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We propose a mechanism where the under-doped regime of cuprate superconductors is governed
by an emergent SU(2) pseudo-spin symmetry connecting the d-wave superconducting state to a
d-wave charge order. The specific SU(2) pairing fluctuations between the d-wave SC state and the
charge sector lead to the formation of a new state of matter, where local patches of excitons are
spontaneously generated and are responsible for the creation of Fermi arcs in the pseudo-gap phase
of cuprate superconductors. In momentum space, each exciton patch is formed by a superposition
of modulation wave vectors coming from the anti-nodal region. A form factor contrives the wave
vectors to prefer the x and y axes, producing a typical checkerboard structure recently observed in
the under-doped regime. When the amplitude of the new state vanishes, it becomes critical, and
in this region a semiclassical Boltzmann calculation leads to a T/ ln(T ) scaling of the resistivity in
three dimensions, which describes the strange-metal phase with its long-standing linear-T resistivity
anomaly.

Introduction The concept of symmetries governing the
behavior of physical states is maybe the most robust in
theoretical physics. From the formation of nuclei to the
Higgs-Boson it has been instrumental in the determina-
tion of every emerging state in high energy physics. It
would be quite remarkable that a phenomenon as com-
plex as high temperature superconductivity is governed
as well by an overall emergent symmetry. Suggestions
about the existence of a pseudo-spin symmetry in the
background of the physics of cuprates have been intro-
duced since the early days of these compounds [1, 2]
and has been revived over the years in different con-
texts. In all cases, the main simple idea is that one can
rotate the d-wave superconducting (SC) state towards
another state of matter quasi-degenerate in energy, like
anti-ferromagnetism (AF) [3–6], a nematic state [7], or
else alternating loop-currents of d-density wave [8] or π-
flux phases [9, 10]. The physics is then controlled solely
by the powerful constraint of the emergent symmetry
which produces a vast region of the phase diagram where
the fluctuations between those two states are dominant.
Here, we argue that an emerging SU(2) symmetry con-
necting the d-wave SC state with a d-wave charge order
(CO) is the main ingredient of the physics of the under-
doped (UD) region, and that the very specific fluctua-
tions associated with this symmetry are responsible for
the opening of a gap in the anti-nodal (AN) zone -i.e.
(0, π) region- of the first Brillouin zone (BZ) leading to
the formation of Fermi arcs in the nodal (N) zone i.e. the
(π, π) region.

The SU(2) symmetry is realized explicitly in two micro-
scopic models: the t-J model at half filling [1, 2] (for AF
wave vector) and also the spin-fermion “hotspot” model
[11, 12] with a linearized electron dispersion. In both
models, AF interactions are at the origin of the emergent
SU(2) symmetry- which is likely to be the generic case
for UD cuprates. For the purpose of this study, neither

the strong-coupling character of the first model, nor the
vicinity of an AF quantum critical point in the second one
are that crucial, but the additional symmetry induced in
both. Generically when two states are degenerate - or
quasi degenerate in energy, it can be accidental, or con-
trolled by a symmetry,- here a pseudo-spin SU(2) sym-
metry which rotates from a d-wave SC state to a d-wave
CO state [13]. The SU(2) fluctuations, typically captured
within the O(4) non linear σ-model [4, 12, 14, 15], involve
phase fluctuations within each state but also between the
two pseudo-spin states. The presence of the SU(2) sym-
metry in the background of the UD region implies that
at some intermediate energy scale, the two pseudo-spin
states are indistinguishable. When both, d-wave SC and
CO pseudo-spin states are quasi degenerate due to ther-
mal fluctuations of the order of the pseudo-gap (PG) tem-
perature T ∗ (see Fig. 1), the SU(2) pairing fluctuations
trigger an instability towards a less symmetric state.

The main result of this paper is to show that the SU(2)
pairing fluctuations drive a new kind of instability in the
form of local patches of excitons (particle-hole excita-
tions) which possess a checkerboard real space structure
very similar to the modulations recently observed in the
charge sector [16]. These solutions can be understood as
local defects, or patches of the size of four to ten lattice
sites, which proliferate at temperature up to T ∗. They
form a resonant ”soup” of excitons-the Resonant Exci-
tonic State (RES), that is responsible for the formation
of Fermi arcs below T ∗. Translation symmetry is bro-
ken, but in contrast to the standard charge ordering, it
is broken locally, which does not imply global periodic-
ity. When the RES becomes critical [17], we find that
it induces a region where the resistivity vs. temperature
behavior has a T/ ln(T ) scaling while the electron self-
energy is, up to logarithms, linear in frequency, providing
the expected characteristics of the strange metal (SM)
phase [10, 18–21].
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FIG. 1. Schematic phase diagram of cuprate superconduc-
tors as a function of hole doping p and temperature T. The
strange metal phase is depicted in green and the Fermi liquid
(FL) in white. Insets : a) For T < Tc, the excitonic patches
co-exist with superconductivity and are especially visible in-
side the vortex-antivortex pairs. LP is the typical size of
an excitonic patch. b) For Tc < T < T0, one observes the
proliferation of patches and the superconducting fluctuations
(fSC)- fluctuating up to a U(1) subset of the SU(2) symmetry-
disappear at T0. c) For T0 < T < T ∗, the patches modula-
tions are incoherent and electron scattering through the ”exci-
ton soup” leads to dissipation which accounts for the increase
of the Fermi arcs with T .

Model Our starting point is an effective action S[ψ] =
S0[ψ] + S1[ψ], where the electrons interact with pairing
modes subjected to the SU(2) symmetry.

S0[ψ] = −
∑
k,σ

ψσkG
−1
0 (k)ψσk, (1a)

S1[ψ] =
∑
k,q

[
∆k,qψ↑k+qψ↓−k + h.c.

]
. (1b)

Here, ψ represents spin σ fermions with bare propagator
G−10 (k) = iεn − ξk, where ξk represents the dispersion
with subtracted chemical potential and S1[ψ] accounts
for the electron-SC interaction mediated through bosonic
field ∆k,q ∼

〈
ψk+q/2,σψ−k+q/2,−σ

〉
.

This bosonic field corresponds to SU(2) pairing fluc-
tuations of a small momentum q, with the form typi-
cal of the O(4) non linear σ-model describing the ther-
mal fluctuations between d-wave SC and CO states
[11, 12, 14, 15]:

πk,k′,q = 〈∆̄k,q∆k′,q〉 =
π̄0 (δk,−k′ − δk,k′)

ω2
n + J̄1(vk · q)2 + ā0,k

, (2)

where π̄0, J̄1, ā0,k are non-universal parameters and vk

the Fermi velocity. Integrating out the bosonic field ∆k,q

yields a new effective two body electron-electron interac-

tion of the form:

Sfin[ψ]=
∑
kk′q,σ

πk,k′,q ψσ,k ψσ,k′ ψ−σ,−k+q ψ−σ,−k′+q, (3)

which can now be decoupled in the charge channel. Upon
introducing the collective field

χk,k′ = T
∑
q,ωn

πk,k′,q 〈ψ↑−k+qψ↑−k′+q〉, (4)

representing a generalized charge exciton at wave vectors
k and k′, the self-consistent mean-field equation finally
yields

χk,k′ = −T
∑
q,ωn

πk,k′,q χq−k,q−k′

(iωn − ξq−k)(iωn − ξq−k′)− |χq−k,q−k′ |2
.

(5)
Eq. (5) is solved numerically to find the stability region
for the excitonic field (particle-hole pair) at wave vectors
k and k′. We simplify the computation by neglecting
the implicit frequency and momentum dependence of χ
under the integral in order to perform the Matsubara
sum at T = 0 exactly. It turns out that the shape of
the numerical solution of χ is not much sensitive to the
model parameters. For the numerical solution shown in
Fig. 2b) we further restrict to a subset of coupling vectors
by setting k′ = −k, which, at the FS, is equivalent to
the 2pF vector. The influence of the curvature to the
mass is modeled by a contribution to ā0 (Eqn.(2)) of the
form ∼ (ξk+Q0 + ξk)2, where Q0 is the diagonal wave
vector (depicted in blue in Fig. 2a)) [12, 22]. The SU(2)
symmetry is realized when ξk+Q0 = −ξk, which favors
the AN zone.

Description of the RES The solution of Eqn. (5) leads
to the formation of the RES, where a wide range of
2pF vectors give quasi-degenerate solutions as depicted
in Fig.2 b). One can think of the RES as a sum of spatial
modulations at vectors following the distributionP =2pF
shown in Fig. 2d), and conjugated to a short range form
factor Fk:

χPGr,r′ =
∑
P,k,σ

e

[
−iP· r+r′

2

]
e[ik̃·(r−r

′)] 〈ψk,σψk−P,σ
〉
, (6)

with k̃ = 2k−P and
〈
ψk,σψk−P,σ

〉
= χPFk, and the

modulation vector P can take indifferently any of the
2pF wave vectors depicted in Fig.2d). The form factor
Fk measures the phase space allocated to each P mod-
ulation, with

∣∣∣k̃∣∣∣ ≤ |Fk|, as shown in Fig. 2c). Note
that this object has a natural local structure due to the
summation over multiple P-wave vectors, which makes
it similar to a soliton solution of the nonlinear Eq. 5.
There is no global breaking of translation invariance, but
rather a collection of excitonic patches breaking locally
the translation invariance.
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FIG. 2. (Color online) a) Schematic representation of
the Fermi surface and the first BZ boundary of hole-doped
cuprates with charge ordering (blue) and Umklapp (yellow)
vector. b) Color plot of |χk,k′ | in the AN zone (π, 0) of the first
BZ, calculated for k′ = −k. The amplitude of the electron-
hole pair is maximum in the AN region along the Fermi sur-
face, selecting a set of degenerate solutions at 2pF wave vec-
tors. It is suppressed in the nodal region (π, π). c) Density
plot of the excitonic amplitude |χk,k′ | in the inset region of
panel b), for one chosen 2pF wave vector (depicted in yellow
in d)), such that k′ = k + 2pF. The intensity is non zero
over a width Fk. d) Representation of the quasi-degenerate
2pF wave vectors of the electron-hole pairs on opposed Fermi
surfaces in the AN region, that give rise to the RES state.
The momentum spread is Sp.

Remarkably, each patch resembles very much a super-
conductor, but made of excitons (electron-hole pairs) in-
stead of Cooper pairs (electron-electron pairs) [23]. The
typical size of the pair - also called ”coherence length” in
the SC analogy, is typically small with ξ ∼ ~vF /(πχAN )
(with χAN the typical amplitude of the AN gap), which
leads to the preferential formation of pair on nearest
neighbor Cu-bonds. The second typical length corre-
sponds to the size of the patches, which we call LP. It
is controlled by the spread SP of the P wave vectors as
shown in Fig. 2b). The typical patch size of the RES
LP ∼ 2π~/SP is of order of a few (4 to 10) lattice sites,
in good agreement with recent STM experiments [16].
Each excitonic patch also possesses an internal structure
in momentum space, coming from the summation over
the modulation vectors P in the equation (6). As shown
in Fig. 2c), the modulation spreading is on the y-direction
for the (0, π)- region and respectively in the x-direction
in the (π, 0)- region. This leads to the typical checker-
board form, with two average modulation wave vectors
around Qx = ±2π/a(d, 0) and Qy = ±2π/a(0, d) with
d ∼ 0.3 (see Fig.2b)), that are expected to be visible
through local probes like STM [16]. The detailed struc-
ture of the modulation inside the excitonic pacthes falls

beyond the scope of this manuscript and will be devel-
opped in a forthcoming publication [24].

Discussion At this stage we propose a real space pic-
ture which describes how the proliferation of patches is
responsible for the opening of the PG (see Fig.1). Our
theory belongs to the class of “one-gap” scenarios, for
which the coherent SC state is destroyed at Tc by fluc-
tuations [25–30], but the class of fluctuations at play
here have SU(2)-character, as opposed to only the U(1)-
type preformed pair scenario. Proliferation of excitonic
patches destabilizes the AN part of the Fermi surface,
leading to the formation of Fermi arcs whose lengths is
increasing with T up to T ∗, as reported in Angle Resolved
Photo Emission (ARPES) (see e .g. [28, 31, 32]).

At zero temperature (T = 0) the whole system is in
the SC state. As the temperature is raised below Tc
(0 < T < Tc) as depicted in Fig. 1a), phase fluctuations
destroy the coherent SC state. These fluctuations man-
ifest themselves as local defects of the SC density, that
are similar to vortex-antivortex pairs in classical super-
conductors, but with the difference that in our case, the
normal phase is made of local excitonic patches which can
be seen inside the vortices. An important point is the one
of global phase coherence. Below Tc the global phase of
modulations inside each excitonic patch can get locked
with the SC one, so that the intrinsic checkerboard mod-
ulation of the patches acquires a global phase coherence.
This phenomenon enhances the coherent charge density
wave (CDW)-like signal experimentally observed at zero
magnetic field [33].

At T = Tc, the gap around the node disappears, caus-
ing the loss of SC coherence, and at an intermediate tem-
perature T0, such that Tc < T0 < T ∗ the standard SC
fluctuations are lost, as observed for example, by Joseph-
son effect [34], Nernst effect [35, 36] or by study of the
resistivity [37]. The transition towards the SC state can
thus be described by a phase correlation length λ̃c, which
diverges at Tc and becomes very small at T ∗. λ̃−1c can be
understood as the typical scale of all the phase fluctua-
tions in the system (in the present SU(2) scenario there
are three types of phase fluctuations: SC, CO, and the
angle between these two).

For Tc < T < T0 (Fig.1b)), the global phase coherence
of the Cooper pairs and modulated excitonic patches is
lost. The SC superfluid density ns vanishes at T0. In
the regime, T0 < T < T ∗ shown in Fig.1c), the RES
manifests itself as an incoherent set of excitonic patches.
Electronic scattering through the RES induces a finite
lifetime, which accounts for the size of the Fermi arcs
increasing with T [28]. Above T ∗, the RES disappears.
Note that the incoherent and local character is likely to
make this state robust to the presence of impurities [37].

Resistivity above T ∗ In the remaining of this paper we
explore the consequences of the RES for the phase dia-
gram of cuprates (see Fig. 1) when this mode becomes
critical. We will calculate the resistivity ρ in d = 3 in
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the absence of a gap and show that it differs from the
usual Fermi liquid T 2 scaling with a typical T/ log T be-
havior. At quadratic order in the excitonic fluctuations,
we obtain the following effective interaction

Scrit[ψ]=
∑

kk′qP,σ

ΦP
q ψσ,k ψσ,k+P+q ψ−σ,k′ ψ−σ,k′−P−q, (7)

see Fig. 3a,b), with ΦP
q = 〈χ−P−qχP+q〉. The form

of above interaction corresponds to a coupling with a
collection of bosons (see also Eqn.(6)). The renormal-
ized bosonic propagator follows from Dyson’s equation
[ΦP

q (Ω)]−1 = q2 + m − ΠP
q (Ω). Therein, the bare

propagator is assumed to have Ornstein-Zernike form.
The retarded bosonic polarization, ΠP

q = Π′q + iΠ′′q
in Fig. 3c), evaluated for P = 2pF, yields Π′q(Ω) =

c

[
(Ω + q‖) ln |Ω + q‖| − (Ω− q‖) ln |Ω− q‖|

]
and Π′′q(Ω) =

πc
[
(Ω + q‖)θ(−Ω− q‖) + (Ω− q‖)θ(Ω− q‖)

]
. With Ω we

denote real frequencies and c is a non universal factor
depending on the details of the dispersion.

Next, we calculate the electronic self-energy depicted
in Fig. 3c). Note that the self energy requires a
summation over all ordering vectors P. Up to loga-
rithms, each P-wave gives the same contribution. In the
quantum critical regime, we have, the scaling behavior
Π′q (Ω) ∼ 2cq‖ ln |Ω|, and Π′′q (Ω) ∼ πcΩ. We use this
scaling law to evaluate the self-energy of an electron scat-
tering through a single bosonic mode written in Matsub-
ara form as Φ−1P (iωn) = γ |ωn| − v‖q‖ ln |ωn| + v⊥q

2
⊥/2.

The evaluation is performed in d = 3 and at the first
order in the leading singularity we obtain Σ (iεn) =
iεn/

(
4πv‖v⊥ ln |εn|

)
. We note that -with logarithmic cor-

rections, this form is typical of a marginal Fermi liquid
[18] and can account for the properties of the strange
metal phase depicted in Fig. 1.

We turn now to the discussion of the relaxation time for
electron-electron scattering process from a semiclassical
Boltzmann treatment. The Boltzmann equation for the
non equilibrium electron distribution fk writes [38, 39](

∂fk
∂t

)
collisions

= −eE · ∇kfk = −Iei [fk]− Iee [fk] , (8)

where e is the elementary charge, E a static electric field
and Iei respectively Iee are the electron-impurity respec-
tively electron-electron collision integrals. The electron-
electron collision integral is obtained from Fermi’s golden
rule

Iee [fk] =
1

V

∑
q

ˆ ∞
−∞

dΩ ImΦq (Ω) δ (εk − εk+P−q − Ω)×[
fk (1− fk+P−q) (1 + nB (Ω))− (1− fk) fk+P−qnB (Ω)

]
,

(9)

with nB(x) = (exp (x/T ) − 1)−1 and we drop the
contribution from Iei. Relaxation-time approximation

a) b)

c)
FIG. 3. (Color online) a) Graphical representation of the
interaction in Eq. (7). The wavy line represents the bosonic
propagator ΦP

q at criticality for |q| � |P|. b) RES scattering
between two electrons close to the FS at k and k+2pF accord-
ing to Eq. (7). c) Diagrammatic representation of the one-loop
bosonic polarization Πq and the fermionic self-energy Σq for
the RES mode.

amounts to set fk ' f0,k − gkf0,k(1 − f0,k) where f0
is the equilibrium distribution and gk = τeE · vk/T . In
this approximation Eq. (9) becomes

Iee [fk] =
1

V

∑
q

ˆ ∞
−∞
dΩ ImΦq (Ω)nB (Ω) f0,k+P−q(1− f0,k)

× (gk+P−q − gk) δ (εk − εk+P−q − Ω) . (10)

We see from Eq. (10) that this theory has a non-vanishing
imbalance velocity factor, since for q = 0, (gk+P − gk) 6=
0. This implies that no additional T dependence arises
from the angular part of the integral. To make the con-
nection of the scattering time τ and resistivity ρ, we write
the electrical current density as J = −2e〈v〉 and note its
connection to ρ via J = ρ−1E. For small electric fields,
ρ ∼ τ−1 and solving above Boltzmann equation for τ
yields τ−1 ∼ T/ ln(T ), such that ρ ∼ T/ ln(T ).

Conclusion We have proposed a new mechanism for
gapping out the AN region of the Fermi surface, leading
to the formation of Fermi arcs below T ∗. In our model, an
SU(2) symmetry governs the physics of the UD region of
the phase diagram, and SU(2) pairing fluctuations allow
for the emergence of new local excitations in the form
of excitonic patches which possess intrinsic checkerboard
modulations. The proliferation of these patches leads to
the formation of a metastable state -the RES, below T ∗

which is responsible for the formation of the PG. One
striking feature of our theory, is that it reconciles the
one-gap vs. two gap scenarios : fluctuations destroy the
SC phase at Tc, creating Fermi arcs, as in the one-gap
scenario[10, 28, 30, 40–42], but on the other hand the AN
and nodal regions behave very differently upon raising
the temperature (with excitonic patches forming in the
AN region), which is reminiscent of two-gaps. Note that
typical two gaps scenarios produce Fermi pockets instead
of Fermi arcs in the nodal region [43, 44].
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