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We investigate the spin texture of Andreev bound states and Majorana states in long SN junctions.
We show that measuring the spin-polarized density of states (SPDOS) allows one to identify the
topological transition. In particular, we find that its total component parallel to the wire is non-zero
in the topological phase for the lowest-energy state, while vanishing in the trivial one. Also, the
component parallel to the Zeeman field is symmetric between positive and negative energies in the
topological phase and asymmetric in the trivial phase. Moreover the SPDOS exhibits a moderate
accumulation close to the SN boundary which changes sign when crossing the topological transition.
We propose that these signatures may allow one to unambiguously test the formation of a topological
phase via spin-resolved transport and STM measurements.

PACS numbers: 71.70.Ej, 73.20.-r, 74.45.+c, 74.50.+r

I. INTRODUCTION

Recently the problem of the formation and detection
of Majorana fermions has drawn a lot of attention.1–5

The formation of Majorana states has been predicted by
many theoretical works.6–19 One of the systems predicted
to exhibit Majorana fermions is a one-dimensional semi-
conducting wire with strong spin-orbit coupling such as
InSb20,21 or InAs,22 in the proximity of an superconduct-
ing substrate, and in the presence of a Zeeman magnetic
field.23,24 However, an unambiguous experimental detec-
tion of Majorana fermions remains unattained despite
many promising experiments.20–22

In the quest to find an unequivocal fingerprint of the
topological superconducting phase, which can support
Majorana states, we study the spin texture of the An-
dreev bound states (ABS) and of the Majorana bound
states (MBS) in superconductor-normal (SN) junctions.
As it has been shown in Refs. 25 and 26, in such junctions
extended Majorana states can form inside the normal link
in the topological phase, which may lead to intriguing
phenomena such as fractional Josephson effects.4,8,23,27,28

The dependence of the MBS and ABS on the sys-
tem parameters has been explored quite thoroughly in
the past,1,2,4,8,25,26,29–32 and the spin-polarized transport
through these states has been touched upon,33–35 but the
spatial spin texture of these states in a topological system
has until now been generally overlooked.36

We consider quasi-1D wires with both longitudinal and
transverse Rashba spin-orbit coupling, in the presence of
a Zeeman field, and for which a section of the wire was
brought in the proximity of a superconductor to make a
topological SN junction. We find that the spin texture for
such systems exhibits characteristic features when cross-
ing the transition between trivial and topological phases
which could be used to identify this transition using tech-
niques such as spin-resolved STM and transport mea-
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FIG. 1. (Color online) Schematics of the system under con-
sideration. (a) A semiconducting wire with strong spin-orbit
coupling is brought in proximity with a SC substrate over one
extended region, to make a long SN junction. Panel (b) shows
the view from above of the coupling to two leads for the spin
resolved transport experiment. The two leads are both weakly
coupled to the entire wire, the black line shows the boundary
between the normal and superconducting regions of the wire.
Between these layers should be an insulating layer to screen
the bulk superconductor from the leads and to prevent any
tunnleing between them.

surements. In particular we find that the spin-polarized
density of states (SPDOS) of the MBS integrated for the
entire SN junction, unlike that of the ABS in the topo-
logically trivial phase, is nonzero for the spin component
parallel to the wire. Thus we prove that measuring the
total SPDOS of the lowest energy state, (via current in-
jection from spin-polarized leads for example), provides
one with a good estimate for the topological invariant,
distinguishing between the topologically trivial and non-
trivial phases. We propose this as a distinguishing feature
of the phase transition.

Furthermore in the strictly 1D limit when only a single
band is occupied the SPDOS of the MBS and ABS ex-
hibits a moderate accumulation close to the SN bound-
ary. When one crosses into the trivial phase, the two
zero-energy MBS split into two regular ABS whose spin
polarization shows qualitatively different features than
in the topological phase. In particular the asymmetry
between the state with positive energy and its negative-
energy counterpart becomes very pronounced. The most
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striking feature is a change of sign for the spin polariza-
tion close to the SN boundary between the topological
and the trivial phase.

II. MODEL

We consider a generic SN junction (see Fig. 1) de-
scribed by the following Bogoliubov-de Gennes tight-
binding Hamiltonian for a wire of width Ny:

H =

Ny∑
`=1

N∑
j=1

Ψ†j` [(t− µ)τ z +Bσz −∆jτx] Ψj`

−1

2

Ny−1∑
`=1

N∑
j=1

[
Ψ†j`(t− iασx)τzΨj,`+1 + H.c.

]
(1)

−1

2

Ny∑
`=1

N−1∑
j=1

[
Ψ†j`(t+ iασy)τzΨj+1,` + H.c.

]
,

written in the Nambu basis Ψj` =

(ψ↑,j`, ψ↓,j`, ψ
†
↓,j`,−ψ

†
↑,j`)

T , where t is the hopping
amplitude, µ is the chemical potential, α is the spin-
orbit coupling, ∆j is the on-site pairing potential and B
is the Zeeman field. Here σ and τ are the Pauli matrices
acting respectively in the spin and the particle-hole

subspaces, and the operator ψ†σ,j` creates a particle of

spin σ =↑, ↓ at site (j, `) in the quasi-1D wire lattice.
For an SN junction of total length N = L1 + L2 (see
Fig. 1), we have

∆j =

{
∆ eiφ1 if j ≤ L1 and
0 if L1 < j .

(2)

Exact diagonalization of this single-particle Hamilto-
nian directly gives us access to the eigenvalues εn with
n = 1, 2, . . . d, d = 4NNy and the eigenvectors which
we write in the Nambu basis as (un↑,j`, u

n
↓,j`, v

n
↓,j`, v

n
↑,j`).

Throughout the paper we will consider t = ~ = 1, so that
all energies are expressed in units of t. The local density
of states (LDOS) and the three local SPDOS components
are defined similarly to Ref. 37:

ρj`(ω)/Szj`(ω) =

d∑
n=1

ν(ω − εn)
(
|un↑,j`|2 ± |un↓,j`|2

)
,(3)

S
x/y
j` (ω) =

d∑
n=1

ν(ω − εn)2Re/Im
(
un∗↑,j`u

n
↓,j`
)
,

where ν(ω) = e
−ω2

γ2 /(
√
πγ) is a Gaussian peak, with a

width γ = 0.002t. This broadening allows us to accu-
rately take into account the overlapping contributions
from different bands when they get close to each other
or cross. Finally the total SPDOS components along the
direction n̂ = x̂, ŷ, ẑ for a state m are defined as

Sn̂ =
∑
j`

Sn̂j`(ω). (4)
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FIG. 2. (Color online) The total spin polarized DOS Sx for
the lowest energy state as a function of magnetic field and
chemical potential. The phase diagram obtained using topo-
logical invariant calculations is very accurately recovered: the
blue and pink regions correspond to a non-zero total SPDOS
while the solid lines correspond to the analytically calculated
phase boundaries.18,19 We use α = 0.5t and ∆ = 0.15t in all
panels. The widths of the wires are (a) Ny = 3, (b) Ny = 7,
and (c) the strictly-1D limit with Ny = 1. We take N = 301.

III. QUASI 1D WIRES

We analyze the low-energy states numerically, using
the MathQ code38. As examples we consider Ny = 1, 3,
and 7. These systems can be brought into topologically
non-trivial phases by changing for example the Zeeman
field and the chemical potential. The lowest-energy state
in the system, which in the topological phase is a MBS,
shows a clear signature of the non-trivial topology in its
total Sx component of the SPDOS (integrated over the
entire SN system). In particular in the topological region
the x-component of the total SPDOS is non-zero, while in
a trivial phase this vanishes. We illustrate this in Fig. 2
where we plot the spatially integrated SPDOS Sx at the
energy corresponding to the lowest state in the system, as
a function of magnetic field and chemical potential. We
see that the regions in which the total SPDOS is non-
zero (corresponding to the regions colored in blue and
pink respectively) overlap exactly with the topological
phases predicted for these systems in previous work.18,19

The limits of the topological phases calculated in these
works using the topological invariant is denoted by the
black lines in Fig. 2.

This is a very interesting observation, as the total-
SPDOS can be measured using spin-polarized transport
(tunneling injection from spin-polarized leads, quantum
dots, etc.). In such an experiment, if the spin of the
leads is parallel to the axis of the wire, the value of the
conductance will show abrupt changes at the boundaries
between the topological and trivial phases, thus allowing
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one to test the existence of these boundaries, and thus
the formation of a topological phase and MBS.

We can try to understand intuitively the origin of this
phenomenon. A MBS in an SN junction is localized
close to the end of the S region.26 Its counterpart is
extended throughout the normal region, much like an
ABS,26 and, for a large enough superconducting gap and
a long enough normal region, it oscillates more or less
uniformly. Thus the total contribution of the MBS to
the Sx coming from the normal region is close to zero.
However, in the superconducting region, there is a strong
anisotropy and most of the DOS is localized at the ex-
ternal end, where the Majorana state is formed. The
Majorana state has a non-zero component of the Sx

which thus contributes to a total non-zero SPDOS for
the lowest-energy state of the junction. Note that all
the ABS states, which are uniformly extended through-
out the normal region, have Sx ≈ 0, thus the measure
of the SPDOS is not very sensitive to the accuracy of
the measurable energy width, though one should always
perform the measurements at the energy corresponding
to the lowest energy state.

IV. 1D LIMIT

Moreover, in the 1D limit there are additional signa-
tures of the topology in the LDOS and local SPDOS.
We consider a 1D SN junction (hence Ny = 1), with
L1 = L2 = 50 sites, ∆ = 0.3t, and α = 0.15t. We focus
on µ = 0, i.e. the bottom of the band. In Fig. 3 we plot
the dependence of the energy levels near zero energy as a
function of B. We note that the transition from the triv-
ial to the topological phase is marked by a merging of
the two lowest-energy ABS into MBS. In the thermody-
namic limit this transition will occur at the critical field
|B∗| = |∆|.23,2439
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FIG. 3. (Color online) The low-energy states as a function of
B in an SN junction. We set ∆ = 0.3t, and α = 0.15t.

In Fig. 4 we plot the two non-zero spin components
Sx and Sz, as well as the LDOS, as a function of po-
sition and Zeeman field, at energies given by those of
the lowest energy eigenstates (i.e following the red and

respectively blue lines in Fig. 3). For the system consid-
ered here Sy = 0. In the topological phase the LDOS
and Sz exhibit a peak at the external edge of the super-
conducting section, corresponding to a localized MBS.
In the normal region both the MBS and the ABS show
a roughly-uniformly-distributed weight in LDOS and Sz.
Moreover Sx exhibits two peaks, a large one at the ex-
ternal end of the superconductor (SC), and a smaller one
of opposite sign at the SN interface. In the trivial phase
we note that the LDOS and both spin components show
a very marked accumulation close to the SN boundary
for the positive energy state, and approximately uniform
amplitude oscillations with a small Sx accumulation at
the boundary for the negative energy state. When cross-
ing the phase transition, the Majorana state localized at
the external end of the SC disappears, as expected.

The first key observation to be made is that the Sx

accumulation at the SN interface is changing sign when
the systems goes from the trivial to the topological phase.
Thus, measuring the Sx dependence on position and Zee-
man field would allow one to detect the topological tran-
sition by an observation of a sign change in Sx at the
interface. This feature is unique to the SPDOS, and can-
not be observed in the non-spin-resolved DOS.

The second observation is that the first pair of non-
zero energy states, (i.e. those with positive and negative
energies of equal magnitude), exhibit identical LDOS, as
well as identical Sx and Sz components in the topologi-
cal phase, but different SPDOS and LDOS in the trivial
phase. Thus measuring for example Sz can provide one
with another tool to identify the transition between the
topological and trivial state via a measure of the asymme-
try of the SPDOS between positive and negative energies.
As mentioned before this could be used as a signature of
the transition between the topological and trivial phase
visible both in spin-resolved transport, as well as in spin-
polarized STM measurements.

Note that these observations are characteristic to the
strictly 1D wire and cannot be recovered in the quasi-1D
wires with transverse Rashba.

V. UNIVERSALITY OF OUR RESULTS

The observations described here are quite general as
we have shown by taking different numbers of coupled
wires for the quasi-1D systems. We have checked that
they are valid as long as the length of the normal section
is long enough (larger than the superconducting pene-
tration depth, coherence length and spin-orbit length).
Also we have checked that the results are qualitatively
unchanged by scattering at the SN boundary for not too
large interface scattering values (See the appendices for
more details), as well as for weak static disorder. As de-
tailed in Fig. 5, for randomly distributed impurities with
strength varying between −δ → δ, the Majorana states
are destroyed for δ larger than a critical value of about
0.5t, but our conclusion still holds, in that as long as
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FIG. 4. (Color online) The Sx and Sz spin polarization com-
ponents, and the LDOS, as a function of position and B when
following the evolution of the MBS into an ABS doublet. For
the first ABS we follow the red line in Fig. 3 (panels a,c,e)
and for the second one the blue line in Fig. 3 (panels b,d,f).
The parameters are ∆ = 0.3, and α = 0.15. To enhance
contrast, the large external MBS peaks are ‘cut’-out, so that
their actual intensity does not show on the color scales. Their
respective intensities are −0.145 in a) and b) panels, −0.0926
in c) and d) panels and 0.086 in e) and f) panels.
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FIG. 5. (Color online) The total Sx spin polarization (red,
solid) as a function of disorder strength, compared to the
Majorana polarization C(δ) (blue, dashed) and the energy of
the lowest energy state E(δ) (black, dotted), at a magnetic
field strength of B = 0.35t, all other parameters as for Fig. 4.
The total spin has been scaled compared to its value in the
clean limit

∑
j S

x(δ = 0) = −0.190. To obtain the disorder
average a random potential varying between −δ → δ was
assigned to each site and 100 different realizations of disorder
were averaged over.

the Majorana states exist, the total Sx is non-zero, and
Sx goes to zero in the non-topological state, concomitant
with the destruction of the Majoranas. This observation
confirms and strengthens our conclusion that the forma-
tion of Majorana states is correlated with a total non-zero
Sx component of the SPDOS. More details of the disorder
analysis are presented in the SM. We have also checked
that our results do not rely on a sharp boundary between
the superconducting and normal wires, thus in the SM
we consider the effects of a finite SC penetration depth,
and we show that our results remain generally valid.

VI. CONCLUSION

We have studied the spin texture for the ABS and MBS
in trivial and topological SN junctions. We have found
that this is a good indicator of the topological transition.
Thus, for generic SN junctions the total spin-polarized
density of states Sx maps out accurately the topological
phase diagram, which could be measured in spin-resolved
transport experiments. In a strictly 1D SN junction Sz

component is symmetric between positive and negative
energies only in the topological phase, while exhibiting a
positive-negative energy asymmetry in the trivial phase.
Moreover, in this limit the Sx spin accumulation at the
interface changes sign at the transition. Such features
are unique to the SPDOS and provide an unequivocal
signature of the topological phase transition. It would
be interesting to confirm our observations for more re-
alistic calculations for junctions made using InAs and
InSb wires and consider their characteristic lattice struc-
ture, size, spin-orbit coupling, NS interface properties,
etc. However, as described above, we argue that our
observations are a direct result of the intrinsic physics
associated with the formation of Majorana states, and
are thus quite generic and should hold for any quasi-
1D wire. In contrast to the observation of a zero-energy
peak, the features described here are extremely unlikely
to have alternative explanations. Thus we claim that
the transition between the topological and trivial phase
could be directly and unequivocally visualized in either
spin-resolved transport or spin-polarized tunneling spec-
troscopy experiments.

ACKNOWLEDGMENTS

We would like to thank Pascal Simon, Denis Cheval-
lier and Clement Dutreix for interesting discussions. This
work is supported by the ERC Starting Independent Re-
searcher Grant NANOGRAPHENE 256965. Support for
this research at Michigan State University (N.S.) was pro-
vided by the Institute for Mathematical and Theoretical
Physics with funding from the office of the Vice President
for Research and Graduate Studies.



5

Appendix A: Majorana polarization

The Majorana polarization (MP) was recently
introduced18,19 as a theoretical tool for analyzing and
testing for Majorana bound states (MBS). A MBS is
by definition both an eigenstate of the Hamiltonian, H,
under consideration and of the particle hole operator,
C = σyτ yK̂. We have set the arbitrary phase of the
particle-hole operator here to zero and K̂ is the complex-
conjugation operator. σ and τ are Pauli matrices in the
spin and particle-hole spaces respectively and we work in

the Nambu basis Ψj` = (ψ↑,j`, ψ↓,j`, ψ
†
↓,j`,−ψ

†
↑,j`)

T . The

Hamiltonian anti-commutes with this operator, {C, H} =
0, and C2 = 1.

The local MP is the name given to a local projection
of the expectation value of this operator with respect to
some state. Therefore a MBS spatially localized inside a
region R has the property that C = 1 where

C =

∣∣∑
~r∈R〈Ψ| C r̂|Ψ〉

∣∣∑
~r∈R〈Ψ|r̂|Ψ〉

. (A1)

r̂j is the projection onto a site j. The local MP is

C(j) = 〈Ψ| C r̂j |Ψ〉 = −2
∑
σ

σujσvjσ (A2)

for a wavefunction (un↑,j`, u
n
↓,j`, v

n
↓,j`, v

n
↑,j`).

Note that although in general the local MP C(j) is a
complex quantity, as the Hamiltonians we consider here
are real it is always possible to fix the phase of C such
that C(j) is real. This allows us to plot the local MP as
a usual real observable.

Appendix B: The effects of disorder

Here we show some results for particular disorder real-
izations in the 1D SN wires considered in the main paper.
The disorder is implemented in the following way: On
every site of the lattice an onsite potential of a strength
varying randomly from −δ → δ is applied. For the re-
sults in Fig. 5 100 different realizations of disorder were
averaged over.

In Fig. 6 we plot the total spin polarization compo-
nent Sx and the total Majorana polarization C(j) as
a function of the magnetic field for the lowest-energy
state of the system for a particular disorder realization
of strength δ = 0.1t. We note that the transition be-
tween the topological and non-topological phases is still
visible in the total spin component Sx; this is reduced
concomitantly with the drop in the total Majorana polar-
ization and with the increase in the energy of the lowest-
energy state characteristic of the transition to the non-
topological phase.
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FIG. 6. (Color online) The total Sx spin polarization (red,
solid) as a function of the magnetic field B, when following
the evolution of the MBS into an ABS doublet for a particular
disorder realization of strength δ = 0.1t. This is compared to
the Majorana polarization C(δ) (blue, dashed) and the energy
of the lowest-energy state E(δ) (black, dotted). The total spin
has been scaled in units of

∑
j S

x(B = 0.35) = −0.175.

Appendix C: Finite penetration depth into the
normal wire

We now turn to what happens if the boundary be-
tween the superconducting wire and the normal wire is
not sharp. We model the change in the proximity in-
duced s-wave pairing in this case as ∆i = (1− tanh[(i−
(N + 1)/2)/λ])/2, with λ describing the sharpness of the
boundary. N is the total length of the SN system and
(N + 1)/2 the location of the boundary between S and
N. As can be seen in Fig. 7 the total spin criterion for
the topological phase transition remains valid even for
large penetration depths λ, only failing near µ ≈ 0. The
smoothness of the boundary introduces an additional en-
ergy scale Eλ ∼ λ−1, and our results hold even near µ = 0
provided the ABS are below this energy scale. Away from
µ ≈ 0 the results always hold. As an example, in Fig. 8
we show the spin polarization and Majorana polarization
across the phase transition at µ = 0.5. For even relatively
long penetration depths we see the same physics, i.e. a
non-zero component of the total Sx in the topological
phase decreasing to zero in the non-topological phase.

Appendix D: Impurity at the boundary

Fig. 9 shows the effect of including a local impurity
term of strength γ at the SN boundary. This is included

in the Hamiltonian as a term γΨ†L1
ΨL1

. Even for a large
local impurity γ ∼ t the phase diagram is still accurately
recovered. Additionally the local behaviour of the spin
density remains unchanged by impurities of this strength.
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FIG. 7. (Color online) The total Sx spin polarization in a
strictly-1D wire, as a function of µ and B when following the
evolution of the MBS into an ABS double for different pene-
tration depths λ. The phase diagram obtained using topolog-
ical invariant calculations is very accurately recovered, except
for the small region near µ ≈ B ≈ 0. The blue regions cor-
respond to a non-zero total SPDOS while the solid lines cor-
respond to the analytically calculated phase boundaries. We
use α = 0.15t and ∆ = 0.3t in all panels. We take N = 161.

Appendix E: Experimental feasability

The signatures of the topological phase transition dis-
cussed above could be experimentally verified in several
ways. The local spin build up seen in the stricly 1D wires,
see Fig. 1(b), would be visible in an energy and spin
resolved STM experiment focused at the SN boundary.
More generally the total spin build up, can be measured
by a spin-resolved transport measurement, see Fig. 1(b).
The two leads are held at a potential of ±eV/2 respec-
tively. If the top lead injects a spin polarized current
parallel to the Sx direction in the wire then from Fermi’s
golden rule we find the linear response differential con-
ductance:

Gx±(B) ≡
Gx↑,↓(B)

Gx0
= ρ(ω = 0, B)±Sx(ω = 0, B) , (E1)

where Gx0 = 2πe2|T |2/~ is the conductance quantum
multiplied by the coupling between the leads and SN
wire, |T |2. From these we have direct qualitative ac-
cess to the results of Fig. 2 demonstrating the topological
phase transition.
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