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2PARIETAL Team, INRIA / CEA, Université Paris-Saclay- France.
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This document contains proofs and supplementary details for the paper “Con-
tinuation of Nesterov’s Smoothing for Regression with Structured Sparsity in
High-Dimensional Neuroimaging”. All sections and equation numbers in this
supplementary document are preceded by the letters SM, to distinguish them
from those from the main paper.

After a brief introduction of the addressed optimization problem, the back-
ground section SM 2 provides the definitions that are used as the foundations
of our contribution. Then, we present an extensive review of the state-of-the-art
solvers that points out their limitations justifying our proposition (the CON-
ESTA solver).

Section SM 3 provides the proofs that support our contribution: (i) for the
duality gap (SM 3.2); (ii) for the optimal smoothing parameter (SM 3.2); (iii)
for the convergence rate of CONESTA (SM 3.3).

Section SM 4 provides supplementary information about the MRI experimen-
tal data and Python the ParsimonY library (SM 5)

Finally sec. SM 6 presents the technical details of solvers used in the com-
parison studies.
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SM 1. Introduction

This supplementary document provides details about the minimization of the
non-smooth convex function

f(β) =

smooth︷ ︸︸ ︷
L(β) +

λ

2
‖β‖22︸ ︷︷ ︸

g(β)

+

non-smooth︷ ︸︸ ︷
κ ‖β‖1︸ ︷︷ ︸
h(β)

+γ
∑
i,j,k

‖Aφ(i,j,k)β‖2︸ ︷︷ ︸
s(β)

, (SM 1.1)

where β is the vector of parameters to be estimated, g is the sum of a differen-
tiable loss, e.g., the least-squares loss: L(β) = 1

2‖Xβ−y‖22, and a ridge penalty;
h is a sparsity-inducing penalty whose proximal operator is known, e.g., the `1
penalty; and s is a complex penalty on the structure of the input variables, for
which we either do not know the proximal operator, or for which the proximal
operator is too expensive to compute.

Our proposed solution to this program is based on Nesterov’s smoothing
method, where we are minimizing an auxiliary (smoothed) function, closely
related to Eq. SM 1.1, and which is

fµ(β) =

smooth︷ ︸︸ ︷
L(β)+ λ‖β‖22︸ ︷︷ ︸

g(β)

+γ
{
α∗µ(β)

>
Aβ − µ

2
‖α∗‖22

}
︸ ︷︷ ︸

sµ(β)

+κ

non-smooth︷ ︸︸ ︷
‖β‖1︸ ︷︷ ︸
h(β)

, (SM 1.2)

where all the quantities are defined in Sec. II of the main paper.

SM 2. Background

SM 2.1. Definitions

Here we provide the definitions of two important concepts in non-differentiable
optimization.

SM 2.1.1. Lipschitz continuous gradient

Definition 1. Let ∇f(β) be the gradient at β of a smooth real function f
defined on RP . A function f has a Lipschitz continuous gradient on a convex
set K with Lipschitz constant L(∇(f)) ≥ 0 if for all β1,β2 ∈ K we have

‖∇f(β1)−∇f(β2)‖2 ≤ L(∇(f))‖β1 − β2‖2,

where L(∇(f)) is the smallest positive real value satisfying this inequality.
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SM 2.1.2. Proximal operator

Definition 2. Let h: RP → R be a closed proper (i.e. h(β) < +∞ for at least
one β, and h(β) > −∞ for all β) convex function [4]. The proximal operator
(or proximal mapping) proxh(x): RP → RP is then defined as

proxh(β) = arg min
u∈RP

{
1

2
‖u− β‖22 + h(u)

}
, (SM 2.1)

We will often encounter the proximal operator of a scaled function, t · h(·),
where t > 0, which can be expressed as

proxth(β) = arg min
u∈RP

{
1

2
‖u− β‖22 + th(u)

}
, (SM 2.2)

and will be referred to as the proximal operator of h with parameter t.

SM 2.1.3. FISTA

We briefly summarize some information about FISTA that can also be found
in [3].

FISTA convergence rate Since we do not make the assumption that g in
Eq. SM 1.1 is strongly convex, the convergence rate of FISTA, when applied to
Eq. SM 1.2, is governed by the expression [3]

fµ(βk)− fµ(β∗µ) ≤ 2

tµ(k + 1)2
‖β0 − β∗µ‖22, (SM 2.3)

where k is the iteration counter.

SM 2.2. State-of-the-art solvers

Here, we provide an overview and mention some limitations of the current state-
of-the-art solvers that can be used to address problem Eq. SM 1.1. Theoretical
foundations and technical details of the solvers used in the comparison studies
can be found in Sec. SM 6.

SM 2.2.1. Inexact proximal-gradient

Schmidt, Le Roux and Bach [20] gave a general sufficient condition for apply-
ing inexact proximal gradient algorithms where the proximal operator (or the
gradient) is approximated. They established a sufficient condition for the ap-
proximation of the unknown proximal operator to be applied at each step of
the proximal gradient algorithm such that the optimal convergence speed is
maintained.
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This method can be used in the application of complex penalties such as
total variation (TV) or group lasso in linear regression. The method solves a
subproblem that finds an approximation to the proximal operator. Details are
provided in Sec. SM 2.1.2. The authors of [21, 11] implemented this method
in the case of TV-regularized problems (like the ones considered in the present
paper), and showed that it outperforms splitting and primal-dual methods.

However, in the case of high-dimensional problems (like those we are con-
cerned with here), solving a subproblem such as approximating the proximal
operator of g is potentially a very time-consuming process. Indeed, to ensure
convergence, the precision of the inner loop that solves the subproblem must
decrease as O

(
1/k4+δ

)
for any δ > 0 (where k is the number of outer itera-

tions) [20, Proposition 2]. Therefore, if we target a global precision of ε ≤ 10−3,
using Eq. SM 2.3, we see that this would require on the order of k ≈ 31 outer
FISTA iterations [3]. Then, according to [20], the required precision in each
inner loop, εk, should be smaller than 10−6 (≈ 1/314) leading to, at most [3],√

1/10−6 = 103 iterations to solve the inner approximation problem. Exper-
iments performed in this study shown that in practice ≈ 102 iterations were
usually necessary to solve the approximation problem after few dozens ≈ 30 of
outer FISTA iterations.

Moreover, it could be argued that iterations of the the inner loop are fast
since they do not involve computation on the full data X but only the β vector.
However, if at least hundreds of iterations are required to solve the approxima-
tion problem, this will impose a real practical limitation for the use of Inexact
FISTA for high-dimensional problems, such as in large neuroimaging or genetic
data with small N and large P .

Therefore, the inexact proximal gradient algorithm is suitable for problems
with moderate dimensionality, where the required precision will not involve a
large number of expensive iterations of the outer FISTA loop [12].

With a loss of generality (specific fast implementation for 1D/2D/3D ar-
ray), this problem can be alleviated by developing a specific optimized code to
speed-up the computation of the proximal operator of given structured penalty.
In contrast, the method that we propose here, CONESTA, does not suffer from
this limitation since the approximation is not found numerically, and so no inner
loop is needed. Moreover, the smoothing approach offers a generic framework
in which a large range of non-smooth convex structured penalties can be min-
imized without computing their proximal operators. Moreover, the conducted
comparison study demonstrated that CONESTA is much faster than the Inexact
proximal gradient method in terms of the convergence time.

SM 2.2.2. Primal-dual

Chambolle and Pock [7] proposed a general primal-dual method that minimizes
a loss function with two different penalties, such as e.g. TV and `1 [14]. They
consider a function in the form g(Kx) + h(x) where K is a linear operator and
proved an optimal convergence rate for such non-smooth objective functions.
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However they assume to have access to the proximal operators of both the
smooth function, g, and the non-smooth one, h. This is the main shortcoming
of this method, as it would require the approximation of said proximal operators
when they are not available, like in the case with logistic regression, for instance.
It would then require an inexact approach like the one for proximal gradient
methods developed by Schmidt, Le Roux and Bach [20] and discussed above.
To the best of our knowledge, the inexact issue for this method is an open
problem.

SM 2.2.3. Excessive gap

Nesterov [17] presented an optimal primal-dual method called the excessive gap
method, or the excessive gap technique. As we will show later, this method
can be used to minimize Eq. SM 1.1 with optimal convergence rate. However,
it shares the same shortcomings as the method by Chambolle and Pock [7].
In fact, a necessary step in the excessive gap algorithm is the computation of
β̂, the primal variable that corresponds to a particular dual variable, u (see
Sec. SM 6.2). As far as the authors know, there is no explicit expression for
this function when dealing with the general case of any convex loss function.
An explicit application of the excessive gap method can be found in [8] where
the authors applied it to canonical correlation analysis with group and fused
lasso penalties. A problem with the excessive gap method (illustrated in [8] and
reiterated below) is that it imposes a smoothing of all non-smooth parts, and
in particular of the `1 penalty. This implies that the found solution will not be
strictly sparse.

SM 2.2.4. Smoothing proximal gradient

Nesterov’s smoothing can also be used in conjunction with the proximal gradient
algorithm [9]. The main issue of this approach is that an accurate solution,
with a small smoothing parameter, results in a slow convergence. In Sec. II we
provide more details on this approach, since resolving this issue is one of the
main contributions of this paper.

SM 2.2.5. ADMM

The alternating direction method of multipliers (ADMM) [6] is commonly used
to minimize the sum of two convex functions. It can be adapted to the loss
function of interest in this paper, Eq. SM 1.1, but has some drawbacks in this
context. In particular, it suffers from the same shortcoming as the method dis-
cussed above by Chambolle and Pock [7]. In fact, when dealing with a smooth
loss function that has an unknown proximal operator, the proximal operator
would have to be approximated numerically.

Another computational limitation of ADMM when working with the ordinary
least-squares loss and the `1-norm and TV penalties, is that each update involves
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solving two linear systems, or, equivalently, computing the inversion of two large
p×p linear operators, possibly ill-conditioned. In the case of TV and `1 penalties,
this is not a problem, because of the particular form of the resulting linear
operator. Yet for more general linear operators, solving the associated linear
systems would quickly become intractable, in particular for large p.

Moreover, the regularization parameter, ρ, in the associated augmented La-
grangian function is difficult to set (this is still an open problem), and even
though ADMM converges for any value of this parameter, under mild conditions,
the convergence rate depends heavily on it. We have employed some heuristics
for selecting this parameter. This issue, mentioned in [11, 20], is discussed in
Sec. SM 6.3 along with the details of our implementation of ADMM as described
in [22]. For the sake of method comparison, we had to generalize it slightly and
have added an `1 penalty. We note that this kind of modification would not be
as trivial with general complex penalties.

SM 2.2.6. PRISMA

PRISMA [19] is a continuation algorithm for minimizing a convex objective
function that decomposes into three parts: a smooth part, a simple non-smooth
Lipschitz continuous part, and a simple non-smooth non-Lipschitz continuous
part. They use a smoothing strategy similar to that used in this paper. The main
limitation is that the two different penalties have to be simple such that their
proximal operators are explicit (see Algorithm 1 in [19]). Thus, as there is no
inexact approach that allows to approximate any unknown proximal operator,
while preserving the convergence, we can not apply PRISMA in a rigorous way
when dealing with group lasso or TV.

Our proposed continuation algorithm addresses the two main aforementioned
deficiencies. Indeed, CONESTA (i) is relevant in the context of any smooth con-
vex loss function because it only requires the computation of the gradient and (ii)
estimates weights that are strictly sparse because it does not require smoothing
the sparsity-inducing penalties. Additionally, CONESTA does not require solv-
ing any linear systems in P dimensions, or inverting very large matrices (XX>

is inverted in the gap, but is assumed to be small in the N � P paradigm), and
can easily be applied with a variety of convex smooth loss functions and many
different complex convex penalties.

SM 3. Proofs

SM 3.1. Duality gap with proofs

SM 3.1.1. Introduction

Duality formulations are often used to control the achieved precision when min-
imizing convex functions. They can be used to provide an estimation of the
error f(β)− f(β∗), for any β, without knowing the minimum f(β∗), which we
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never know in practice. The duality gap is the cornerstone of CONESTA (see
Algorithm 2), and it is used three times:

1. In the ith CONESTA iteration, as a way to estimate the current error
f(βi)− f(β∗). The error will be estimated using the gap of the smoothed
problem. This is justified in Sec. III. This value is then used to deduce all
the other parameters for the next application of FISTA. The next desired
precision and the smoothing parameter, µi, are derived from this value.

2. As the stopping criterion in the inner FISTA loop. The criterion will be
such that FISTA will stop as soon as the current precision is achieved
using the current smoothing parameter, µi. This prevents non-essential
convergence toward the approximated (smoothed) objective function.

3. Finally, as the global stopping criterion within CONESTA. This will guar-
antee that the obtained approximation of the minimum, βi, satisfies f(βi)−
f(β∗) < ε at convergence.

We first establish an expression of the duality gap for the problem in Eq. SM 1.1.
Next, we consider the smoothed version in Eq. SM 1.2.

The Fenchel duality can be used as in [16] to rewrite the objective function
in Eq. SM 1.1 as

f(β) =
1

2
‖Xβ − y‖22︸ ︷︷ ︸
l(Xβ)

+
λ

2
‖β‖22 + κ ‖β‖1 + γmax

α∈K
〈α, Aβ〉︸ ︷︷ ︸

Ω(β)

≡ l(Xβ) + Ω(β),

(SM 3.1)

where we used a dual norm formulation for the complex penalty s(β) of Eq. SM 1.1.
Note that the squared loss is expressed as a function of Xβ using l(z) ≡
1
2‖z − y‖22. The rules from classical Fenchel duality [5] provide the duality gap

for the problem in Eq. SM 3.1 at the current value of βk

Gap(βk) ≡ f(βk) + l∗
(
σ(βk)

)
+ Ω∗

(
−X>σ(βk)

)
, (SM 3.2)

where l∗ and Ω∗ are the Fenchel conjugates of l and Ω, respectively. It is straight-
forward to show that l∗ can be expressed as l∗(z) = 1

2‖z‖22 + 〈z,y〉. Following

Mairal [16], the dual variable σ(βk) given the primal variable βk can be com-
puted as σ(βk) ≡ ∇l(Xβk). The duality gap is finite, it vanishes at the min-
imum and provides an estimate of the difference with the optimal value of the
objective function. The duality gap has the following properties:

Gap(βk) ≥ f(βk)− f(β∗) ≥ 0;
Gap(β∗) = 0.

(SM 3.3)

This requires computing l∗ and Ω∗. However, to the best of our knowledge,
there is no explicit expression for Ω∗ when using a complex penalty such as TV
or group lasso. Therefore, we use an approximation that maintains the properties
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stated in Eq. SM 3.3. Lets reformulate the penalty term Ω(β):

Ω(β) =
λ

2
‖β‖22 + κ ‖β‖1 + γmax

α∈K
〈α,Aβ〉

= max
α∈K

{
λ

2
‖β‖22 + κ ‖β‖1 + γ〈α,Aβ〉

}
= max
α∈K

Ωα(β) (SM 3.4)

Then, we approximate the Fenchel conjugate of Ω by that of Ωk ≡ Ωα(βk),

which is a local approximation of Ω at the current βk. Next, we define an
approximation of the gap by explicitly computing Ω∗k. Note that, in the following,
we also address the specific situation where λ = 0, that leads to undefined Ω∗k,
since λ appears in the denominator. Therefore, we slightly change it in order to
obtain feasible values. An explicit expression for the duality gap is presented in
the following theorem.

SM 3.1.2. Proof of the duality gap for the non-smooth problem

Theorem Let λ, κ and γ be non-negative real numbers. The following estima-
tion of the gap satisfies Eq. SM 3.3:

G̃ap(βk) ≡ f(βk) + l∗(σ(βk)) + Ω∗k(−X>σ(βk)) (SM 3.5)

with Ω∗k(v) being the Fenchel conjugate:

Ω∗k(v) ≡

 1
2λ

∑P
j=1

([
|vj − skj | − κ

]
+

)2

if λ > 0,

0 if λ = 0,

and dual variable

σ(βk) ≡
{
∇l(Xβk) if λ > 0

(XX>)−1X(kk − sk) if λ = 0.

The vectors sk,kk ∈ RP are given by

sk = γA>α(βk)

and the elements of kk are

kkj = sign
((
X>∇l(Xβk)

)
j

+ skj

)
·min

(
κ,
∣∣(X>∇l(Xβk)

)
j

+ skj
∣∣),

for j = 1, . . . , P .
Remark 1: It is worth noting that in spite of the massive use of X and A in

this duality gap computation, it does not limit this approach and the obtained
formula to the least-squares loss or the elastic net and TV penalties. In fact, the
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very same expression holds for more general models with different X, A and
l. The only requirement is that the loss function can be expressed in the form
l(Xβ) with an explicit l∗. Moreover, any constraint that admit a dual norm
formulation could be used and eventually combined with the `1 or `2 norms as
in Eq. SM 1.1. For instance, by using results in Section D.2.3 of [16], one could
easily adapt this for the logistic loss function as in [13].

Remark 2: Note that we use G̃ap(βk), which is an upper-bound (see the
proof below) of the true Gap(βk). For the sake of simplicity, we dropped this
notation in the main paper.

Proof. We begin by proving the first property of Eq. SM 3.3 for all λ ≥ 0. By
using the Fenchel conjugate properties [5], we obtain

Ω∗ =
{

max
α∈K

Ωα

}∗
≤ inf
α∈K

Ω∗α ≤ Ω∗α(βk) ≡ Ω∗k. (SM 3.6)

Thus,

G̃ap(βk) ≡ f(βk) + l∗(σk) + Ω∗k(−X>σk)

≥ f(βk) + l∗(σk) + Ω∗(−X>σk)

= Gap(βk)

≥ f(βk)− f(β∗)

≥ 0.

Now we prove the second property of Eq. SM 3.3. We first consider the case
with λ > 0 and so use σk = ∇l(Xβk) to compute the gap. We claim that at
the optimum, i.e. at β∗, we have

Ω∗α(β∗)

(
−X>σ(β∗)

)
= Ω∗

(
−X>σ(β∗)

)
. (SM 3.7)

Consequently, at β∗, we would obtain

G̃ap(β∗) = Gap(β∗) = 0. (SM 3.8)

In fact, using the definition of the Fenchel conjugate we have

Ω∗α(β∗)

(
−X>σ(β∗)

)
= max
z∈RP

{
〈−X>σ(β∗), z〉 − λ

2
‖z‖22 − κ ‖z‖1 − γ〈α(β∗),Az〉

}
.

The sub-differential optimality condition for this maximization problem holds
at β∗. Indeed, it is equivalent to the fact that the minimum of f(β∗) also
minimizes l(Xβ) + Ωα(β∗)(β). This can easily be checked since (β∗,α(β∗)) is
a saddle point [4] of the the min-max problem

f(β∗) = min
β∈RP

max
α∈K

{
l(Xβ) + Ωα(β)

}
.

Now, we use β∗ as a particular z and consecutively apply Eq. SM 3.4 and
the Fenchel-Young inequality (see Borwein and Lewis [5], Proposition 3.3.4) on
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the obtained inequality. The equality holds due to the optimality conditions
satisfied by f on β∗. We obtain

Ω∗α(β∗)

(
−X>σ(β∗)

)
=
{
〈−X>σ(β∗),β∗〉 − Ω(β∗)

}
= Ω(β∗) + Ω∗

(
−X>σ(β∗)

)
− Ω(β∗)

= Ω∗
(
−X>σ(β∗)

)
.

Therefore, we deduce Eq. SM 3.7 for λ > 0. Next we consider the case λ = 0.
First, we claim that σk has, at the minimum β∗, the same value as in the first
case with λ > 0. Accordingly, Eq. SM 3.8 holds when λ = 0. We again use the
fact that β∗ minimizes l(Xβ) + Ωα(β∗)(β) to get

0 ∈X>∇l(Xβ∗) + ∂Ωα(β∗)(β
∗) ≡X>σ(β∗) + κ∂‖β∗‖1 + γA>α(β∗)︸ ︷︷ ︸

s∗

.

Using the well known sub-differential of the `1 norm (see Bonnans, Gilbert
and Lemarechal [4]), we deduce that for all 1 ≤ j ≤ P∣∣∣(X>σ(β∗)

)
j

+ s∗j

∣∣∣ ≤ κ,
where s∗ (and k∗) is defined exactly like sk (and kk), but using β∗ instead of
βk. Hence, k∗j =

(
X>σ(β∗)

)
j

+ s∗j , where we just used the definition of kk

together with the this inequality and the fact that sign(x) · |x| = x). It then
follows from an easy and straight-forward computation (plug this k∗ into the
definition of σ(·) for λ = 0) that σ(β∗) = ∇l(Xβ∗) as when λ > 0 and so
Eq. SM 3.7 holds for λ = 0.

Finally, we establish the Fenchel conjugate expression: First, we consider the
case λ > 0 since Ω∗k is always finite no transformation of σ(·) is needed. In fact,

Ω∗k(v) ≡ max
z∈RP

{
〈v, z〉 − Ωα(βk)(z)

}
=

P∑
j=1

max
zj∈R

{
zj

(
vj − γ

(
A>α(βk)

)
j

)
− λ

2
z2
j − κ|zj |

}

=
1

2λ

P∑
j=1

([∣∣∣vj − γ(A>α(βk)
)
j

∣∣∣− κ]
+

)2

, (SM 3.9)

where [ · ]+ = max(0, ·) and v = −X>σ(βk).
When λ = 0, we check that, for all j = 1, . . . , P , we have

max
zj∈R

{
zj

(
vj − γ

(
A>α(βk)

)
j

)
− κ|zj |

}
=

{
0 if

∣∣∣vj − γ(A>α(βk)
)
j

∣∣∣ ≤ κ,
+∞ otherwise.

Thus, we need to change σ(βk) slightly, such that a new dual variable, de-
noted σ̃(βk), satisfies Ω∗k(−X>σ̃(βk)) < ∞, while maintaining the other key
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properties from Eq. SM 3.7. Namely, we must obtain, for all 1 ≤ j ≤ P , that∣∣∣(−X>σ̃(βk)
)
j
− γ
(
A>α(βk)

)
j

∣∣∣ ≤ κ.
A straight-forward way to achieve the aforementioned constraint would be to

solve the linear system

X>σ̃(βk) + sk = κ1 = kk (SM 3.10)

as a function of the scaled dual variable σ̃(βk). But that would also penalize
the components of σ(βk) already fulfilling the constraint. In order to avoid
over-scaling, we introduce a vector kk to replace κ1 on the right hand side of
Eq. SM 3.10. The vector kk is created such that, for all j = 1, . . . , P ,

kkj = sign
(
(X>σ̃(βk))j + skj

)
·min

(
κ, |(X>σ̃(βk))j + skj |

)
.

By construction, it has the two following properties:

(i) if |(X>σ̃(βk))j + sj | ≤ κ, then (σ̃(βk))j = (σ(βk))j and thus remains
unchanged,

(ii) otherwise, each kkj is bounded at κ and maintains the sign of (X>σ(βk))j+

sj , which allows us to fairly constrain the components of σ(βk) that yields
values smaller than −κ or larger than κ.

A simple rearrangement of Eq. SM 3.10, assuming that XX> is invertible (a
reasonable assumption with high-dimensional neuroimaging data and N � P ),
gives the new dual variable as

σ̃(βk) = (XX>)−1X(kk − sk).

SM 3.1.3. Proof of the duality gap for the smoothed problem (Theorem 1)

Theorem (Duality gap for the smooth problem) The following estimation of
the duality gap satisfies Eq. 14, for any iterate βk:

Gapµ(βk) ≡ fµ(βk) + l∗(σ(βk)) + Ω∗µ,k(−X>σ(βk)), (SM 3.11)

with dual variable

σ(βk) ≡ ∇l(Xβk) = Xβk − y, (SM 3.12)

and the Fenchel conjugates

l∗(z) =
1

2
‖z‖22 + 〈z,y〉

Ω∗µ,k(z) ≡ 1

2λ

P∑
j=1

([∣∣∣zj − γ(A>α∗µ(βk)
)
j

∣∣∣− κ]2

+

)
+
γµ

2

∥∥α∗µ(βk)
∥∥2

2
, (SM 3.13)

where [ · ]+ = max(0, · ).
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Proof. The same approach than with the non-smoothed problem can be used
for the smoothed problem given in Eq. 13. The only difference concerns the
estimation of maximal values in SM 3.1.2. In fact, basic calculations using Eq. 8
instead of Eq. 7 show that the gap expression is now approximated by

G̃apµ(βk) ≡ fµ(βk) + l∗(σ(βk)) + Ω∗µ,k(−X>σ(βk)), (SM 3.14)

where the Fenchel conjugate of Theorem 1 should be replaced by

Ω∗µ,k(v) =


1

2λ

∑P
j=1

([∣∣∣vj − γ(A>α∗µ(βk)
)
j

∣∣∣− κ]2

+

)
+ γµ

2

∥∥α∗µ(βk)
∥∥2

2
, if λ > 0,

γµ
2

∥∥α∗µ(βk)
∥∥2

2
if λ = 0.

where [ · ]+ = max(0, · ) and α∗µ maximizes Eq. 8.

SM 3.2. Proof of the optimal smoothing parameter, µ (Theorem 2)

This section provides a proof for the expression of the optimal smoothing pa-
rameter µ given in Theorem 2.

Theorem (Optimal smoothing parameter, µ) For any given ε > 0, selecting
the smoothing parameter as

µopt(ε) =
−γM‖A‖22 +

√
(γM‖A‖22)2 +ML(∇(g))‖A‖22ε
ML(∇(g))

, (SM 3.15)

minimizes the worst case bound on the number of iterations required to achieve
the precision f(βk)−f(β∗) < ε. Note that M = P/2 (Eq. 12) and the Lipschitz
constant of the gradient of g as defined in Eq. 13 is L(∇(g)) = λmax(X>X)+λ,
where λmax(X>X) is the largest eigenvalue of X>X.

Proof. The smoothed function, fµ, as mentioned in Eq. 12 and Eq. 13, provides
upper and lower bounds on the original function, f , such that

fµ ≤ f ≤ fµ + γµM, (SM 3.16)

In order to achieve a precision ε on f by minimizing fµ, it is sufficient that

µ ∈
(

0,
ε

γM

)
. (SM 3.17)

More explicitly, all values contained within this interval are feasible candidates
for µ, but they will achieve the required precision using different numbers of
iterations. By combining Eq. SM 3.16 with the following two inequalities,

fµ(β∗µ) ≤ fµ(β∗) and f(β∗) ≤ f(β∗µ),

we obtain

fµ(β∗µ) ≤ f(β∗) ≤ fµ(β∗µ) + µγM︸ ︷︷ ︸
<ε

, (SM 3.18)

and thus we obtain Eq. SM 3.17.
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Note: Chen et al. [9] used a value for the smoothing parameter equal to ε/2γM.
This lies within the valid interval, specified in Eq. SM 3.17. However, as is il-
lustrated in the main paper, it is possible to improve on this value in order to
achieve convergence in fewer numbers of iterations.

By Eq. SM 2.3 (using β∗ instead of β∗µ) and Eq. SM 3.16 we write

ε = f(βk)− f(β∗) = f(βk)− fµ(βk)︸ ︷︷ ︸
(SM 3.18) at βk,

≤γµM

+ fµ(βk)− fµ(β∗)︸ ︷︷ ︸
(SM 2.3) at β∗,

≤ 2
tµ(k+1)2

‖β0−β∗‖22

+ fµ(β∗)− f(β∗)︸ ︷︷ ︸
(SM 3.18) at β∗,

≤0

≤ µγM +
2
(
L(∇(g)) + γ

‖A‖22
µ

)
(k + 1)2

‖β0 − β∗‖22. (SM 3.19)

Then

ε− µγM ≤
2
(
L(∇(g)) + γ

‖A‖22
µ

)
(k + 1)2

‖β0 − β∗‖22.

Rearranging, we control the worst case number of required iterations by first
posing

2‖β0 − β∗‖22
(k + 1)2

≥ ε− γµM
L(∇(g)) + γ

‖A‖22
µ

= ζ(µ),

expressed as a function of µ > 0 and finding the µ ∈ (0, ε/γM) that maximizes
ζ. This will minimize the number of iterations required to achieve the desired
precision. The derivative of this function is

ζ ′(µ) =
(ε− 2µγM)(µL(∇(g)) + γ‖A‖22)− L(∇(g))(µε− µ2γM)

(µL(∇(g)) + γ‖A‖22)2
.

The maximum value of ζ for positive µ is at ζ ′(µ) = 0, which occurs at

µopt(ε) =
−γM‖A‖22 +

√
(γM‖A‖22)2 +ML(∇(g))‖A‖22ε
ML(∇(g))

. (SM 3.20)

This is the only positive µ because the associated 2nd degree polynomial has
only one positive root.

SM 3.3. Proof of the convergence rate of CONESTA (Theorem 3)

This section provides the proof of the convergence rate of CONESTA given in
Theorem 3.

Theorem (Convergence of CONESTA) Let
(
µi
)∞
i=0

and
(
εi
)∞
i=0

be defined
recursively by CONESTA (Algorithm 2). Then, we have that

(i) lim
i→∞

εi = 0, and
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(ii) f(βi)
i→∞−−−→ f(β∗).

(iii) Convergence rate of CONESTA with fixed smoothing (without continu-
ation): For any given desired precision ε > 0, using a fixed smoothing
(line 6 of Algorithm 2) with an optimal value of µ, equal to µopt(ε), if the
number of iterations k is larger than√

8‖A‖22Mγ2‖β0 − β∗‖22
ε

+

√
2L(∇(g))‖β0 − β∗‖22√

ε
.

then the obtained βk satisfies f(βk)− f(β∗) < ε.
(iv) Convergence rate of CONESTA (with continuation), assuming uniqueness

of the minimum (β∗): For any given desired precision ε > 0, if the total
sum of all the inner FISTA iterations is larger than

C/ε,

where C > 0 is a constant, then the obtained solution (obtained from (iii)),
i.e. βi, satisfies f(βi)− f(β∗) < ε.

SM 3.3.1. Proof of statement (i)

Proof. First, we recall from Algorithm 1 and Eq. SM 3.3 that, for any positive
integer i, if βi+1

µ = FISTA(βiµ, µ
i, εi) then

fµi(β
i+1
µ )− fµi(β∗µ) ≤ G̃apµi(β

i+1
µ ) ≤ εiµ. (SM 3.21)

We know from Eq. SM 2.3 that if we apply FISTA, with any fixed µ >
0, on the smoothed function, it will converge to the corresponding optimum

β∗µ. Consequently, G̃apµi will be very small around the optimum, and thus
satisfy any stopping criterion. Moreover, using the duality gap properties from
Eq. SM 3.3, the stopping rule in Algorithm 1 on Line 6 is now easy to check by

using G̃apµi through the test if G̃apµi(β
k) ≤ εiµ. Thus, Eq. SM 3.21 will hold

at each iteration.
Next, we use Eq. SM 3.21 to establish the first claim. In fact, we have

εi+1 = τ ·
(
µiγM + G̃apµi(β

i+1
µ )

)
≤ τ ·

(
µiγM + εiµ

)
= τ ·

(
µiγM + εi − µiγM

)
= τ · εi

≤ τ i · ε0 i→∞−−−→ 0. (SM 3.22)
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SM 3.3.2. Proof of statement (ii)

Proof. Next, we claim that

f(βiµ)− f(β∗) ≤ εi, ∀i ∈ N, (SM 3.23)

which involve the second statement (ii). Indeed, we know from Eq. SM 3.18
that

fµ(β∗µ)− f(β∗) ≤ 0, ∀µ > 0.

It follows that

f(βiµ)− f(β∗) = f(βiµ)− fµi(βiµ)

+ fµi(β
i
µ)− fµi(β∗µi)

+ fµi(β
∗
µi)− f(β∗),

≤ µiγM + fµi(β
i
µ)− fµi(β∗µi),

≤ µiγM + G̃apµi(β
i
µ)

≤ µiγM + εiµ

= µiγM + εi − µiγM
= εi. (SM 3.24)

SM 3.3.3. Proof of statement (iii)

For the sake of simplicity, we use Eq. SM 3.19 and denote by H(µ, k) the upper-
bound of the current error:

ε = f(βk)− f(β∗) ≤ µγM +
2
(
L(∇(g)) + γ

‖A‖22
µ

)
(k + 1)2

‖β0 − β∗‖22 = H(µ, k).

(SM 3.25)

We seek for an expression of k (number of iterations) as a function of ε (the
desired precision), such that H(µ = µopt(ε), k) < ε. The proof is decomposed in
three steps, including two preliminary lemmas:

1. Lemma 1, provides an expression of H(µ, k) as a function of only k.
2. Lemma 2, provides an expression of k as a function of ε such thatH(µ, k) ≤
ε holds.

3. Then, the proof uses those two lemmas to calculate an expression of k as
a function of ε in the specific case where µ = µopt(ε).
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Lemma 1. Any k ≥ 0 and µ > 0, such that

µ =
‖A‖2
k + 1

√
2

M
‖β0 − β∗‖2

⇔ k + 1 =
‖A‖2
µ

√
2

M
‖β0 − β∗‖2,

(SM 3.26)

will minimize H(µ, k) with respect to µ such that

H

(
‖A‖2
k + 1

√
2

M
‖β0 − β∗‖2, k

)
=

c1
k + 1

+
2L(∇(g))‖β0 − β∗‖22

(k + 1)2
, (SM 3.27)

where

c1 =

√
8‖A‖22Mγ2‖β0 − β∗‖22.

Proof.

∂H(µ, k)

∂µ
= γM − 1

µ2

2γ‖A‖22‖β0 − β∗‖22
(k + 1)2

= 0

⇔ µ = ±
√

2γ‖A‖22‖β0 − β∗‖22
(k + 1)2γM

⇔ µ =
‖A‖2
k + 1

√
2

M
‖β0 − β∗‖2

Then we use this value of µ in H(µ, k) (Eq. SM 3.25) to obtain Eq. SM 3.27.

Lemma 2. If

k + 1 =
c1 +

√
c21 + 8L(∇(g))ε‖β0 − β∗‖22

2ε
,

where again

c1 =

√
8‖A‖22Mγ2‖β0 − β∗‖22,

then

H

(
‖A‖2
k + 1

√
2

M
‖β0 − β∗‖2, k

)
≤ ε.

Proof. We seek the smallest value of k such that

c1
k + 1

+
2L(∇(g))‖β0 − β∗‖22

(k + 1)2
≤ ε.

Multiplying by (k + 1)2 and solving the obtained quadratic equation for k + 1
leads to the desired equation (we take the positive root).

We can now complete the proof of statement (iii).
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Proof. For a given positive ε, we can get (Theorem SM 3.2) the optimal value of
µ = µopt(ε). After k iterations with this fixed smoothing, the FISTA algorithm
will achieve the following precision level from Eq. SM 3.19:

f(βk)− f(β∗) ≤ H(µopt(ε), k).

We look for the minimum value of k for which this inequality holds. In other
words, in order to make this upper bound minimal, we just need to use an
iteration number for which the µopt(ε) is optimal as given by Eq. SM 3.26 of
Lemma 1. That is,

k + 1 =
‖A‖2
µopt(ε)

√
2

M
‖β0 − β∗‖2.

Using the expression of µopt(ε) (Eq. SM 3.15), we can check that the obtained
value of k satisfies

k + 1 =
‖A‖2
µopt(ε)

√
2

M
‖β0 − β∗‖2

=

√
2ML(∇(g))‖A‖2‖β0 − β∗‖2(

− γM‖A‖22 +
√

(γM‖A‖22)2 +ML(∇(g))‖A‖22ε
)√
M

=

√
2
√
ML(∇(g))‖A‖2‖β0 − β∗‖2(

− γM‖A‖22 +
√

(γM‖A‖22)2 +ML(∇(g))‖A‖22ε
)

×
(
γM‖A‖22 +

√
(γM‖A‖22)2 +ML(∇(g))‖A‖22ε

)(
γM‖A‖22 +

√
(γM‖A‖22)2 +ML(∇(g))‖A‖22ε

)
=

√
2
√
ML(∇(g))‖A‖2‖β0 − β∗‖2
ML(∇(g))‖A‖22ε

×
(
γM‖A‖22 +

√
(γM‖A‖22)2 +ML(∇(g))‖A‖22ε

)
=
c1 +

√
c21 + 8L(∇(g))‖β0 − β∗‖22ε

2ε
.

Next, we use µopt(ε) with this iteration number in Lemma 2, and obtain

f(βk)− f(β∗) < H
(
µ = µopt(ε), k + 1 =

‖A‖2
µopt(ε)

√
2

M
‖β0 − β∗‖2

)
< ε.

In conclusion, we have proved that for a given ε > 0, if we smooth our
objective function using µ = µopt(ε), then after

√
2‖A‖2‖β0 − β∗‖2
µopt(ε)

√
M

=
c1 +

√
c21 + 8L(∇(g))‖β0 − β∗‖22ε

2ε

iterations, we have f(βk) − f(β∗) < ε. Finally, we note that this remains true
for larger iteration numbers, since H(µopt(ε), k) is non-increasing function of k
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for a fixed ε. Especially, this holds for

k :=
c1
ε

+

√
2L(∇(g))‖β0 − β∗‖22√

ε
≥
c1 +

√
c21 + 8L(∇(g))‖β0 − β∗‖22ε

2ε

due to the following inequality:
√
x+
√
x+ y ≤ 2

√
x+
√
y, where x =

c21
4ε2 and

y =
8L(∇(g))ε‖β0−β∗‖22

4ε2 . This completes the proof of Statement (iii).

SM 3.3.4. Proof of statement (iv)

The final demonstration will complete the proof of Theorem 3. Here we consider
the convergence rate with respect to the total number of iterations. In order to
estimate an upper bound for the smallest needed number of iterations, we just
need to find an integer k at which the desired precision level is achieved. This
is equivalent to estimating the sum of the number of iterations, ki, performed
during the ith iteration loop using µi. First we estimate the maximum possible
number of continuation steps, imax. In fact, using Eq. SM 3.24, we have

f(βiµ)− f(β∗) < εi ≤ τ i · ε0. (SM 3.28)

Thus, we conclude that

imax = int

 log
(
ε
ε0

)
log (τ)

 ,

where int is the integer part function.
Now, we sum the iterations, ki, with respect to i. From (iii) we get that

ki ≥

√
8‖A‖22Mγ2‖βi − β∗‖22

εi
+

√
2L(∇(g))‖βi − β∗‖22√

εi

≥

√
8‖A‖22Mγ2‖βi − β∗‖22

τ i−1ε0
+

√
2L(∇(g))‖βi − β∗‖22√

τ i−1ε0
. (SM 3.29)

Thus, the total number of iterations, k, satisfies

k ≥
imax∑
i=1

√
8‖A‖22Mγ2‖βi − β∗‖22

τ i−1ε0
+

√
2L(∇(g))‖βi − β∗‖22√

τ i−1ε0
. (SM 3.30)

Using the uniqueness of the minimum β∗ and (ii), we obtain the convergence of
the sequence βi to β∗. Hence ‖βi−β∗‖22 is uniformly (with respect to i) bounded
by a constant C(β0), that only depends on β0. For the sake of simplicity we use
the following notations:

c2 :=

√
8‖A‖22Mγ2C(β0) and c3 :=

√
2L(∇(g))C(β0).
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Hence we obtain

k ≥
imax∑
i=1

c2
τ i−1ε0

+
c3√
τ i−1ε0

≥ c2
ε0

1− (1/τ)
imax

1− 1
τ

+
c3√
ε0

1− (1/
√
τ)
imax

1− 1√
τ

But since log(τ) < 0 and log
(
ε
ε0

)
< 0, we have:

int

 log
(
ε
ε0

)
log (τ)

 ≤ log
(
ε
ε0

)
log(τ)

,

for the global minimum, ε. Hence, we obtain

1−
(

1

τ

)int

(
log ( ε

ε0
)

log (τ)

)
= 1− exp

(
int

(
log ( εε0 )

log (τ)

)
log (1/τ)

)
≥ 1− exp

(
log ( εε0 )

log (τ)
log (1/τ)

)
= 1− exp (− log (ε/ε0))

= 1− ε0

ε
,

and similarly we can establish that

1−
(

1√
τ

)int

(
log ( ε

ε0
)

log (τ)

)
≥ 1− ε0

ε
.

Finally we deduce that

k ≥ c2
ε0(1− 1/τ)

+
c3√

ε0(1− 1/
√
τ)

+

(
c2

1/τ − 1
+

√
ε0c3

1/
√
τ − 1

)
1

ε
, (SM 3.31)

and hence, we conclude that in order to reach a precision ε, CONESTA must
perform a number of iterations that is on the order of O(C/ε).

SM 4. Experiments on a structural MRI data set

SM 4.1. MRI data acquisition and processing

The data used in the preparation of this paper were obtained from the database
of the Alzheimer’s disease (AD) neuroimaging initiative (ADNI) (http://adni.
loni.usc.edu/).

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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The MRI data set included standard T1-weighted images obtained with dif-
ferent 1.5-T scanner types using a three-dimensional MP-RAGE sequence or
equivalent protocols with varying resolutions. The images were post-processed
to correct for some artifacts [15]. As as result, 509 images [10] were segmented
into Gray Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF)
using the SPM8 unified segmentation routine [2].

A total of 456 images were retained after quality control on GM prob-
ability. These images were spatially normalized into a template (dimension:
121×145×121, voxels size: 1.5 mm isotropic) using DARTEL [1] and modulated
with the Jacobian determinants of the nonlinear deformation field.

We retain GM voxels with a minimum value of 0.01 and at least 10−6 of
standard-deviation across the cohort. Then each voxel was centered and scaled
at the cohort level. Those masked, warped and modulated GM images (286 214
voxels) were completed with three demographic predictors (age, gender and
education level) leading to P = 286 217 input features. The three demographic
predictors were excluded from any penalization.

The ultimate goal of this machine learning approach is to predict the clinical
evolution outcome of the subjects, and we used as the target variable (y), the
ADAS (Alzheimer’s Disease Assessment Scale-Cognitive Subscale) score mea-
sured 800 days after the acquisition of the brain images. The ADAS score is one
of the most frequently used tests to measure cognition in clinical trials and it is
provided in the ADNI data set.

As participants, we considered one group of 119 control subjects (CTL) that
never converted to AD within the six years of the study. As patients, we consid-
ered one group of patients with mild cognitive impairment (MCI) that converted
to AD within 800 days. We pooled those two groups leading to a data set with
n = 199 subjects.

SM 4.2. Effect of the τ parameter on the convergence speed of
CONESTA

Fig. 1 illustrates the convergence speed, on the MRI ADNI data, of the CON-
ESTA solver for different values of the factor τ (Sec. III-C) that decreases the
sequence of precisions. Values of τ = 0.5 and τ = 0.2 led to a similar increased
convergence speed compared to the lager value of τ = 0.8.

SM 4.2.1. Required precision and its gap estimate

In Sec. IV-B3, p. 9 we evaluate the required prediction errors of real-life exper-
iments. The Fig. 4) provides the similarity (correlation) between the coefficient
maps βk and the true solution β∗ as a function of the true precision (red line)
and precision estimated with the duality gap (blue line). We found that precision
of 10−3 was required to obtain a solution similar to the true solution.

However, similar conclusions can be drawn if we measure the (normalized)
sum of absolute error (SAE) of prediction between βk and the true solution
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Fig 1. The error as a function of the computational time (top plot) and the number of
iterations (bottom plot) for different values of τ parameter with the CONESTA solver.

β∗, i.e. ‖Xβk −Xβ∗‖1/‖Xβ∗‖1 (see Fig. 2). Stopping at ε = 10−3, estimated
using either the duality gap or with the true precision, leads to less that 1%
of sum of absolute error in all cases. An early stopping at 10−2 would lead to
almost 3% of sum of absolute error, when considering the true precision.

SM 5. ParsimonY: Structured and sparse machine learning in
Python

This section provides a simple example of the ParsimonY library applied on
a large neuroimaging data set: N = 199, P = 286 217 made up of three un-
penalized covariates (Age, Gender, Education) and 286 214 voxels of gray matter
volume.

• To install ParsimonY, please visit: https://github.com/neurospin/pylearn-parsimony.
• To obtain the dataset, please visit: ftp://ftp.cea.fr/pub/unati/brainomics/
papers/ols_nestv

https://github.com/neurospin/pylearn-parsimony
ftp://ftp.cea.fr/pub/unati/brainomics/papers/ols_nestv
ftp://ftp.cea.fr/pub/unati/brainomics/papers/ols_nestv
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ε ≡ f(βk) - f(β∗)

Fig 2. Normalized sum of absolute error (SAE) ‖Xβk −Xβ∗‖1/‖Xβ∗‖1 as a function of
the true precision (red line) and precision estimated with the duality gap (blue line).

ParsimonY is stives to be compliant with the scikit-learn API, only one sup-
plementary step is required to transform an image mask into the linear operator
denoted A throughout the paper.

import numpy as np , nibabel

import parsimony.functions.nesterov.tv as tv

import parsimony.estimators as estimators

# Assume that the data set X, y is such that:

# - X: centered and scaled data of shape = (199 , 286217):

# Age + Gender + Education + 286 214 voxels.

# 3 first columns of X are left un - penalized covariates

# => penalty_start = 3

# Omit if no covariates ; set to 1 with one covariate (such as the

# intercept ).

#

# - y: target vector of shape (199 , 1)

mask_ima = nibabel.load("mask.nii")

Atv = tv.linear_operator_from_mask(mask_ima.get_data ())

estimator = estimators.LinearRegressionL1L2TV(

l1=0.01/3 , l2=0.01/3 , ltv =0.01/3 , A=Atv ,

penalty_start =3)

estimator.fit(X, y) # Fit the model

# Save weight map to a nifti image

weight_arr = np.zeros(mask_ima.get_data (). shape)
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weight_arr[mask_ima.get_data () != 0] = \

estimator.beta.ravel ()[ penalty_start :]

weight_nii = nibabel.Nifti1Image(weight_arr ,

affine=mask_ima.get_affine ())

weight_nii.to_filename (" weights.nii")

SM 6. Technical details of solvers used in the comparison studies

SM 6.1. Smoothing proximal gradient or FISTA with fixed µ

A detailed description is provided in Sec. II of the main document. Chen et
al. [9] demonstrated that the convergence rate obtained with a single value of
µ, even optimized, is O(1/ε) +O(1/

√
ε).

SM 6.2. The excessive gap method

It can prove cumbersome to apply the excessive gap method [17] to such a
complex problem as linear regression with non-smooth penalties. In order to
ease the reader’s understanding of our implementation, we here explain the
necessary steps of the algorithm as well as details about the required algebraic
computations.

General framework Let us first recall Eq. 1, which describes the optimiza-
tion problem under consideration, namely

min
β∈RP

f(β) = min
β∈RP

{g(β) + κh(β) + γs(β)} .

Following Nesterov [17, Section 1], since g in Eq. 1 is a strongly convex func-
tion, we can apply the version of the excessive gap method with an O

(
1/k2

)
rate

of convergence toward the minimum of f , where k is the number of iterations [17,
Theorem 7.6].

For the sake of completeness and notation, we recall the definition of strong
convexity [4].

Definition 3. If g is a strongly convex function on a convex set K then we have

g(β) ≥ g(β∗) + σg
‖β − β∗‖22

2
, ∀β ∈ K,

where β∗ ≡ arg minβ∈K {g(β)}. The constant σg > 0 is called the strong con-
vexity parameter of g.

In the excessive gap framework, f is regularized using the tools presented in
Sec. II, with the particularity that all of its non-smooth parts are regularized
simultaneously. Therefore, κh + γs are smoothed together. The smoothing pa-
rameters used in the context of the excessive gap method will be denoted ν in
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order to avoid any confusion. Consequently, the approximation of f used in the
excessive gap method is denoted

fν(β) = g(β) + (κh+ γs)ν(β). (SM 6.1)

Under the hypothesis that the necessary condition for applying Nesterov’s smooth-
ing applies (see Eq. 7), Eq. 1 is expressed as a min-max problem.

min
β∈RP

f(β) = min
β∈RP

{
g(β) + max

α∈K′
〈α,A′β〉

}
, (SM 6.2)

where we, for the sake of readability, let K′ = Kκh+γs, and A′ = Aκh+γs. With
K′ defined, we let the constant M ′ be equal to maxα∈K′ 1

2‖α‖22.
The saddle point theorem [4] allows us to write

min
β∈RP

f(β) = min
β∈RP

max
α∈K′

{
g(β) + 〈α,A′β〉

}
= max
α∈K′

min
β∈RP

{
g(β) + 〈α,A′β〉

}
,

(SM 6.3)

The saddle point theorem also allows us to define the dual objective function of
the excessive gap method as

DEG(α) = min
β∈RP

{
g(β) + 〈α,A′β〉

}
.

According to Nesterov [17, Lemma 7.1], DEG is concave and differentiable with
gradient

∇DEG(α) = A′β̂(α),

where
β̂(α) = arg min

β∈RP
{
g(β) + 〈α,A′β〉

}
.

Finally, before presenting the excessive gap method, we need to introduce an
ancillary and original concept of Nesterov, namely the “gradient mapping”.

Definition 4 (Gradient mapping). The gradient mapping associated with DEG

is defined as

V (u) = arg max
v∈K′

{
〈∇DEG(u),v − u〉 − 1

2
L(∇DEG) ‖u− v‖22

}
,

with L(∇DEG) =
‖A′‖22
σg

.

By using the aforementioned notation, the excessive gap method can be stated
in a very synthetic way, as shown in Algorithm SM 1. This algorithm achieves
a convergence rate of O

(
1/k2

)
when the differentiable part of the optimization

problem is strongly convex.
Remark: it is necessary to smooth κh+γs instead of just smoothing γs since

a major step in the excessive gap method [17, Theorem 7.5] is the computation

of β̂(α). If κh was not smoothed, we would have to use an iterative algorithm

to approximate β̂(α) in each step. This would make it impossible to compute
its exact value. To our knowledge, the Inexact proximal method presented by
Schmidt, Le Roux and Bach [20] has no equivalence in the excessive gap frame-

work with an inexact β̂(·).
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Application to linear regression with elastic net and total variation
penalties. Here we apply the excessive gap method to the regularized linear
regression problem, expressed in Eq. SM 1.1. To the authors’ knowledge, the
excessive gap method has never previously been used with this kind of function.

We will here detail the quantities that are essential for its implementation.
These quantities are A′, K′, σg, α∗(·), β̂(·), LDEG and V (·).

First, we must separate f into two parts:

(i) A strongly convex smooth part:

1

2
‖Xβ − y‖22 +

λ

2
‖β‖22.

(ii) A non-smooth part that will be smoothed using Nesterov’s technique (with
smoothing constant ν):

κ‖β‖1 + γTV(β).

We need to define the convex dual space and the associated linear operator
in order to express the dual formulation of the non-smooth part of f in the
form appropriate for the excessive gap method. The dual formulation of the
non-smooth part of f is defined on the convex space

K′ =
{
α ∈ RP | ‖α‖∞ ≤ 1

}
×
∏

(i,j,k)

{
αi,j,k ∈ R3 | ‖αi,j,k‖2 ≤ 1

}
.

The linear operator for the excessive gap method is

A′ =

[
κIP
γATV

]
,

where IP is the P × P identity matrix .

Algorithm SM 1 The excessive gap method

Require: β̂(·), α∗ν(·), V (·), L(∇DEG) > 0, ε > 0, M ′ ≥ 0
Ensure: βk such that f(βk)− f(β∗) < ε
1: ν0 = L(∇DEG)
2: β0 = β̂(0)
3: α0 = V (0)
4: k = 0
5: loop
6: τk = 2

k+3

7: uk = (1− τk)αk + τkα∗
νk

(βk)

8: νk+1 = (1− τk)νk

9: βk+1 = (1− τk)βk + τkβ̂(uk)
10: αk+1 = V (uk)
11: if νk+1M ′ < ε then
12: break
13: end if
14: k ← k + 1
15: end loop
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With K′ and A′ defined, the smoothed formulation of the non-smooth part
of f is

κ‖β‖1 + γTV(β) = max
α∈K′

〈α,A′β〉.

It follows that the dual function DEG is equal to

DEG(α) = min
β∈RP

{
1

2
‖Xβ − y‖22 +

λ

2
‖β‖22 + 〈α,A′β〉

}
,

which leads to the expression of the optimal value for the primal variable

β̂(α) =
(
X>X + λIP

)−1(
X>y −A′α

)
.

The gradient of the dual function and its Lipschitz constant are

∇
(
DEG(α)

)
= A′β̂(α) and L(∇DEG) =

‖A′‖22
λmin(X>X) + λ

,

respectively, where λmin(X>X) is the smallest eigenvalue of X>X. Finally,
using Nesterov’s Theorem [18], we can establish the expression for the optimal
value of the dual variable

α∗ν(β) = projK′

(
1

ν
A′β

)
,

and the gradient mapping

V (α) = projK′

(
α+

1

L(∇DEG)
A′β̂(α)

)
.

SM 6.3. The Alternating Direction Method of Multipliers (ADMM)

Consider a problem of the form

minimize g(x) + h(z),

subject to x = z,

where g, h : RP → R∪{+∞} are closed proper convex functions. Either or both
of g and h may be non-smooth. The alternating direction method of multipliers
(ADMM) [6], also known as Douglas-Rachford splitting, can be used to minimize
this problem. The general ADMM algorithm is presented in Algorithm SM 2.

We recall the function in Eq. SM 1.1 and restrict the structured penalty to
a total variation penalty in the 1D setting. We aim to minimize the function

f(β) =
1

2
‖Xβ − y‖22 +

λ

2
‖β‖22 + κ‖β‖1 + γ

∑
i

‖Aφ(i)β‖2

=
1

2
‖Xβ − y‖22 +

λ

2
‖β‖22 + κ

P∑
j=1

|βj |+ γ

P−1∑
i=1

|βi+1 − βi| (SM 6.4)
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over β ∈ RP . We have adapted the ADMM-based solver described by Wahlberg
et al. [22] by making the ridge regression loss function explicit; we have also
added an `1 penalty to their derivation.

We rewrite the minimization of the function in Eq. SM 6.4 as the equivalent
problem

min
β,r

f̄(β, r) =
1

2
‖Xβ − y‖22 +

λ

2
‖β‖22 + κ

P∑
j=1

|rj |+ γ

2P∑
i=P+1

|ri|,

s.t. (β, r) ∈ C = {(x, r) | rj = xj , ri = xi+1 − xi, j = 1, . . . , P, i = P + 1, . . . , 2P}.

The ADMM equivalent form of this second problem is

min
β,r

f̃(β, r) =
1

2
‖Xβ − y‖22 +

λ

2
‖β‖22 + κ

P∑
j=1

|rj |+ γ

2P∑
i=P+1

|ri|︸ ︷︷ ︸
g

+ ιC(z, s)︸ ︷︷ ︸
h

,

(SM 6.5)

s.t. βj = zj , j = 1, . . . , P

ri = si, i = 1, . . . , 2P,

where ιC is the indicator function over the set C, i.e.

ιC(x) =

{
0 if x ∈ C,
∞ otherwise.

Eq. SM 6.5 is the problem that we will focus our attention on in this section.
The augmented Lagrangian of the problem in Eq. SM 6.5 is

L(β, z, r, s, ρ) = f̃(β, r) +
ρ

2

(
‖β − z + u‖22 + ‖r − s+ t‖22

)
, (SM 6.6)

where u and t are scaled dual variables associated with the constraints β = z
and r = s, respectively, and ρ is a regularization constant.

We note that β and r are unrelated in L and f̃ , and thus can be minimized
separately. We write for β that

β+ = arg min
β∈RP

{
1

2
‖Xβ − y‖22 +

λ

2
‖β‖22 +

ρ

2
‖β − z + u‖22

}
, (SM 6.7)

Algorithm SM 2 The Alternating Direction Method of Multipliers (ADMM)

Require: g : RP → R ∪ {+∞}, h : RP → R ∪ {+∞}
1: loop
2: xk+1 = proxλgg(z

k − uk)
3: zk+1 = proxλhh(x

k+1 + uk)

4: uk+1 = uk + xk+1 − zk+1

5: end loop
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which we note is the proximal operator of 1
2‖Xβ − y‖22 + λ

2 ‖β‖22 at the point
z−u. We solve this problem analytically as follows: the gradient of Eq. SM 6.7
with respect to β at the optimum is

∇βL = X>(Xβ − y) + λβ + ρ(β − z + u) = 0,

and we solve for β as

β =
(
X>X + (λ+ ρ)IP

)−1(
X>y + ρ(z(k) − u(k))

)
.

For r, we write

r+
`1

= arg minr

κ
P∑
j=1

|rj |+
ρ

2

P∑
j=1

(rj − sj + tj)
2


= proxκ

ρ ‖·‖1(s`1 − t`1).

and

r+
TV = arg minr

γ
2P∑

j=P+1

|rj |+
ρ

2

2P∑
j=P+1

(rj − sj + tj)
2


= prox γ

ρ ‖·‖1 (sTV − tTV ) ,

where s`1 and t`1 are the first p elements of s and t, respectively; and sTV
and tTV are the last p elements of s and t, respectively. We can efficiently use
the soft-thresholding operator to find the minima in these two cases. These two
proximal operators correspond to Line 2 of Algorithm SM 2.

The next step of the ADMM algorithm is to compute the proximal operator
for h, which in our case is the projection onto the constraint set C.

The projection
(z, s) = projC((w,v)),

where w = β + u and v = r + t, is computed by solving the following mini-
mization problem

min ‖z −w‖22 + ‖s− v‖22
s.t. s = Az,

where

A =

`1


TV





1 0 0 0 . . . 0 0
0 1 0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1
−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −1 1
0 0 0 0 . . . 0 0


.
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This problem is equivalent to

min ‖z −w‖22 + ‖Az − v‖22, (SM 6.8)

with only one variable z.
We solve this problem analytically as follows: The gradient of Eq. SM 6.8 is

at the optimum

∇
(
‖z −w‖22 + ‖Az − v‖22

)
= z −w +A>(Az − v) = 0,

and we solve for z as

z = (A>A+ IP )−1(A>v +w).

We then compute s = Az.
The proximal operator, on Line 3 in Algorithm SM 2, thus corresponds to

the projection
(z+, s+) = projC((β

+ + u, r+ + t)).

Putting all parts together, the final algorithm is given in Algorithm SM 3.

Algorithm SM 3 Adapted ADMM algorithm
1: loop
2: βk+1 = (X>X + (κ+ ρ)IP )

−1
(
X>y + ρ(zk − uk)

)
3: rk+1

`1
= proxλ

ρ
‖·‖1

(
sk`1 − t

k
`1

)
4: rk+1

TV = prox γ
ρ
‖·‖1

(
skTV − t

k
TV

)
5: zk+1 = (A>A+ IP )

−1
(
A>(rk+1 + tk) + (βk+1 + uk)

)
6: sk+1 = Azk+1

7: uk+1 = uk + βk+1 − zk+1

8: tk+1 = tk + rk+1 − sk+1

9: end loop

Remark: we note that the inverse on Line 2 can be computed fairly effi-
ciently by using the singular value decomposition of X>X once, and then the
Woodbury matrix identity. The major computational burden of this algorithm
is found in Line 2.

Also, the linear system in Line 5 can be solved very efficiently by using the
tridiagonal matrix algorithm (also called Thomas’ algorithm). The solution can
be obtained in O(P ) time. We are able to do this here because of the particular
(tridiagonal) form of the matrix A>A, but note that this is not necessarily
possible with other penalties.

The penalty parameter ρ: As far as the authors are aware, the penalty
parameter, ρ, in Eq. SM 6.6 is unknown, and finding good values for it is still
an open problem.

We use the heuristics presented by Boyd et al. [6, Section 3.4.1], where the
penalty parameter ρk is updated in each iteration. The aim of updating ρk
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as described below is to achieve improved practical convergence and to avoid
having the performance depend on the choice of penalty parameter.

The approach to updating ρk discussed by Boyd et al. [6] is

ρk+1 =


τ incrρk, if ‖rk‖2 > µ‖sk‖2,
ρk/τdecr, if ‖sk‖2 > µ‖rk‖2,
ρk, otherwise,

where µ > 1, τ incr > 1 and τdecr > 1. Boyd et al. [6] proposed to use µ = 10
and τ incr = τdecr = 2 and we employed the same parameters in the example
simulations. The purpose of this update is to keep the primal and dual residual
norms within a factor µ of each other.

SM 6.4. The Inexact proximal gradient method

In this section, we adapt the inexact proximal approach for solving Eq. 1. We
suppose that the non-smooth part, γs(β) + κh(β), satisfies Nesterov’s assump-
tion as stated in Eq. 7; namely that

γs(β) + κh(β) ≡ max
α∈K′

〈α,A′β〉,

where A′ and K′ are the same as stated above in the section describing the
Excessive gap method.

The main step of the algorithm, when using a proximal gradient method, is
to compute

βk+1 ≡ proxth(vk); where vk ≡ βk − t∇g(βk), and t =
1

L
.

In the inexact proximal gradient context, we want to approximate the prox-
imal operator at each step k. We use Definition 2 and obtain a non-smooth
minimization problem,

proxth(vk) = arg min
u∈RP

{
1

2
‖u− vk‖22 + th(u)

}
. (SM 6.9)

Following Schmidt, Le Roux and Bach [20], we are looking for a stopping
criterion in the algorithm to come, and a precision εk > 0 such that

1

2t

∥∥p̂roxth(vk)− vk
∥∥2

2
+ h
(
p̂roxth(vk)

)
≤ εk + min

u∈RP

{
1

2
‖u− vk‖22 + th(u)

}
(SM 6.10)

where p̂roxth(vk) is the approximation of proxth(vk) obtained from a numerical
approximation of Eq. SM 6.9, using any minimization algorithm. From Schmidt,
Le Roux and Bach [20], we know that the sequence εk must decrease at least
as fast as 1/k4, when using FISTA in order to keep its convergence rate and
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to converge to the minimum. So, in order to implement this approach, we need
to define an iterative algorithm to approximate the proximal operator and a
stopping criteria that allows us to satisfy Eq. SM 6.10.

Here we detail these two points. First, we compute the proxth(v) as

min
u∈RP

{‖u− vk‖22 + t · h(u)} = t min
u∈RP

{
1

2t
‖u− vk‖22 + h(u)

}
= t max

α∈K′
min
u∈RP

{
〈α,A′u〉+

1

2t
‖u− vk‖22

}
=

1

2
max
α∈K′

{
‖vk‖22 −

∥∥∥vk − tA′>α∥∥∥2

2

}
.

We deduce that proxth(vk) can be approximated by minimizing

α∗k ≡ arg min
α∈K′

1

2
‖vk − tA′>α‖22 (SM 6.11)

using FISTA, and then compute

p̂roxth(vk) = vk − tA′>α̂∗k,

where α̂∗k is the approximation of α∗k. The projection onto the compact K′,
that we need in order to use FISTA, was defined above in the section about the
Excessive gap method.

The gradient of the right-hand side of Eq. SM 6.11, with respect to α at a
fixed vk, is

∇α
(

1

2
‖vk − tA′>α‖22

)
= −tA′(vk − tA′>α),

and, the Lipschitz constant of the gradient is given by

λmax(t2A′A
′>).

Finally, we define a stopping criterion for the FISTA loop by following Schmidt,
Le Roux and Bach [20]. We use the min-max duality gap (see Bonnans, Gilbert
and Lemarechal [4]) as follows. At step i of the inner FISTA loop when min-
imizing Eq. SM 6.11 at a fixed vk (which is needed for the kth outer FISTA
loop), we obtain an approximation αik of α∗k; the corresponding dual variable is

zik ≡ vk − tA
′>αik. The duality gap is then computed as

Gap(zik) ≡ 1

2
‖zik − vk‖22 + th(zik)− 1

2

(
‖vik‖22 − ‖zik‖22

)
,

and finally the stopping criterion is that

Gap(zik) < εk <
1

k4
.
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