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Abstract

Antibranes provide some of the most generic ways to uplift Anti-de Sitter
flux compactifications to de Sitter, and there is a growing body of evidence
that antibranes placed in long warped throats such as the Klebanov-Strassler
warped deformed conifold solution have a brane-brane-repelling tachyon. This
tachyon was first found in the regime of parameters in which the backreaction
of the antibranes is large, and its existence was inferred from a highly nontriv-
ial cancellation of certain terms in the inter-brane potential. We use a brane
effective action approach, similar to that proposed by Michel, Mintun, Polchin-
ski, Puhm and Saad in arXiv:1412.5702, to analyze antibranes in Klebanov-
Strassler when their backreaction is small, and find a regime of parameters
where all perturbative contributions to the action can be computed explicitly.
We find that the cancellation found at strong coupling is also present in the
weak-coupling regime, and we establish its existence to all loops. Our cal-
culation indicates that the spectrum of the antibrane worldvolume theory is
not gapped, and may generically have a tachyon. Hence uplifting mechanisms
involving antibranes remain questionable even when backreaction is small.
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1 Introduction

The physics of antibranes in backgrounds with charges dissolved in fluxes has been
the subject of intense study in recent years. This physics can be studied in three
regimes of the parameter gsN , which determines the strength of the backreaction of
the antibranes. The first regime is when the backreaction dominates in a region which
is large compared to the string scale (gsN � 1). The second is when the backreaction
of the antibranes is small in any region where supergravity can be trusted (gsN � 1),
however one does not truncate to leading order in gsN . The third regime is when
one truncates to leading order in gsN � 1; this is sometimes referred to as working
in the gsN → 0 limit.

The most commonly used systems for studying the physics of antibranes have D3,
M2, or D6 charges dissolved in flux, such as the Klebanov-Strassler (KS) warped de-
formed conifold background [1], the Cvetic-Gibbons-Lu-Pope (CGLP) warped Stenzel
background [2], and the Janssen-Meessen-Ort́ın solution with finite Romans mass [3].
The most precise calculations of the physics of antibranes have been done in the first
(large backreaction) regime. In this regime it was shown that antibrane solutions
have a singularity [4–11] which cannot be resolved by brane polarization when the
antibranes are smeared and their worldvolume is flat [12–14], and moreover cannot be
cloaked by a black hole horizon [15–18].1 Furthermore, if one studies the polarization

1Other antibrane singularities such as those corresponding to antibranes with non-flat (Anti-
de Sitter) worldvolumes [19, 20] can be resolved by brane polarization. There are also antibrane
singularities that can be cloaked with a horizon [21]. However, the physics of these antibranes is
very different from that of antibranes in long warped throats, and hence these calculations have
limited relevance for the viability of anti-D3 brane uplifting constructions [22]. For example, the
antibranes with non-flat worldvolume only polarize when their worldvolume cosmological constant
is parametrically large [20]. Similarly, the cloaked solutions of [21] have a very non-generic type of
transverse fluxes which allow them to evade the blackening no-go theorem of [18], but it is hard to
see how antibranes in generic transverse fluxes could do the same [23].
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potential of anti-D3 branes localized at a point on the three-sphere at the bottom of
the KS solution, one finds that these anti-D3 branes generically have a brane-brane-
repelling tachyon on their worldvolume [24], which may be responsible for the fact
that their singularity cannot be cloaked by an event horizon.

The third regime of parameters described above corresponds to discarding all
physics beyond leading order in gsN � 1. In this regime, one can study probe anti-
D3 branes in the solution S-dual to the KS geometry. One finds that the probe action
describing the polarization of these branes into D5 branes has a metastable mini-
mum [25]; this result has been extrapolated to the original KS regime to argue that
anti-D3 branes polarize into NS5 branes and give rise to metastable KS minima [25].
However, as discussed in Ref. [24], such polarization can only be reliably described
when gsN � 1. Furthermore, as explained in Ref. [26], calculations that ignore sub-
leading effects in gsN can give misleading results about metastable vacua: a brane
configuration that appears metastable in the gsN → 0 limit [26–28] can in fact cor-
respond to a vacuum of a different theory, and this can only be seen by studying the
system at finite gsN .2

Hence, in order to investigate further whether antibranes may or may not be
metastable in long warped throats, the only regime amenable to calculations that
remains to be explored is the second one, 0 < gsN � 1. In an interesting paper,
Michel, Mintun, Polchinski, Puhm, and Saad have argued [29] that in this regime,
the correct way to describe one or several antibranes in a background with positive
charge dissolved in the fluxes is to use a so-called “brane effective action”; this action
is obtained by integrating out heavy degrees of freedom to obtain an effective field
theory (EFT) of light fields on the brane interacting with supergravity fields [30,31].

The exploration of Ref. [29] leaves open the question of whether or not antibranes
in the KS solution have a brane-brane-repelling tachyon of the type found in [24].
Indeed, upon examining the brane effective action of anti-D3 branes localized at the
North Pole of the S3 at the bottom of the KS solution, one can easily see that all
the terms of this action must transform in representations of the SO(6) R-symmetry
group. For example, the interaction potential between two branes is a combination of
an SO(6) singlet and a term transforming in the 20′ [32], that furthermore must be
invariant under the SO(3)× SO(3) symmetry preserved by the background and one
of the branes. The absence of a tachyon depends on the exact balance of these terms:
if the term in the 1 is stronger than the one in the 20′ then there is no tachyon, but,
if the term in the 20′ is stronger than the term in the 1, there will always exist a
tachyon.

The purpose of this paper is to identify a regime of parameters in which the
brane effective action describing localized anti-D3 branes in the KS solution can
be computed, and to use it to evaluate the inter-brane potential to all orders in
perturbation theory. As we will discuss in Section 4, the diagrams in the brane
effective action approach of Ref. [29] correspond to string diagrams in the limit of

2One can also see this from the fact that the action of the tunneling instanton diverges: when
gsN > 0 the distance between the supersymmetric and non-supersymmetric brane configurations
diverges at spatial infinity; in the gsN → 0 limit, this distance is finite but the tension of the branes
diverges, and so the tunneling process cannot take place [26].
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massless closed strings. For example, at one loop, the string diagram is an annulus.
In the opposite field-theory limit in which the open strings become light, the same
string diagram corresponds to a one-loop diagram in the worldvolume gauge theory
of the anti-D3 branes. Similarly, the higher-loop diagrams in this theory correspond
to limits of string diagrams with more than two boundaries. Since this limit allows
explicit computations to be performed, we work in the low-energy gauge theory on
the branes.

We first compute the tree-level action, including the terms that are induced by the
supergravity background fields. Upon placing anti-D3 branes in a background with a
transverse three-form flux, the fermions on the branes acquire a mass, proportional
to the value of the imaginary self-dual (ISD) component of the flux [33]. The ISD
three-form flux also induces a scalar trilinear interaction [34,35]. In addition, anti-D3
branes placed in transverse fluxes will generically also have tree-level scalar masses,
that can be obtained by expanding the brane potential to quadratic order.3

The tree-level fermion and scalar masses in the action of anti-D3 branes placed in
the KS solution (or similar supersymmetric ISD backgrounds) have three important
properties. Firstly, of the six Hermitian scalars, three are massive with equal masses,
while three are massless. Secondly, of the four Weyl fermions, three are massive and
one is massless, and the mass-squared of the three massive fermions is half that of the
three massive scalars. Thirdly, the scalar trilinear and the fermion mass term obey a
very simple linear relation, discussed in more detail in Section 2.3.

The first property follows from the fact that the functions entering in the KS
solution only depend on the radial coordinate τ . This implies that there is a flat
potential, and hence no force preventing antibranes from moving along the three
directions inside the large S3 at the bottom of the KS solution. The second property
is even more intriguing, and is a key feature of anti-D3 branes in KS. There are
several ways to see this; the most straightforward way would be to match the multiple
conventions for these terms and compute them directly. However, we will instead
derive this property by computing the potential for a probe anti-D3 brane in the
KS solution to polarize into a D5 brane wrapping the contracting S2 of the warped
deformed conifold. This potential does not allow for brane polarization, but one finds
that the quadratic term is twice larger than it would be if the polarization potential
were a perfect square. This is described in Appendix B. This verifies that the three
scalars corresponding to the motion of the brane away from the bottom of the warped
deformed conifold have a mass-squared that is twice the would-be supersymmetric
value.

These two calculations indicate that the sum of the squares of the tree-level scalar
masses and the sum of the squares of the tree-level fermion masses are the same, which
agrees with the more general result recently found in [32] that this is a property of
all D3 branes at equilibrium. Note however that the traceless part of the scalar mass
matrix depends on the features of the geometry near the location of the branes and

3When anti-D3 branes are placed in an imaginary anti-self-dual (IASD) background, the fermions
are massless. In addition, if the background is of IASD Graña-Polchinski-GKP-type [36, 37], the
antibranes feel no potential when moving in the transverse directions, and hence the six scalars are
also massless.
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hence is not determined by the fermion masses.

Having obtained the tree-level brane action, we next compute the field-theory
loop corrections. The easiest way to compute these corrections is to observe that the
antibrane worldvolume theory has the following structure. Consider N = 4 Super-
Yang-Mills (SYM) theory, broken to N = 1∗ by giving equal masses to the three
chiral multiplets. As we will show, the antibrane worldvolume theory is a particular
N = 0∗ theory originating from this equal-mass N = 1∗ theory by the addition of a
traceless scalar bilinear term (a B-term) that breaks the remaining supersymmetry
but preserves the SO(3) × SO(3) symmetry. One can then apply a combination of
certain general results on finiteness obtained by Parkes and West [38–41] to find that
this theory is finite to all orders in perturbation theory. Thus the masses of the chiral
multiplets and the B-terms receive no perturbative corrections, which implies that the
inter-brane potential along the S3 at the bottom of the deformed conifold is exactly
zero. This is the main result of our paper.

This result is all the more striking because it agrees exactly with the result ob-
tained when gsN3 � 1 by studying backreacted antibranes in the KS solution [24].
Indeed, one can compute the Polchinski-Strassler [42] polarization potential of fully-
backreacted anti-D3 branes localized in the KS solution and one finds, after a pair of
surprising cancellations, that the quadratic piece in the polarization potential along
the S3 at the bottom of the warped deformed conifold is exactly zero.4 This in turn
indicates that the three scalars that describe the motion of the anti-D3 branes at the
bottom of the KS solution are massless when gsN3 � 1.

The fact that this strong-coupling result agrees with the all-loop perturbation
theory result suggests that the masslessness of the three scalars of the worldvolume
theory of anti-D3 branes in KS is a property that is valid for all values of gsN3. Of
course it is logically possible that as one increases the coupling the potential will rise
and fall again, as a smooth function of compact support, but this appears rather
implausible. In our opinion the fact that, despite the absence of supersymmetry,
this potential is exactly zero in the only two regimes of parameters where it has
been computed exactly, strongly suggests that this potential will be zero throughout.
Moreover, this flat direction means that in our regime of parameters, the spectrum
is not gapped, and is possibly tachyonic. We will discuss this in detail in Sections 4
and 5.

This paper is organized as follows. In Section 2 we review the KS solution, ex-
tracting the properties required for our analysis. We derive the bosonic part of the
worldvolume theory of anti-D3 branes in the KS solution in Section 2.2, and the
fermionic part in Section 2.3. We describe how the non-renormalization theorems are
applied to our theory in Section 3. In Section 4 we discuss the physical interpretation
and the regime of validity of our result. We end with a discussion in Section 5.

4It is important to emphasize that the underlying reason for this cancellation is not understood,
and that the cancellation is not simply a consequence of the symmetry of the solution before the
branes are added. In the CGLP solution [2], which has a similar symmetry, the potential between
anti-M2 branes moving at the bottom of the throat is repulsive [14].
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2 From bulk solutions to worldvolume theories

2.1 The Klebanov-Strassler background

The purpose of this subsection is to review some properties of the KS background [1],
to extract certain relations that we need for our analysis, and to introduce notation.
We will not give a full review of KS; for more details we refer the reader to Ref. [43],
which agrees with most of our conventions.

The KS background is a supersymmetric, non-compact, Graña-Polchinski-GKP-
type [36, 37] solution. By this we mean the following. The G3 ≡ F3 − ie−φH3 flux
has (2,1) complexity, the dilaton eφ = gs is constant, and the ten-dimensional (string-
frame) metric is a warped product of R3,1 with a Calabi-Yau base:

ds2
10 = e2Ads̃2

4 + e−2Ads̃2
6 . (2.1)

As this expression suggests, the metrics which have a tilde are unwarped. The C4

potential takes the form5

C4 = ?̃4α (2.2)

where the function α is related to the warp factor e4A by6

α = e−φ
(
e4A − α0

)
, (2.3)

where α0 is a constant that we gauge fix by requiring that α(τ = 0) = 0.

In the KS solution, the Calabi-Yau base is a deformed conifold with topology
R+ × S2 × S3, and all the functions that determine the solution, such as α and
A above, depend only on the radial direction of the deformed conifold, which is
commonly denoted as τ and parameterizes the R+.

This solution has four supercharges, which are compatible with those of D3 branes.
Hence, probe anti-D3 branes experience a potential that forces them to the bottom
of the throat,

V ∼ µ3e
−φ√−g4 + µ3α = 2µ3e

−φ
(

1

2
e4A0 + ∂2

τe
4A|0τ 2 + . . .

)
. (2.4)

In this paper we consider anti-D3 branes localized at the bottom of the deformed
conifold, and hence we employ a local R6 coordinate system [24] parameterizing the
neighborhood of the branes,

ds2
10 = e2Aηµνdx

µdxν + e−2Ag̃mndxmdxn , (2.5)

where the internal metric is given by g̃mn = bδmn for some constant b that depends
on conventions.

5We will use the notation that F5 = ?10dC4, or equivalently that F5 is the internal part of the
self-dual five-form field strength F5 = (1 + ?10)F5.

6Note that we are using the string-frame metric throughout this paper. This means that there is
an extra factor of the (constant) dilaton in this expression compared to the corresponding formula
in [37], written using the Einstein-frame metric.
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In such a local coordinate system, the local expansion in terms of τ is now an
expansion in x7,8,9 – the local coordinates of the R+ × S2. This means that the τ 2

term of the anti-D3 brane potential will have the form

τ 2 ∝ (x2
7 + x2

8 + x2
9) , (2.6)

which, as mentioned in the Introduction, can be decomposed as the sum of a quadratic
term transforming in the 1 (singlet) of the SO(6) R-symmetry and a term transform-
ing in the 20′ traceless symmetric representation,

τ 2 ∝ (x2
7 + x2

8 + x2
9)

=
1

2
(x2

4 + x2
5 + x2

6 + x2
7 + x2

8 + x2
9)− 1

2
(x2

4 + x2
5 + x2

6 − x2
7 − x2

8 − x2
9) .

(2.7)

For later convenience we introduce complex coordinates

zi ≡
1√
2

(xi+3 + ixi+6) , (2.8)

with i = 1, 2, 3, in terms of which we have

1

2
(x2

4 + x2
5 + x2

6 + x2
7 + x2

8 + x2
9) = z1z̄1 + z2z̄2 + z3z̄3 , (2.9)

1

2
(x2

4 + x2
5 + x2

6 − x2
7 − x2

8 − x2
9) =

1

2

(
z2

1 + z2
2 + z2

3

)
+ h.c. (2.10)

To derive the supersymmetric term on the anti-D3 brane worldvolume, we will
make use of the F5 Bianchi identity

dF5 = H3 ∧ F3 , (2.11)

written here for a source-less background, such as the KS solution. Expanding around
the bottom of the deformed conifold, and using the fact that e−4A has no linear term
in this expansion for KS, we can write the LHS of Eq. (2.11) as

dF5 = −e−8A0d?̃6dα|0 , (2.12)

using the metric and the C4 potential. Hence

dF5 = e−8A0b−1δmn∂m∂nα|0 ?̃61 , (2.13)

in real coordinates, or in the complex coordinates introduced before

dF5 = 2e−8A0b−1e−φδ īı(∂i∂ı̄e
4A)|0?̃61 , (2.14)

where we also used the relation (2.3).

To evaluate the RHS of Eq. (2.11) we rely on the imaginary self duality of the KS
G3 flux, which implies that the NSNS and RR fluxes are related by H3 = eφ ?6 F3.
Together with F3 = 1

2
(G3 + Ḡ3), this gives

H3 ∧ F3 =
1

3!

1

4
eφ
(
(G3 + Ḡ3)mnp(G3 + Ḡ3)mnp

)
?61 , (2.15)
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where indices are contracted using the warped metric. Transforming to complex
coordinates and using the fact that G3 is purely (2,1), only one type of contraction
is non-vanishing,

(G3)mnp(Ḡ3)mnp = 3(G3)ijk̄(Ḡ3)ijk̄ . (2.16)

Thus we obtain

H3 ∧ F3 =
3

2
eφb−3|G3|2 ?̃61 , (2.17)

where (G3)ijk̄ = |G3|εijk̄ and |G3| is real. Since A a function of τ only, we can now
write Eq. (2.11) as

∂i∂̄e
4A|0 =

1

4
g2
sb
−2e8A0|G3|2δī . (2.18)

In due course we shall also make use of the other quadratic terms in the Taylor
expansion of e4A. Again using the fact that A is a function of τ only, we can use
Eqs. (2.7)–(2.10) to find that these terms are given by

∂i∂je
4A|0 = −1

4
g2
sb
−2e8A0|G3|2δij . (2.19)

These terms transform in the 20′, unlike the singlet term in (2.18). As one can
see from Eqs. (2.7)–(2.10), the contributions to the potential along the S3 directions
coming from the terms in the 1 and the 20′ are equal and opposite, while along the
R+ × S2 directions they add.

2.2 The bosonic terms in the worldvolume theory

We now derive the worldvolume gauge theory of anti-D3 branes at the bottom of
the KS throat. We start with the bosonic terms in the action, and we compute the
fermionic terms in the next subsection.

The worldvolume gauge field will not play an important role, so for ease of pre-
sentation we shall suppress it in what follows, with the understanding that the full
action contains the usual gauge kinetic terms and covariant derivative couplings. In
addition, since the U(1) sector of the gauge theory is free, we focus on the SU(N3)
sector. With these points understood, the bosonic part of the theory is given by the
DBI and WZ parts of the brane Lagrangian7

LDBI = −µ3Tr
{
e−φ
√
− det(P [Mab]) det(Qm

n)
}
,

LWZ = −µ3 Tr
{
P [eiλı

2
ϕC ∧ eB2 ]

}∣∣∣
0123

.
(2.20)

We work with the string-frame metric. The indices a, b, . . . are ten-dimensional, the
indices µ, ν, . . . are four-dimensional worldvolume indices parallel to the brane, and

7The Lagrangian is written with explicit signs corresponding to an antibrane in our conventions.
We use the generic term brane to refer to both anti-Dp and Dp branes, where explicit signs and
dimensions determine the details.
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m,n, . . . are six-dimensional indices transverse to the brane. The tensors in the above
expression are defined as follows:

P [Mab] ≡ Eµν + Eµm(Q−1 − δ)mnEnν ,
Qm

n ≡ δmn + iλ[ϕm, ϕp]Epn ,

Eab ≡ gab −Bab ,

C ≡
∑

Cn ,

(2.21)

where λ ≡ 2π`2
s and the D3 brane charge is µ3 = 2π/(2π`s)

4, where `s is the string
length.8 The Hermitian scalars ϕm transform in the adjoint of SU(N3) and parame-
terize the brane positions. We also choose a gauge for B2 such that B2|0 = 0.

Expanding in powers of λ, the DBI Lagrangian becomes

LDBI = −µ3Tr
{
e−φ
√
− det(P [Mab]) det(Qm

n)
}

= µ3λ
2

(
−1

2
e−φg̃mnTr{∂µϕm∂νϕn}ηµν −

1

2
e−φ∂m∂ne

4A|0Tr {ϕmϕn} (2.22)

− i
3
e4A0e−φHmnpTr{ϕmϕnϕp}+

1

4
e−φg̃mqg̃npTr {[ϕm, ϕn][ϕq, ϕp]}

)
+ . . .

where as usual the H3 coupling arises from the Taylor expansion of B2, and where we
have dropped the constant term proportional to e4A0 .

Similarly, expanding the WZ Lagrangian gives

LWZ = −µ3 Tr
{
P [eiλı

2
ϕC ∧ eB2 ]

}∣∣∣
0123

(2.23)

= µ3λ
2

(
−1

2
e−φ∂m∂ne

4A|0Tr{ϕmϕn} − i

3
e4A0Tr{ϕmϕnϕp}(?6F )mnp

)
+ . . .

where we have used the fact mentioned below Eq. (2.3) that in our gauge we have
α(τ = 0) = 0 and, hence, at the location of the branes dC6 = F7 = − ?10 F3.

The two trilinear terms can be combined into an expression involving a particular
combination of G3 and its complex conjugate,

L tri =
λ2µ3

3
e4A0(G3 − Ḡ3)mnpTr{φmφnφp} . (2.24)

It is convenient to introduce complex coordinates that we shall use from now on,

φi =
1√
2

(
ϕi+3 + iϕi+6

)
. (2.25)

8Our conventions are described in Appendix A.
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In these complex coordinates the full Lagrangian, L = LDBI + LWZ, becomes

L = µ3λ
2

[
− e−φg̃īTr{∂µφi∂νφ̄}ηµν

− 2e−φ
(
∂i∂̄e

4A|0Tr{φiφ̄̄}+
1

2

(
∂i∂je

4A|0Tr{φiφj}+ h.c.
))

+ e4A0

(
Gijk̄Tr{φiφjφ̄k̄}+ h.c.

)
+

1

2
e−φg̃īıg̃j̄Tr{[φi, φj][φ̄ı̄, φ̄̄]− [φi, φ̄̄][φj, φ̄ı̄]}

]
+ . . .

(2.26)

where a bar on the scalars indicates Hermitian conjugation.

In order to proceed we make a constant rescaling of the scalars to obtain a
canonically-normalized kinetic term. This is achieved by defining

φ̂i ≡ φi
(
µ3λ

2be−φ
)1/2

. (2.27)

Having done this, we immediately drop the hat from the rescaled expressions and
exclusively use the canonically-normalized scalars from now on.

After applying the relation (2.18) derived from the Bianchi identity in the previous
subsection, the Lagrangian becomes

L = − Tr{∂µφi∂νφ̄}ηµνδī

−
(
gs√

2
e4A0|G3|b−3/2

)2

δīTr{φiφ̄̄} −
(
∂i∂je

4A|0Tr{φiφj}+ h.c.
)

+

(
√

2
g

1/2
s

λ
√
µ3

)(
gs√

2
e4A0|G3|b−3/2

)(
εijk̄Tr{φiφjφ̄k̄}+ h.c.

)
(2.28)

+
1

2

(
√

2
g

1/2
s

λ
√
µ3

)2

δīıδj̄Tr
{

[φi, φj][φ̄ı̄, φ̄̄]
}
− 1

2

gs
λ2µ3

Tr{
(
δī[φ

i, φ̄̄]
)2}+ . . .

Here we have written the quadrilinear term as the sum of an F-term and a D-term,
as we will shortly write part of the Lagrangian in terms of an N = 1 superpotential
and, as is well-known, the F-term part of the quadrilinear interaction of N = 4 SYM
is contained in the superpotential, while the D-term part is not (see for example [44]).

We can identify the bilinear and trilinear scalar interactions in the language of soft
supersymmetry-breaking. To this end we introduce complex-scalar masses (m2

B)ī, B-
terms bij, and the (2,1) trilinear interaction rijk̄ via

Lsoft = − (m2
B)īTr{φiφ̄̄}+

(
−1

2
bijTr{φiφj}+ rijk̄Tr{φiφjφ̄k̄}+ h.c.

)
. (2.29)

By matching these terms with Eq. (2.28), we find the following bosonic soft

10



supersymmetry-breaking terms:

Complex-scalar masses: (m2
B)ī = m2

Bδī , mB ≡
(
gs√

2
e4A0|G3|b−3/2

)
,

B-terms: bij = −m2
Bδij ,

(2,1) trilinear: rijk̄ =

(
√

2
g

1/2
s

λ
√
µ3

)(
gs√

2
e4A0|G3|b−3/2

)
εijk̄ .

(2.30)

We note that the tree-level B-terms are real. A priori these terms could have had
an imaginary part, which would correspond to off-diagonal elements in the real matrix
∂m∂ne

4A|0. We will discuss the imaginary part of the B-terms further in Section 4.

2.3 The fermionic terms in the worldvolume theory

The fermionic part of the action for D3 branes in transverse RR and NSNS three-form
fluxes was first explicitly written down in Ref. [33] and further studied in Refs. [45–47].
We now compute the terms in this fermionic action and their precise normalization
for antibranes in KS.

The calculation deriving the fermion bilinear [33] and that determining the scalar
trilinear [34] were performed using different conventions, so it is necessary to fix the
relative normalizations of the bosonic and fermionic actions. To fix this overall factor,
we now examine the form of the fermionic bilinear terms.

Recall that upon writing N = 4 SYM in an N = 1 superfield formalism, one
obtains three chiral multiplets. The KS background has only (2, 1) primitive three-
form flux, so the only additional term in the fermion action is a mass for the three
Weyl fermions in the chiral multiplets, and the gaugino remains massless [33]. We
write the (2,1) primitive three-form flux in the form

Sı̄̄ =
1

2

(
εı̄
klGkl̄ + ε̄

klGkl̄ı

)
, (2.31)

where indices have been raised with δ īı. Then the fermion mass matrix is proportional
to the complex conjugate of S [33],

mF
ij ∝

(
S̄
)
ij
. (2.32)

By expanding the G3 flux at the location of the branes, one finds a diagonal fermion
mass matrix with equal entries,

Sı̄̄ = S δı̄̄ ⇒ mF
ij = mF δij . (2.33)

Next, we observe that the three massive Hermitian scalars have a mass-squared
which is twice the one that they would have if supersymmetry had been preserved.
This can be seen from computing the polarization potential of a D5 brane carrying
anti-D3 brane charge and wrapping the shrinking S2 of the KS background. As out-
lined in Appendix B, the D5 brane polarization potential does not have a finite-radius
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minimum. However, when the term originating from the mass is halved, the polar-
ization potential becomes a perfect square and has a supersymmetric polarization
minimum. Hence the supersymmetric mass-squared is half the mass-squared of the
three scalars corresponding to motion away from the tip. From the argument made
around Eq. (2.7) we see that the supersymmetric mass is the mass of the complex
scalars, given in Eq. (2.30). Thus the mass of the Weyl fermions and the complex
scalars are equal,

mF = mB =
gs√

2
e4A0|G3|b−3/2 . (2.34)

This determines the correct normalization of the fermionic terms in the Lagrangian,
and implies that the sum of the squares of the tree-level scalar masses and the sum
of the squares of the tree-level fermion masses are the same. This fact agrees with
the more general result recently found in Ref. [32] that this is a property of all D3
branes at equilibrium in warped compactifications.

Having established this relation between fermion and boson masses, we now ob-
serve that the (2, 1) scalar trilinear coupling is proportional to the mass of the
fermions. This fact, combined with the equality of fermion and boson masses in
the absence of the B-term, allows us to temporarily put aside the B-term (and the
D-term quadrilinear interaction), and write the remainder of the Lagrangian in terms
of N = 1 superfields. Similar observations have been made in Refs. [46,47].

The Lagrangian for these terms can then be written as

Lsusy = Tr
{

Φ̄Φ
∣∣
θ2θ̄2

}
+
(
W (Φ)

∣∣
θ2

+ h.c.
)
, (2.35)

where W (Φ) is the superpotential

W (Φ) =
1

2
mF
ijTr

{
ΦiΦj

}
+
c gYM

3
εijkTr

{
ΦiΦjΦk

}
(2.36)

where c is a numerical parameter that depends on conventions. The supersymmetry
is broken from N = 4 → N = 1? by the three equal masses of the chiral multiplets.
The Φi are the chiral multiplet superfields, written in component fields as

Φi = φi +
√

2θψi + θ2F i . (2.37)

Upon eliminating the auxiliary fields F i, the Lagrangian becomes

Lsusy = −Tr{∂µφi∂νφ̄̄}δīηµν + iTr{(∂µψ̄i)σ̄µψi}

−
[
(mF )(m̄F )

]
īı

Tr{φiφ̄ı̄} − 1

2

(
mF
ijTr{ψiψj}+ h.c.

)
+
(
c gYM m̄

F
k̄l̄ εij

l̄Tr{φiφjφ̄k̄}+ c gYM εijkTr{ψiψjφk}+ h.c.
)

+
1

2
|c gYM|2 δīıδj̄Tr

{
[φi, φj][φ̄ı̄, φ̄̄]

}
,

(2.38)

where again indices are contracted with δī or its inverse. We can now read off9

c gYM =
√

2
g

1/2
s

λ
√
µ3

. (2.39)

9There is a redundancy in conventions in how one exactly chooses the value of the constant c,
and how one relates gYM to gs; for our purposes we will not need to fix this redundancy.
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Figure 1: Field-theory loop corrections to the scalar mass, involving the trilinear and quadri-
linear scalar couplings and the Yukawa couplings.

Combining Eqs. (2.30), (2.34) and (2.39), we observe that the relation between
fermion masses and scalar trilinear couplings takes the explicit form:

rijk̄ = mF

(
c gYMεijk̄

)
. (2.40)

This simple relation, which is also present in more general theories on D-brane world-
volume, will be a crucial ingredient in our analysis of perturbative corrections, as in
general it leads to significant simplifications in beta functions [48].

The supersymmetric Lagrangian (2.38) reproduces the fermionic terms and all
terms in the bosonic Lagrangian (2.28) except for the B-terms and the D-term quadri-
linear. Thus we see that the B-terms are the only terms responsible for breaking the
N = 1 supersymmetry, and making the theory an N = 0? theory. As mentioned
earlier, the gauge fields have been suppressed, but can easily be reintroduced. This
concludes the calculation of the anti-D3 brane worldvolume tree-level Lagrangian.

3 Loop corrections and non-renormalization theo-

rems

Having derived the tree-level action of the anti-D3 worldvolume gauge theory, we
now proceed to investigate quantum corrections. These corrections would generically
cause the masses them to run logarithmically with the energy, and this running can be
thought of as coming from the backreaction of the anti-D3 branes on the corresponding
supergravity fields.

The worldvolume gauge theory of a stack of N3 coincident anti-D3 branes is a
U(N3) = SU(N3) × U(1) theory. All of the interaction terms derived above, except
the mass terms and the B-terms, are anti-symmetrized and hence, as usual, the U(1)
sector is free and decouples. In the SU(N3) sector, the diagrams that provide the
corrections to the masses of the scalars are summarized schematically in Figure 1.
These diagrams are the usual field-theory limit of open-string diagrams (see Figure
2). These diagrams come with a factor of gsN3 for each additional boundary, and
hence we are in a regime of perturbative control when gsN3 � 1. Thus, naively, one
would expect a one-loop correction to the scalar mass of order

δ(1)(m
2
B)

(m2
B)tree

∝ gsN3 . (3.1)
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Figure 2: Open-string loop expansion. Crosses represents open string vertex operators; red
is used for planar diagrams, and blue for non-planar diagrams.

In the previous section we derived the structure of how supersymmetry is broken
at tree level on anti-D3 branes in KS,

W4 =
c gYM

3
εijkTr

(
ΦiΦjΦk

)︸ ︷︷ ︸
N=4

→ W1 = W4 +
1

2
mF
ijTr

(
ΦiΦj

)︸ ︷︷ ︸
N=1?

→ W1 & B-terms︸ ︷︷ ︸
N=0?

. (3.2)

The purpose of this section is to describe how this type of supersymmetry breaking
affects the running of the masses and couplings. Since along the S3 directions there
is a perfect cancellation between the supersymmetric scalar mass terms and the real
part of the supersymmetry-breaking B-terms, this direction is flat at tree level. At
loop level there are a priori three possibilities. Either the real part of the B-terms
and the supersymmetric masses run differently, and then the spectrum along the S3

becomes either gapped or tachyonic, or they run in the same way, preserving the
masslessness of the S3 scalars.

Perturbative corrections to supersymmetric gauge theories of the kind we are
interested in were investigated by Parkes and West [38–41]. They considered the
addition of mass terms that preserve some supersymmetry, and they also applied the
spurion method [49] to study theories in which supersymmetry is completely broken.
They derived several powerful all-loop results, a subset of which we now combine for
our analysis.

The first step in the breaking of supersymmetry is the addition of a mass term
to the N = 4 superpotential, resulting in an equal-mass N = 1? theory. This theory
was shown to remain finite to all loops [38].

The second step is to add to the Lagrangian the particular B-terms induced by
the KS background. These B-terms have the “X2 − Y 2” form (2.10). It was shown
that adding such terms, in conjunction with supersymmetric masses, to N = 4 Super
Yang-Mills, preserves finiteness to all orders in perturbation theory [39].10

Combining these two results implies that neither the supersymmetric masses nor
the B-terms receive any higher-loop correction, and hence the masslessness of the
three scalars along the S3 direction is preserved to all orders in the loop expansion.
This absence of these perturbative corrections applies not only to the bosonic masses,
but to all terms in the Lagrangian of the anti-D3 brane gauge theory.

10In addition, the “X2− Y 2” terms preserve finiteness to all orders when added to a finite N = 2
theory [40], and preserve two-loop [41] and one-loop [50] finiteness in N = 1 gauge theories.
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AdS/CFT

gsN3

r4⊥
gsN3(α′)2

A. B.

C.D.

Figure 3: An illustration of the different regimes of parameters. Some recent investigations
carried out in the different limits include: A. [29], B. [23], C. [24], D. The present work.
The AdS/CFT-like decoupling limit is shaded in blue, and the vertical (green) dashed line
is gsN3 = 1.

4 Physical interpretation

In this section we discuss the physical significance of the all-loop result obtained
above. To do this, we first described the region of parameter space in which we work,
and then compare it to previous results. The open string loop expansion is valid for
gsN3 � 1 and, since the U(1) sector is free, we focus on the SU(N3) sector and hence
work at N3 > 1.

This is the opposite regime to the one used to analyze fully-backreacted antibranes
in supergravity (gsN3 � 1) and we believe that the striking agreement between our
results and those of [24] strongly suggests that the scalars corresponding to motion
along the S3 at the bottom of the KS solution remain massless for all values of gsN3.

We work in the usual low-curvature supergravity limit, where the length scale, L,
associated to the curvature of the background is much larger than the string length,
`s/L� 1. This suppresses higher-derivative terms in the brane action, coming from
the Taylor expansion of the supergravity fields, such as

gmn(ϕ) =
∞∑
α=0

λα

α!
ϕn1 . . . ϕnα∂n1 . . . ∂nαgmn|0 , (4.1)

where
√
λ∂m ∼ `s/L.

Thirdly, we work in the AdS/CFT decoupling regime, in which the low-energy
gauge theory on the brane decouples from the supergravity fields. This regime corre-
sponds to sending the distance r⊥ from the branes to zero with r⊥/α

′ fixed [51, 52],
which means that one has

r4
⊥

gsN3(α′)2
� 1 . (4.2)

Since we work in the weakly-coupled gauge theory, the conjectured bulk dual is
strongly-curved and the corresponding sigma-model is strongly-coupled. We depict
our regime and compare it to the regimes considered in other works in Figure 3.
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Figure 4: Contributions to the antibrane potential within an EFT of the brane and super-
gravity fields [29]. Crosses represent external supergravity fields.

+ + + . . .

Figure 5: Closed-string loop diagrams of which the diagrams in Fig. 4 are limits. Crosses
represent closed string vertex operators corresponding to the external legs in Fig. 4.

The difference between our approach and that of [29] is that the latter considers a
low-energy EFT involving both brane and supergravity fields, that is valid for r⊥ � `s.
The diagrams that enter in the calculation of this EFT, depicted in Fig. 4, are the
massless-closed-string limit of the string diagrams in Fig. 5. Our diagrams are simply
the light-open-string limit of the same diagrams. For example, if we insert external
open-string vertex operators in Fig. 5, we see that this diagram and the one-loop
open-string diagrams in Fig. 2 are the same. Furthermore, as mentioned above, the
would-be field theory corrections to the fermion and boson mass terms can be thought
of as representing the correction to the corresponding supergravity fields caused by
the backreaction of the brane. Therefore, the diagrams in Fig. 4 and those in Fig. 1
compute the same quantity in two different regimes.

The advantage of our regime is that it allows one to do precise calculations, which,
given the current technology of string loop calculations in RR backgrounds, does not
appear possible in the approach of [29] in the near future. Furthermore, it is entirely
possible that if such calculations were done, the exact cancellations leading to the flat
directions along the S3 may not survive in the regime of parameters of [29], and thus
the corresponding EFT might have tachyonic terms. A priori, such terms could arise
both for multiple branes and for a single brane.11 Hence, our reluctance to share the
optimism expressed in [29] regarding anti-D3 brane uplift [22].

In the analysis of fully backreacted antibranes in the KS solution [24] it was argued
that the cancellation of the bosonic potential along the S3 is not the full story. More
specifically, this cancellation comes from a nontrivial relation between the real part of
the B-terms and the trace of the boson mass matrix, but in addition the B-terms could
also have imaginary parts that are not prohibited by the symmetry of the problem,
and one therefore expects to find them generically. Such a term would give rise to

11Although, of course, for a single brane, such a tachyon cannot be interpreted as indicating
brane-brane repulsion.
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tachyonic instabilities in off-diagonal directions [24].

In our analysis, the imaginary parts of the B-terms are not present at tree level,
and are also not generated by loops. However, since there are no symmetries protect-
ing against such terms, it is entirely possible that they will arise non-perturbatively
in gsN3 or at subleading order in the expansions discussed above that take us away
from the regime of parameters in which we work (the blue region in Figure 3).

If such corrections preserve the balance between the real part of the B-terms and
the scalar mass terms, then non-zero imaginary parts of the B-terms would give rise
to tachyons. While one expects this balance to be preserved in the decoupling limit
when interpolating from weak to strong coupling, there is a priori no reason why it
should be preserved away from the decoupling limit. This in turn could generate a
gap or could lead to tachyons even without non-zero imaginary parts of the B-terms.

Another question which one can ask is whether in our regime of parameters one
can see a non-perturbative brane-flux annihilation effect of the type proposed in [25].
If one first considers anti-D3 branes in the S-dual of KS geometry, their worldvolume
theory has Higgs vacua. These vacua correspond to the polarization of the anti-
D3 branes into D5 branes wrapping an S2 inside the S3 at the bottom of the throat.
However, in the limit in which we work, `s/L→ 0, the height of the energy barrier that
these D5 brane have to traverse in order to trigger brane-flux annihilation is infinite,
and hence the tunneling probability of the anti-D3 branes is zero. It is almost certain
that this height is also infinite in the KS geometry in our limit, because the size of
the S3 that the NS5 brane with anti-D3 brane charge has to sweep out diverges.

5 Discussion

In this paper we have computed the potential of anti-D3 branes placed at the bottom
of the KS throat, in the regime 0 < gsN � 1 and in the AdS/CFT limit, to all
orders in perturbation theory. We first computed the tree-level Lagrangian, and
determined the pattern of (soft) supersymmetry breaking. We then applied certain
well-established results on finiteness to show that this Lagrangian does not receive
corrections to all loops in perturbation theory, and hence three of the scalars on
the worldvolume of the anti-D3 branes in KS remain massless to all orders in the
loop expansion. The fact that this result matches the one obtained in the fully-
backreacted regime (gsN3 � 1) in Ref. [24] is strong evidence that the spectrum of
anti-D3 branes in KS does not become gapped in any regime of parameters where
exact calculations can be made. Furthermore, since there is no symmetry prohibiting
an imaginary B-term in the effective action on the branes, and since such a term
will always introduce tachyons, the optimism about brane-brane-repelling tachyons
disappearing when gsN3 � 1 appears premature.

Although the explicit analysis performed in this paper is for the KS background,
we expect the masslessness of some of the worldvolume scalars to be a generic feature
of anti-D3 branes in conical highly-warped geometries: For a conical geometry to
be regular at its bottom it is necessary to have some finite cycle, such as the S3 of
the deformed conifold or the S2 of the resolved conifold. From the perspective of
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the worldvolume theory of an antibrane at the bottom of this geometry, this would
imply that some of the scalars are massless at tree level and hence the B-term will
be nonzero.

In a generic conical geometry with ISD fluxes the theory on the anti-D3 branes
will contain fermion bilinears and scalar trilinears, that will consist of both “super-
symmetric” terms (of the kind we found in KS) coming from the primitive (2,1)
components of G3, and also non-supersymmetric terms coming from the (0,3) and
the non-primitive (1,2) G3 components. For example, a (0,3) component would in-
troduce a hijkTr{φiφjφk}+ h.c. scalar trilinear term and a gaugino mass Mλλ. The
relation between hijk and M is exactly of the same form as that between the super-
symmetric fermion masses and scalar trilinear couplings that we analyzed in detail
in Section 2.3, and this, combined with the vanishing of the mass supertrace at tree
level [32], implies that the beta-functions of the theory will vanish both at one and
two loops [53–55, 48].12 Hence, the scalars that are massless at tree level will remain
massless at least to two loops.

A similar argument can be made for a more generic background that contains a
combination of primitive (2,1), (0,3), and non-primitive (1,2) flux: these fluxes would
give rise to a symmetric 4 × 4 fermion mass matrix that can be diagonalized (this
corresponds to changing the complex structure), and the resulting theory would be
the one with (2,1) and (0,3) fluxes discussed above.

Our result appears to be in tension with the argument that the spectrum of anti-
D3 branes in the KS geometry is gapped [56], and also with the related argument
that separated anti-D3 branes at the bottom of the KS solution should be screened
by flux and therefore should attract each other [57]. To explicitly compute the effect
of this screening on the potential between two anti-D3 branes, one must perform a
full string calculation, which cannot be done with current technology. However, in
the limit where the branes are close to each other, this string calculation reduces to
our field-theory calculation, which finds that the tree-level masslessness of three of
the six scalars that describe the anti-D3 branes is preserved to all loops. Therefore,
the spectrum of the anti-D3 branes remains un-gapped in our regime of parameters.
Hence, the intuition that antibranes at the bottom of KS are screened and therefore
attract each other does not appear to give the correct physics in either of the two
regimes of parameters where precise calculations can be done: the regime we have
considered and the large-backreaction regime [24].

The absence of a gap may also be problematic for phenomenological applications.
When the KS throat is glued to a compact manifold, the gluing introduces perturba-
tions to the KS throat, which in turn can give very small masses to the scalars that
are massless in the infinite KS solution. These masses were estimated in Ref. [58], and
were found to be exponentially smaller than the typical mass scale of the light fields
at the bottom of the throat, and hence phenomenologically problematic. Had our
calculations found instead that the inter-brane degrees of freedom were gapped, there
would have only been three such light fields, corresponding to the center-of-mass de-
grees of freedom, and these fields could presumably have been uplifted in some other

12In particular, this implies that the mass supertrace will remain zero at one and two loops [32].
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way. However, uplifting 3N3 massless modes appears a more and more onerous task
as one increases N3. It would be interesting to compare these corrections to those
discussed in Section 4, in particular to see whether any possible tachyonic term could
overwhelm these very light masses.

We have also discussed the regime of parameters in which our calculation is done
and its relation to the brane effective action approach of [29]: The Feynman diagrams
that enter in our field-theory calculation arise from the light-open-string limit of
string diagrams, which in the opposite massless-closed-string limit, reduce to the
supergravity amplitudes considered in [29].

There is another difference between these approaches, which has to do with the
number of anti-D3 branes we consider. The theory on N3 anti-D3 branes has a U(N3)
gauge group, and its dynamics can be split in an SU(N3) sector and a U(1) sector.
The U(1) sector describes the center-of-mass motion of the branes, and is a free
theory, reflecting the fact that there is no potential to the stack of antibranes (or a
single antibrane) moving together on the S3, as mentioned in [29]. It is important
to note that this fact is not a result of a calculation done using the brane effective
action, but simply a result of symmetry considerations.13

As we have noted, when going away from our field-theory limit, both the U(1)
and the SU(N3) sectors may receive corrections, which are capable of introducing a
gap or a tachyon. There is no symmetry that prohibits these corrections, even for the
U(1) sector, although the interpretation of the possible existence of a tachyon for a
single antibrane is unclear.

Our result that the brane-brane potential along the S3 at the bottom of the
KS solution remains flat agrees exactly with the strong-coupling calculation of [24].
In [24] it was furthermore argued that the symmetries of the problem do not prohibit
the existence of another term in the brane-brane potential (an imaginary part of the
B-terms) and thus, following the usual EFT reasoning, one expects that such a term
will generically be present. This term does not affect the value of this potential along
the S3 but on the other hand gives rise to a brane-brane repelling tachyon along a
direction misaligned with the S3.

It is important to ask whether a similar term could possibly also appear and
give rise to a brane-brane-repelling tachyon in the weak-coupling regime in which we
work. In the field theory on the branes this term is zero at tree level, and one can
also show that the beta-functions associated to its running are exactly zero. Hence
one possibility is that this term is exactly zero in the weak-coupling regime, and only
appears in the large-backreaction regime. However, if one examines the problem a bit
deeper, and excludes mathematical oddities, this possibility appears quite unlikely.
Rather, if the brane-brane-potential on the S3 remains flat all the way from weak
to strong coupling, and the tachyon-inducing term is considerable at large gsN3, one
expects that a leftover of this term, however small, will be visible at weak coupling,

13There has also been interest in placing a single anti-D3 brane on an O3− plane [59–62], which
entirely removes the six anti-D3 scalar degrees of freedom, and hence any potential brane-brane
repelling tachyons. Besides the fact that these objects have more charge than mass and so violate
the BPS bound, such constructions are not possible at the bottom of the KS throat [62], and the
alternative proposals [62] so far lack the explicitness available in KS.
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perhaps as a non-perturbative effect. Whenever this term is not exactly zero, a brane-
brane-repelling tachyon is present [24], and thus we expect that this tachyon will be
present at all finite values of gsN3.

Finally, let us comment on the implications of our result for the possibility of using
anti-D3 branes in long warped KS-like throats to uplift the cosmological constant
and obtain a landscape of metastable de Sitter solutions in String Theory. Our
computation found a flat direction in the brane-brane potential which is preserved at
all loops, indicating that the system is ungapped and is vulnerable to tachyons which,
from an EFT perspective, are likely to be present. Therefore anti-D3 brane uplifting
mechanisms remain questionable even when backreaction is small.

Our paper thus contains yet another calculation that a priori could have either
agreed or disagreed with the viability of anti-D3 brane uplifting constructions. Taken
together with the negative results obtained in the large backreaction regime [4–18],
our result further adds to the evidence against the existence of a de Sitter multiverse
obtained using antibranes.14
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A Conventions

In this appendix we record our conventions and their relation to those used in a
selection of related literature [33,34,45–47,61]. Our conventions are:

• G3 ≡ F3 − e−φH3 and EMN ≡ gMN − BMN , which implies that the RR fields
strengths are F = dC +H ∧ C;

• Our Hodge-star conventions are those described in Appendix A of [64];

• The anti-D3 brane worldvolume theory has interaction terms induced by ISD
fluxes, ?6G3 = iG3.

Our H3 = dB2 has the opposite sign compared to that of Refs. [34,46,47,61]. Ref. [45]
does not follow the same Hodge-star conventions as us, and Ref. [46] switches to

14If one desires, one can even quantify this evidence in a Bayesian approach [63].
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a mostly-minus signature for their four-dimensional theory while we keep strictly
to a mostly-plus signature. Note that we also start from the string-frame brane
action, which is a choice that becomes irrelevant after the constant rescaling done in
Eq. (2.27).

In addition, we differ from Ref. [34] in our conventions for the RR fields. We have
Fn ∼ g−1

s H3 while Ref. [34] has Fn ∼ H3. Finally, in our conventions we have `2
s = α′.

B Fermion masses from D5 polarization

As discussed in Section 2.3, the relative normalizations of the bosonic and fermionic
actions can be directly derived from the D5 polarization potential. In the KS back-
ground a D5 brane carrying anti-D3 brane charge and wrapping the shrinking S2 at
a finite distance, τ , from the bottom of the deformed conifold, has the action

VD5 = 2πN̄3c2τ
2 − c3τ

3 +
1

2πN̄3

c4τ
4 (B.1)

where c2,3,4 are constants. Details of the derivation of this potential can be found for
example in Ref. [13]. This potential has no minimum away from τ = 0, and hence
anti-D3 branes in KS cannot polarize into D5 branes.

We are interested in the coefficient c2: this is proportional to ∂2
τ (e

4A + α)|0 and
is hence proportional to the mass-squared of the scalars that correspond to motion
away from the bottom of the warped deformed conifold.

Now, if we deform the potential by taking c2 → c2/2, the potential can now be
written as a perfect square. Explicitly, the deformed potential is

ṼD5 =
b2

128

gs
πN̄3

τ 2

(
τ − 2

√
2

b2
e4A0|G3|

πN̄3

gs

)2

. (B.2)

This expression has been translated into our conventions using the local R6 coordi-
nates of Ref. [24] (modified to be consistent with our complex coordinates defined in
Eq. (2.8)) and the KS conventions found in Ref. [13].

This deformed potential obtained by c2 → c2/2 has a supersymmetric minimum
at non-zero τ . Thus, the mass-squared of the three massive Hermitian scalars in
the undeformed potential is twice its would-be supersymmetric value, i.e. the mass-
squared of the fermions.
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