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We study a φ4-theory at finite temperature in a finite volume. Quantum, thermal and volume
fluctuations are treated with the functional renormalisation group. Specifically, we focus on the
interplay of temperature and length scales driving the system. We find that thermodynamical
observables at finite volume such as the pressure approach the infinite volume limit similarly to that
of the vanishing temperature limit.

We also advance the functional renormalisation group method at finite volume. In particular, we
identify requirements for suitable regulators that admit the exponential thermal and finite volume
decay properties.

PACS numbers: 11.10.Hi, 11.10.Wx, 11.15.Tk

I. INTRODUCTION

Finite volume/finite size effects play or may play an
important rôle in systems ranging from the physics of
ultracold atom clouds or optical lattices over condensed
matter systems, multi-layer systems to heavy-ion colli-
sions where the interaction region is relatively sharply
bounded, though expanding. On the theoretical side, lat-
tice methods or other theoretical approaches with space-
time coarse graining are subject to finite volume effects
due to finite number of lattice or grid points.

In an Euclidean field theory finite volume effects are
described similarly to that of thermal fluctuations, hence
being related to a wealth of interesting phenomena and
showing characteristic scaling laws. In particular, sys-
tems with a second order phase transition lose this prop-
erty in a finite volume and show finite size scaling. Promi-
nent questions in this context concern the approach to
the infinite volume limit and the continuum limit in lat-
tice theories, the characteristics of the finite volume scal-
ing and the appropriate extraction of thermodynamical
observables in a given approach.

It is well-known from systems at finite temperature
that thermal effects both show a characteristic exponen-
tial decay with the masses of the system at hand, as
well as a characteristic polynomial decay with momenta
due to thermal contact terms. The latter contact terms
also play a pivotal rôle in thermodynamical relations.
Moreover, the strength of such contribution is only com-
puted with the correct exponential thermal decay. It is
this peculiar combination of exponential and polynomial
suppression that requires a quantitative control in non-
perturbative approaches.

In the present work, we discuss finite temperature and
finite volume effects within the functional renormalisa-
tion group (FRG) approach, see e.g. [1–5]. Here, we ex-
tend the discussions and approach set up in Refs. [6–10]
with a special emphasis on the interplay of the scaling
with temperature T , volume (box length L), and with
the infrared cutoff scale k in the FRG approach. This

is worked out at the example of a real φ4-theory. Only
if all these scalings are taken into account quantitatively
one can expect to have access, in particular, to thermo-
dynamical observables and the equation of state.

A related functional approach is given by Dyson-
Schwinger equations (DSEs) at finite temperature and a
finite volume, see e.g. [11–14], if the infrared cutoff scale
k is substituted with the ultraviolet initial scale Λ, where
the flow is initiated. The latter can be identified with the
ultraviolet momentum cutoff in the DSE framework.

The work is organised as follows. In Section II
we discuss the FRG framework for φ4-theory, includ-
ing its properties and limits of the current simple φ4-
approximation. In Section III the formulation of the FRG
at finite temperature and volume is introduced in a self-
contained way, with a special emphasis on the fate of
long range correlations and the (non-)existence of con-
densates. In Section IV we contrast thermodynamical
quantities in an infinite and finite volume, and their FRG
evolution. Special attention is paid to the relation of the
chosen cutoff procedure (regulator function) and the de-
cay behaviour of thermal and finite volume effects for
large cutoff scales. In Section V we extend the decay
analysis to the full dynamics. We also present numer-
ical results for the pressure, the dynamical mass and
φ4-coupling for finite volume and temperature adapted
regulators.

II. φ4-THEORY AND THE FUNCTIONAL
RENORMALISATION GROUP

We study finite volume effects at the simple example of
a one-component scalar field theory. Its classical action
is given by

S[φ] = ∫ d4x [1

2
(∂µφ(x))2 + V cl (ρ(x))] , ρ ≡ 1

2
φ2 ,

(1)
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with the standard kinetic term and a potential

V cl(ρ) = λ
2
(ρ − κ)2 − λ

2
(ρ0 − κ)2 , ρ0 = max(0, κ) . (2)

The potential V cl comprises the mass term and the φ4-
potential with coupling λ. The minimum of the poten-
tial is at ρ0 = max(0 , κ). The potential only depends on
φ2, thus the theory is Z2-invariant under φ → −φ. The
parameterisation of the potential in (2) has the normali-
sation V cl(ρ0) = 0 at the minimum ρ0.

A. Functional renormalisation group

The functional renormalisation group (FRG) is a
functional continuum approach that includes non-
perturbative effects. In this Section we highlight those
aspects which are relevant for this work.

The idea of the FRG is based on Wilson’s idea of inte-
grating out fluctuations momentum-shell-wise. In prac-
tice, this is done by starting at a microscopic scale Λ,
where the theory is defined via its classical action S[φ].

In this work, we consider a field theory for a (one-
component) scalar φ. Fluctuations from larger distance
scales with respect to the microscopic scale, i.e. energies
lower than the renormalisation group (RG) infrared scale
k, are suppressed by adding a regulator term, Rk(p),
which leaves the ultraviolet unchanged but serves as an
effective infrared mass ∼ k2. This allows to integrate fluc-
tuations which are of the order of this mass. By variation
of the scale from microscopic to macroscopic values fluc-
tuations from all scales can be taken into account succes-
sively. Within this procedure, one smoothly interpolates
between the classical action at large cutoff scales k and
the full quantum effective action Γ[φ] at vanishing cutoff
scale, k = 0. This is achieved in terms of an integro-
differential equation, the Wetterich equation, [15],

∂tΓk[φ] =
1

2
∫
q

1

Γ(2)[φ] +Rk
∂tRk(q) , (3)

with the standard abbreviation ∫q = ∫ d4q/(2π)4, and

t = lnk/Λ with some reference scale Λ. The schematic
notation on the right hand side of (3) stands for inte-
gration of the full, non-perturbative diagonal part of the
propagator 1/(Γ(2) +Rk)(p, q) and the derivative of the
regulator Rk(q) over the loop momentum q. The initial
condition for (3) is given by ΓΛ[φ] = S[φ]. For gen-
eral k, the effective action Γk[φ] describes the full quan-
tum effective action for momentum scales larger than k,
and lacks the quantum fluctuations of momentum scale
smaller than k. In the limit k → 0 it turns into the full
quantum effective action Γ[φ].

The regulator implements the shell-wise integration of
fluctuations described above, i.e. suppressing the infrared
while leaving the ultraviolet unmodified. Within these
restrictions it can be chosen freely. In the following, we

k2

q=k q

Rsharp
k (q)

Ropt
k (q)

Rexp,1
k (q)

Rexp,2
k (q)

FIG. 1: Different regulator functions, see (4), (5) and (6).

study various common choices like the exponential regu-
lator,

Rexp,m
k (q) = q2 (q2/k2)m−1

e(q2/k2)m − 1
, (4)

where the parameter m controls the sharpness of sup-
pression above the scale k, the flat regulator [16],

Rflat

k (q) = (k2 − q2)Θ (k2 − q2) , (5)

which is optimised within the lowest order of a derivative
expansion, see [16–18], and the sharp regulator,

Rsharp

k (q) = k2 ( 1

Θ (k2 − q2)
− 1) . (6)

The sharp regulator implements the standard ultraviolet
momentum regularisation within Dyson-Schwinger equa-
tions, as well as in perturbation theory. There, loop mo-
menta q2 are cut at an ultraviolet scale Λ with q2 ≤ Λ2.
Integrating the flow with the sharp regulator from an
ultraviolet initial scale k = Λ to k = 0 precisely leads
to such loop integrals: in this case the flow gives the
standard BPHZ-type renormalisation. Other regulators
give a generalised BPHZ-type renormalisation, see [18],
in particular the regulators (4) do not spoil the analytic
properties of the integrands for finite momenta. As we
shall see, the non-analyticity of the flat regulator is al-
ready causing large intricacies for the flow of thermody-
namical observables. These intricacies get enhanced by
the stronger non-analyticity of the sharp regulator.

The regulators (4), (5), (6) are shown in Fig. 1. Note
that the regulator does not need to depend on both, fre-
quencies and spatial momenta. In fact, in the context
of thermal field theory it is convenient to regulate spa-
tial momenta only, q2 → q⃗2 in the regulators defined in
(4)–(6), because in this case Matsubara frequency sums
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can often be performed analytically. We will elaborate
on this in section IV, where we focus also on the suitabil-
ity of regulators from additional constraints imposed by
finite temperature or volume.

B. Local potential approximation and flow of the
effective potential

For large cutoff scales k → Λ, the effective action
Γk tends towards the classical action S in (1) with Λ-
dependent parameters. In particular the effective poten-
tial Vk(ρ) tends towards the (bare) classical potential,
VΛ = Vcl. Here, the effective potential Vk is defined as the
effective action Γk evaluated for static (constant) fields
ρc,

Vk(ρc) ≡
Γk[ρ=ρc]
V4d

, with V4d =
4

∏
i=µ
∫

Lµ

0
dxµ . (7)

In (7) the trivial volume factor is removed. The effective
action also contains higher derivative terms which are
dropped here in the spirit of a low energy derivative ex-
pansion or local potential approximation (LPA). In this
approximation, the full effective action reads

Γk[φ] = ∫ d4x(1

2
(∂µφ)2 + Vk(ρ)) , (8)

Within the LPA approximation (8), the k-dependent full
propagator is given by

Gk(q, ρ) =
1

q2 +m2
k(ρ) +Rk(q)

, (9)

with the k- and field-dependent mass function

m2
k(ρ) = V ′

k(ρ) + 2ρV ′′
k (ρ) . (10)

The primes indicate derivatives with respect to ρ. The
effective potential Vk(ρ) can be expanded in powers of
(ρ − ρ0) about the equation of motion (EoM) for static
fields,

∂φV ∣φ=√2ρ0
= 0 . (11)

This leads to

Vk(ρ) =Vk(ρ0) −
λ

2
(ρ0 − κ)2 + λ

2
(ρ − κ)2

+
∞

∑
n=3

λn
n!

(ρ − ρ0)n , (12)

with the relation between ρ0 and κ from (2) and VΛ(ρ0) =
0. The first line comprises the normalisation of the
effective potential and the k-dependent counterpart of
the classical potential including fluctuation effects for κ
and λ, while the second line comprises the fluctuation-

induced higher order scatterings. In this expansion the k-
dependent analogues of the power-counting relevant clas-
sical parameters λ,κ are determined by

λk(ρ0,k − κk) = V ′
k(ρ0,k) , λk = V ′′

k (ρ0,k) , (13)

where we made the k-dependence explicit. The mass
function m2

k(ρ), evaluated on the EoM, reads

m2
k =m2

k(ρ0,k) = λk(3ρ0,k − κk) , (14)

by using the definition of κ in (2). Vanishing κ signals
the phase transition. For large cutoff scales k → Λ, the
effective potential tends towards the classical potential
Vcl given in (2).

The flow equation for the effective potential is easily
derived from (3) and reads

V̇k(ρ) =
1

2
∫
q
G(q, ρ)Ṙk(q) , (15)

with G(q, ρ) defined in (9), and the dot indicates the di-
mensionless derivative with respect to the RG scale, i.e.
V̇k = ∂tVk. The flow of the effective potential, (15) de-
pends on V ′ and V ′′ via the mass function m2

k(ρ), (10) in
the propagator. By taking the first and second derivative
of (15) with respect to ρ in (1) we find

∂ρV̇k(ρ) =
1

2
∫
q

∂

∂ρ
Gk(q, ρ)Ṙk(q)

= −1

2
(m2

k(ρ))
′

∫
q
G2
k(q, ρ)Ṙk(q) , (16)

and

∂2
ρ V̇k(ρ) = [(m2

k(ρ))
′]

2

∫
q
G3
k(q, ρ)∂tRk(q)

− 1

2
(m2

k(ρ))
′′

∫
q
G2
k(q, ρ)Ṙk(q) . (17)

Eq. (16) and (17) depend on first and second ρ-derivatives
of the mass function, whose flows can be obtained by
further derivatives of the flow equation (17) with respect
to ρ.

C. φ4-approximation

The partial differential equation (15) can be solved
within various methods. Here, we resort to a Taylor ex-
pansion about the minimum ρ0. Then, evaluated at ρ0,
(15)-(17) are the first three of an infinite hierarchy of
ordinary coupled differential equations for the couplings
κ, λ, λn≥3 defined in (12). At the initial scale Λ we have
λn,Λ = 0 for n ≥ 3. Using the parameterisation (12) we get
for the left hand side of the flow of the effective potential
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(15),

∂tV (ρ) =V̇ (ρ0) − ρ̇0 [V ′(ρ) − V ′(ρ0)] + λ(ρ̇0 − κ̇)(ρ − ρ0)

+ λ̇
2
(ρ − κ)2 − λ̇

2
(ρ0 − κ)2 + ∑

n≥3

λ̇n
n!

(ρ − ρ0)n ,

(18)

leading to

V̇ ′(ρ0) = −λ κ̇ , V̇ ′′(ρ0) = λ̇ − ρ̇0λ3 . (19)

The λ3 term in (19) signals the k-dependence of the ex-
pansion point and feeds into the flow of λ. This exem-
plifies the destabilising backreaction of the higher cou-
plings on the flow of the lower couplings in the presence
of a flowing expansion point, and can be avoided with
a k-independent expansion point, [19]. In the present
work we drop the higher couplings also for k < Λ, that is
λn≥3 ≡ 0 and approximate

Vk(ρ) ≈ V (0)k (ρ0) + (ρ − ρ0)V ′
k(ρ0) +

1

2
(ρ − ρ0)2

V ′′
k (ρ0) ,

(20)

with (13). This is simply the first line in (12). The rapid
convergence of this expansion in O(N)-models at infinite
volume in general dimensions has been well-studied for
example within the computation of critical exponents,
see e.g. [20–23]. This approximation also works well
for low-energy effective models for QCD with mesonic
degrees of freedom at vanishing density and finite tem-
perature [19]. In turn, at finite density and finite tem-
perature higher powers in ρ, further couplings and mo-
mentum dependences are required for quantitative state-
ments, for details see Ref. [19]. This concerns in par-
ticular the existence and location of a critical end point
(CEP) in the phase diagram. Then one either resorts to
a k-independent expansion point or relies on global tech-
niques for solving partial differential equations, see e.g.
[2, 24].

Here, we are interested in structural results and we
only keep the relevant parameters κ and λ for the sake
of simplicity. Then the set of flow equations (15)-(17)
is closed. In this approximation, we have access to the
flowing free energy density fk, the mass m2

k, see (14), and
the coupling λk with

fk ≡ Vk(ρ0) =
Γk[ρ0]
V4d

, (21)

and

m2
k = V ′

k(ρ0) + 2ρ0V
′′
k (ρ0) , λk ≡ V ′′

k (ρ0) . (22)

The two parameters in (22) can be determined from the

coupled set of flow equations for ∂ρV̇k(ρ0) and ∂2
ρ V̇k(ρ0).

The flow of the free energy density fk in (21) only de-
pends on κk and λk, and can be integrated separately

with the solution for κk and λk.

In the current φ4-approximation the mass function and
its derivatives are given by

m2
k(ρ) = λk(3ρ − κk) , m2

k

′ = 3λk , m2
k

′′ ≡ 0 . (23)

In summary, this leads to the closed system of flow equa-
tions for fk, κk and λk, with

ḟk =
1

2
∫
q
Ṙk(q)Gk(q) ,

κ̇k =
3

2
∫
q
Ṙk(q)G2

k(q) ,

λ̇k = 9λ2
k ∫

q
Ṙk(q)G3

k(q) . (24)

Note that all flows are positive and therefore leading to
decreasing functions fk, κk and λk. In summary this re-
sults in an increasing mass. This reflects the property
that bosonic flows are symmetry-restoring. Note also
that the reduced system of equations for the mass and
the coupling is already closed. The flow of fk only de-
pends on mk = λk ∣κk ∣. The above flows integrations over
the four-momentum q: for finite extent in either tempo-
ral or spatial direction the integration (partly) turns into
summation over discrete modes. We elaborate on these
modifications in section III.

III. FINITE TEMPERATURE & VOLUME

At finite temperature and/or in a finite volume, some
of the space-time directions only have finite extent,

x0 ∈ [0,1/T ] , and/or xi ∈ [0 , Li] . (25)

Note that in the current Euclidean formulation there is
no technical difference between the spatial and temporal
directions. One might as well interpret a finite extent in
the temporal direction as a theory at vanishing tempera-
ture and one compact spatial direction with L0 = 1/T . A
finite extent in a given direction with periodic boundary
conditions (for bosons, φ(x+Lµ) = φ(x))) only allows for
plane waves that are periodic under shifts xµ → xµ +Lµ,
that are exp(i2πnxµ/Lµ) with n ∈ Z. This entails that
frequencies and momenta are discrete,

pµ = 2πn
1

Lµ
, with n ∈ Z and T = 1

L0
. (26)

In the case of finite temperature these are the Matsubara
frequencies. Accordingly, spatial momentum integrations
turn into sums over spatial Matsubara modes. The com-
pactification of a coordinate x related to the momentum
p to the interval x ∈ [0 , L] with periodic boundary con-
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ditions leads to

1

2π
∫

∞

−∞
dq I(q2) L<∞→ 1

L

∞

∑
n=−∞

I ((2πn

L
)

2

) . (27)

This is trivially extended to higher dimensions.
In the case of finite temperature the temporal direction

x0 is compactified to the range x0 ∈ [0, 1/T ] with periodic
boundary conditions for bosons. For fermions one has
anti-periodic boundary conditions. For infinite spatial
extent, momentum integrations have the form

∫
q
I(q2) T>0Ð→ T

∞

∑
n0=−∞

∫
q⃗
I ((2πTn0)2 + q⃗2) , (28)

with the spatial momentum integration ∫q⃗ = ∫ d3q/(2π)3,

and a sum over the Matsubara modes 2πTn0.
In the case of finite temperature and finite spatial ex-

tent L we are left with sums over discrete modes in both
temporal and spatial directions, respectively, viz.

∫
q
I(q2) T>0ÐÐ→

L<∞

T

L3

∞

∑
nµ=−∞
µ=0,1,2,3

I (4π2 [T 2n2
0 +

n2
1 + n2

2 + n2
3

L2
]) , (29)

with n1, n2 and n3 label the discrete spatial modes in
the cubic volume of edge length L.

A. Range of finite temperature & volume effects

Finite extent, (25), seemingly induces a dimensional
reduction of the theory in the presence of finite temper-
ature and/or finite volume: for large temperature/small
volume only the zero mode of the sum contributes, leav-
ing only the integration/sum over the other momentum
directions. This dimensional reduction is well-known at
finite temperature. There it is commonly formulated that
a quantum field theory in 3 + 1 (or other dimensions) is
dimensional reduced to its 3-dimensional counterpart for
sufficiently large temperature. However, strictly speak-
ing this only holds for momentum scales p/T ≪ 1. There,
however, it is valid for all temperatures. In turn, for
p/T ≫ 1 the dimensional reduction does not take place.
This is reflected in the fact that the renormalisation can
be chosen to be temperature-independent.

The co-existence and interaction of these two mo-
mentum regimes for all temperatures and/or finite
lengths has the direct consequence that we see both,
an exponential suppression of thermal and/or finite
volume effects with the physical mass scales of the
theory as well as the standard polynomial suppression of
large momentum modes already present in perturbation
theory:

Exponential decay: In finite temperature field theory

thermal correlations decay exponentially with the mass
gap mgap of the theory, which can be formalised as

lim
mgap
T →∞

∣O
T
n −OT=0

n

OT=0
n

∣∝ A(
mgap

T
) exp(−

mgap

T
) , (30)

for correlation functions

OTn = ⟨φ(x1)⋯φ(xn)⟩T , (31)

in the absence of further scales. If the latter ones
are present they lead to further dependencies on their
dimensionless ratios in A. The function A(y) is a
rational function of the argument y = mgap/T , and the
exponential suppression with exp(−mgap/T ) can be
readily computed from one loop thermal perturbation
theory. Evidently, similar expressions hold for the finite
volume correlations, with the identification T → 1/Li
in (30). For potentially vanishing correlation functions
the denominator of (30) should be substituted with
∣OTn ∣ + ∣OT=0

n ∣ for the sake of definiteness. For the
correlation functions studied in the present work this is
not necessary.

Polynomial decay: Note that (30) does not im-
ply an exponential suppression of thermal corrections
in momentum space with momenta proportional to
exp(−const. p/T ). In momentum space, correlation func-
tions show a subleading momentum behaviour with
temperature-dependent coefficients that is only sup-
pressed by powers of p2. For the sake of simplicity, we
consider the symmetric point p2

i = p2 for all i = 1, ..., n
and obtain

lim
p
T →∞

∣O
T
n −OT=0

n

OT=0
n

∣∝ B ( p
T
)→ 0 , (32)

with a rational function B(p/T ) which decays polyno-
mially for p/T →∞.

For the two-point correlation functions, the propaga-
tor G(p), this is known as the Tan-contact term in e.g.
the context of ultracold atoms [25–27]. Within the FRG
these terms have been discussed in [6, 8, 28] for Yang-
Mills theory and ultracold atoms, respectively. In [6–8]
a detailed analysis of the diagrammatic origin of this be-
haviour was provided. This also entails that the coeffi-
cients of this decay come from thermal fluctuations and
their values hinge crucially on the correct implementa-
tion of the exponential decay in (32). Hence, even though
these terms have a polynomial decay, the correct compu-
tation of the prefactor CT relies on the exponential sup-
pression (30) with the physical mass scales of the theory.
For the propagator we have

lim
∣p⃗∣
T →0

∣G
T (0, p⃗) −GT=0(0, p⃗)

GT=0(0, p⃗)
∣∝ CT ( T

∣p⃗∣
)

4

, (33)

with a temperature-dependent prefactor CT (in the pres-
ence of other scales), the Tan-contact. Importantly, the
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Tan-contact is related to e.g. the equation of state as
well as the density. Hence, it is expected that only an
approach that is able to deal with both the exponential
suppression and the polynomial terms enables us to com-
pute these quantities.

B. Flow equation at finite temperature & volume

The flow equation for the effective potential takes the
form

V̇k(ρ) =
T

2L3 ∑
nµ∈Z

Gk(q, ρ) Ṙ(q) , with qµ = 2πnµ
1

Lµ
.

(34)

Note that the effects of finite volume are qualitatively
similar in other dimensions (d − 1) + 1. Thus, for the
purpose of this work, we restrict ourselves to (3 + 1) di-
mensions. In the following, we discuss results obtained
in the φ4-approximation for flows at both finite temper-
ature and finite volume. These results are obtained by
integrating the flows (containing loop integrations (29)),
(24), over the RG scale k from Λ to 0.

In the current FRG setup the dimensional reduction
discussed in the last section III A is apparent from the
flow. To begin with, at finite temperature and k/T ≪ 1
the flow only receives contributions from the Matsubara
zero mode (for regulators that decay sufficiently fast for
frequencies q0/T ≪ 1). Consequently, in this regime the
flow reads

V̇k≪T (ρ)→
T

2
∫
q⃗

Ṙk(q0 = 0, ∣q⃗∣)
q⃗2 +Rk(q0 = 0, ∣q⃗∣) +mk(ρ)

. (35)

The prefactor T can be absorbed with an appropriate
rescaling of Vk, ρ, leading to dimensionally reduced flows
for

V3d = V /T , ρ3d = ρ/T . (36)

The new variables (36) have the momentum dimensions
of the 3-dimensional potential and field-squared. More-
over, (35) takes the form and the dimensional properties
of a (3+0)-dimensional flow for the potential.

With the same line of arguments it can be easily
seen that a finite volume setup does not support a non-
vanishing condensate, effectively reducing to quantum
mechanics for a large correlation length: if the cutoff
scale k is far smaller than the inverse size of the system,
k ≪ 1/L, only the spatial zero mode contributes to the
flow, effectively reducing it to a 0 + 1-dimensional flow
with only the frequency integral to be performed. This
mimics a quantum mechanical flows, to wit

V̇k≪1/L(ρ)→
1

2L3 ∫
dq0

2π

Ṙk(q0, ∣q⃗∣ = 0)
q2
0 +Rk(q0, ∣q⃗∣ = 0) +m2

k(ρ)
.

(37)

As in (35) the prefactor 1/L3 can be absorbed with a
similar rescaling of Vk and ρ similarly to (36), with

V1d = V L3 , ρ1d = ρL3 . (38)

This renders (37) in a form that is identical to that of
the quantum-mechanical (0+1)-dimensional flow for the
potential. The latter flow does not admit a non-trivial
minimum for the potential: there is no spontaneous sym-
metry breaking in quantum mechanics.

Finally, at finite temperature and for k ≪ min(1/L,T ),
the system reduces to the zero mode,

V̇k≪min(1/L,T )(ρ)→
T

L3

k2

k2 +m2
k(ρ)

, (39)

where, without loss of generality, we have used that
Rk(0) = k2 and Ṙk(0) = 2k2. Again this can be mapped
into the standard flow by a rescaling of Vk and ρ similarly
to (36),(38) with

V0d = V L3/T , ρ0d = ρL3/T , (40)

i.e. effectively taking T /L3 → 1. This is the flow of a
(0+0)-dimensional field theory, the generating functional
being the one dimensional integral

Z0d,k(J) = ∫ dφ exp{−V0d,Λ(ρ) − k2ρ0d + J φ0d} , (41)

where Λ ≪ min(1/L,T ). This trivial flow has been stud-
ied in e.g. Ref. [29]: it does not admit a non-trivial min-
imum for the respective effective action Γ0d[φ].

C. Condensates

In a finite volume no long range spatial fluctuations
are permitted. However, the latter ones are required for
phases with spontaneous symmetry breaking and non-
vanishing condensates. Only in one or more spatial direc-
tions and with infinite extent (at vanishing temperature)
non-vanishing condensates survive for the present Ising
universality class model (O(1)-symmetry).

The disappearance of condensates in a finite volume is
easily seen in O(N)-models for N > 1 due to the pres-
ence of massless Goldstone modes with mass functions
m2
k,θ(ρ) = V ′

k(ρ), where θ⃗ are the N −1 Goldstone modes.
Here, emphasising the differences to the Ising-type case
N = 1, we briefly discuss this case.

The flow of the minimum can be derived from the t-
derivative of the equation of motion, V ′

k(ρ0) = 0 for ρ0 >
0. Its flow reads

∂tV
′
k(ρ0) = V̇ ′(ρ0) + ρ̇0V

′′(ρ0) = 0 , (42)

where the flow V̇ ′
k is given in (16). The masses of the

Goldstone modes vanish in the broken phase, i.e. at a
non-trivial minimum ρ0 > 0. By resolving (42) for ρ̇0 we
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arrive at

ρ̇0 = −
V̇ ′(ρ0)
V ′′(ρ0)

=1

2
∫
q
Ṙk(q) [(3 + ρ0

λ3

λ2
)G2

k,ρ(q) + (N − 1)G2
k,θ(q)]

→ 1

k2

T

L3

⎡⎢⎢⎢⎢⎣

3 + ρ0
λ3

λ2

(1 + 2ρ0λ2

k2 )
2
+ (N − 1)

⎤⎥⎥⎥⎥⎦
. (43)

The first equality in (43) provides the flow of ρ0 in the
local potential approximation in an O(N)-model. The
first term in the second line is the radial contribution
while the second term comes from the Goldstone modes
with the massless propagator Gθ. In d ≤ 2 (infinite range)
dimensions and N > 1 the latter term does not tend to
zero in the limit k → 0 while the first term does with
powers of k2/m2

k. The Goldstone term is positive, and
hence the condensate is driven to zero with k → 0, that
is t→ −∞. This reflects the Mermin-Wagner theorem.

In a finite volume and at finite temperature the flow
reduces to the third line for k ≪ min(T,1/L). Again, the
singularity in the flow is apparent. As a consequence, ρ0

is driven to zero with k → 0. This is also seen in Yukawa-
type models such as the linear quark-meson models and
atom-condensate models for ultracold atoms, see e.g. [1–
5].

Note that this argument does not apply to N = 1 with
the discrete Z2-symmetry. The O(1) model (Ising uni-
versality class) has no Goldstone mode and the vanishing
of the condensate for d < 2 dimensions cannot be read-off
directly from the flow of the condensate, (43). In partic-
ular, the flow in (43) reduces at finite temperature and
volume to

ρ̇0 → k2 T

L3

3 + ρ0
λ3

λ2

(k2 + 2ρ0λ2)2
, (44)

for k ≪ min(T,1/L). This relates to the fact that the
Ising universality class, N = 1, shows a phase transition
in d = 2. Below two dimensions, d < 2, it does not show
a phase transition.

We remark that this structure is not seen in a Taylor
expansion about the flowing minimum ρ0. For example,
in the φ4-approximation the condensate does not neces-
sarily vanish at vanishing cutoff scale: for a finite mass
m2
k the flow of all couplings, including ρ0 and the free

energy Fk, can vanish with powers of k2/m2
k. Indeed, the

non-vanishing minimum stays at higher orders at this
expansion too. This hints at a failure of the polynomial
expansion about ρ0. Note, however, that an expansion
about ρ = 0 works in dimensions d ≤ 2, and converges
rather rapidly with the full solution of the flow equation
for the potential. This suggests an expansion about the
flowing minimum ρ0 for k ≳ 1/L and one about ρ = 0 for
k ≪ 1/L.

Still, the vanishing of the condensate at finite volume
and temperature is easily seen. For the sake of complete-
ness we briefly present the related argument. Assume for
the moment that m2

k=0(ρ0) > 0. Then, for k > 0 the po-
tential has a non-convex regime with m2

k(ρ < ρw) < 0 and
the turning point ρw with m2

k(ρw) = 0. For this regime
the relative strength of the free energy ∆Vk = Vk(ρ =
0) − Fk is governed by

∆V̇k =
1

2
∫
q
Ṙk(q) (Gk(ρ, q) −Gk(q)) , (45)

where ρ ≤ ρw is a k-independent field value in the non-
convex regime with m2

k(ρ < ρw) < 0, potentially leading
to large flows close to the singularity triggered by k2 +
m2
k(ρ) = 0. For the current purpose it is sufficient to use

the estimate

1

p2 +Rk(p2)
< 1

p2 +Rk(p2) +m2
k(ρ < ρw)

(46)

and, hence, we estimate

∆V̇k >
1

2
∫
q
Ṙk(q) ( 1

p2 +Rk
− 1

p2 +Rk +m2
k

)

= 1

2
∫
q
Ṙk(q) ( 1

p2 +Rk
m2
k

1

p2 +Rk +m2
k

) . (47)

In the limit k/[min(1/L,T )]→ 0 we arrive at

∆V̇k →
T

L3
. (48)

Evidently, the flow of ∆Vk does not vanish for k → 0
and hence the difference turns negative: the minimum is
at ρ = 0. Note that an iteration of this argument also
excludes the existence of several minima and, therefore,
guarantees a smooth vanishing of the minimum ρ0 with
k → 0.

For vanishing temperature or more generally infinite
range dimensions d < 2 the above argument can be gen-
eralised by discussion of the flow of the turning point
ρw of the radial mass function m2

k(ρ) with m2
k(ρw) = 0.

We have ρw ≤ ρ0 for the O(1)-model and ρw = ρ0 in the
O(N > 1)-model. The full analysis is beyond the scope
of the present work and hence discussed elsewhere.

IV. THERMODYNAMICS IN A FINITE
VOLUME

One of the main goals of this work is the study of finite
volume effects in the pressure,

p = −∂F /∂V , (49)

with the free energy F and the spatial volume V = L3.
The free energy F relates to the effective action Γ[φEoM]
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FIG. 2: Spatial volume dependence of the flow of the free
energy density fk for a coupling λΛ = 0.5 and an exponential
regulator with m = 1, cf. eq. (4).

on the solution of the EoM, φEoM. It can be normalised
(shifted) such that it vanishes in the combined infinite
volume and zero temperature limit, that is

F = T (ΓT,L[φEoM] − Γ0,∞[φEoM]) . (50)

Eq. (50) is the free energy related to thermal and finite
volume fluctuations, and the pressure (49) with (50) is
the combined finite volume and thermal pressure. In the
following we use the free energy density fk already in-
troduced in (21) in the cutoff scale-dependent case. We
have

fk =
Fk
V

= Γk[φEoM]
βV

, with β = 1

T
, (51)

by extracting the trivial spatial volume factor in the
static free energy. Eq. (50) and (51) entail that the pres-
sure pk comprises the fluctuations induced from finite
temperature and volume. The difference of free energies
densities fk at finite and infinite volume relates to the
Casimir force, for a FRG computation see Ref. [30].

The flow of the pressure is then given by the one of
the free energy density and its volume or, equivalently,
length derivative,

ṗk(T ) = −ḟk(T,L) −
L

3

∂ḟk(T,L)
∂L

, (52)

where we have used that V = L3. The flow of the free
energy density fk is given by

ḟk(T,L) =
1

2
∑
q

GT,Lk (q)Ṙk(q) −
1

2
∫
q
G0,∞
k (q)Ṙk(q) ,

(53)

where the sign ∑q stands for a sum over frequencies and
discrete spatial momenta. In Fig. 2 the flow of the free
energy density, (53), is shown for different volumina.

In (53) the first term is the finite temperature flow

k

k

ΠT 2ΠT

"0.5

0.5

1.0

1.5

2.0 Rexp,1
k (q)

Rexp,2
k (q)

Rexp,1
k (|~q |)

⌘

  

Rflat
k (|~q |)

Rflat
k (q)

Rflat
k (q)

⌘

2ΠT 4ΠT 6ΠT 8ΠT 10ΠT

"1

1

2

�T

k

ḟk

pSB

�T

k

ḟSB,k

pSB

FIG. 3: Flow of the Stefan–Boltzmann pressure pSB,k =
−fSB,k(T,∞) for different regulator, and the full pressure for
Rflat

k , in an infinite volume, with λΛ = 0.5 for the full result.

involving the thermal and/or finite volume propagator

GT,Lk (q), whereas the second term is the normalisation in

terms of the vacuum propagator GT=0,L=∞
k (q). Moreover,

in the present LPA approximation the flow of the free
energy density ḟk at a given cutoff scale k is simply given
by the difference of the flows of the effective potential,

ḟk = V̇ T,Lk (ρ0) − V̇ 0,∞
k , (54)

cf. section II. The flow equation for the infinite volume
pressure is given by that of the free energy density,

ṗk(T ) = − lim
L→∞

ḟk(T,L) , (55)

as the L-derivative of ḟk vanishes faster than 1/L. The
flow of the thermal pressure ṗk, (55), is shown for differ-
ent regulators in Fig. 3.

The influence of the second term in a finite volume
can readily be discussed qualitatively. It is already well-
known from purely thermal flows that ḟk > 0 for k ≲
min(T,1/L). It is this cutoff regime where the main con-
tribution to the pressure is collected during the flow, lead-
ing to a positive pressure, see also Fig. 2. For larger cutoff
scales the flow switched sign, ḟk ≲ 0 for k ≲ min(T,1/L).
As the volume and temperature pressure grows with de-
creasing volume and/or increasing temperature the above
properties imply

∂ḟk
∂L

< 0 for k ≲ min(T,1/L) ,

∂ḟk
∂L

≳ 0 for k ≳ min(T,1/L) . (56)

In summary the integrated contributions from
−1/3L∂Lḟk decrease the pressure in a finite vol-
ume, and the free energy density fk=0 gives an upper
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estimate for the pressure.

A. Stefan–Boltzmann pressure for
three-dimensional flat regulator

A simple but instructive example for the properties
and definitions discussed above is the tree-level free en-
ergy density fSB,k and pressure pSB,k, i.e. the Stefan–
Boltzmann contributions, for two reasons. Firstly, it il-
lustrates on an analytic level the computations and re-
sults presented in the next Section V. Secondly, and more
importantly, it demonstrates constraints on the regula-
tors emerging from finite temperature or volume in a
clear way.

First, we compute pSB in the infinite volume limit with
the three-dimensional flat regulator, see (5). This regula-
tor is often used as analytic computations can be pushed
far. The free propagator in the presence of Rflat

k (∣q⃗∣) is
simply given by

G
(0)
k (q) = 1

q2
0 + k2

θ(k2 − q⃗2) + 1

q2
0 + q⃗2

θ(q⃗2 − k2) . (57)

With the propagator in (57) and Ṙflat

k = 2k2θ(k2− q⃗2), the
flow for the infinite volume Stefan–Boltzmann pressure
(55) can be given analytically, see e.g. [31, 32],

ṗSB,k(T ) = − ∫
k

0

dqs
2π2

(T
∞

∑
n=−∞

k2q2
s

k2 + ω2
n

− ∫
q0

k2q2
s

k2 + q2
0

)

= − k4

12π2
(coth

k

2T
− 1)

For large RG scales compared to the temperature this
turns into

k/T→∞
Ð→ − k4

6π2
exp(− k

T
) , (58)

where qs =
√
q⃗2 and ∫q0 = ∫

∞

−∞

dq0
2π

. The flow (58) and

that for other regulators is shown in Fig. 3. Eq. (58) en-
tails that for large cutoff scales k/T →∞ the flow decays
exponentially with exp(−k/T ) in line with (30). This
is expected as the cutoff used in (58) does not affect the
frequency sum, and reflects the fast decay of thermal fluc-
tuations in the presence of large mass scales. Hence, the
pressure at the initial scale Λ ≫ T can be safely put to
zero, pSB,Λ = 0. The integration over the RG scale k from
∞ to 0 gives the correct pressure pSB of a gas of free scalar
particles,

pSB(T ) = ∫
0

∞

dk

k
ṗSB,k(T ) = π2T 4

90
. (59)

The Stefan–Boltzmann expression (58) is easily upgraded
to the full flow. In the latter case we simply have to
substitute k2 → k2 +m2

k in the denominators in the first

line of (58) and arrive at

ṗk(T ) = − k4

12π2

1
√

1 + mT
k

2

k2

⎛
⎜⎜
⎝

coth
k

2T

¿
ÁÁÀ

1 +
mT
k

2

2
− 1

⎞
⎟⎟
⎠

− k4

12π2

⎛
⎜⎜⎜
⎝

1
√

1 + mT
k

2

k2

− 1
√

1 + m0
k

2

k2

⎞
⎟⎟⎟
⎠
. (60)

The term in the first line of (60) is decaying exponen-
tially for large cutoff scales k/T →∞ also in the presence
of non-vanishing mass function mT

k . In turn, the term

in the second line is proportional to (mT
k )

2 − (mT=0
k )2

:
the exponential decay of the full flow in (60) hinges on
the exponential decay of the difference of the mass func-
tions at finite temperature and vanishing temperature.
The flow in (60) already encodes the one of differences of
the effective potential with mk → mk(ρ). Evidently, the

exponential decay for (mT
k (ρ))

2−(mT=0
k (ρ))2

is encoded
in the flow. This simple but instructive example already
illustrates the main features of the thermal and finite vol-
ume properties under investigation: the flow reflects the
thermal decay with large mass scales in case that this is
also present for the flowing couplings.

We now repeat this computation with the three-
dimensional flat regulator in the general case with a fi-
nite volume and at finite temperature. For the sake of
simplicity we first drop the ∂Lḟk-term in (52). The three-
dimensional spatial integral turns into sums, and we ar-
rive at the Stefan–Boltzmann expression for the flow of
the free energy density,

ḟSB,k =
k

2L3 ∑
q⃗2≤k2

coth
k

2T
− ∫

q0

k2q2
s

k2 + q2
0

= k

2L3 ∑
q⃗2≤k2

(coth
k

2T
− 1) −

⎛
⎝
k4

12π2
− k

2L3 ∑
q⃗2≤k2

⎞
⎠
,

(61)

in a splitting similar to that in (60). In (61) we have

q⃗2 = (2π

L
)

2

n⃗2 , with n⃗ = (n1, n2, n3) . (62)

Results for different regulators are shown in Fig. 4.

The first term in parenthesis in the second line of (61)
decays exponentially with exp(−k/T ) for large k/T , but
does not decay exponentially with kL for fixed k/T . This
signals the failure of the three-dimensional flat regulator
to reflect the exponential decay of finite volume fluctu-
ations in the presence of large mass scales in a similar
decay with the cutoff scale.

For a direct access to the finite volume decay we take
the limit T → 0. Then, the first term in parenthesis
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FIG. 4: Flow of the Stefan–Boltzmann free energy density
−fSB,k for different regulators, and and the full free energy
density, −fk, for Rflat

k , in an finite volume with relative lengths
LT = 1 and λΛ = 0.5 for the full result. The colour coding
and normalisation is the same as in Fig. 3.

vanishes and we are left with the second term. This limit
gives the flow of the free energy density in a finite volume
normalised with that in an infinite volume. It is expected
to decay exponentially with kL→∞ similar to a thermal
flow. Instead, the combined flow fluctuates about zero
with a rising enveloping amplitude proportional to k2.

The sum in the second term simply counts the number
of momentum points in a three-dimensional sphere with
radius k. Within the numerical precision of the present
work we find for a d-dimensional sphere,

∑
q2≤k2

→ πd/2

Γ (d+2
2

)
(kL

2π
)
d

+O(kθd) , θd≥3 = d − 2 , (63)

where q2 = (2π)2/L2(n2
1 + ⋯ + n2

d) is the d-dimensional
discrete momentum squared. For d = 1 we have trivially
θ1 = 0. Note that while the sub-leading behaviour in (63)
has been proven for d ≥ 4, it is still subject to ongoing
research for d = 2,3, with d = 2 being the Gauß circle
problem. The best estimates we found in the literature
are θ3 ≤ 21/16 [33] and 1/2 < θ2 ≤ 131/208 [34]. In Ap-
pendix A, for illustration, we have performed a similar
computation for a regulator that achieves a flat propa-
gator in a spatial momentum box with box lengths 2k.
Such a regulator allows for fully analytic computations,
and is even more adapted to the symmetries of the spatial
box.

With (63) the Stefan–Boltzmann flow ḟSB,k in a fi-
nite volume diverges proportional to k2 for the three-
dimensional flat regulator. This asks for a non-vanishing
initial condition fSB,Λ at the initial cutoff scale k = Λ in
order to guarantee that fSB,k=0 is the tree level free en-
ergy density. Corrections of the thermodynamics due to

k

ṗ
S
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k
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FIG. 5: Flow of the pressure pSB,k for different regulators in a
finite volume with relative lengths LT = 1. The colour coding
and normalisation is the same as in Fig. 3.

the full dynamics are encoded in the fluctuating part

fk − fSB,k ∝− k4

12π2

⎛
⎜⎜⎜
⎝

1
√

1 + m0,∞
k

2

k2

− 1
√

1 + mT,L
k

2

k2

⎞
⎟⎟⎟
⎠

+
⎡⎢⎢⎢⎢⎣

k

2L3 ∑
q⃗2≤k2

− k4

12π2

⎤⎥⎥⎥⎥⎦

⎛
⎜⎜⎜
⎝

1
√

1 + mT,L
k

2

k2

− 1

⎞
⎟⎟⎟
⎠
,

(64)

where we have dropped the exponentially decaying parts.
The term on the right hand side of the first line in (64) is

proportional to k2 ((mT,L
k )2 − (m0,∞

k )2). The mass dif-
ference tends to a constant, albeit small (up to logarith-
mic corrections), for large scales. In turn, the second line
is proportional to the difference of three-dimensional in-
tegral and three-dimensional sum, that is the sub-leading
term in (63). Hence, its total scaling is proportional to
k1+θ3 ≈ k2.

The above analysis also entails that for the present
regulator, Rflat

k (q⃗2) the second term in the flow of the
pressure, (52), a priori cannot be dropped even in the
infinite volume limit. It can be easily computed from
(61), and reads

−L
3

ḟSB,k

∂L
=ḟSB,k +

k4

12π2
− 1

3

k3

L3
coth

k

2T
∑
n⃗∈Z3

δ(k2 − q⃗2) ,

(65)

where the second term is vanishing everywhere except for
k2 = (2π/L)2(n2

1 + n3
2 + n3

3), simply collecting the contri-
butions at the discrete momentum values. Using both
terms, (61) and (65), in the flow equation for the pres-
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sure, (52), we arrive at the simple expression

ṗSB,k =
k4

12π2
− 1

3

k3

L3
coth

k

2T
∑
n⃗∈Z3

δ(k2 − q⃗2) . (66)

The flow of the Stefan–Boltzmann pressure for the three-
dimensional flat regulator is given by a k4-term and a
δ-function contribution that peaks at the discrete spatial
momenta. For the full pressure flow we can repeat the
same analysis as for the flow of the free energy density
leading to similar k2-corrections.

In Fig. 5 we show the flow of the free energy density
for the three-dimensional flat regulator in comparison to
their Stefan–Boltzmann counterparts. Again, the differ-
ences are negligible for large cutoff scales as m2

k/k2 ≪ 1.
This limit is usually achieved in theories or models with
small ultraviolet fluctuations in the validity range of the
theories. Note that in the present φ4-theory the Landau
pole is hit at a large cutoff kLandau, and one has to safely
stay below this scale. We also emphasise that both, the
flow of the free energy density, −ḟk in (61), and that of
the pressure, ṗk in (66), tend towards (58) in the infinite
volume limit. For T → 0 and L→∞ both flows vanish.

The simple example of thermodynamical observables
studied in the present Section has already taught us an
important lesson: flows with non-analytic regulators do
not reflect the physical exponential decay with large mass
scales in the decay with the cutoff scale. While the latter
property is not necessary in order to guarantee the former
physical one, it is potentially cumbersome to achieve in
approximations.

B. Stefan–Boltzmann pressure for four-dimensional
flat regulator

For the four-dimensional flat regulator, (5), the tree-
level propagator reads

G
(0)
k (q) = 1

k2
θ(k2 − q2) + 1

q2
θ(q2 − k2) , (67)

with the momentum squared q2 only taking discrete val-
ues

q2 = (2πT )2n2
0 + (2π

L
)

2

n⃗2 , nµ ∈ Z , (68)

and n⃗ = (n1, n2, n3). We have chosen all lengths to be

equal, Li = L. With the propagator (67) and Ṙflat

k (q) =
2k2θ(k2 − q2), the flow of the free energy density is given
by

ḟSB,k =
T

L3 ∑
q2≤k2

−∫
q2≤k2

d4q

(2π)4
= T

L3 ∑
q2≤k2

− k4

32π2
. (69)

Similarily to the computation above for the three-
dimensional flat regulator, we have to add the second
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FIG. 6: The difference of the flow of the free energy density
contribution for the four-dimensional flat regulator Rflat

k (q).

term in (52). This leads to the simple flow

ṗSB,k =
k4

32π2
− 2

3

T

L3 ∑
nµ∈Z

q⃗2δ(k2 − q2) , (70)

see Fig. 5. The spatial and four-dimensional momenta
squared q⃗2 and q2 are defined in (62) and (68), respec-
tively.

Similar to the case of the three-dimensional flat regu-
lator we conclude that the flow of the free action density
is sensitive to finite volume effects for all cutoff scales for
the four-dimensional flat regulator. With a similar anal-
ysis as in the last Section IV A it follows that there are

subleading terms proportional to k2 ((mT,L
k )2 − (m0,∞

k )2)
and k2(mT,L

k )2. For the choice m2
k/k2 ≪ 1, being the ini-

tial value in both finite and infinite volume as well as zero
and non-zero temperature, at large cutoff scales the cor-
rections are small. In Fig. 4 we show the flow of the free
energy density for the four-dimensional flat regulator in
comparison to their Stefan–Boltzmann counterparts, as
well as the Stefan–Boltzmann flows for other regulators.
In Fig. 6 we show the difference of the flow of the free
energy density. This difference clearly shows the ultravi-
olet sensitivity of the flow with respect to finite volume
effects.

In the infinite volume limit both, (69) and (70) tend
towards the infinite volume flow. For T → 0 and L →∞
both flows vanish. We also conclude that for both,
the three-dimensional and four-dimensional flat regula-
tors, the thermodynamics is approximately accessible for
m2

Λ/Λ2 ≪ 1 at the expense of a trivial non-vanishing ini-
tial condition fΛ = fSB,Λ and pΛ = pSB,Λ. However, since
the flow of fk and pk only depends on the couplings, the
Stefan–Boltzmann terms and the ∆ḟk, ∆ṗk can be inte-
grated separately: the total free energy density/pressure
is simply given by

pk=0 ≈ pSB(T,L) + ∫
0

Λ

dk

k
∆ṗk , (71)

with the trivial Stefan–Boltzmann pressure pSB(T,L) in



12

a finite volume and the integrated flow of ∆ṗk.

The findings of the present and the last section carry
over to the theory in the presence of three- and four-
dimensional sharp regulators, (6). Indeed, in these cases
the ultraviolet growth is very similar. Below (6) it has
been discussed that the theory in the presence of sharp
regulators is directly related to respective ultraviolet mo-
mentum cutoff regularisations of DSEs in a finite volume
and at finite temperature, [11–14]. Consequently the re-
spective correlation functions miss the exponential de-
cays unless one applies a volume and/or temperature de-
pendent renormalisation procedure. Note that only for
the present thermodynamical observables, pressure and
free energy density, this shows up as a growth with the
ultraviolet cutoff scale Λ, in higher order correlation func-
tions the missing exponential decay is hidden in polyno-
mially decaying terms.

We add that these findings apply to all situations
with a sharp momentum cut-off for discrete momentum
modes. This includes in particular Landau level sums
in the presence of magnetic fields. There it is well-
known that the critical temperature, and therefore the
phenomenon of (inverse) magnetic catalysis shows an ex-
ponential sensitivity with respect to the scales of the
problem. Hence it is particularly sensitive to the presence
or absence of the exponential decay discussed above. For
FRG-applications to the (inverse) magnetic catalysis see
[35–39], for other approaches with ultraviolet momentum
cutoffs including DSEs and perturbation theory, see the
recent reviews [40, 41].

We close with the remark that it is not simply the miss-
ing differentiability of the regulator that spoils the decay
with the cutoff scale. It originates in the non-analytic
behaviour of the regulator at p2 = k2. In Appendix B we
test the smooth modifications of the flat regulator sug-
gested in [42] that are C∞ at p2 = k2 at the expense of
an essential singularity ∝ exp{−const./(1 − p2/k2)} for
spatial momentum approaching k from below, p2 → k2

−.
They show the same missing exponential decay in the
flow, although the smoothening of the non-analyticity
leads to smaller fluctuations at large cutoff scales, see
Fig. 20 in Appendix B. This is not surprising as it is
well-known from the thermal case that the exponential
decay reflects the pole structure of the loop integrals in
the complex plane if the Matsubara sum is rewritten as
the (original) contour integral. This suggests that ana-
lytic versions of the flat regulator have all the necessary
properties for optimising flows at finite volume and tem-
perature in the sense of the optimisation criterion in [18].

C. Pressure for general regulators

The flow of the pressure for general regulators is based
on that of the free energy density and its length deriva-
tive. More generally the length-derivative of the flow of

the effective action is given by

L
∂Γ̇k
∂L

=⨋
q
q⃗2∂q⃗2 [Gk Ṙk(q)]

− 1

2
⨋
q
Gk ṘkGk(q)L

∂Γ
(2)
k (q)
∂L

RRRRRRRRRRRq⃗2

, (72)

where the last term hits the L-dependences of the ver-
tices. Eq. (72) can be inserted in the definition of fk,
(51), to obtain the L-derivative of the general flow of the
free energy density. In the present LPA-approximation
the second term in the flow of the pressure, (52), reduces
to

−L
3

∂ḟk
∂L

=ḟk + V̇ 0,∞
k + 1

6
⨋
q
(2q⃗2∂q⃗2 −L

∂m2
k

∂L
∂m2

k
)Gk Ṙk ,

(73)

see Fig. 5. This leaves us with the task of computing
the L-dependence of the couplings. This is either done
by performing computations at L and L + ε and taking
discrete derivatives or by using flow equations for the L-
derivatives in a fixed volume, see Appendix C.

We close the present Section with a brief summary
of the results. In the Figs. 3, 4, 5 the findings of this
Section are illustrated. In Fig. 3 the Stefan–Boltzmann
pressure in an infinite volume is shown for different reg-
ulators and the full pressure for the four-dimensional flat
regulator. One sees both the exponential decay with k for
analytic regulators (in the frequency p0) and the power
law rise for non-analytic regulators (in the frequency).
All flows are apparently smooth in contradistinction to
the finite volume flows depicted in Figs. 4, 5. This is
related to the fact that the chosen regulators with a q0-
dependence are functions of q2

0 + q⃗2. This entails that
the jumps for non-analytic regulators, that are related to
the discrete Matsubara frequencies are smoothened out
by the spatial momentum integration. Regulators of the
form Rk(q0, q⃗) = R0,k(q2

0) + Rs,k(q⃗2) with non-analytic
regulators R0,k lead to jumps similarly to that shown in
Fig. 4.

In Fig. 5 the Stefan–Boltzmann pressure in a finite
volume is shown for different regulators. Again one sees
both the exponential decay with k for analytic regula-
tors and the polynomial rise for non-analytic regulators.
Additionally, one has discontinuities as described in (61),
(69) for the flow of the free energy density and in (65),
(70) for the flow of the pressure. The polynomial rise
of the free energy density and the pressure with k3 and
k4 in a finite volume for the three-dimensional and four-
dimensional flat regulator, respectively, hint at similar,
but reduced problems for the flow of the mass m2

k (or
κk) in both cases. The k-power counting of these flows
has an additional factor k−2 naively leading to rising
volume-dependence with k and k2, respectively. If the
naive power counting holds, some care is required with
the initial conditions for the mass, as then it varies with
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FIG. 7: Normalised mass difference ∆m2
k at finite tempera-

ture T = 0.25 in an infinite volume as defined in (76).

the volume and the temperature.
For the coupling constant λk we expect a 1/k suppres-

sion of the flow for the three-dimensional flat regulator
and a k0-dependence for the four-dimensional flat regu-
lator. This translates into a slow convergence of the flow
towards the infinite volume flow in the first case, hence
asking for a very large initial cutoff scale. In the lat-
ter case this leads to a logarithmic dependence with k of
the initial condition on the volume and temperature, and
requires some care.

V. COUPLINGS IN A FINITE VOLUME

We have already discussed in the introduction and in
more details in Section III, that a quantitative grip on
the thermal, volume and cutoff scale dependence is piv-
otal for getting hold of in particular thermodynamical
quantities and the equation of state. Moreover, the ana-
lytic results in the last Section IV indicate the problems
of non-analytic regulator choices such as the flat regula-
tor and the sharp cutoff.

A. Thermal & finite volume decay

In the following, we discuss the quantitative behaviour
of the flows of couplings and thermodynamical observ-
ables in dependence of the choice of regulators. Despite
the choice of regulator both finite temperature and vol-
ume are pure infrared effects, their effects are damped
above energy scales which are typically of the order of
the first frequency either in temporal or spatial direction.
In other words, for scales much larger than the volume
or temperature the theory turns into the infinite volume
vacuum theory. The details of the decay are physically
important, for the decay behaviour in mass scales and
momentum scales see (30), (32) and (33) for the impor-
tant example of the Tan-contact.

k
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k (q))

��̇k(Rexp, 1
k (q))

1
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"5

"4

"3

"2

"1

1

��̇k(Rflat
k (q))

FIG. 8: Normalised φ4-coupling difference ∆λ at finite tem-
perature T = 0.25 in an infinite volume as defined in (76).

In methods where fluctuations at all scales are inte-
grated out at once this usually happens around the typ-
ical frequency or spatial momentum scale given by the
first frequency 2πT of 2π/L. This feature does not nec-
essarily hold for the momentum cutoff scale k flow. As
has been already seen in Section IV for thermodynami-
cal observables, this cutoff scale depends strongly on the
shape of the regulator. More precisely, it depends on the
way the infrared modes are suppressed: the sharper this
suppression is implemented, the further in k one has to
go to lose sensitivity to thermal or finite volume effects.
In particular for non-analytic regulators such as the flat
regulator and the sharp cutoff this loss of sensitivity is
delayed to infinity.

For the regulator shapes given in (4), (5) and (6) reg-
ulating either four-dimensionally or in spatial directions
only, the thermal flow of the tree-level pressure ṗSB,k is
given in Fig. 3. In an infinite volume the problem of
a ”mode-counting” cutoff can be circumvented by regu-
lating the spatial momenta only. In contrast, in a finite
volume this generic property rules out sharp and flat reg-
ulators for practical computations. We note that this is
not cured by the inclusion of running masses and cou-
plings, as also seen in Fig. 4 anticipating results below.

We conclude that the exponential thermal decay in
(30) does not simply hold with mgap → k, even though
this has been observed for the three-dimensional flat reg-
ulator, see (58). In general, one has to allow for a pref-
actor cT with

exp(−
mgap

T
)→ exp(−cT

k

T
) , cT ∈ [0,1] . (74)

For regulators that only depend on spatial momenta and
have an (effective) infrared mass Rk(0) = k2 the upper
limit, cT = 1, is saturated: the sum over the Matsubara
modes is not cut-off, and the thermal behaviour is un-
touched. With the dominant mass scale k for k →∞ this
leads to the standard thermal suppression with cT = 1.
Note that strictly speaking the upper limit is not well
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defined as it depends on the mass scale introduced with
the regulator. Only if the latter scale is identical with k
the prefactor cT satisfies (74).

In turn, for regulators that are non-analytic in fre-
quency space such as the four-dimensional flat regulator,
the exponential suppression is lost and the lower bound
is saturated, cT = 0.

In a finite volume the decay towards the vacuum limit
is induced by both, thermal and volume fluctuations.
Hence, it leads to a generalisation of the thermal decay
(30), (74). For (53), we parametrise the decay in the
limit

lim
k/T,kL→∞

∣∆OT,Lk ∣∝ A( k
T
, k L) exp(−cT (LT ) k

T
) ,

(75)

where the function A now encodes thermal and volume
effects, and

∆OT,Lk ≡
OT,Lk −O0,∞

k

O0,∞
k

. (76)

∆OT,Lk is the difference of an observable OT,Lk at finite
volume and temperature and infinite volume and vanish-
ing temperature, normalised by its flow at T = 1/L = 0. In
Fig. 7 and Fig. 8 the normalised difference ∆Ok is shown
for the mass and the coupling difference respectively for
finite temperature in an infinite volume.

The definition (76) also applies to flows or diagram-
matic kernels of flows, the threshold functions. Flow
equations of thermodynamical observables and vertices
depend on the cutoff derivative of the regulator and pow-
ers of propagators. The decay of general flows can hence
be measured by that of

OT,Lk,n = ∫
q
Gk(q)n Ṙk(q) . (77)

In Fig. 9 we show the decay of general flows for different
regulators, precisely, we show

OT,Lk,n −O0,∞
k,n

kd−2(n−1)
, (78)

with the definition (77) for n = 1,2,3,4. We normalise

with respect to the canonical dimension kd−2(n−1). In
the presence of an exponential decay, that is cT ≠ 0 for

∆OT,Lk,1 , all ∆OT,Lk,n show the same decay as they can be

generated by n − 1 derivatives with respect to m2
k from

∆OT,Lk,1 .

The thermal decay at infinite volume and the volume
decay at vanishing temperatures are given by the respec-
tive limits. For LT → ∞, (75) gives the thermal decay
(74) with cT = cT (∞), that is

lim
k/T→∞

∣∆OT,∞k ∣∝ A( k
T
, ∞) exp(−cT

k

T
) , (79)
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FIG. 9: Flows given by (78) for n = 1,2,3,4 in a finite volume
for different regulators.

see Fig. 7, Fig. 8. This is the analogue of (30) with the
substitution (74). In turn, for LT → 0, (75) describes
the volume decay at vanishing temperature, and we have

lim
LT→0

cT (LT )
LT

= cL , (80)

and the equivalent relation to the purely thermal decay,
(79) for the pure finite volume case,

lim
Lk→∞

∣∆Ok(0, L)∣∝ A (∞, k L) exp (−cL kL) . (81)

The function cT (LT ) interpolates between the asymp-
totic thermal scaling and the asymptotic finite volume
scaling, and depends on the shape of the regulator,
cT (LT ) = cT (Rk;LT ). It can be extracted in the limit
of k →∞ by

cT (LT ) = −T
k

lim
k→∞

log {∣∆Ok(T,L)∣} . (82)

In Fig. 10 we study the approach of the right hand side
of (82) towards cT for n = 1,2,3,4 and an exponential
regulator, (4), with m = 2, in both the infinite and finite
volume case, in the latter case we use L = 1/T . The local
minima indicate the local maxima and minima in the
positive and negative envelopes of the decay, as seen in
Fig. 3 and Fig. 4 for n = 1. We find that the asymptotic
limits for k/T and/or k/ (1/L) are reached quickly above
the characteristic scale induced by cT .

In Fig. 11 we study the interpolation of cT between the
asymptotic forms at T = 0 and L =∞ for the exponential
regulators with n = 1,2. For this figure we have extracted
cT with the value of the minimum at maximal k, in e.g.
Fig. 10 the minimum between 8πT and 10πT . We see
that the interpolation regime at about LT ≈ 1 is rather
small and the asymptotic values are approached rapidly.
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FIG. 10: Approach of flows towards the vacuum limit for
scales k larger the temperature and volume as parametrised
by (82) and the an exponential regulator, (4), with m = 2.
Thick (thin, lower) curves are in infinite (finite with L = 1/T )
volume.

B. Thermal & volume dependence of the couplings

The results obtained in the last Sections exemplified
the thermal and finite volume decays at the example of
the thermodynamic observables, the free energy density
and the pressure. Both observables have power counting
dimension four, and indeed their flows scale with k4 for
non-analytic regulators. This leads to non-trivial initial
conditions for these observables at the initial large cutoff
scale k = Λ. We expect only power-counting reduced
problems for the flow of the vertices, in particular for the
mass m2

k and the coupling λk. If this reduction leads to
sufficiently strong suppression in powers of 1/k even non-
analytic regulators would allow for a direct access to both
the thermodynamics as well as the flow of the couplings
without resorting to non-trivial initial conditions at least
beyond leading order.

As for the thermodynamics it is illustrative to simply
consider the length derivative of the flows. For the ef-
fective potential this can be directly read off from (72),
(73),

L
∂V̇k
∂L

= −1

2
⨋
q
(2q⃗2∂q⃗2 −L

∂m2
k

∂L
∂m2

k
)Gk Ṙk . (83)

The second term in (83) can be viewed as an improve-
ment term. It does not dominate the flow. For the
present purpose of a power counting analysis we drop
it and concentrate on the first term. The flow of the
effective potential reads for the three-dimensional and
four-dimensional flat regulators,

L
∂V̇ 3dflat

k (ρ)
∂L

∝ k3

L3 ∑
ni∈Z

coth k
2T

√
1 + m2

k
(ρ)

k2√
1 + m2

k
(ρ)

k2

δ(k2 − q⃗2) ,

(84)
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FIG. 11: Interpolation of cT for an exponential regulator, (4),
with m = 2 from the asymptotic purely thermal decay to the
asymptotic purely finite volume decay.

and

L
∂V̇ 4dflat

k (ρ)
∂L

∝2
T

L3 ∑
nµ∈Z

q⃗2

1 + m2
k
(ρ)

k2

δ(k2 − q2) , (85)

respectively, where the superscripts indicate the chosen
regulator. The question of the sufficient decay that is at
the heart of T and L-independent initial conditions can
already be answered at one loop. Thus, we integrate the
flows in (85) at one loop from k = 0 to Λ. This simply
removed the δ-function leading to

V 3dflat

Λ (ρ) − V 3dflat

0 (ρ)∝1

6

Λ

L3 ∑
q⃗2≤Λ2

coth Λ
2T

√
1 + m2

Λ
(ρ)

Λ2√
1 + m2

Λ
(ρ)

Λ2

,

V 4dflat

Λ (ρ) − V 4dflat

0 (ρ)∝1

3

T

L3 ∑
q2≤Λ2

q⃗2/Λ2

1 + m2
Λ
(ρ)

Λ2

, (86)

where we have also integrated over the box size from in-
finite length to L. The expressions for the one loop cou-
plings m2

Λ and λΛ are derived from (86) by two and four
derivatives with respect to φ, respectively. This involves
terms that are proportional to the first and second deriva-
tive of (86) with respect to m2

Λ, respectively. Hence, we
have additional suppressions with 1/Λ2 and 1/Λ4, respec-
tively. In turn, the sums in (86) grow proportional to Λ3

and Λ4 on the average. Sweeping over a single discrete
frequency and spatial momentum value leads to a jump
of the effective potentials V 3dflat

Λ and V 4dflat

Λ with a height
proportional to Λ and Λ0 respectively. For the couplings
this entails a suppression of the single jumps with 1/Λ
and 1/Λ2 for m2

Λ, and 1/Λ3 and 1/Λ4 for λΛ.

In the following, we restrict ourselves to the efficient
regulator of the form (4) with m = 1. For this choice
the transition to the vacuum theory happens at cutoff
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FIG. 12: Thermal and finite volume dependence of the mass
for large UV coupling and T /Λ = 1/40, and the exponential
regulator, (4) with m = 1.

scales close to the first frequency, and the cutoff scale
can indeed be identified with a mass scale mgap of the
order of the cutoff scale k.

In principle, there are three different scales in the prob-
lem at hand: vacuum mass, temperature and volume. In
order to study the interplay of temperature and finite
volume only, we consider the massless theory in the vac-
uum. Note that this implies in general m2

k ≠ 0 for cutoff
scale k ≠ 0. The vanishing mass at k → 0 requires a fine
tuning at k = Λ: for a given initial coupling λΛ we vary
the initial value of the mass mΛ such that mk→0 = 0. A
generalisation to finite masses is straightforward but not
the main purpose of this work.

In summary, from the value mk=0 we generate the ini-
tial condition mΛ and λΛ for mass and coupling flows,
(24) with (29), to be solved in a self-consistent way. The
functional behaviour of the coupling and, consequently,
of the mass is significantly different for large and small
values of λΛ. For large initial values of the coupling there
are strong changes in mass and coupling, i.e. the running
is very strong. For smaller values of the coupling the run-
ning is slowed down. This results in the fact that the cou-
plings at k = 0 are much closer to each other than at the
initial scale. This behaviour is of course well know and
explained by the fact, that the coupling appears quadrat-
ically and cubically, respectively, as a prefactor in the
flows of the mass and coupling.

The effects of thermal fluctuations have been studied
extensively in e.g. [43, 44] for the φ4-theory, for Yang-
Mills theory this has been done in [6–8]: As finite temper-
ature is an infrared modification of the theory, the theory
is unchanged at scales larger than the typical tempera-
ture scale, which is set by the first Matsubara frequency
2πT . Hence, above this scale the flow follows the vacuum
flow. Below this scale, temperature induces additional
fluctuations which accelerate the flow. For the mass this
results in the generation of a thermal mass in addition to
the vacuum mass. However, once this generated scale is
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FIG. 13: Thermal and finite volume dependence for the cou-
pling for large UV coupling. Regulator, parameters and
colour-coding are the same as in Fig. 12.

reached the mass suppresses fluctuation in both flows of
the mass and the coupling. As a consequence, the flows
are frozen below this scale and the values of the coupling
and mass saturate.

In this work, we consider the thermal field theory in
a finite volume. Similar to the compactification of the
temporal direction due to non-zero temperature, the fi-
nite edge length of the (cubic) 3d-box is a modification of
the infrared. Therefore, its effect is qualitatively similar
to thermal effects.

Once the theory is probed at distances comparable to
the volume fluctuations become stronger and generate an
additional mass. At some point, however, the flows stop
as fluctuations are suppressed by the mass. In general,
it depends on the magnitude of the three scales L, T
and m0, as already the largest scale effectively suppresses
long range fluctuations and leads to an independence of
further macroscopic details. Having tuned to m0 = 0, the
only relevant parameter that determines the behaviour
of the theory is the ratio of spatial length L to temporal
length 1/T , hence LT . Thus, as long as cutoff effects are
correctly taken care of, i.e. Λ ≫ 2πT and Λ ≫ 2π/L, see
discussion above, different combinations of L and T give
similar results as long as their product is kept constant.
In other words, the effects of finite volume are always
relative to the temperature scale and it is thus sufficient
to study only one temperature for different lengths.

In Fig. 12, Fig. 13 we show cutoff scale dependence
of the mass and the coupling for large initial values of
the coupling. In Fig. 14 and Fig. 15 we show the cutoff
scale dependence for small initial couplings. Note that
the flows are damped by k2, unlike the flow of the po-
tential. Thus, the technical problem of ”mode-counting”
cutoff does affect the mass or coupling but becomes only
relevant at the level of the potential. It is clearly visible
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FIG. 14: Thermal and finite volume effects in the mass for
small UV coupling. Regulator, parameters and colour-coding
are the same as in Fig. 12 but the coupling from Fig. 15.

that the effect of the finite volume is qualitatively equal
to the effect of finite temperature for both the mass, cf.
Fig. 12 and Fig. 14, and the coupling, cf. Fig. 13 and
Fig. 15. Furthermore, the dependence on the finite vol-
ume is monotonic in the sense that the larger the vol-
ume the less additional flow is generated, i.e. the infinite
volume limit is approached. Interestingly, the limit of
infinite volume is approached very slowly, however, i.e.
the value of LT ≫ 1. This is due to the fact that the
finite volume affects three dimensions and is to be com-
pared with the compactification of the temporal direction
only. The mass flows for a massless and massive theory
are shown in Fig. 16, which exemplifies that the vacuum
mass does not change the effect of finite temperature of
volume qualitatively. This justifies our choice m0 = 0.
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FIG. 15: Thermal and finite volume effects in the coupling for
small UV coupling. Regulator, parameters and colour-coding
are the same as in Fig. 14.
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FIG. 16: Temperature and volume dependence of the mass for
a massless (lower curves) and massive (upper curves) vacuum
theory with m2

k=0 = 0.2 for λΛ = 5 at the initial scale.

In Fig. 17 we show the dimensionless mass as a function
of the value of the coupling at 2πT . We choose this value
to facilitate comparison with other approaches where the
coupling is defined at that scale, e.g. perturbation theory.
Again, finite volume effects strengthen fluctuations and
the effective mass is therefore increased. Thus, the infi-
nite volume limit for the mass is approached from above.
This is similar to the well-known thermal behaviour, see
Fig. 18.

Eventually, we consider the pressure. Note again that
is can be evaluated trivially by integrating the flow equa-
tion (3) with the mass function computed above. In
Fig. 2 the flow of the pressure is shown. Integrating
the flow for a trivial initial conditions gives the pres-
sure. In Fig. 19 the pressure is shown as a function
of the value of the coupling at 2πT and normalised to
the Stefan–Boltzmann pressure. The infinite volume case
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FIG. 17: Masses as a function of the coupling at 2πT for
different volumes.
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FIG. 18: Mass ratio of thermal and vacuum mass as a function
of (fixed) vacuum mass over temperature. The ratio shows an
exponential decay with exp−m(0)/T .

agrees with results in the literature. We see that both,
increasing the coupling and decreasing the volume leads
to a smaller pressure. Moreover, in comparison to the
free energy density the thermal pressure shows signifi-
cantly less volume dependence. This reflects the fact that
it accounts for thermal fluctuations and their volume-
dependence.

VI. CONCLUSIONS

We have investigated finite volume effects for the ther-
modynamics of a φ4 theory within the functional renor-
malisation group approach. We have focused on concep-
tual properties of the regulator dependence of flows in
finite volume compared to infinite volume. The applica-
bility of regulators can be decreased or even spoiled by
the non-analyticity of the regulator for momenta at the
RG scale, p2 = k2. We find that the thermal flow of the
effective action exhibits oscillations along k. Their range
becomes larger with the sharpness of the regulator. In the
limit of a sharp or flat regulator these oscillations extend
to infinity. For a massless theory the only scales present
are the temperature and the spatial length. Hence, ef-
fectively the theory only depends on one parameter, the
ratio of lengths in spatial to temporal directions, LT ,
where L is the edge length of a cubic box, and 1/T is the
length in temporal direction.

The cutoff scale introduces an additional scale to the
system and both length scales are visible as onset scales
for thermal and finite volume effects respectively. For
analytic regulators the onset scales are proportional to T
and L, while the proportionality constant depends on the
chosen regulator. Above the onset scales the flows tend
exponentially towards the corresponding vacuum flows.

�2⇡T

L T ! 1
L T ! 3.75
L T ! 3

L T ! 2.5
L T ! 2

0 5 10 15 20

0.5

1.0

1.5

FIG. 19: Pressure, p, of φ4-theory in an infinite volume (black
curve) and a finite volume (curves below infinite volume re-
sult) in comparison with the free energy, −fk=0 (curves above
infinite volume result).

In turn, for non-analytic regulators the exponential de-
cay towards the vacuum flows is missing, which makes
quantitative studies of thermal and finite volume effects
cumbersome.

As expected, both finite volume and thermal effects
show similar dependences on the mass scales of the the-
ory including the cutoff scale. This is directly seen in vol-
ume dependence of the thermal mass already, where the
mass is larger for smaller volumes. As a consequence, the
infinite volume limit of the mass is reached from above.

Furthermore, we have studied the pressure. The infi-
nite volume limit is reached quicker for larger couplings,
because correlations are transferred in a more efficient
way and fluctuations are washed out before the length
scale is reached. Therefore, for smaller couplings the
effects of the finite length is stronger. This is again a
manifestation that these are pure infrared effects.

The structural aspects of the finite volume depen-
dence studied in the present work are quite general.
The present findings carry over straightforwardly to
O(N) models with more than one field component,
to phenomenological low energy systems such as the
quark–meson model, and, to some extend to full QCD.
In the latter case the gauge sector requires some special
attention. This will be studied elsewhere.
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FIG. 20: Flow of the Stefan–Boltzmann free energy ḟSB,k for
the css regulators (B1) in finite and infinite volume compared
to the flat regulator (5), in the infinite volume.

Appendix A: Pressure flows for a flat box cutoff

For a fully analytical approach we choose the product
cutoff

Rprod
k (q) =

4

∏
µ=0

Rflat

k (qµ) , (A1)

with

Gprod
k (q) = 1

k2

4

∏
µ=0

θ(k2 − q2
µ) +

1

q2

⎡⎢⎢⎢⎣
1 −

4

∏
µ=0

θ(k2 − q2
µ)

⎤⎥⎥⎥⎦
,

(A2)

The flow of f is then given by

ḟSB,k =
T

V

⎧⎪⎪⎨⎪⎪⎩
(2NT + 1)(NL

3
+N2

L +
2N3

L

3
)

3

+ 3(2NL + 1)(NT
3

+N2
T +

2N3
T

3
)(NL

3
+N2

L +
2N3

L

3
)

2⎫⎪⎪⎬⎪⎪⎭
− 8k4

27π4
, (A3)

with

NL = [kL
2π

] , NT = [ k

2πT
] , (A4)

where the brackets indicate the largest integer number
smaller than the argument. The enveloping function of
(A3) rising as k3. This exemplifies the problem related
to non-analytic regulators.

Appendix B: Compactly supported smooth regulator

Here we test the decay for compactly supported
smooth (css) regulators suggested in [42],

Rcss
k (q) = q2rcss

k (q2/k2) ,

rcss
k (y) =

exp{cyb0/ (1 − yb0) − 1}
exp{cyb/ (1 − yb) − 1}

Θ (1 − y) , (B1)

with the normalisation y0 such that rcss
k (y0) ≡ 1. We

choose the parameters b = 1, c = 1 and y0 = 1/2 leading
to a standard exponential decay. In Fig. 20 we show the
flow of the Stefan–Boltzmann free energy ḟSB,k for the css
regulators (B1) in comparison to the flat regulator (5).

In both cases of infinite and finite volume ḟSB,k does not
show the exponential decay for large cutoff scales k.

Appendix C: Flows for the L-derivatives of the
couplings

In the present φ4-approximation to the LPA one has
to compute m2

k(L) and λk(L). More generally, in a poly-
nomial expansion of the LPA, where

λ⃗ = (λ1, λ2, λ3, ...) , with λ1 = κ , λ2 = λ , (C1)

there are additional couplings. Their flows are given
schematically by

κ̇ = − 1

2
∫
q
Gk(q, ρ0) Ṙk(q) (C2)

and

λ̇n − κ̇λn+1 =
1

2
∫
q
G
(n)
k (q, ρ0) Ṙk(q) , (C3)

where G(n)(q, ρ) = ∂nρG(q, ρ), using (15). Taking the L-
derivative (or V-derivative) of (C3), with

λ′n = L∂Lλn = 3V ∂λn
∂V

, (C4)

leads to flow equations for the L-derivatives of λn, there-
fore,

∂tκ
′ = −1

2
∫
q
(2q⃗2∂q⃗2 − λ′i∂λi)G2

k(q, ρ0) Ṙk(q) , (C5)
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and

∂tλ
′
n − ∂tλ′1λn+1 + ∂tλ1λ

′
n+1

= − 1

2
∫
q
(2q⃗2∂q⃗2 − λ′i∂λi)G(n)(q, ρ0) Ṙk(q) . (C6)

Note that ρ0 = max(0, κ) depends on λ1 = κ.
Eqs. (C5),(C6) can be solved on the basis of a solution
for λk in a given volume V (a cube with box length L),
and a regulator that guarantees the decay of volume fluc-
tuations for k →∞, that is

lim
k→∞

λ′n = 0 . (C7)

Eq. (C7) requires sufficiently smooth regulators in the
spatial momentum directions. Moreover, iterations
of this procedure leads to flow equations of Nth L-
derivatives of the couplings λ⃗ in the basis of j = 0, ...,N−1
L-derivatives of λ⃗ and their flows.

The present derivations trivially extend to the situa-
tion of different spatial lengths Li for i = 1,2,3. We add
that the present procedure applies more generally to flows
of derivatives with respect to external parameters such as
volume, temperature, chemical potential, and couplings.
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