the hot spots is
such that δ = 0.93.
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by Fauqué et al. [26] using spin-polarized neutron scattering
experiments. In Fig. 4(a), it can also be seen that the QDW
order parameter b, by contrast, vanishes as the interaction Vpd

becomes stronger. Moreover, one can note in the same figure
a narrow region where both order parameters can be finite for
moderate Vpd , indicating that the present three-band model
could in principle accommodate a coexisting phase involving
both time-reversal- (LC order) and translational-symmetry
breaking (QDW order), but as can be inferred from Fig. 4(a)
this apparently occurs for somewhat fine-tuned interactions.

We can also analyze the behavior of the same order
parameters as a function of spin-fermion coupling λ, when
we keep instead the interaction Vpd fixed. The corresponding
results are depicted in Fig. 4(b). As a result, we find that the LC
order parameter RII is finite below a threshold of λ and then
is clearly suppressed when this interaction becomes larger.
Once more, the behavior of the QDW order parameter b is
essentially the opposite one, namely, it grows from zero to
finite values as the spin-fermion interaction becomes stronger.
In an analogous way to the previous case, there is also a very
narrow window where both phases may coexist for moderate
λ and Vpd . Despite this, the generic behavior which can be
inferred from both figures is that the LC order appears to be
detrimental to the QDW order and vice versa. In other words,
we may conclude at this point that, for a large majority of
initial choices for the couplings Vpd and λ within the present
three-band model, there is a strong tendency for the above two
orders not to coexist, at least at mean-field level.

In order to analyze the sensitivity of the above mean-
field results to changes in the physical parameters of the
three-band model, we have also investigated its properties
with respect to varying both the spin-wave bosonic mass ma

and the orbital-energy transfer εd − εp. As the strength of
ma becomes larger (which corresponds naturally to shorter
SDW correlation lengths), we obtain a clear tendency for
both critical interactions (i.e., λc and V c

pd ) to increase even
further in our numerical data. This result would of course lie
beyond the regime of applicability of a mean-field approach
to the present model and other complementary methods that
include quantum fluctuation effects should be used to describe
such a regime. In addition to this, we have also examined
the dependence of our results with respect to changes in
the orbital-energy transfer of the model. As a consequence,
we were able to establish numerically that, as the difference
εd − εp is reduced towards zero, the critical interactions λc

and V c
pd also display a tendency to increase further within the

present approach.

IV. CONCLUSIONS

In this work, we have performed a consistent mean-field
calculation for the three-band (Emery) model relevant to the
phenomenology of the underdoped cuprates. We have shown
that a low-energy effective description of this model may
indeed exhibit both the �II -loop-current order first proposed
by Varma [24] and the so-called QDW which arises from
an emergent SU(2) pseudospin symmetry that exists in the
spin-fermion model [15,16]. As a result, we have obtained
that the above two order parameters have a tendency to be
detrimental to each other, at least at mean-field level.

We would like to point out that the mean-field values
of the critical interactions to obtain these two phases are
relatively large compared with some physical parameters of
the three-band model. This is expected to be an artifact of the
mean-field approach and, for this reason, other complementary
methods (such as, e.g., renormalization group techniques that
include quantum fluctuation effects) should be used in order to
establish a quantitative agreement between the present model
and the experimental data. It is also important to mention that
there are other works in the literature, which analyzed three-
band models using weak-coupling diagrammatic perturbative
calculations [49,50]. They have confirmed that the QDW order
with a d-wave form factor investigated in this work turns out
to be more stable than the experimentally observed charge
order with a modulation along the axial directions. Here, we
have shown that the three-band model can also accommodate
a �II -loop-current phase that breaks time-reversal symmetry,
which seemingly acts against the QDW order. This suggests an
appealing scenario where the �II -loop-current-order strongly
competes with the QDW order, with one order having a
tendency to suppress the other (and vice versa) in the present
model. This clearly opens an interesting avenue for future
research and may help rule out recent competing (and mutually
exclusive) interpretations of the universal phenomenon of the
pseudogap phase displayed in the underdoped cuprates, in
light of the many highly precise experiments performed in
those materials in the last years.
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APPENDIX A: DEFINITION OF THE �̂i MATRICES

The matrices �̂1, �̂2, �̂1x , �̂2x , �̂1y , and �̂2y that appear
throughout this work are defined by linearizing the functions
of the three-band model around the hot spots depicted in Fig. 3.
The structure of the resulting matrices can then be simplified
by resorting to a representation based on Pauli matrices defined
in distinct pseudospin spaces [16], which are denoted by �,
�, and L. Technically speaking, the pseudospin space �

connects hot spots that can be mapped onto each other by
the antiferromagnetic wave vector Q = (π,π ). Different pairs
of hot spots connected by the wave vector Q are mapped onto
each other by the pseudospin space �. Lastly, the pseudospin
space L connects orthogonal quartet of hot spots. Following
these definitions, the matrices of the three-band model can be
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C1 C2

(a) (b)

FIG. 5. (Color online) (a) Integration contour C1 for the evaluation of the Matsubara sum appearing in the mean-field equation for the
QDW order parameter. The crosses (×) represent the poles of the Fermi-Dirac distribution function nF (z) and the wavy-blue line at Im(z) = 0
is the branch cut of Deff (−iz,k). (b) In order to perform the Matsubara sum in this case, the integration contour C1 can be distorted such that it
transforms into the contour C2 that avoids the poles of nF (z) and also the branch cut.

simply written as

�̂1 = − 2tpp cos δ 1� ⊗ 1� ⊗ 1L, (A1)

�̂2 = tpp(sin δ�3 ⊗ L3 − �3 ⊗ �3)i∂x

− tpp(sin δ�3 + �3 ⊗ �3 ⊗ L3)i∂y, (A2)

�̂1x = γ1e
−iϕ�3⊗L3 + γ2e

iθ�3⊗L3�3 ⊗ L3, (A3)

�̂2x = − 1
2γ1e

−iϕ�3⊗L3�3 ⊗ �3 + 1
2γ2e

iθ�3⊗L3�3 ⊗ L3,

(A4)

�̂1y = γ1e
iϕ�3 − γ2e

−iθ�3�3 ⊗ L3, (A5)

�̂2y = − 1
2γ1e

iϕ�3�3 ⊗ �3 ⊗ L3 + 1
2γ2e

−iθ�3�3, (A6)

where δ = (K+ − K−)/2 and 1� , 1�, and 1L are, respectively,
the identity matrices in the �, �, and L pseudospin spaces.
The parameters ϕ, θ , γ1, and γ2 are defined as

tan ϕ = RII

2tpd

tan

(
δ

2

)
, (A7)

tan θ = RII

2tpd

cot

(
δ

2

)
, (A8)

γ1 =
[

2t2
pd cos2

(
δ

2

)
+ R2

II

2
sin2

(
δ

2

)]1/2

, (A9)

γ2 =
[

2t2
pd sin2

(
δ

2

)
+ R2

II

2
cos2

(
δ

2

)]1/2

. (A10)

APPENDIX B: EVALUATION OF THE MATSUBARA SUMS
FOR THE MEAN-FIELD EQUATIONS

1. Quadrupole density wave (QDW) order parameter

In order to compute the Matsubara sum in Eq. (31), we will
consider that the QDW order parameter does not depend on

both the frequency and the momentum. In this manner, we can
rewrite this equation as

b(T ) = 3λ2T

16

2∑
l,m=1

∑
εn

∫
Deff(εn,k)

D(m)
l (iεn,k)

∂D(m)
l (iεn,k)

∂b

dk
(2π )2

,

(B1)

where we have not written explicitly the full dependence of
b(T ) to not clutter up the notation.

There is a subtlety to obtain the analytic continuation
of the effective bosonic propagator Deff(εn,k) since this
function depends on |ω| which is not well defined for complex
numbers. To circumvent that, we make use of the two integral
formulas

|ω| = − iω

π

∫ ∞

−∞

dx

x − iω
, (B2)

sgn(ω) = − i

π

∫ ∞

−∞

dx

x − iω
. (B3)

As a result, the analytic continuation of Deff(εn,k) becomes

Deff(−iz,k) = 1

−iγ z sgn[Im(z)] + |k|2 + ma

. (B4)

As may be easily concluded, Deff(−iz,k) is not analytic in
the entire complex plane. Indeed, it possesses a branch cut
(see Fig. 5) which must be avoided when performing complex
integration. As a result, we obtain that Eq. (B1) may be
rewritten as

b(T ) = 3λ2

16

2∑
l,m=1

∫
dk

(2π )2

{
− 1

2πi

∮
C1

dz nF (z)Deff(−iz,k)

×
[

1

h
(m)
l (z,k)

∂h
(m)
l (z,k)

∂b
+ 1

h̄
(m)
l (z,k)

× ∂h̄
(m)
l (z,k)

∂b

]}
, (B5)
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where we have used the result D(m)
l (z,k) = h

(m)
l (z,k)h̄(m)

l (z,k)

(see the Appendix C for details). Here h
(m)
l (z,k) and ∂h

(m)
l (z,k)
∂b

are both polynomials with respect to z and the relation between
their degrees is the following:

deg

[
∂h

(m)
l (z,k)

∂b

]
< deg

[
h

(m)
l (z,k)

]
. (B6)

As expected, a similar inequality holds for h̄
(m)
l (z,k) and

∂h̄
(m)
l (z,k)
∂b

. The main consequence of the result in Eq. (B6) is
that we can have a series expansion of the form

1

h
(m)
l (z,k)

∂h
(m)
l (z,k)

∂b
+ 1

h̄
(m)
l (z,k)

∂h̄
(m)
l (z,k)

∂b

=
N∑

n=1

�
(m)
l,n (k)

z − ξ
(m)
l,n (k)

, (B7)

where N ≡ 3
4 dim(� ⊗ � ⊗ L ⊗ τ ) is equal to 12 and ξ

(m)
l,n (k)

represent both the roots of h
(m)
l (z,k) (1 � n � N/2) and

h̄
(m)
l (z,k) (N/2 + 1 � n � N ). The coefficients �

(m)
l,n (k) are

calculated as

�
(m)
l,n (k) =

∂h
(m)
l (z,k)
∂b

∣∣
z=ξ

(m)
l,n (k)

∂h
(m)
l (z,k)
∂z

∣∣
z=ξ

(m)
l,n (k)

, 1 � n � N

2
; (B8)

�
(m)
l,n (k) =

∂h̄
(m)
l (z,k)
∂b

∣∣
z=ξ

(m)
l,n (k)

∂h̄
(m)
l (z,k)
∂z

∣∣
z=ξ

(m)
l,n (k)

,
N

2
+ 1 � n � N. (B9)

Then, by substituting Eq. (B7) into Eq. (B5), we obtain that
the mean-field equation for b(T ) assumes the form

b(T ) = 3λ2

16

2∑
l,m=1

N∑
n=1

∫
�

(m)
l,n (k)

[
− 1

2πi

∮
C1

dz nF (z)

× Deff(−iz,k)

z − ξ
(m)
l,n (k)

]
dk

(2π )2
. (B10)

The complex integral between brackets is computed by
changing the integration contour from C1 to C2 (see Fig. 5),
i.e.,

− 1

2πi

∮
C1

dz nF (z)
Deff(−iz,k)

z − ξ
(m)
l,n (k)

= − 1

2πi

∫ ∞

−∞
dx nF (x)

[
1

−iγ x + |k|2 + ma

× 1

x+ − ξ
(m)
l,n (k)

− 1

iγ x + |k|2 + ma

1

x− − ξ
(m)
l,n (k)

]
,

(B11)

where x± = x ± iη and η → 0+. At this point, we employ the
Dirac identity

1

x ± iη
= ∓iπδ(x) + P

(
1

x

)
, (B12)

with P standing for the Cauchy principal value in order to
obtain the following:

− 1

2πi

∮
C1

dz nF (z)
Deff(−iz,k)

z − ξ
(m)
l,n (k)

= |k|2 + ma

[|k|2 + ma]2 + γ 2
[
ξ

(m)
l,n (k)

]2 nF

[
ξ

(m)
l,n (k)

]
− γ

π
P

∫ ∞

−∞
dx

xnF (x)

[|k|2 + ma]2 + γ 2x2

1

x − ξ
(m)
l,n (k)

.

(B13)

Finally, after inserting the result in Eq. (B13) into Eq. (B10),
the mean-field equation for the QDW order parameter at finite
temperature can be simply expressed as

b(T ) = 3λ2

16

2∑
l,m=1

N∑
n=1

∫ { |k|2 + ma

[|k|2 + ma]2 + γ 2
[
ξ

(m)
l,n (k)

]2

× nF

[
ξ

(m)
l,n (k)

] − γ

π
P

∫ ∞

−∞
dx

xnF (x)

[|k|2 + ma]2 + γ 2x2

× 1

x − ξ
(m)
l,n (k)

}
�

(m)
l,n (k)

dk
(2π )2

. (B14)

In the limit of T → 0, the Fermi-Dirac distribution function
nF (x) becomes the step function θ (−x). As a result, the
integral in Eq. (B14) involving the Cauchy principal value
evaluates to

lim
T →0

P
∫ ∞

−∞
dx

xnF (x)

[|k|2 + ma]2 + γ 2x2

1

x − ξ
(m)
l,n (k)

= π

2γ

|k|2 + ma

(|k|2 + ma)2 + γ 2
[
ξ

(m)
l,n (k)

]2

+ ξ
(m)
l,n (k)

(|k|2 + ma)2 + γ 2
[
ξ

(m)
l,n (k)

]2 ln

[
γ
∣∣ξ (m)

l,n (k)
∣∣

|k|2 + ma

]
,

(B15)

where now ma = ma(T = 0) is the zero-temperature bosonic
mass. Hence, in this limit the mean-field equation for the QDW
order parameter is given by

b(T = 0) = −3λ2

32

2∑
l,m=1

N∑
n=1

∫ { |k|2 + ma

(|k|2 + ma)2 + γ 2
[
ξ

(m)
l,n (k)

]2

×sgn
[
ξ

(m)
l,n (k)

]+ 2

π

γ ξ
(m)
l,n (k)

(|k|2 + ma)2 + γ 2
[
ξ

(m)
l,n (k)

]2

× ln

[
γ
∣∣ξ (m)

l,n (k)
∣∣

|k|2 + ma

]}
�

(m)
l,n (k)

dk
(2π )2

, (B16)

where we have used the identity θ (−x) = 1
2 [1 − sgn(x)] in

order to simplify the above equation.

2. �I I -loop-current (LC) order parameter

The mean-field equation for the loop-current order param-
eter can be simplified following the same procedure outlined
above. First of all, we transform the Matsubara sum in Eq. (33)
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into a integral over the complex plane. This leads to

RII (T ) = Vpd

2

2∑
l,m=1

∫ {
− 1

2πi

∮
C1

dz nF (z)

[
1

h
(m)
l (z,k)

× ∂h
(m)
l (z,k)

∂RII

+ 1

h̄
(m)
l (z,k)

∂h̄
(m)
l (z,k)

∂RII

]}
× dk

(2π )2
. (B17)

Then, we expand the terms between brackets in the above
equation in a series of partial fractions, i.e.,

1

h
(m)
l (z,k)

∂h
(m)
l (z,k)

∂RII

+ 1

h̄
(m)
l (z,k)

∂h̄
(m)
l (z,k)

∂RII

=
N∑

n=1

�
(m)
l,n (k)

z − ξ
(m)
l,n (k)

, (B18)

where the coefficients of the expansion �
(m)
l,n (k) are given by

�
(m)
l,n (k) =

∂h
(m)
l (z,k)
∂RII

∣∣
z=ξ

(m)
l,n (k)

∂h
(m)
l (z,k)
∂z

∣∣
z=ξ

(m)
l,n (k)

, 1 � n � N

2
; (B19)

�
(m)
l,n (k) =

∂h̄
(m)
l (z,k)
∂RII

∣∣
z=ξ

(m)
l,n (k)

∂h̄
(m)
l (z,k)
∂z

∣∣
z=ξ

(m)
l,n (k)

,
N

2
+ 1 � n � N. (B20)

Having in mind the result in Eq. (B18), we evaluate the
complex integral in Eq. (B17) as

− 1

2πi

N∑
n=1

�
(m)
l,n (k)

∮
C1

dz
nF (z)

z − ξ
(m)
l,n (k)

=
N∑

n=1

�
(m)
l,n (k)nF

[
ξ

(m)
l,n (k)

]
. (B21)

Lastly, the mean-field equation for the loop-current order
parameter at finite temperature is obtained by inserting Eq.
(B21) into Eq. (B17). Therefore, this yields

RII (T ) = Vpd

2

2∑
l,m=1

N∑
n=1

∫
�

(m)
l,n (k)nF

[
ξ

(m)
l,n (k)

] dk
(2π )2

.

(B22)

In the limit of zero temperature, this equation becomes

RII (T = 0) = Vpd

2

2∑
l,m=1

N∑
n=1

∫
�

(m)
l,n (k)θ

[−ξ
(m)
l,n (k)

] dk
(2π )2

,

(B23)
with θ (−x) being the Fermi-Dirac distribution function nF (x)
in this case.

APPENDIX C: FORM OF THE FUNCTIONS D(m)
l (iεn,k)

In order to compute the determinant det[G−1(iεn,k)] that
appears in the main text of this work, we need to make use of
Eqs. (28) and (29). Then, as we are interested in the interplay
between loop-current and quadrupole density wave orders, we
also neglect the superconducting sector of the matrix ûτ . As a
result, this determinant evaluates to

det[G−1(iεn,k)] =
2∏

l=1

2∏
m=1

D(m)
l (iεn,k), (C1)

where D(m)
l (iεn,k) are functions whose form will be deter-

mined in this appendix.
Before proceeding with that, let us define the following

coefficients:

c1(kx) =
√

2

(
−tpd + i

RII

4
kx

)
, (C2)

c1(ky) =
√

2

(
−tpd + i

RII

4
ky

)
, (C3)

c2(kx) =
√

2

2
(−tpdkx − iRII ), (C4)

c2(ky) =
√

2

2
(−tpdky − iRII ), (C5)

which are written as a function of Cu-O hopping tpd , the loop-
current order parameter RII , and the the momentum distance k
to the hot spots. The purpose of defining these four coefficients
is of course to write the functions D(m)

l (iεn,k) in a compact
form.

We then construct the set of basis functions shown in Table I
from the hot spot parameter δ = (K+ − K−)/2 and the ci(kx),
ci(ky) (i = 1,2). As a consequence, we can write explicitly the
D(m)

l (iεn,k) as

D(1)
1 (iεn,k) = ∣∣((−iεn + ξd )

{
(−iεn + ξp)2 − t2

pp[a1(k) + b1(k)]
} − P

(0)
1 (k)(−iεn + ξp) − tppP

(1)
1 (k)

)
× (

(−iεn + ξd )
{
(−iεn + ξp)2 − t2

pp[a2(k) + b2(k)]
} − P

(0)
2 (k)(−iεn + ξp) − tppP

(1)
2 (k)

)
− b2

{
(−iεn + ξp)2 − t2

pp[a1(k) + b1(k)]
}{

(−iεn + ξp)2 − t2
pp[a2(k) + b2(k)]

}∣∣2
, (C6)

D(2)
1 (iεn,k) = ∣∣((−iεn + ξd )

{
(−iεn + ξp)2 − t2

pp[a1(k) − b1(k)]
} − M

(0)
1 (k)(−iεn + ξp) − tppM

(1)
1 (k)

)
× (

(−iεn + ξd )
{
(−iεn + ξp)2 − t2

pp[a2(k) − b2(k)]
} − M

(0)
2 (k)(−iεn + ξp) − tppM

(1)
2 (k)

)
− b2

{
(−iεn + ξp)2 − t2

pp[a1(k) − b1(k)]
}{

(−iεn + ξp)2 − t2
pp[a2(k) − b2(k)]

}∣∣2
, (C7)
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TABLE I. First set of basis functions used to represent the free energy of the three-band model. Here, these functions are written in terms
of the hot spot parameter δ = (K+ − K−)/2 and the coefficients ci(kx) and ci(ky) (i = 1,2).

Basis function Definition

a1x(kx) |c1(kx)|2 + |c2(kx)|2
a2x(kx) |c1(kx)|2 + |c2(kx)|2
a3x(kx) |c1(kx)|2 + |c2(kx)|2
a4x(kx) |c1(kx)|2 + |c2(kx)|2
b1x(kx) sin δ[|c1(kx)|2 − |c2(kx)|2] + 2 cos δ Re[c∗

1(kx)c2(kx)]
b2x(kx) sin δ[|c1(kx)|2 − |c2(kx)|2] − 2 cos δ Re[c∗

1(kx)c2(kx)]
b3x(kx) sin δ[|c2(kx)|2 − |c1(kx)|2] + 2 cos δ Re[c∗

1(kx)c2(kx)]
b4x(kx) sin δ[|c2(kx)|2 − |c1(kx)|2] − 2 cos δ Re[c∗

1(kx)c2(kx)]
a1y(ky) |c1(ky)|2 + |c2(ky)|2
a2y(ky) |c1(ky)|2 + |c2(ky)|2
a3y(ky) |c1(ky)|2 + |c2(ky)|2
a4y(ky) |c1(ky)|2 + |c2(ky)|2
b1y(ky) sin δ[|c2(ky)|2 − |c1(ky)|2] + 2 cos δ Re[c∗

1(ky)c2(ky)]
b2y(ky) sin δ[|c2(ky)|2 − |c1(ky)|2] − 2 cos δ Re[c∗

1(ky)c2(ky)]
b3y(ky) sin δ[|c1(ky)|2 − |c2(ky)|2] − 2 cos δ Re[c∗

1(ky)c2(ky)]
b4y(ky) sin δ[|c1(ky)|2 − |c2(ky)|2] + 2 cos δ Re[c∗

1(ky)c2(ky)]
a1xy(k) 2 cos δ Re[c∗

1(kx)c1(ky) + c∗
2(kx)c2(ky)] + 2 sin δ Re[c∗

1(kx)c2(ky) − c∗
2(kx)c1(ky)]

a2xy(k) 2 cos δ Re[c∗
1(kx)c1(ky) + c∗

2(kx)c2(ky)] − 2 sin δ Re[c∗
1(kx)c2(ky) − c∗

2(kx)c1(ky)]
a3xy(k) 2 cos δ Re[c∗

1(kx)c1(ky) − c∗
2(kx)c2(ky)] + 2 sin δ Re[c∗

1(kx)c2(ky) + c∗
2(kx)c1(ky)]

a4xy(k) 2 cos δ Re[c∗
1(kx)c1(ky) − c∗

2(kx)c2(ky)] − 2 sin δ Re[c∗
1(kx)c2(ky) + c∗

2(kx)c1(ky)]
b1xy(k) 2 Re[c∗

2(kx)c1(ky) + c∗
1(kx)c2(ky)]

b2xy(k) −2 Re[c∗
2(kx)c1(ky) + c∗

1(kx)c2(ky)]
b3xy(k) 2 Re[c∗

2(kx)c1(ky) − c∗
1(kx)c2(ky)]

b4xy(k) −2 Re[c∗
2(kx)c1(ky) − c∗

1(kx)c2(ky)]

D(1)
2 (iεn,k) = ∣∣((−iεn + ξd )

{
(−iεn + ξp)2 − t2

pp[a3(k) + b3(k)]
} − P

(0)
3 (k)(−iεn + ξp) − tppP

(1)
3 (k)

)
× (

(−iεn + ξd )
{
(−iεn + ξp)2 − t2

pp[a4(k) + b4(k)]
} − P

(0)
4 (k)(−iεn + ξp) − tppP

(1)
4 (k)

)
− b2

{
(−iεn + ξp)2 − t2

pp[a3(k) + b3(k)]
}{

(−iεn + ξp)2 − t2
pp[a4(k) + b4(k)]

}∣∣2
, (C8)

D(2)
2 (iεn,k) = ∣∣((−iεn + ξd )

{
(−iεn + ξp)2 − t2

pp[a3(k) − b3(k)]
} − M

(0)
3 (k)(−iεn + ξp) − tppM

(1)
3 (k)

)
× (

(−iεn + ξd )
{
(−iεn + ξp)2 − t2

pp[a4(k) − b4(k)]
} − M

(0)
4 (k)(−iεn + ξp) − tppM

(1)
4 (k)

)
− b2{(−iεn + ξp)2 − t2

pp[a3(k) − b3(k)]
}{

(−iεn + ξp)2 − t2
pp[a4(k) − b4(k)]

}∣∣2
, (C9)

where we have used a second set of basis functions defined in Table II as well as the new functions

P
(0)
l (k) = alx(kx) + aly(ky) + blx(kx) + bly(ky), (C10)

P
(1)
l (k) = [̃al(k) + b̃l(k)][alxy(k) + blxy(k)], (C11)

TABLE II. Second set of basis functions needed to evaluate the free energy of the present three-band model. In our notation, the indices l

and l̃ refer, respectively, to the functions al(k) [and bl(k)] and ãl(k) [and b̃l(k)].

l al(k) bl(k)

1 (kx + ky)2 + sin2 δ(ky − kx + 2 cot δ)2 2 sin δ[(ky + cot δ)2 − (kx − cot δ)2]
2 (kx + ky)2 + sin2 δ(ky − kx − 2 cot δ)2 2 sin δ[(ky − cot δ)2 − (kx + cot δ)2]
3 (kx − ky)2 + sin2 δ(kx + ky + 2 cot δ)2 2 sin δ[(kx + cot δ)2 − (ky + cot δ)2]
4 (kx − ky)2 + sin2 δ(kx + ky − 2 cot δ)2 2 sin δ[(kx − cot δ)2 − (ky − cot δ)2]
1̃ − sin δ(kx − ky − 2 cot δ) kx + ky

2̃ sin δ(kx − ky + 2 cot δ) −(kx + ky)
3̃ sin δ(kx + ky + 2 cot δ) kx − ky

4̃ − sin δ(kx + ky − 2 cot δ) −(kx − ky)
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M
(0)
l (k) = alx(kx) + aly(ky) − blx(kx) − bly(ky), (C12)

M
(1)
l (k) = [̃al(k) − b̃l(k)][alxy(k) − blxy(k)], (C13)

which depend on the basis functions of both tables.
In the main text of this paper, we have to perform the analytic continuation εn → −iz for D(m)

l (iεn,k). By observing the results
in Eqs. (C6)–(C9), we conclude that each D(m)

l (iεn,k) could be written as a product of a function times its complex conjugate.
Therefore, we can make the analytic continuation as follows:

D(m)
l (z,k) = h

(m)
l (z,k)h̄(m)

l (z,k), (C14)

where the functions on the right-hand side of the above equality are given by

h
(1)
1 (z,k) = (

(z − ξd )
{
(z − ξp)2 − t2

pp[a1(k) + b1(k)]
} − P

(0)
1 (k)(z − ξp) + tppP

(1)
1 (k)

)
× (

(z − ξd )
{
(z − ξp)2 − t2

pp[a2(k) + b2(k)]
} − P

(0)
2 (k)(z − ξp) + tppP

(1)
2 (k)

)
− b2

{
(z − ξp)2 − t2

pp[a1(k) + b1(k)]
}{

(z − ξp)2 − t2
pp[a2(k) + b2(k)]

}
, (C15)

h̄
(1)
1 (z,k) = (

(z + ξd )
{
(z + ξp)2 − t2

pp[a1(k) + b1(k)]
} − P

(0)
1 (k)(z + ξp) − tppP

(1)
1 (k)

)
× (

(z + ξd )
{
(z + ξp)2 − t2

pp[a2(k) + b2(k)]
} − P

(0)
2 (k)(z + ξp) − tppP

(1)
2 (k)

)
− b2

{
(z + ξp)2 − t2

pp[a1(k) + b1(k)]
}{

(z + ξp)2 − t2
pp[a2(k) + b2(k)]

}
, (C16)

h
(2)
1 (z,k) = (

(z − ξd )
{
(z − ξp)2 − t2

pp[a1(k) − b1(k)]
} − M

(0)
1 (k)(z − ξp) + tppM

(1)
1 (k)

)
× (

(z − ξd )
{
(z + ξp)2 − t2

pp[a2(k) − b2(k)]
} − M

(0)
2 (k)(z − ξp) + tppM

(1)
2 (k)

)
− b2

{
(z − ξp)2 − t2

pp[a1(k) − b1(k)]
}{

(z − ξp)2 − t2
pp[a2(k) − b2(k)]

}
, (C17)

h̄
(2)
1 (z,k) = (

(z + ξd )
{
(z + ξp)2 − t2

pp[a1(k) − b1(k)]
} − M

(0)
1 (k)(z + ξp) − tppM

(1)
1 (k)

)
× (

(z + ξd )
{
(z + ξp)2 − t2

pp[a2(k) − b2(k)]
} − M

(0)
2 (k)(z + ξp) − tppM

(1)
2 (k)

)
− b2

{
(z + ξp)2 − t2

pp[a1(k) − b1(k)]
}{

(z + ξp)2 − t2
pp[a2(k) − b2(k)]

}
, (C18)

h
(1)
2 (z,k) = (

(z − ξd )
{
(z − ξp)2 − t2

pp[a3(k) + b3(k)]
} − P

(0)
3 (k)(z − ξp) + tppP

(1)
3 (k)

)
× (

(z − ξd )
{
(z − ξp)2 − t2

pp[a4(k) + b4(k)]
} − P

(0)
4 (k)(z − ξp) + tppP

(1)
4 (k)

)
− b2{(z − ξp)2 − t2

pp[a3(k) + b3(k)]
}{

(z − ξp)2 − t2
pp[a4(k) + b4(k)]

}
, (C19)

h̄
(1)
2 (z,k) = (

(z + ξd )
{
(z + ξp)2 − t2

pp[a3(k) + b3(k)]
} − P

(0)
3 (k)(z + ξp) − tppP

(1)
3 (k)

)
× (

(z + ξd )
{
(z + ξp)2 − t2

pp[a4(k) + b4(k)]
} − P

(0)
4 (k)(z + ξp) − tppP

(1)
4 (k)

)
− b2{(z + ξp)2 − t2

pp[a3(k) + b3(k)]
}{

(z + ξp)2 − t2
pp[a4(k) + b4(k)]

}
, (C20)

h
(2)
2 (z,k) = (

(z − ξd )
{
(z − ξp)2 − t2

pp[a3(k) − b3(k)]
} − M

(0)
3 (k)(z − ξp) + tppM

(1)
3 (k)

)
× (

(z − ξd )
{
(z + ξp)2 − t2

pp[a4(k) − b4(k)]
} − M

(0)
4 (k)(z − ξp) + tppM

(1)
4 (k)

)
− b2

{
(z − ξp)2 − t2

pp[a3(k) − b3(k)]
}{

(z − ξp)2 − t2
pp[a4(k) − b4(k)]

}
, (C21)

h̄
(2)
2 (z,k) = (

(z + ξd )
{
(z + ξp)2 − t2

pp[a3(k) − b3(k)]
} − M

(0)
3 (k)(z + ξp) − tppM

(1)
3 (k)

)
× (

(z + ξd )
{
(z + ξp)2 − t2

pp[a4(k) − b4(k)]
} − M

(0)
4 (k)(z + ξp) − tppM

(1)
4 (k)

)
− b2

{
(z + ξp)2 − t2

pp[a3(k) − b3(k)]
}{

(z + ξp)2 − t2
pp[a4(k) − b4(k)]

}
. (C22)

According to the approach developed in Appendix B for solving the LC and QDW mean-field equations, we need to determine
first the roots of h

(m)
l (z,k) and h̄

(m)
l (z,k) which are denoted here as ξ

(m)
l,n (k) (n = 1, . . . ,N). As h

(m)
l (z,k) and h̄

(m)
l (z,k) are both

sixth-order polynomials in the variable z, their roots will be determined by means of numerical methods.
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