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Abstract

Learning with discriminative methods is generally based on minimizing the

misclassification of training samples, which may be unsuitable for imbal-

anced datasets where the recognition might be biased in favor of the most

numerous class. This problem can be addressed with a generative approach,

which typically requires more parameters to be determined leading to reduced

performances in high dimension. In such situations, dimension reduction be-

comes a crucial issue. We propose a feature selection / classification algo-

rithm based on generative methods in order to predict the clinical status of

a highly imbalanced dataset made of PET scans of forty-five low-functioning
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children with autism spectrum disorders (ASD) and thirteen non-ASD low-

functioning children. ASDs are typically characterized by impaired social

interaction, narrow interests, and repetitive behaviours, with a high vari-

ability in expression and severity. The numerous findings revealed by brain

imaging studies suggest that ASD is associated with a complex and dis-

tributed pattern of abnormalities that makes the identification of a shared

and common neuroimaging profile a difficult task. In this context, our goal

is to identify the rest functional brain imaging abnormalities pattern asso-

ciated with ASD and to validate its efficiency in individual classification.

The proposed feature selection algorithm detected a characteristic pattern in

the ASD group that included a hypoperfusion in the right Superior Tempo-

ral Sulcus (STS) and a hyperperfusion in the contralateral postcentral area.

Our algorithm allowed for a significantly accurate (88%), sensitive (91%) and

specific (77%) prediction of clinical category. For this imbalanced dataset,

with only 13 control scans, the proposed generative algorithm outperformed

other state-of-the-art discriminant methods. The high predictive power of

the characteristic pattern, which has been automatically identified on whole

brains without any priors, confirms previous findings concerning the role of

STS in ASD. This work offers exciting possibilities for early autism detection

and/or the evaluation of treatment response in individual patients.

Keywords: multivariate classification, autism, features selection, dimension

reduction
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1. Introduction

Multivariate machine-learning methods offer a wide range of new applica-

tions in the neuroimaging field. In cognitive neurosciences, such methods can

process fMRI intra-subject scans to decode subject’s mental states (Thirion

et al. (2006); Pereira et al. (2009)). In a clinical context, they can be applied

on several subjects’ scans that stem from different groups (e.g., case, control)

in order to identify the imagery pattern associated with the group differ-

ences. The pattern, which is generally a combination of spatially-distributed

imagery biomarkers, can be applied on individual scans to predict the sub-

ject group ownership. This enables a computer-aided diagnosis perspective

in both neurological (Klöppel et al. (2008)) diseases or psychiatric (Fan et al.

(2007)) disorders. This also offers possibilities of image-based phenotyping

that can be associated with genetic data. A key feature of those methods

is their potential to detect global, complex and distributed patterns of “ab-

normalities” that cannot be efficiently identified with univariate voxel-based

methods whose sharp and localized view field (voxel) yield a reduced sensi-

tivity.

Multivariate classification can be based on generative or discriminative

approaches. Discriminative classifiers directly learn a mapping from the in-

puts x to the output label y. For example, a probabilistic method such as

the logistic regression, models the posterior p(y|x) distribution of the label,

which require the estimation of P parameters (in a P dimensional space).

Discriminative methods minimize the misclassification of training samples,

which may be unsuitable for imbalanced datasets that may bias the recog-

nition in favor of the most numerous class. Reweighting or resampling can
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be used to “rebalance” samples of the least numerous class. However, at

least for reweighting techniques, we demonstrate that such heuristics do not

provide a satisfying solution on our dataset. On the other hand, generative

classifiers learn the full joint distribution p(x, y). First, they learn the classes

conditional densities p(x|y), which can be done independently for each class.

Such approach is closely related to two separate one-class learning, which is a

recent approach (Chawla et al. (2004)) to deal with in imbalanced situations.

The issue here is that the parameters estimation of the minority class will be

poorer, which does not imply a narrower distribution and thus a prediction

bias toward the other class. Second, the predictive function p(y|x) is obtained

by combining p(x|y) with an explicit class priors p(y) using Bayes rule and

choosing the most probable label. Such models provide a better control over

class disequilibrium. The main difficulty is the estimation of p(x|y) in high

dimensional space. For typical generative classifier such as the linear dis-

criminant analysis (LDA), the estimation of the class means and the pooled

covariances matrix, i.e. P (P + 5)/2 parameters, is required. This must be

compared to the P estimated parameters of linear discriminative methods.

Such high number of parameters leads to severe risk of over-fitting, in a high

dimensional space, which require to associate generative classifiers with an

efficient dimension reduction strategy.

Dealing with imbalanced class may be addressed by three main ways (see

Japkowicz and Stephen (2002) for a review), resampling, reweighting and

one class learning. In sampling strategies, either the minority class is over-

sampled or majority class is undersampled or some combination of the two

is deployed. Undersampling (Zhang and Mani (2003)) the majority class
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would lead to a poor usage of the left-out samples. We cannot afford such

strategy since wee are also facing a small sample size problem even for the

majority class. Indeed there are only 45 ASD subjects in a P ≈ 200, 000

dimensional space. Informed oversampling, which goes beyond a trivial du-

plication of minority class samples, require the estimation of class conditional

distributions in order to generate synthetic samples. Here generative mod-

els are required. An alternative, proposed in Chawla et al. (2002) generate

samples along the line segments joining any/all of the k minority class near-

est neighbors. Such procedure blindly generalizes the minority area without

regard to the majority class, which may be particularly problematic with

high-dimensional and potentially skewed class distribution. Reweighting,

also called cost-sensitive learning, work at an algorithmic level by adjust-

ing the costs of the various classes to counter the class imbalance. Such

reweighting can be implemented within SVM (Chang and Lin (2001)) or lo-

gistic regression (Friedman et al. (2010)) classifiers. One class learning is

a recognition-based rather than discrimination-based learning, where classes

are learned separately. It is then related to generative methods where classes

conditional densities p(x|y) are estimated (almost) independently. However,

non parametric methods such as SVMs can be used: Raskutti and Kowalczyk

(2004) show that one class learning SVMs outperformed discriminative two

class SVMs in high dimensional noisy feature space. Finally, it is essential to

use appropriate performance evaluation measurements such as ROC (receiver

operating characteristic) analysis and AUC (area under curve) measure.

In this paper we propose to evaluate the potential of multivariate machine-

learning for identification of a functional PET imaging pattern shared by

5



children with autism spectrum disorders (ASD) in the specific context of an

imbalanced dataset. Such a method may offer perspective in the context

of early detection of autism or in evaluating the effects of treatments on a

subject. Autism is a complex neurodevelopmental disorder characterized by

deficits in social functioning and communication as well as restricted, repeti-

tive behaviors and interests (DSM IV). The several findings in neuroimaging

studies, briefly reviewed in the discussion section, support the hypothesis

that ASD is linked with complex patterns of brain abnormalities that are dis-

tributed across the brain and possibly organized as networks. Consequently,

multivariate methods are implemented to reach our overall goal: the identifi-

cation of rest functional brain imaging networks of abnormalities associated

with ASD and the evaluation of their efficiency in individual classification.

Previous neuroimaging studies of ASD using multivariate classifiers were

based on global brain measurements, Akshoomoff et al. (2004) classified chil-

dren with autism based on global a priori pre-selected cerebellar and cerebral

white or gray matter volumes. Neeley et al. (2007) measured the white and

gray matter volumes within manually identified regions including five tem-

poral gyri, the amygdala and the hippocampus. They then used a CART

(classification and regression trees) method that achieved high specificity in

classifying autism subjects from matched IQ controls based on the relation-

ship between the volume of the left fusiform gyrus gray and white matter

and the volume of the right temporal stem and right inferior temporal gyrus

gray matter. More recently, Ecker et al. (2010b) applied a SVM (Support

Vector Machine) classifier on whole brain structural MRI in order to detect

adults with ASD from healthy matched controls. In this context, the first
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goal of this paper was to conduct a whole brain a priori free evaluation of

multivariate classification on functional PET imaging.

However, such a multivariate strategy brings up a major methodological

issue: combining all voxels allows many ways to distinguish two populations.

Unfortunately, most of these distinctions cannot be generalized to larger pop-

ulations because they exploit spurious differences embedded in the feature

measurement noise. This well-known issue, called the curse of dimension-

ality, arises when the dimension of the underlying space (≈ 200, 000 voxels

in our case) is large compared to the number of subjects (58 in our case).

To overcome this difficulty, a feature (voxel) selection step may be necessary

in order to select a subset of useful features that constitute a characteristic

pattern on which to build a robust classifier. Feature selection generally con-

sist of two steps: the first step ranks subsets of features [F1, . . . , Fk, . . . , FP ],

where Fk is the best combination of k features and P is the total number of

available features, and the second step selects an optimal subset to be used

in the final classifier.

The first step of feature subset ranking may be addressed with three cat-

egories of strategies: filters, wrapper and embedded methods (Guyon et al.

(2006)). Filters rank feature subsets independently of the final predictor and

are generally assimilated to mass-univariate feature ranking. In the context

of neuroimaging data analysis, filters can thus be related to voxel-based anal-

ysis. They are computationally efficient and more robust to over-fitting than

multivariate methods (Guyon and Elisseeff (2003)). However, filters raise

the issue of determining a significance level that accounts for such a mul-

tiple testing procedure. Moreover, they are blind to feature interrelations,
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a problem that can be addressed only with multivariate selection such as

wrappers or embedded methods. Wrappers (Kohavi and John (1997)) are

so called because they wrap around an objective function that is supposed

to portray the predictor performances. Wrappers are generic stepwise-like

optimizers that explore the features space with a greedy forward, backward

or combined strategy. Finally, embedded methods are directly plugged into

the predictor. Many predictive algorithms have such built-in procedures; for

example, random forest (Breiman (2001)) or all L1 penalized (logistic) re-

gressions such as Lasso (Tibshirani (1996)). Other predictor algorithms, like

support vector machine (SVM), that were not originally designed with an

embedded feature selection were modified to do so: the SVM-RFE (Guyon

et al. (2002)) alternates the fit of a SVM with a recursive feature elimina-

tion (RFE) procedure based on the input features’ weight. Most of those

feature subset ranking strategies can be assimilated to feature ranking since

they produce nested subsets of features. However, alternative strategies that

mix forward and backward steps or other Lasso-based methods may yield to

non-nested subsets that justify the term feature subset ranking to designate

this first step of feature selection. Moreover, such generic procedures ignore

the three dimensional structure of the images, thereby entailing the selection

of a scattered and widespread discrimination voxels map as shown in Ecker

et al. (2010b), where a generic SVM-RFE is used. Consequently, the second

goal of this article is to push further the feature selection by proposing a new

strategy that combines univariate and multivariate strategies and by exploit-

ing the images’ three dimensional structure by merging voxels of the same

neighborhood (within a few regions), producing much more parsimonious

8



and interpretable results.

Surprisingly, the second step of model selection, which consists of deter-

mining the optimal subset (Fk) of features, is generally not addressed by

authors, including Ecker et al. (2010b). Classification results are often pre-

sented as a function of a varying number of voxels, which may lead to an

optimistic interpretation as remarked in Reunanen (2003). Indeed, the signif-

icance of the classification rates must be corrected with multiple repetitions

of the classification experiments. An alternative but computationally-costly

solution is to determine Fk based on cross-validation. For the third contri-

bution of this article, we propose to address the choice of the optimal fea-

ture subset as a model selection problem using an automatically calibrated

adaptive penalization of the likelihood, offering excellent performance with

negligible computation overhead once the calibration has been done.

As a summary, we hypothesized that ASD is associated with global, com-

plex and distributed patterns of abnormalities. In this context, our first goal

is to identify rest functional brain imaging networks of abnormalities as-

sociated with ASD and evaluate their efficiency in individual classifications.

Following this track, the second contribution of the paper is to propose a new

feature selection algorithm that combines univariate and multivariate strate-

gies to exploit the images’ three-dimensional structure and produce regional

features subsets of increasing size. For the third contribution of this article,

we propose to address the choice of the optimal feature subset through an

automatically calibrated model selection with the goal of identifying parsi-

monious syndrome-specific PET brain imaging indexes (biomarkers).
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2. Feature selection and classification methods

Here, we briefly present our multi-stage feature selection and classification

algorithm (Figure 1). It is based on the same approach we used in Duchesnay

et al. (2007) but with specific adaptations to deal with the particular size

(hundreds of thousands of dimensions) and the three dimensional topology

of PET images.

### Insert Figure 1 about here ###

2.1. Regional features extraction

The first step of the pipeline is a univariate feature selection based on

p-values derived from two-sample F -tests (Figures 1 step 1 and 3 step 1.1).

Only voxels with a p-value < 0.001, uncorrected for multiple comparisons,

were retained (Figure 3 step 1.2). Thresholded-connected voxels were grouped

into regions (or clusters), and the PET signal was averaged within each re-

gion, producing a set of new regional features (Figure 3 step 1.3). This

threshold was empirically chosen among the three possible values of 10−2,

10−3 and 10−4 as the value that produces clusters of reasonable size.

2.2. Feature subset ranking

The resulting regional features were used as the input of a wrapper; i.e.,

a multivariate stepwise feature selection (step 2 in Figures 1 and 3). This

approach was based on a sequential floating forward selection (SFFS, Pudil

et al. (1994)), which is a hybrid strategy that includes a backward loop that

deletes the worst feature, within a forward loop that adds the best feature.

Characteristic combinations of features that lead to efficient separation

of the two groups were evaluated using a multivariate F -statistic known as
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the Pillai-Bartlett trace (Hand and Taylor (1987) tr((Vk)−1Bk), where Vk

and Bk are the total and the between groups variance matrices evaluated

on the features subset Fk. The output of this step was a list of subsets of

features: [F1, . . . , Fk, . . . , FP ], where Fk was the best-identified combination

of k features for a maximum of P regional features.

2.3. Model selection

The third stage aims at selecting the optimal subset of features (Fk) to

be used by the final classifier (step 3 in Figures 1 and 3). This was addressed

as a model selection problem using a penalized likelihood framework.

Many criteria have been proposed (Burnham and Anderson (2004)), and

the two most commonly used are the Bayesian (BIC, Schwarz (1978)) and

Akaike information criteria (AIC, Akaike (1974)). Despite their different

theoretical foundations, both yield a similar linear penalization of the log-

likelihood with the number of parameters. The use of fixed penalties in those

criteria is mainly justified by asymptotic arguments that may be wrong in

a non asymptotic context. This limitation motivated the development of

data-driven methods to calibrate criteria whose penalties are known up to

a multiplicative factor, e.g. “the slope heuristics” proposed by Birgé and

Massart (2007). Moreover, our two-stages feature selection procedure pre-

vents from a straightforward application of a fixed penalty as function of the

number of regional features. Indeed, such penalty would ignore the overfit

induced by the first step of region extraction. We demonstrated this under-

penalization of fixed penalties criteria in Figure 2. A solution, to avoid such

under-penalization, would have been be to include the number of voxels, used

be to build the regions, into the penalization term. However this raises the
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complex question of defining a good penalty “form” that would be a function

of the number of voxels combined with the number of regional features.

Adaptive log-likelihood penalization. Instead of the previous solution and like-

wise the “the slope heuristics” of Birgé and Massart (2007), we retain the

initial idea of a linear penalization as function the number regional features

(BIC like) but we loosen the fixed link by adding a free parameter (noted “a”):

ln p(y|Xk, Fk) ≃ ln p(y|Xk, θk, Fk)− a
1

2
k lnN (1)

Where y = (y1, . . . , yN) are the subjects labels (yi ∈ {1, 0}, 1 denotes ASD

and 0 denotes low-functioning) and Xk = (xk
1, . . . ,x

k
N)

t are the Fk (regional)

features (xk
i ∈ R

k). The evidence p(y|Xk, Fk) of the model built with the Fk

features is approximated with the likelihood p(y|Xk, θk, Fk), adding a penal-

ization term (k lnN) whose weight can be adapted with the free parameter

a. The parameters θk are obtained by maximizing the likelihood itself:

p(y|Xk, θk, Fk) =
N∏

i=1

p(yi = 1|xk
i , θ

k, Fk)
yip(yi = 0|xk

i , θ
k, Fk)

(1−yi) (2)

where p(yi = 1|xk
i , θ

k, Fk), which denotes the probability that an input vector

(xk
i ) belongs to the ASD group (yi = 1); this is detailed in the Section 2.4.

Finding the Fk that maximizes the evidence p(y|Xk, Fk) (1) implies that the

penalization on the likelihood yields a good approximation of the evidence.

Penalization calibration based on randomized data. In order to adapt this

penalization value (a) to the over-fitting caused by the feature selections al-

gorithm we proposed to calibrate a under the null hypothesis estimated from

randomized datasets. Under such hypothesis we measured the increase of the
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log-likelihood purely due to over-fitting of the training data and compared it

to the theoretical log-evidence, which is supposed to be constant and equal

to ln(1/2)N . A good penalization is supposed to fit this increase in order to

approximate the (constant) log-evidence. The experiment, conducted on all

samples, presented in Figure 2 clearly shows that our feature selection algo-

rithm dramatically increases the over-fitting that cannot be balanced with

the BIC or AIC penalization criteria. However, this experiment also suggest

that a satisfying linear approximation can be estimated. Consequently, we

repeated the latter experiment independently for every cross-validation fold

excluding the test sample (column (a) in Figure 1). The estimated adap-

tive penalization values (a) (average across folds=2.62, SD=0.03) were then

plugged in (1) (see Figure 1) and evaluated for all Fks. The features sub-

set (Fk) that maximized this penalized log-likelihood was selected for the

classification step.

### Insert Figure 2 about here ###

2.4. Classification

The last stage of the pipeline is a classifier based on a linear discriminant

analysis (LDA) (step 4 in Figures 1 and 3). To compute the likelihood of (2),

LDA provides the probability that an input vector xk
i belongs to the group

G ∈ {1, 2}:

p(yi = G|xk
i , θ

k, Fk) =
πGN (xi|µk

G,Σ
k)∑

G∈{1,2} πGN (xi|µk
G,Σ

k)
(3)

where the estimated parameters θk are the means of the two groups µk
1,µ

k
2

and the pooled covariance Σk. Priors over the two classes were both set to
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50% (π0 = π1 =
1
2
) in order to avoid any bias caused by imbalanced sizes of

the two groups (45 ASD children vs. 13 non-ASD, low-functioning children).

3. Performances validation and comparison methodology

3.1. Classification performances

The classification accuracy of the entire pipeline (including the feature se-

lection) was evaluated by leave-one-out cross-validation (LOO-CV), column

(b) in Figure 1. This provided an almost unbiased estimate of the actual

expected accuracy (Ambroise and McLachlan (2002); Kohavi (1995)). We

note that the subject to be tested was set aside before any processing: all

the feature selection steps and the final classification were performed for each

LOO-CV iteration, taking into account only the (58-1 = 57) training sub-

jects. The group was predicted for each test subject and was compared with

the actual group. Finally, all the predictions were averaged to evaluate clas-

sification performance. We tested the significances of accuracy, sensitivity

and specificity against the null hypothesis that the classification was made

with random choice; i.e., p(ASD) = p(low-functioning) = 1
2
. The sensitivity

and specificity are calculated as follow: sensitivity = TP/(TP+FN), speci-

ficity = TN/(TN+FP) where TP is the number of true positives, i.e., the

number of ASD images correctly classified; TN is the number of true nega-

tives, i.e., number of non-ASD images correctly classified; FP is the number

of false positives, i.e., number of non-ASD images classified as ASD; and FN

is the number of false negatives, i.e., number of ASD images classified as

non-ASD. We also conducted ROC analysis and evaluated the significance

of AUC scores using the Wilcoxon non-parametric test of rank (Mason and
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Graham (2002)).

Furthermore, to confirm the significance of classification and prevent

any bias that could stem from imbalanced groups sizes, we conducted 1000

randomized permutations. Subjects were randomly assigned to the low-

functioning or ASD group while keeping the total number of subjects per

group the same. Then for each permutation, the complete LOO-CV of the

pipeline was performed exactly as mentioned herein as shown by column (c)

in Figure 1.

3.2. Comparison with other dimension reduction and classification strategies

As a post hoc experiment, we compared the proposed algorithm with

other strategies made of alternative options of dimension reduction and clas-

sification methods.

Alternative feature subsets ranking methods. We tested: (i) no ranking (using

all features); (ii) univariate (F -test) and (iii) multivariate feature ranking

based on RFE applied to both SVM and LDA (iv) finally, a multivariate

feature selection based on Lasso. Indeed, solving the Lasso problem along an

entire path of values for the regularization parameter (the λs of (5)) yields

the selection of features subsets of various sizes, where each subset is the

active set of features with nonzero coefficients.

Alternative model selection methods. We compared the proposed adaptive

penalization (aPena) framework with a classic ten-fold cross-validation (CV).

Alternative classifiers. We compared the proposed generative methods with

other discriminative-based settings:
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(i) a linear SVM (based on libsvm Chang and Lin (2001)) with the

constant of the regularization term set to one and an individual re-weighting

(Veropoulos et al. (1999); Osuna et al. (1997)) of samples to compensate for

an under-represented group of low-functioning subjects. This yielded to the

following SVM primal formulation:

min
w

||w||2 + C
∑

yi=1

ξi + C
#{yi = 1}

#{yi = 0}

∑

yi=0

ξi (4)

where w is the weights vector, and ξi are the positive slack variables

that measure the distance to the margin of samples that are on the wrong

side of the margin: (0 < ξi ≤ 1) for correctly classified ones and (1 < ξi)

for misclassified samples. #{yi = 0} (resp. #{yi = 1}) is the number

of low-functioning (resp. ASD) samples in the current training set. The

regularization parameter (C) was defined using two strategies: in a first

experiment we used the default value i.e.: one. Then we used a ten-fold

cross-validation (CV) on the training samples to select the value with the

minimum error. We only retained the results with the default value (one)

since this setting almost always outperformed the CV-based setting.

(ii) A sparse logistic regression based on a L1 (Lasso) penalization,

which is a penalized version of (2):

log p(y|X,β, λ) =

N∑

i=1

yi log p(yi = 1|xi,β)(1−yi) log p(yi = 0|xi,β)−λ||β||1

(5)

where p(yi = 1|xi,β) = 1/(1+exp(xT
i
β)) is the logistic link function with

the linear regression of parameter β and λ is the regularization parameter.
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As evoked herein, we solved this Lasso problem with various values of λ

leading to a path made of active set of features of various size. This penalized

log-likelihood was optimized with a coordinate descent procedure (Friedman

et al. (2010)). As with SVM, samples were re-weighted to compensate for

imbalanced groups sizes.

By combining a selected choice of those alternatives, we formed four

strategies:

1. No feature selection combined with a linear (re-weighted) SVM classi-

fier. This strategy acts as a baseline to highlight the specific contribu-

tions of feature selection.

2. Univariate F -test feature subset ranking, model selection with CV com-

bined with a linear (re-weighted) SVM classifier. This strategy acts as a

baseline to highlight the specific contributions of the two last strategies

based on multivariate feature selection.

3. Multivariate RFE-based feature subset ranking, model selection with

CV combined with a linear (re-weighted) SVM. This strategy is com-

monly used as a state-of-the-art multivariate feature selection with a

kernel-based classifier (Guyon et al. (2006); Ecker et al. (2010b)).

4. Multivariate Lasso-based feature subset ranking, model selection with

CV combined with a linear (re-weighted) Lasso logistic regression classi-

fier. This strategy is a state-of-the-art representative of recent advances

in L1-constraint based methods.

Those four strategies were first directly applied on entire brain images

(hundreds of thousands of voxels), and then on the regional features (≈10).

The low dimension space made of regional features allowed us to test a gen-
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erative (LDA) classifier, replacing the SVM by the LDA within the strate-

gies evoked previously. Additionally, we tried the computationally expensive

wrapper feature subsets ranking (SFFS), that we found to be efficient in a

low dimensional space (Duchesnay et al. (2007)). Finally, in order to evaluate

the contribution of the proposed model selection method (aPena), we com-

bined it with all multivariate feature subsets ranking methods, by replacing

the CV-based model selection with a proposed aPena framework.

As a summary, we had the following design of experiments (see Table 2):

four voxels-based analyses, four regional-based analyses, four regional-based

analyses with LDA and three regional-based analyses with aPena model se-

lection. As recommended in Dietterich (1998), we compared the prediction

rates of these alternatives strategies using the McNemars test which has a

low type I error.

4. Dataset

Forty-five children with idiopathic autism spectrum disorder (37 boys)

were selected among patients attending a specialized autism consultation

sessions at a university hospital in France. They were aged from 5 to 12

years (mean = 7.9, SD = 2.2). They were recruited at two university hospi-

tals with referral centers dedicated to the assessment and treatment of autism

by the French Health Ministry. Diagnosis was performed in these units by a

multidisciplinary team including child psychiatrists, child psychologists and

speech therapists, during 3-7 days of extensive evaluation. ASD diagnosis

was based on DSM IV-R criteria (APA (2000)) and confirmed by ADI-R

scores (Lord et al. (2001)). Exclusion criteria included infectious, metabolic,
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neurological or genetic diseases, chromosomal abnormalities and seizures.

All children were also evaluated by a pediatric neurologist and a clinical ge-

neticist. The recommended biological and medical screenings for ASD were

performed, including high-resolution karyotyping, DNA analysis of FRA-X

and normal standard metabolic testing (plasma and urine amino and organic

acid analysis, urine glycosaminoglycans (GAG) quantitation, urine oligosac-

charide, purine and pyrimidine analysis, and creatinine guanidoacetate urine

analysis). Mental capacity was assessed by an intelligence quotient (IQ) de-

termined with the Wechsler Intelligence Scale for Children (WISC-III). The

Developmental Quotient (DQ) was obtained in all children younger than 6

years (N = 11). Developmental quotient (DQ) was determined with the

Psycho-Educational-Profile Revised (PEP-R) and the Brunet-Lzine develop-

mental tests (IQ = 45 ± 22; DQ = 44 ± 23). As a comparison group, we

selected 13 non-ASD low-functioning children (9 boys). They were aged from

5 to 15 years (mean = 8.6, SD = 2.7 years). Their mean IQ was 48 (SD =

14.5). They had idiopathic mental retardation according to the DSM-IV cri-

teria with no associated neurological disorder. The following conditions were

excluded: known infectious, metabolic or chromosomal diseases, epilepsy or

recognizable neurological syndromes. This comparison group was chosen in

order to detect abnormalities specifically related to autism and to evaluate

features that cannot be attributed to mental retardation, taking into account

the fact that mental retardation is often associated with autism, and that we

have studied a low functioning group of children with autism. No specific eti-

ology for either ASD or non-ASD children was found following extensive clin-

ical and laboratory investigations. All children had been medication-free for
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at least one month prior to imaging. Written informed consent was obtained

from all the children’s parents. Cerebral blood flow (rCBF) was measured us-

ing positron emission tomography (PET) (Siemens ECAT Exact HR+ 962)

following intravenous injection of H2
15O. Attenuation-corrected data were

reconstructed into 63 slices with a resulting resolution of 5 mm, full width

at half maximum. Fifteen seconds before each scan, 7 mCi of [15O]H2O was

administrated by an intravenous bolus injection. Data were collected over

a period of 80 seconds. In all children, PET studies were performed during

sleep induced by premedication with rectal pentobarbital (7 to 10 mg/kg) to

obtain perfect motionlessness. A previous study showed that sedation does

not change either the global rCBF or local rCBF distribution (Zilbovicius

et al. (1992)). The study was approved by the local ethics committee. PET

scans were first spatially normalized (Friston et al. (1995)) to a standard

stereotactic space and smoothed with an isotropic Gaussian filter (full width

at half maximum of 15 mm). Global intensity differences between subjects

were corrected using proportional scaling. Normalized, smoothed and scaled

images were used for subsequent processing.

5. Results

5.1. Regions involved in the classification

Figure 3 and Table 1 show regions that were selected by the multi-step

feature selection method. The first step of regional feature extraction led to

few characteristic regions which formed a network of abnormalities (Figure 3

before step 2).

### Insert Figure 3 about here ###
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### Insert Table 1 about here ###

Four of those regions featured hypoperfusion in the ASD group. The

first hypoperfused region (i) concerned the right temporo-parietal junction

(RTPJ). Two additional hypoperfused regions were found in the right tempo-

ral lobe: (ii) the Superior Temporal Sulcus (STS), (iii) the middle temporal

gyrus. The fourth region (iv) was found in the posterior zone of the corpus

callosum where it overlaps with the right posterior cingulum and bilateral

thalami. Finally, two hyperperfused regions in the ASD group were iden-

tified in (v) the left post-central and (vi) the right pre-central areas. The

second and third steps of identifying characteristic regions selection took into

account characteristic interrelations among those regions. This led to the se-

lection of the final characteristic pattern in the ASD group that featured a

hypoperfused region in the right superior temporal sulcus and a hyperper-

fused region in the left post-central (Figure 3 after step 3 and Figure 4).

### Insert Figure 4 about here ###

5.2. Performance evaluation of individual classification

The performance of the whole pipeline was evaluated by LOO-CV (col-

umn (b) in Figure 1). The rate of correct recognitions was 88% (51 correct

recognitions across 58 subjects). The method achieved 91% sensitivity (41

correct recognitions across 45 ASD subjects) and 77% specificity (10 cor-

rect recognitions over 13 non-ASD, low-functioning subjects). At a chance

level of 50%, both sensitivity and specificity recognition rates were signifi-

cant with, respectively, p < 0.0001 and p = 0.046. In order to take into

account the highly imbalanced dataset we also tested the significances with
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the chance levels being the respective proportions of the two classes (77.6%

for the ASD group and 22.4% for the low-functioning group). Both sensitivity

and specicity recognition rates were significant with, respectively p = 0.0162

and p < 0.0001. Significances of the prediction rates were also confirmed with

a random permutation of the group label. The average prediction rates of

the pipeline in over 1000 random permutations achieved nearly the expected

rates of random choice (51% accuracy, 53% sensitivity and 45% specificity).

Comparing the random prediction rates to true ones (88%, 91%, 77%) yield

significances of p < 0.001 for sensitivity and p = 0.02 for specificity. Finally,

the ROC curve of the LOO validation (Figure 5), confirmed a good sen-

sitivity/specificity trade-off: the area under curve (AUC) for the proposed

method reached a significant (p < 0.001, with a Wilcoxon test of ranks) score

of 0.81.

5.3. Comparison with other dimension reduction and classification strategies

Table 2 shows that the proposed algorithm outperformed the fourteen

alternative strategies of feature selection and classification. Better perfor-

mances were systematically obtained for accuracy, sensitivity and specificity.

Those results were confirmed with a comparison using the McNemars test:

in ten over fourteen cases we found a significantly better accuracy. In two

(#1 and #2) of the four remaining cases the proposed algorithm was found

to be significantly more specific. Finally, improvements were not found to be

significant for the last two cases (#12 and #14).

### Insert Table 2 about here ###

ROC curves in Figure 5 and significant AUC scores in Table 2 highlight
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that the three last strategies (#13, #14 and #15) reached good sensitivity

while keeping an acceptable specificity (low false positive rate). This demon-

strates the relevance of a strategy that combines regional feature extraction,

multivariate feature subsets ranking and calibrated (aPena) model selection.

### Insert Figure 5 about here ###

SVM failed to obtained specific predictions: Experiments based on SVM

classifier were significantly (p < 0.01, Welch two-sample t-test) less specific

(mean = 32%, SD = 7%)) than those based on a generative LDA classifier

(mean = 54%, SD = 17%)). This suggests the relevance of generative models

to deal with imbalanced datasets.

6. Discussion

This paper presents a novel method of classifying brain images that al-

lowed us to detect a characteristic pattern of abnormalities from resting PET

images in patients with ASD. This pattern is composed of: (i) a hypoper-

fusion (in the ASD group) in the right Superior Temporal Sulcus (STS)

and (ii) a hyperperfusion (in the ASD group) in the contralateral postcen-

tral area (Figure 4). The algorithm that identified this pattern achieved

significant clinical classification accuracy. The prediction performance was

sensitive and specific. The results were validated with a leave-one-out pro-

cedure: trained classifiers that included a selection of features were tested

on unseen PET images. Moreover, the significance of those cross-validated

classification rates was confirmed with random permutations. This strongly

suggests that similar results may be generalized to other datasets. These first
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classifications of ASD on the basis of functional brain imagery suggest great

promise for future applications of early detection of autism or in evaluating

the effects of treatments on a subject.

6.1. Brief review of neuroimaging findings in ASD

Early brain imaging studies focused on manual and a priori defined re-

gions of interest (ROIs) such as the cerebellum (Courchesne et al. (1988)), the

amygdala (Howard et al. (2000)), the hippocampus (Aylward et al. (1999)),

the corpus callosum (Egaas et al. (1995)) and the cingulate (Haznedar et al.

(1997)). Despite methodological design limitations (e.g., IQ heterogeneity,

age range of ASD subjects, inclusion of epileptic ASD subjects), failures of

these classical studies to replicate localized brain anomalies in ASD may be

attributed to the ROI approach that is inherently subjective and operator-

dependent.

The development of automated voxel-based methods allowed whole-brain

and operator-independent analyses. Such methods have been used for PET

/ SPECT imaging at rest, structural MRI, diffusion and functional MRIs.

With PET / SPECT imaging at rest, significant functional hypoperfusion in

autism has been identified in the STS and in the superior temporal gyrus

(Ohnishi et al. (2000); Zilbovicius et al. (2000)). Voxel-based morphome-

try (VBM) could identify many gray matter abnormalities associated with

ASD in frontal, superior temporal, parietal and striatal regions (Abell et al.

(1999); Boddaert et al. (2004); McAlonan et al. (2005); Hadjikhani et al.

(2006)). Using a voxel-based analysis of diffusion MRI, reduced fractional

anisotropies (FA) were found in the ventromedial prefrontal cortex, ante-

rior cingulate gyri, temporoparietal junctions, bilateral STS (Barnea-Goraly
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et al. (2004)) and corpus callosum (Keller et al. (2007); Alexander et al.

(2007)). Functional MRI (fMRI) studies have focused primarily on social

cognition. Most have shown activation abnormalities in the regions involved

in language/voice and face perception, theory of mind and the mirror neuron

system. At least five fMRI studies have shown that ASD subjects exhibit

reduced levels of activity in the fusiform face area (FFA) during face percep-

tion (for a review, see Schultz (2005)). However, some studies report fusiform

activation in autism when comparing faces to non-facial stimuli (Hadjikhani

et al. (2004)). This seems to be associated with identifying familiar faces

(Pierce et al. (2004)) and is correlated with the degree of eye gaze fixation on

faces for the autism group (Dalton et al. (2005)). A voice perception fMRI

study (Gervais et al. (2004)) identified significant differences in the pattern

of brain activation along the upper bank of the STS. Concerning the the-

ory of mind, several studies have found abnormal activation patterns. An

fMRI study (Baron-Cohen et al. (2000)) found that ASD subjects did not

activate the amygdala, and two other studies (Castelli et al. (2002); Pelphrey

et al. (2005)) found that ASD subjects exhibit reduced activation in the STS

and frontal regions. Concerning the mirror neuron system, a fMRI study

(Dapretto et al. (2006)) found no activation in the inferior frontal gyrus.

Recently, (Ecker et al. (2010b)) applied a multivariate SVM classifier

with RFE feature selection on an anatomical MRI. They found a widespread

pattern that involved the limbic, frontal-striatal, fronto-temporal, fronto-

parietal and cerebellar systems. It must be noted that they found a gray

matter increase (in the ASD group) in the bilateral STS and a white matter

increase (in the ASD group) in bilateral postcentral gyri. Ecker et al. (2010a)
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also used a SVM classifier without feature selection on several parameters

extracted from the cortical surface issued from anatomical MRI. Concerning

the cortical thickness, the excess pattern in the ASD group was comprised

of predominantly occipito-temporal regions, while the pattern displaying a

relative thinning of the cortex in ASD versus controls (i.e., deficit pattern)

included mainly frontal and parietal regions.

6.2. Relations with regions identified with the proposed multivariate method

Our feature selection procedure applied to hundreds of thousands of vox-

els identified a parsimonious characteristic pattern made of only two regions

(right STS, left postcentral). The selection of hypoperfusion of the right

STS corroborates with findings from other studies (Ohnishi et al. (2000);

Zilbovicius et al. (2000)). Further investigations must be done to explain the

seeming contradiction between our hypoperfusion finding and the increase of

gray matter (in the ASD group) found by Ecker et al. (2010b) in the same

temporal area. We note that when considered individually using a classi-

cal univariate voxel-based method, the STS is the least significant temporal

region (Table 1). However, our feature selection method, that took advan-

tage of characteristic co-variations, selected this only temporal area. This

suggests that the abnormalities of autism are not simple additions of local

differences but may constitute more complex and distributed patterns. The

other region involved in the classification is the left postcentral. In this re-

gion we observed a hyperperfusion in the ASD group. Since a similar and

highly correlated (the correlation of 0.73 is displayed as a link in Figure 3)

abnormality is also found in the right hemisphere (Table 1, #vi), this find-

ing can be related to two fMRI studies (Pierce et al. (2004); Müller et al.
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(2004)) that report a greater BOLD response in the right postcentral gyrus

in ASD patients relative to a normal group. Moreover, those functional ab-

normalities may be related to the structural findings of Ke et al. (2008) that

identified a gray matter volume enlargement in the right postcentral gyrus

in high-functioning ASD children compared with matched controls.

We note that the results presented in Figures 3 and 4 and in Table 1 were

obtained using all the subjects, and that these yield slightly different values

from the classification rates presented in the results section. Indeed, the

latter were calculated using a cross-validation method: within each iteration

of the cross-validation, a different subject was left out, leading to 58 slightly

different analyses. Nevertheless, across all the 58 iterations of the LOO-CV,

the automatic region selection algorithm consistently selected the same two

regions. This reproducibility throughout the re-sampling strongly confirms

a stable characteristic pattern (PET biomarkers of autism) that comprises

hypoperfusion (in the ASD group) in the right STS and hyperperfusion in

the left postcentral (Figure 4).

Finally, concerning the regional feature extraction, we used a very simple

supervised procedure based on the thresholding of an univariate statistical

map. First, this raises the issue of choosing the threshold. Second, this

procedure may be advantageously replaced by more sophisticated methods

such as the one proposed in Fan et al. (2007).

6.3. Specific issues of imbalanced datasets

The imbalanced sizes of the two groups (45 children with ASD ver-

sus 13 non-ASD, low-functioning children) raises specific issues: the two

discriminant-based approaches that we tried (linear SVM, Lasso logistic re-
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gression) obtained poor predictions on low-functioning samples (low speci-

ficity). This issue could not be solved with re-weighting techniques as de-

scribed in (4). Conversely, LDA is a fully generative model, based on Bayes

rules that provide a formal framework to fix and control the priors of the

two groups. In a simple experiment we loosened the control on the class

priors, instead of that, we estimated them from the data. The high (97%)

sensitivity and the low (30%) specificity highlight that is a crucial aspect to

accommodate the imbalanced class design. The choice of such a generative

model across the whole pipeline ensures that subjects were not classified on

the basis of their proportion in the training set (45 vs. 13) but were identified

solely on the basis of functional differences. Nevertheless, the high number

of parameters estimated with the LDA leads to severe over-fitting in a high

dimensional space (big P ). This problem has motivated the development of

a parsimonious feature selection through regional feature extraction.

Considering the comparison experiments that we presented, it is essential

to understand that we did not blindly apply all those strategies on the data.

Instead, we made just one initial experiment using a strategy based on a

univariate F -test combined with a CV-based feature subset selection and a

SVM classifier. The low specificity (38%, Table 2) motivated the development

of the proposed strategy. Then, as a post hoc experiment, we were willing

to evaluate the quality of the proposed strategy in comparison with other

standard and state-of-the-art alternatives.

The chance levels of 50% that we used to tests for the significance instead

of the proportion of each group. Testing against groups’ proportions could

produce some artificially significant specificities since the chance level is ar-
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tificially low. Indeed a score of at least 53% of specificity (7/13) would be

declared significant. On the other hand, it is true that such setting would

require a very high sensitivity, above 88% (40/45) to be declared significant.

Nevertheless, we applied such setting on all features selection/classification

strategies presented in Table 2). Only the two last ones (#14 & #15) reach

significant scores of both sensitivity and specificity. This confirms our con-

clusions on the superiority, on this dataset, of a methods based on: regional

feature extraction + multivariate feature selection + adaptive model selec-

tion with a final generative classifier.

6.4. Limitations

It is difficult to investigate children with ASD because of the hetero-

geneity in intellectual efficiency associated with this disorder. Here we have

specifically studied children with low functioning autism, which represents

a large sub-group of children with ASD. In addition, most brain imaging

studies have been performed in adults with high-functioning autism, so we

believe it is important to investigate a more representative group of patients.

However, these results need to be replicated in children and adults with ASD

and normal intelligence performance.

7. Conclusion

In conclusion, this paper presents a feature selection algorithm that iden-

tifies a parsimonious pattern of regional features. We focus on a novel model

selection procedure based on an adaptive penalized likelihood. This pro-

cedure outperformed the classical cross-validation while lessening computa-

tional burden. The identified pattern associated with a linear generative
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classifier achieved an accurate (sensitive and specific) individual prediction

of the clinical status despite an imbalanced training dataset. Moreover, we

present an extensive comparison study with other state-of-the-art discrim-

inant methods and demonstrate the superiority of the proposed generative

algorithm.

We aimed to identify a shared pattern that discriminates all ASD subjects

from controls. The STS is a critical part of this pattern, confirming previ-

ous multimodal brain imaging findings regarding STS in ASD. However, the

multiple etiology of ASD and the numerous findings in neuroimaging studies

suggest that several brain patterns may exist across the autistic spectrum.

The next step would be to look for the multiple patterns that may be asso-

ciated with the multiple etiologies.
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Tables and figures captions

Table 1.

Regions identified during the feature selection process. In bold, the two

regions finally selected for the classification. We provide the p-values (df =

56), uncorrected for multiple comparisons, of the maximum of each region.

Positive t-values indicate hypoperfusion of the ASD group. We also provide

the regions size in voxels (voxels are 2 mm isotropic) and the location of the

maximum in MNI coordinates.

Table 2.

Summary of a comparison with the alternatives feature selection and classi-

fication strategies. They are organized by (i) the type of the input features

(Feat.) which can be voxels (Vox.) or regional (Reg.) features; (ii) the

method of feature subset ranking (Rank.); (iii) the method of feature subset

selection (Sel.); and (iv) the classifier (Clf). Precisions: SVM are linear;

LLR: Lasso Logistic Regression; CV: ten-fold Cross-Validation; RFE: linear

SVM or LDA Recursive Feature Elimination depending on the final classi-

fier. Concerning the performances, we provide the correct prediction rates

(%) of accuracy (Acc.) sensitivity (Sensi.) and specificity (Speci.). We also

provide the Area under Curve (AUC), and its significance was evaluated

with a Wilcoxon test of ranks. Significances are reported as: * p < 0.05;

** p < 0.01 ; *** p < 0.001. Finally we reported whether (Yes or No)

the proposed strategy (reported on the last line) significantly outperformed

others using a McNemar’s test of accuracy (Acc.), sensitivity (Sensi.) and
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specificity (Speci.).

Figure 1.

Overview of the proposed methods: input parameters (black ovals), esti-

mated parameters (dashed oval) and output results (thick contour ovals).

The three input parameters are the univariate threshold and the two priors.

(a) The left column describes the calibration of the adaptive penalization

based on a randomization of training samples. The calibration yield to the

estimation of the penalization value used by the model selection step. (b)

The middle column describes the leave-one-out cross-validation loop of the

multi-stage feature selection and classification algorithm. The estimated pa-

rameters (that were not reported on the figure) are: (i) the groups means and

the pooled variances over all voxels, for the first-stage (Section 2.1); (ii) the

multivariate group means µk
1, µ

k
2 and the pooled covariance matrix Σk over

the k regional features for the three other stages (Sections 2.2, 2.3 and 2.4) As

a results, on the bottom of this column, we obtain the classification rates (ac-

curacy, sensitivity and specificity) described in Section 3.1. (c) Finally, the

right column, describes the assessment of significance of the cross-validated

classification rates based on random permutation of the group label.

Figure 2.

The multi-stages feature selection algorithm has been repeated on randomly

permuted datasets. We can observe the increase of the log-likelihood (2) for

a varying number of regional features (k). We reported the theoretical log-

evidence (baseline), which is supposed to be constant and equal to ln(1/2)N .
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We also reported the penalizations obtained with the BIC and AIC crite-

ria. This experiment shows that those fixed penalty criteria lead to a severe

under-penalization of the log-likelihood. However, it also demonstrates that

a good linear approximation can be obtained leading to an adaptive penal-

ization criterion noted (aPen) with a penalty term of 2.67 1
2
k lnN as noted

in (1).

Figure 3.

Regions selected by the three steps of feature selection, illustrated on a

single subject and displayed consistent with neurological convention. (1)

voxel-based two samples (ASD versus low-functioning) t-statistics. (1.2) The

thresholding led to six characteristic regions: Four of those regions featured

hypoperfusion in the ASD group: (i) the right temporo-parietal junction

(RTPJ); (ii) the right Superior Temporal Sulcus (STS); (iii) middle tempo-

ral gyrus; and (iv) the posterior zone of the corpus callosum where it overlaps

with the right posterior cingulum and bilateral thalami. Two hyperperfused

regions in the ASD group were identified in (v) the left post-central and (vi)

the right pre-central areas. The network of abnormalities formed by those

six regions is represented with links that code for significant correlations be-

tween pairs of regions. The radius of each link is proportional to the absolute

value of the correlation; purple and orange respectively indicate negative and

positive correlations. The second (2) and third (3) steps led to our selection

of two regions: (ii) the right STS and (v) the left postcentral.

Figure 4.
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The characteristic pattern is composed of two regions: (i) a hypoperfusion

(in the ASD group, blue dots) in the right STS and (ii) a hyperperfusion in

the contralateral postcentral area. We added the density plots from these

two regions. The top-right corner plot is a combined density of the two

regions that was obtained from a projection of the most discriminant axis as

identified through LDA. This combination of regions clearly shows reduced

overlap and a better separation between the two populations.

Figure 5.

ROC curve of alternative popular classification strategies. They are orga-

nized by (i) the type of the input features which can be voxels (Vox.) or re-

gional (Reg.) features; (ii) the method of feature subset ranking (Ranking);

(iii) the method of feature subset selection (Selection); and (iv) the classifier.

Precisions: SVM are linear; LLR: Lasso Logistic Regression; CV: ten-fold

Cross-Validation; RFE: linear SVM or LDA Recursive Feature Elimination

depending on the final classifier. Area under Curve (AUC) significances,

evaluated with a Wilcoxon test of ranks, were reported as: * p < 0.05; **

p < 0.01 ; *** p < 0.001. It clearly shows an improvement of the sensitivity

vs. specificity trade-off while moving toward a strategy that combines re-

gional feature extraction, multivariate feature subsets ranking and calibrated

(aPena) model selection.
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Tables

# Region name p-val. t-val. #vox. x y z

i Right temporo-parietal junction 5.3 × 10−5 4.17 271 56 -50 30

ii Right superior temporal sulcus 1.0 × 10−4 3.96 299 58 -10 -6

iii Right middle temporal gyrus 5.3 × 10−5 4.17 236 42 -40 -6

iv Right post. part of corpus callosum 2.0 × 10−4 3.77 90 2 -32 10

v Left post-central 8.0 × 10−6 -4.71 401 -38 -36 66

vi Right pre-central 3.0 × 10−4 -3.58 26 42 -28 68

Table 1:
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Strategy Performance Comparison

# Feat. Rank. Sel. Clf Acc. Sensi. Speci. AUC Acc. Sensi. Speci.

1 Vox. no all SVM 77∗∗∗ 93∗∗∗ 23 0.64 N N Y∗

2 Vox. t-test CV SVM 75∗∗∗ 86∗∗∗ 38 0.63 N N Y∗

3 Vox. RFE CV SVM 65∗ 80∗∗∗ 15 0.5 Y∗∗ N Y∗

4 Vox. Lasso CV LLR 68∗∗ 82∗∗∗ 23 0.48 Y∗∗ N Y∗

5 Reg. no all SVM 65∗ 73∗∗ 38 0.43 Y∗∗ Y∗ N

6 Reg. t-test CV SVM 63∗ 71∗∗ 38 0.58 Y∗∗ Y∗ N

7 Reg. RFE CV SVM 74∗∗∗ 86∗∗∗ 30 0.47 Y∗ N Y∗

8 Reg. Lasso CV LLR 65∗ 73∗∗ 38 0.5 Y∗∗ Y∗ N

9 Reg. no all LDA 74∗∗∗ 84∗∗∗ 38 0.58 Y∗ N N

10 Reg. t-test CV LDA 63∗ 73∗∗ 30 0.52 Y∗∗ Y∗ Y∗

11 Reg. RFE CV LDA 75∗∗∗ 82∗∗∗ 53 0.65∗ Y∗ N N

12 Reg. SFFS CV LDA 81∗∗∗ 91∗∗∗ 46 0.61 N N N

13 Reg. Lasso aPena LLR 74∗∗∗ 75∗∗∗ 69 0.81∗∗∗ Y∗ Y∗ N

14 Reg. RFE aPena LDA 84∗∗∗ 88∗∗∗ 69 0.74∗∗ N N N

15 Reg. SFFS aPena LDA 87∗∗∗ 91∗∗∗ 77∗ 0.81∗∗∗ - - -

Table 2:
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