
HAL Id: cea-01324021
https://cea.hal.science/cea-01324021v2

Preprint submitted on 5 Oct 2016 (v2), last revised 22 Apr 2018 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supplement to ” An Iterative Smoothing Algorithm for
Regression with Structured Sparsity ”

Fouad Hadj-Selem, Tommy Löfstedt, Vincent Frouin, Vincent Guillemot,
Edouard Duchesnay

To cite this version:
Fouad Hadj-Selem, Tommy Löfstedt, Vincent Frouin, Vincent Guillemot, Edouard Duchesnay. Sup-
plement to ” An Iterative Smoothing Algorithm for Regression with Structured Sparsity ”. 2016.
�cea-01324021v2�

https://cea.hal.science/cea-01324021v2
https://hal.archives-ouvertes.fr

Supplement to “An Iterative Smoothing

Algorithm for Regression with

Structured Sparsity”

Fouad Hadj-Selem∗ , Tommy Löfstedt, Vincent Frouin, Vincent
Guillemot and Edouard Duchesnay∗

NeuroSpin, CEA, Paris-Saclay
91191 Gif sur Yvette, France

This document contains proofs and supplementary details for the paper “An
Iterative Smoothing Algorithm for Regression with Structured Sparsity”. All
section numbers and equation numbers in this supplementary document are
preceded by the letters A, to distinguish them from those from the main pa-
per [5].

A 1. Definitions

Here we provide the definitions of two important concepts in non-differentiable
optimization.

A 1.1. Lipschitz continuous function

Definition 1. Let ∇f(β) be the gradient at β of a smooth real function f
defined on Rp. A function f has a Lipschitz continuous gradient on a convex
set K with Lipschitz constant L(∇(f)) ≥ 0 if for all β1,β2 ∈ K we have

‖∇f(β1)−∇f(β2)‖2 ≤ L(∇(f))‖β1 − β2‖2.

A 1.2. Proximal operator

Definition 2. Let h: Rp → R be a closed proper (i.e. h(β) < +∞ for at least
one β, and h(β) > −∞ for all β) convex function [1]. The proximal operator
(or proximal mapping) proxh(x): Rp → Rp is then defined by

proxh(β) ≡ arg min
u∈Rp

{
1

2
‖u− β‖22 + h(u)

}
, (A 1.1)

∗Corresponding authors. e-mail: hadjselemfouad@gmail.com; edouard.duchesnay@cea.fr

1

mailto:hadjselemfouad@gmail.com
mailto:edouard.duchesnay@cea.fr

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 2

Note that we will often encounter the proximal operator of the scaled function
t · h(·), where t > 0, which can be expressed as

proxth(β) ≡ arg min
u∈Rp

{
1

2
‖u− β‖22 + th(u)

}
, (A 1.2)

and will be referred to as the proximal operator of h with parameter t.

A 2. Proofs

This section details the proofs of the three theorems that underlie the principal
contributions of the main paper [5].

A 2.1. Proof of Theorem 2: Optimal smoothing parameter µ

In order to achieve the level of precision ε on f by minimizing fµ, it is sufficient
that

µ ∈
(

0,
ε

γM

)
. (A 2.1)

More explicitly, all values contained within this interval are feasible candidates
for µ, but they will achieve the required precision using different numbers of
iterations. By combining Equation 3.1 with the following two inequalities

fµ(β∗µ) ≤ fµ(β∗) and f(β∗) ≤ f(β∗µ),

we obtain
fµ(β∗µ) ≤ f(β∗) ≤ fµ(β∗µ) + µγM︸ ︷︷ ︸

<ε

, (A 2.2)

and thus we obtain Equation A 2.1.

Note: Chen et al. [4] used a value for the smoothing parameter equal to ε/2γM.
This lies within the valid interval, specified in Equation A 2.1. However, as is
illustrated in the main paper [5], it is possible to improve on this value in order
to achieve convergence in fewer numbers of iterations.

By Equation 2.15 (using β∗ instead of β∗µ) and Equation 3.1 we write

ε = f(βk)− f(β∗) = f(βk)− fµ(βk)︸ ︷︷ ︸
(A 2.2) at βk,
≤γµM

+ fµ(βk)− fµ(β∗)︸ ︷︷ ︸
(2.15) at β∗,

≤ 2
tµ(k+1)2

‖β0−β∗‖22

+ fµ(β∗)− f(β∗)︸ ︷︷ ︸
(A 2.2) at β∗,

≤0

≤ µγM +
2
(
L(∇(g)) + γ

‖A‖22
µ

)
(k + 1)2

‖β0 − β∗‖22. (A 2.3)

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 3

Then

ε− µγM ≤
2
(
L(∇(g)) + γ

‖A‖22
µ

)
(k + 1)2

‖β0 − β∗‖22.

Rearranging, we control the worst case number of required iterations by first
posing

2‖β0 − β∗‖22
(k + 1)2

≥ ε− γµM
L(∇(g)) + γ

‖A‖22
µ

= ζ(µ),

expressed as a function of µ > 0 and finding the µ ∈ (0, ε/γM) that maximizes
ζ. This will minimize the number of iterations required to achieve the desired
precision. The derivative of this function is

ζ ′(µ) =
(ε− 2µγM)(µL(∇(g)) + γ‖A‖22)− L(∇(g))(µε− µ2γM)

(µL(∇(g)) + γ‖A‖22)2
.

The maximum value of ζ for positive µ is at ζ ′(µ) = 0, which occurs at

µopt(ε) =
−γM‖A‖22 +

√
(γM‖A‖22)2 +ML(∇(g))‖A‖22ε
ML(∇(g))

. (A 2.4)

This is the only positive µ because the associated 2nd degree polynomial has
only one positive root.

A 2.2. Proof of Theorem 3: duality gap for the non-smooth problem

We begin by proving the first property of Equation 3.6 for all λ ≥ 0. By using
the Fenchel conjugate properties [2], we obtain

ψ∗ =
{

max
α∈K

ψα

}∗
≤ inf
α∈K

ψ∗α ≤ ψ∗α(βk) ≡ ψ
∗
k. (A 2.5)

Thus,

G̃ap(βk) ≡ f(βk) + l∗(σk) + ψ∗k(−X>σk)

≥ f(βk) + l∗(σk) + ψ∗(−X>σk)

= Gap(βk)

≥ f(βk)− f(β∗).

Now we prove the second property of Equation 3.6. We first consider the case
with λ > 0 and so use σk = ∇l(Xβk) to compute the gap. We claim that at
the optimum, i.e. at β∗, we have

ψ∗α(β∗)

(
−X>σ(β∗)

)
= ψ∗

(
−X>σ(β∗)

)
. (A 2.6)

Consequently, at β∗, we would obtain

G̃ap(β∗) = Gap(β∗) = 0. (A 2.7)

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 4

In fact, using the definition of the Fenchel conjugate we have

ψ∗α(β∗)

(
−X>σ(β∗)

)
= max
z∈Rp

{
〈−X>σ(β∗)|z〉 − λ

2
‖z‖22 − κ ‖z‖1 − γ〈α(β∗)|Az〉

}
.

The sub-differential optimality condition for this maximization problem holds
at β∗. Indeed, it is equivalent to the fact that the minimum of f(β∗) also
minimizes l (Xβ) + ψα(β∗)(β). This can easily be checked since (β∗,α(β∗)) is
a saddle point [1] of the the min-max problem

f(β∗) = min
β∈Rp

max
α∈K

{
l (Xβ) + ψα(β)

}
.

Now, we use β∗ as a particular z and consecutively apply Equation 3.7 and
the Fenchel-Young inequality (see Borwein and Lewis [2], Proposition 3.3.4) on
the obtained inequality. The equality holds due to the optimality conditions
satisfied by f on β∗. We obtain

ψ∗α(β∗)

(
−X>σ(β∗)

)
=
{
〈−X>σ(β∗)|β∗〉 − ψ(β∗)

}
= ψ(β∗) + ψ∗

(
−X>σ(β∗)

)
− ψ(β∗)

= ψ∗
(
−X>σ(β∗)

)
.

Therefore, we deduce Equation A 2.6 for λ > 0. Next we consider the case λ = 0.
First, we claim that σk has, at the minimum β∗, the same value as in the first
case with λ > 0. Accordingly, Equation A 2.7 holds when λ = 0. We again use
the fact that β∗ minimizes l (Xβ) + ψα(β∗)(β) to get

0 ∈X>∇l(Xβ∗) + ∂ψα(β∗)(β
∗) ≡X>σ∗ + ∂κ‖·‖1(β∗) +A>α(β∗).

Using the well known sub-differential of the `1 norm (see Bonnans, Gilbert and
Lemarechal [1]), we deduce that for all 1 ≤ j ≤ p∣∣∣(X>σ∗)

j
+ sj

∣∣∣ ≤ κ.
So kkj =

(
X>σ∗

)
j
− sj and it follows from an easy and straight-forward com-

putation that σ∗ = ∇l(Xβ∗) as when λ > 0 and so Equation A 2.6 holds for
λ = 0.

Finally, we establish the Fenchel conjugate expression: first, we consider the
case λ > 0 since ψ∗k is always finite no scaling of σ is needed. In fact,

ψ∗k(v) ≡ max
z∈Rp

{
〈v, z〉 − ψα(βk)(z)

}
=

p∑
j=1

max
zj∈R

{
zj

(
vj − γ

(
A>α(βk)

)
j

)
− λ

2
z2j − κ|zj |

}

=
1

2λ

p∑
j=1

([∣∣∣vj − γ(A>α(βk)
)
j

∣∣∣− κ]
+

)2

, (A 2.8)

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 5

where [·]+ = max(0, ·).
When λ = 0, we check that, for all j = 1, . . . , p, we have

max
zj∈R

{
zj

(
vj − γ

(
A>α(βk)

)
j

)
− κ|zj |

}
=

{
0 if

∣∣∣vj − γ(A>α(βk)
)
j

∣∣∣ ≤ κ
+∞ if otherwise

Thus, we need to change σk slightly, such that a new dual variable, denoted
σ̃k, satisfies ψ∗k(−X>σ̃k) < ∞, while maintaining the other key properties in
Equation A 2.6. Namely, we must obtain, for all 1 ≤ j ≤ p, that∣∣∣(−X>σ̃k)

j
− γ
(
A>α(βk)

)
j

)∣∣∣ < κ.

A straightforward way to achieve the aforementioned constraint would be to
solve the linear system

X>σ̃ + s = κ1 (A 2.9)

as a function of the scaled dual variable σ̃. But that would also penalize the
components of σ already fulfilling said constraint. In order to avoid over-scaling,
we introduce a vector k to replace κ1 on the right hand side of Equation A 2.9.
The vector k is built such that, for all j = 1, . . . , p,

kj = sign
(
(X>σ)j + sj

)
·min

(
κ, |(X>σ)j + sj |

)
.

By construction, it has the two following properties:

(i) if |(X>σ)j + sj | ≤ κ, then σj remains unchanged,

(ii) otherwise, each component of k contains the sign of (X>σ)j + sj , which
allows us to fairly constrain the components of σ for which the difference
is smaller than −κ or larger than to κ.

A simple computation, assuming that XX> is invertible, implies that the new
dual variable can be computed in the following way

σ̃ = (XX>)−1X(k − s).

A 2.3. Proof of Theorem 4: convergence of CONESTA

First, we recall from Algorithm 1 and Equation 3.6 that, for any positive integer
i, if βi+1

µ = FISTA(βiµ, µ
i, εi) then

fµi(β
i+1
µ)− fµi(β∗µi) ≤ G̃apµi(β

i+1
µ) ≤ εi. (A 2.10)

We know from Equation 2.15 that if we apply FISTA, with any fixed µ >
0, on the smoothed function, it will converge to the corresponding optimum

β∗µ. Consequently, G̃apµi will be very small around the optimum, and thus
satisfy any stopping criterion. Moreover, using the duality gap properties from
Equation 3.6, the stopping rule in Algorithm 1 on Line 7 is now easy to check

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 6

by using G̃apµ through the test if G̃apµi(β
k) ≤ εi. Thus, Equation A 2.10 will

hold at each iteration.
Next, we use Equation A 2.10 to establish the first claim. In fact, we have

εi+1 = τ ·
(
µiγM + G̃apµi(β

i+1
µ)

)
≤ τ ·

(
µiγM + εiµ

)
= τ ·

(
µiγM + εi − µiγM)

)
≤ τ · εi

≤ τ i · ε0 i→∞−−−→ 0.

Next, we claim that

f(βiµ)− f(β∗) ≤ εi, ∀i ∈ N, (A 2.11)

which involve the second statement (ii). Indeed, we know from Equation A 2.2
that

fµ(β∗µ)− f(β∗) ≤ 0, ∀µ > 0.

It follows that

f(βiµ)− f(β∗) = f(βiµ)− fµi(βiµ)

+ fµi(β
i
µ)− fµi(β∗µi)

+ fµi(β
∗
µi)− f(β∗),

≤ µiγM + fµi(β
i
µ)− fµi(β∗µi),

≤ µiγM + G̃apµi(β
i
µ)

≤ µiγM + εiµ

= µiγM + εi − µiγM
= εi. (A 2.12)

Next, we consecutively prove statements (iii) and (iv) which will complete
the proof. First we establish the convergence rate related to µopt. Note that
this concerns the convergence of the non-smooth minimisation problem when
applying the FISTA algorithm to the smoothed problem.

First, we use the upper bound established in Equation A 2.3 with the par-
ticular value of µopt. Simple calculations leads to the following estimation:

f(βkµopt)− f(β∗) ≤

√
8‖A‖22Mγ2‖β0 − β∗‖22

k + 1

+
2L(∇(g))‖β0 − β∗‖22

(k + 1)2
.

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 7

Then we seek the smallest value of k such that√
8‖A‖22Mγ2‖β0 − β∗‖22

k + 1
+

2L(∇(g))‖β0 − β∗‖22
(k + 1)2

≤ ε.

A simple computation using a second order polynomial gives us that k needs
to satisfy

k + 1 ≥
σ +

√
σ2 + 8L(∇(g))ε‖β0 − β∗‖22

2ε

≥ σ

ε
+

√
2L(∇(g))‖β0 − β∗‖22√

ε
, (A 2.13)

where

σ =

√
8‖A‖22Mγ2‖β0 − β∗‖22.

This completes the proof of statement (iii) of the Theorem 4.
Finally, we consider the convergence rate with respect to the total number of

iterations. This is equivalent to estimating the sum of the numbers of iterations,
ki, performed during the ith iteration loop using µi. First we estimate the maxi-
mum possible number of continuation steps, imax. In fact, using Equation A 2.12,
we have

f(βiµ)− f(β∗) < εi ≤ τ i · ε0. (A 2.14)

Thus, we conclude that

imax = int

(
log (εε0)

log (τ)

)
,

where int(·) is the integer part function. Now, we sum the iterations, ki, with
respect to i. From (iii) we get that

ki ≥

√
8‖A‖22Mγ2‖βi − β∗‖22

εi
+

√
2L(∇(g))‖βi − β∗‖22√

εi

≥

√
8‖A‖22Mγ2‖βi − β∗‖22

τ i−1ε0
+

√
2L(∇(g))‖βi − β∗‖22√

τ i−1ε0
. (A 2.15)

Thus, the total number of iterations, k, satisfies

k ≥
imax∑
i=1

√
8‖A‖22Mγ2‖βi − β∗‖22

τ i−1ε0
+

√
2L(∇(g))‖βi − β∗‖22√

τ i−1ε0
.

Using the uniqueness of the minimum β∗ and (ii), we obtain the convergence of
the sequence βi to β∗. Hence ‖βi−β∗‖22 is uniformly (with respect to i) bounded

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 8

by a constant C(β0), that only depends on β0. For the sake of simplicity we use
the following notations:

c1 :=

√
8‖A‖22Mγ2C(β0) and c2 :=

√
2L(∇(g))C(β0).

Hence we obtain

k ≥
imax∑
i=1

c1
τ i−1ε0

+
c2√
τ i−1ε0

≥ c1
ε0

1− (1/τ)
imax

1− 1
τ

+
c2√
ε0

1− (1/
√
τ)
imax

1− 1√
τ

But since log(τ) < 0, we have:

int

(
log (εε0)

log (τ)

)
≤ log (ε/ε0)

log(τ)
,

so we get

1−
(

1

τ

)int

(
log (ε

ε0
)

log (τ)

)
= 1− exp

(
int

(
log (εε0)

log (τ)

)
log (1/τ)

)
≥ 1− exp

(
log (εε0)

log (τ)
log (1/τ)

)
= 1− exp (− log (ε/ε0))

= 1− ε0

ε
,

and similarly we can establish that

1−
(

1√
τ

)int

(
log (ε

ε0
)

log (
√
τ)

)
≥ 1− ε0

ε
.

Finally we deduce that

k ≥ c1
ε0(1− 1/τ)

+
c2√

ε0(1− 1/
√
τ)

+

(
c1

1/τ − 1
+

c2
1/
√
τ − 1

)
1

ε
,

and hence, we conclude that in order to reach a precision ε, CONESTA must
perform a number of iterations that is on the order of O(C/ε).

A 3. State-of-the-art algorithms

A 3.1. The excessive gap method

It can prove cumbersome to apply the excessive gap algorithm [6] to such a
complex problem as linear regression with non-smooth penalties. In order to
ease the reader’s understanding of our implementation, we here explain the
necessary steps of the algorithm as well as details about the required algebraic
computations.

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 9

A 3.1.1. General framework

Let us first recall Equation 2.1, which describes the optimization problem under
consideration, namely

min
β∈Rp

f(β) = min
β∈Rp

{g(β) + κh(β) + γs(β)} .

Following Nesterov [6, Section 1], since g in Equation 2.1 is a strongly convex
function, we can apply the version of the excessive gap method with a O(1/k2)
rate of convergence toward the minimum of f , where k is the number of itera-
tions [6, Theorem 7.6].

For the sake of completeness and notation, we recall the definition of strong
convexity [1].

Definition 3. If g is a strongly convex function on a convex set K then we have

g(β) ≥ g(β∗) + σg
‖β − β∗‖22

2
, ∀β ∈ K,

where β∗ ≡ arg minβ∈K {g(β)}. The constant σg > 0 is called the strong con-
vexity parameter of g.

In the excessive gap framework, f is regularized using the tools presented in
Section 2.3, with the particularity that all of its non-smooth parts are regular-
ized simultaneously. Therefore, κh+ γs are smoothed together. The smoothing
parameters used in the context of the excessive gap method will be denoted ν
in order to avoid any confusion. Consequently, the approximation of f used in
the excessive gap method is denoted

fν(β) = g(β) + (κh+ γs)ν(β). (A 3.1)

Under the hypothesis that the necessary condition for applying Nesterov’s smooth-
ing applies (see Equation 2.4), Equation 2.1 is expressed as a min-max problem.

min
β∈Rp

f(β) = min
β∈Rp

{
g(β) + max

α∈K′
〈α|A′β〉

}
, (A 3.2)

where we, for the sake of simplicity, let K′ = Kκh+γs, and A′ = Aκh+γs. With
K′ defined, we let the constant M ′ be equal to maxα∈K′ ‖α‖

2
2/2. Then, the saddle

point theorem [1] allows us to write

min
β∈Rp

f(β) = min
β∈Rp

max
α∈K′

{
g(β) + 〈α|A′β〉

}
= max
α∈K′

min
β∈Rp

{
g(β) + 〈α|A′β〉

}
,

(A 3.3)
The saddle point theorem also allows us to define the dual objective function of
the excessive gap method as

DEG(α) = min
β∈Rp

{
g(β) + 〈α|A′β〉

}
.

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 10

According to Nesterov [6, Lemma 7.1], DEG is concave and differentiable with
gradient

∇DEG(α) = A′β̂(α),

where
β̂(α) = arg min

β∈Rp

{
g(β) + 〈α|A′β〉

}
.

Finally, before presenting the excessive gap method, we need to introduce an
ancillary and original concept of Nesterov, namely the “gradient mapping”.

Definition 4 (Gradient mapping). The gradient mapping associated with DEG

is defined as

V (u) = arg max
v∈K′

{
〈∇DEG(u)|v − u〉 − 1

2
L(∇DEG) ‖u− v‖22

}
,

with L(∇DEG) =
‖A′‖22
σg

.

By using the aforementioned notation, the excessive gap method can be stated
in a very synthetic way, as shown in Algorithm A 1. This algorithm achieves
a convergence rate of O(1/k2) when the differentiable part of the optimization
problem is strongly convex.

Algorithm A 1 The excessive gap method

Input: β̂(·), α∗ν(·), V (·), L(∇DEG) > 0, ε > 0, M ′ ≥ 0
Output: βk such that f(βk)− f(β∗) < ε
1: ν0 = L(∇DEG)
2: β0 = β̂(0)
3: α0 = V (0)
4: k = 0
5: loop
6: τk = 2

k+3

7: uk = (1− τk)αk + τkα∗
νk

(βk)

8: νk+1 = (1− τk)νk

9: βk+1 = (1− τk)βk + τkβ̂(uk)
10: αk+1 = V (uk)
11: if νk+1M ′ < ε then
12: break
13: end if
14: k ← k + 1
15: end loop

Remark: it is necessary to smooth κh+γs instead of just smoothing γs since
a major step in the excessive gap method [6, Theorem 7.5] is the computation

of β̂(α). If κh was not smoothed, we would have to use an iterative algorithm

to approximate β̂(α) in each step. This would make it impossible to compute
its exact value. To our knowledge, the inexact proximal method presented by
Schmidt, Le Roux and Bach [7] has no equivalence in the excessive gap frame-

work with an inexact β̂(·).

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 11

A 3.1.2. Application to linear regression with elastic net and total variation
penalties

Here we apply the excessive gap method to the regularized linear regression
problem, expressed in Equation 2.2. To the authors’ knowledge, the excessive
gap method has never previously been used with this kind of function.

We will here detail the quantities that are essential for its implementation.
These quantities are A′, K′, σg, α∗(·), β̂(·), LDEG and V (·).

First, we must separate f into two parts:

(i) A strongly convex smooth part:

1

2
‖Xβ − y‖22 +

λ

2
‖β‖22.

(ii) A non-smooth part that will be smoothed using Nesterov’s technique (with
smoothing constant ν):

κ‖β‖1 + γTV (β).

We need to define the convex dual space and the associated linear operator
in order to express the dual formulation of the non-smooth part of f in the
form appropriate for the excessive gap method. The dual formulation of the
non-smooth part of f is defined on the convex space

K′ = {α ∈ Rp, ‖α‖∞ ≤ 1} ×
∏

(i,j,k)

{
αi,j,k ∈ R3, ‖αi,j,k‖2 ≤ 1

}
.

The linear operator for the excessive gap method is

A′ =

[
κIp
γATV

]
,

where Ip is the p× p identity matrix .
With K′ and A′ defined, the dual formulation of the non-smooth part of f is

κ‖β‖1 + γTV (β) = max
α∈K′

〈α|A′β〉.

It follows that the dual function DEG is equal to

DEG(α) = min
β∈Rp

{
1

2
‖Xβ − y‖22 +

λ

2
‖β‖22 + 〈α|A′β〉

}
,

which leads to the expression of the optimal value for the primal variable

β̂(α) =
(
X>X + λIp

)−1(
X>y −A′α

)
.

The gradient of the dual function and its Lipschitz constant are

∇
(
DEG(α)

)
= A′β̂(α) and L(∇DEG) =

‖A′‖22
λmin(X>X) + λ

,

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 12

respectively, where λmin(X>X) is the smallest eigenvalue of X>X. Finally,
using Theorem 1, we can establish the expression for the optimal value of the
dual variable

α∗ν(β) = projK′

(
1

ν
A′β

)
,

and the gradient mapping

V (α) = projK′

(
α+

1

L(∇DEG)
A′β̂(α)

)
.

A 3.2. The Alternating Direction Method of Multipliers (ADMM)

Consider a problem on the form

minimize g(x) + h(z),

subject to x = z,

where g, h : Rp → R∪{+∞} are closed proper convex functions. Either or both
of g and h may be non-smooth. The alternating direction method of multipliers
(ADMM) [3], also known as Douglas-Rachford splitting, can be used to minimize
this problem. The general ADMM algorithm is presented in Algorithm A 2.

Algorithm A 2 The Alternating Direction Method of Multipliers (ADMM)

Input: g : Rp → R ∪ {+∞}, h : Rp → R ∪ {+∞}
1: loop
2: xk+1 = proxλgg(z

k − uk)
3: zk+1 = proxλhh(x

k+1 + uk)

4: uk+1 = uk + xk+1 − zk+1

5: end loop

We recall the function in Equation 2.2 and restrict the structured penalty to
a total variation penalty in the 1D setting. We aim to minimize the function

min
β∈Rp]

f(β) =
1

2
‖Xβ − y‖22 +

λ

2
‖β‖22 + κ‖β‖1 + γ

∑
G∈G
‖AGβG‖2

=
1

2
‖Xβ − y‖22 +

λ

2
‖β‖22 + κ

p−1∑
j=1

|βj |+ γ

p−1∑
i=1

|βi+1 − βi|. (A 3.4)

We have adapted the ADMM-based solver described by Wahlberg et al. [8] by
making the ridge regression loss function explicit; we have also added an `1
penalty to their derivation.

We rewrite the problem in Equation A 3.4 in the equivalent form

min
β,r

f̄(β, r) =
1

2
‖Xβ − y‖22 +

λ

2
‖β‖22 + κ

p∑
j=1

|rj |+ γ

2p∑
i=p+1

|ri|,

s.t. (β, r) ∈ C = {(x, r)|rj = xj , ri = xi+1 − xi, j = 1, . . . , p, i = p+ 1, . . . , 2p}.

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 13

The ADMM equivalent form of this second problem is

min
β,r

f̃(β, r) =
1

2
‖Xβ − y‖22 +

λ

2
‖β‖22 + κ

p∑
j=1

|rj |+ γ

2p∑
i=p+1

|ri|︸ ︷︷ ︸
g

+ ιC(z, s)︸ ︷︷ ︸
h

,

(A 3.5)

s.t. βj = zj , j = 1, . . . , p

ri = si, i = 1, . . . , 2p,

where ιC is the indicator function over the set C, i.e.

ιC(x) =

{
0 if x ∈ C,
∞ otherwise.

Equation A 3.5 is the problem that we will focus our attention on in this section.
The augmented Lagrangian of the problem in Equation A 3.5 is

L(β, z, r, s, ρ) = f̃(β, r) +
ρ

2

(
‖β − z + u‖22 + ‖r − s+ t‖22

)
, (A 3.6)

where u and t are scaled dual variables associated with the constraints β = z
and r = s, respectively, and ρ is a regularization constant.

We note that β and r are unrelated in L and f̃ , and thus can be minimized
separately. We write for β that

β+ = arg minβ∈Rp

{
1

2
‖Xβ − y‖22 +

λ

2
‖β‖22 +

ρ

2
‖β − z + u‖22

}
, (A 3.7)

which we note is the proximal operator of 1
2‖Xβ−y‖

2
2+λ

2 ‖β‖
2
2 at the point z−u.

We solve this problem analytically as follows: the gradient of Equation A 3.7
with respect to β at the optimum is

∇βL = X>(Xβ − y) + λβ + ρ(β − z + u) = 0,

and we solve for β as

β =
(
X>X + (λ+ ρ)Ip

)−1(
X>y + ρ(z(k) − u(k))

)
.

For r, we write

r+`1 = arg minr

κ
p∑
j=1

|rj |+
ρ

2

p∑
j=1

(rj − sj + tj)
2


= proxκ

ρ ‖·‖1
(s`1 − t`1).

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 14

and

r+TV = arg minr

γ
2p∑

j=p+1

|rj |+
ρ

2

2p∑
j=p+1

(rj − sj + tj)
2


= prox γ

ρ ‖·‖1
(sTV − tTV) ,

where s`1 and t`1 are the first p elements of s and t, respectively; and sTV
and tTV are the last p elements of s and t, respectively. We can efficiently use
the soft-thresholding operator to find the minima in these two cases. These two
proximal operators correspond to Line 2 of Algorithm A 2.

The next step of the ADMM algorithm is to compute the proximal operator
for h, which in our case is the projection onto the constraint set C.

The projection
(z, s) = projC((w,v)),

where w = β + u and v = r + t, is computed by solving the following mini-
mization problem

min ‖z −w‖22 + ‖s− v‖22
s.t. s = Az,

where

A =

`1


TV





1 0 0 0 . . . 0 0
0 1 0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1
−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −1 1
0 0 0 0 . . . 0 0


.

This problem is equivalent to

min ‖z −w‖22 + ‖Az − v‖22, (A 3.8)

with only one variable z.
We solve this problem analytically as follows: The gradient of Equation A 3.8

is at the optimum

∇
(
‖z −w‖22 + ‖Az − v‖22

)
= z −w +A>(Az − v) = 0,

and we solve for z as

z = (A>A+ Ip)
−1(A>v +w).

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 15

We then compute s = Az.
The proximal operator, on Line 3 in Algorithm A 2, thus corresponds to the

projection
(z+, s+) = projC((β

+ + u, r+ + t)).

Putting all parts together, the final algorithm is given in Algorithm A 3.

Algorithm A 3 Adapted ADMM algorithm

1: loop
2: βk+1 = (X>X + (κ+ ρ)Ip)−1

(
X>y + ρ(zk − uk)

)
3: rk+1

`1
= proxλ

ρ
‖·‖1

(
sk`1 − t

k
`1

)
4: rk+1

TV = prox γ
ρ
‖·‖1

(
skTV − t

k
TV

)
5: zk+1 = (A>A+ Ip)−1

(
A>(rk+1 + tk) + (βk+1 + uk)

)
6: sk+1 = Azk+1

7: uk+1 = uk + βk+1 − zk+1

8: tk+1 = tk + rk+1 − sk+1

9: end loop

Remark: we note that the inverse on Line 2 can be computed fairly efficiently
by using the singular value decomposition of X>X and the Woodbury matrix
identity. The major computational burden of this algorithm is found in Line 2.

Also, the linear system in Line 5 can be solved very efficiently by using the
tridiagonal matrix algorithm (also called Thomas’ algorithm). The solution can
be obtained in O(p) time. We are able to do this here because of the particular
(tridiagonal) form of the matrix A>A.

A 3.2.1. The penalty parameter ρ

As far as the authors are aware, the penalty parameter, ρ, in Equation A 3.6 is
unknown, and finding good values for it is still an open problem.

We use the heuristics presented by Boyd et al. [3, Section 3.4.1], where the
penalty parameter ρk is updated in each iteration. The aim of updating ρk

as described below is to achieve improved practical convergence and to avoid
having the performance depend on the choice of penalty parameter.

An approach to updating ρk is discussed by Boyd et al. [3] and is

ρk+1 =


τ incrρk, if ‖rk‖2 > µ‖sk‖2,
ρk/τdecr, if ‖sk‖2 > µ‖rk‖2,
ρk, otherwise,

where µ > 1, τ incr > 1 and τdecr > 1. Boyd et al. [3] proposed to use µ = 10
and τ incr = τdecr = 2 and we employed the same parameters in the example
simulations. The purpose of this update is to keep the primal and dual residual
norms within a factor µ of each other.

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 16

A 3.3. The inexact proximal gradient method

In this section, we adapt the inexact proximal approach for solving Equation 2.1.
We suppose that the non-smooth part, γs(β) + κh(β), satisfies Nesterov’s as-
sumption as stated in Equation 2.4; namely that

γs(β) + κh(β) ≡ max
α∈K′

〈α|A′β〉,

where A′ and K′ are the same as stated above in the section describing the
excessive gap method.

The main step of the algorithm, when using a proximal gradient method, is
to compute

βk+1 ≡ proxth(vk); where vk ≡ βk − t∇g(βk), and t =
1

L
.

In the inexact proximal gradient context, we want to approximate the prox-
imal operator at each step k. We use Definition 2 and obtain a non-smooth
minimization problem,

proxth(vk) ≡ arg minu∈Rp

{
1

2
‖u− vk‖22 + th(u)

}
. (A 3.9)

Following Schmidt, Le Roux and Bach [7], we are looking for a stopping
criteria in the algorithm to come, and a precision εk > 0 such that

1

2t

∥∥p̂roxth(vk)− vk
∥∥2
2

+ h
(
p̂roxth(vk)

)
≤ εk + min

u∈Rp

{
1

2
‖u− vk‖22 + th(u)

}
(A 3.10)

where p̂roxth(vk) is the approximation of proxth(vk) obtained from a numeri-
cal approximation of Equation A 3.9, using any minimization algorithm. From
Schmidt, Le Roux and Bach [7], we know that the sequence εk must decrease
at least as fast as 1/k4, when using FISTA in order to keep its convergence rate
and to converge to the minimum. So, in order to implement this approach, we
need to define an iterative algorithm to approximate the proximal operator and
a stopping criteria that allows us to satisfy Equation A 3.10.

Here we detail these two points. First, we compute the proxth(v) as

min
u∈Rp

{‖u− vk‖22 + t · h(u)} = t min
u∈Rp

{
1

2t
‖u− vk‖22 + h(u)

}
= t max

α∈K′
min
u∈Rp

{
〈α|A′u〉+

1

2t
‖u− vk‖22

}
=

1

2
max
α∈K′

{
‖vk‖22 −

∥∥∥vk − tA′>α∥∥∥2
2

}
.

We deduce that proxth(vk) can be approximated by minimizing

α∗k ≡ arg minα∈K′
1

2
‖vk − tA

′>α‖22 (A 3.11)

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 17

using FISTA, and then compute

p̂roxth(vk) ≡ vk − tA
′>α̂∗k,

where α̂∗k is the approximation of α∗k. The projection onto the compact K′,
that we need in order to use FISTA, was defined above in the section about the
excessive gap method.

The gradient of the right-hand side of Equation A 3.11, with respect to α at
a fixed vk, is

∇α
(

1

2
‖vk − tA

′>α‖22
)

= −tA′(vk − tA
′>α),

and, the Lipschitz constant of the gradient is given by

λmax(t2A′A
′>).

Finally, we define a stopping criterion for the FISTA loop by following Schmidt,
Le Roux and Bach [7]. We use the min-max duality gap (see Bonnans, Gilbert
and Lemarechal [1]) as follows. At step i of the inner FISTA loop when mini-
mizing Equation A 3.11 at a fixed vk (which is needed for the kth outer FISTA
loop), we obtain an approximation αik of α∗k; the corresponding dual variable is

zik ≡ vk − tA
′>αik. The duality gap is then computed as

Gap(zik) ≡ 1

2
‖zik − vk‖22 + th(zik)− 1

2

(
‖zik‖22 − ‖zik‖22

)
,

and finally the stopping criterion is that

Gap(zik) < εk <
1

k4
.

A 4. ParsimonY: structured and sparse machine learning in Python

This section provides an simple example of the ParsimonY library applied on a
large neuroimaging data set: N = 199, P = 286 217 made of three un-penalized
covariates (Age, Gender, Education) with 286 214 voxels of gray matter volume.

• To install parsimony, please visit: https://github.com/neurospin/pylearn-parsimony.
• To obtain the dataset, please visit: ftp://ftp.cea.fr/pub/unati/brainomics/
papers/ols_nestv

ParsimonY is compliant with the scikit-learn API, only one supplementary
step is required to transform an image mask into the linear operator denoted A
throughout the paper.

import numpy as np

import os

https://github.com/neurospin/pylearn-parsimony
ftp://ftp.cea.fr/pub/unati/brainomics/papers/ols_nestv
ftp://ftp.cea.fr/pub/unati/brainomics/papers/ols_nestv

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 18

import parsimony.functions.nesterov.tv as tv

import parsimony.estimators as estimators

import parsimony.functions.nesterov as nesterov

import nibabel

Assume that the data set X, y is such that:

- X: centered and scaled data of shape = (199 , 286217):

Age + Gender + Education + 286 214 voxels.

3 first columns of X are un -penalized covariates => penalty_start = 3

Omit if no covariates ; set to 1 with one covariate (such intercept) etc.

- y: target vector of shape (199 , 1)

penalty_start = 3

mask_ima = nibabel.load("mask.nii")

Atv = tv.linear_operator_from_mask(mask_ima.get_data ())

Global penalty of 0.01 * 1/3 of l1 , 1/3 of l2 and 1/3 of tv

lambda_l1 , lambda_l2 , lambda_tv = 0.01 * np.array ([0.3335 , 0.3335 , 0.333])

penalty_start=penalty_start

estimator = estimators.LinearRegressionL1L2TV(

lambda_l1 , lambda_l2 , lambda_tv , A=Atv , penalty_start=penalty_start)

Fit the model

estimator.fit(X, y)

Save weights map into nifti image

weight_arr = np.zeros(mask_ima.get_data (). shape)

weight_arr[mask_ima.get_data () !=0] = estimator.beta.ravel ()[penalty_start :]

weight_nii = nibabel.Nifti1Image(weight_arr , affine=mask_ima.get_affine ())

weight_nii.to_filename("weight.nii")

References

[1] Bonnans, J. F., Gilbert, J. C. and Lemarechal, C. (2006). Numeri-
cal Optimization: Theoretical and Practical Aspects, 2nd ed. Springer-Verlag
Berlin and Heidelberg GmbH & Co. K.

[2] Borwein, J. M. and Lewis, A. S. (2006). Convex Analysis and Nonlinear
Optimization: Theory and Examples. CMS Books in Mathematics. Springer.

[3] Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. (2011).
Distributed Optimization and Statistical Learning via the Alternating Di-
rection Method of Multipliers. Foundations and Trends in Machine Learning
3 1–122.

[4] Chen, X., Lin, Q., Kim, S., Carbonell, J. G. and Xing, E. P. (2012).
Smoothing proximal gradient method for general structured sparse regres-
sion. The Annals of Applied Statistics 6 719–752.

[5] Hadj-Selem, F., Lofstedt, T., Frouin, V., Guillemot, V. and Duch-
esnay, E. (2016). An Iterative Smoothing Algorithm for Regression with
Structured Sparsity. arXiv:1605.09658 [stat]. arXiv: 1605.09658.

[6] Nesterov, Y. (2005). Excessive Gap Technique in Nonsmooth Convex Min-
imization. SIAM Journal on Optimization 16 235–249.

F. Hadj-Selem et al./Iterative Smoothing for Regression with Structured Sparsity 19

[7] Schmidt, M., Le Roux, N. and Bach, F. (2011). Convergence Rates of
Inexact Proximal-Gradient Methods for Convex Optimization. In NIPS’11
- 25 th Annual Conference on Neural Information Processing Systems.

[8] Wahlberg, B., Boyd, S., Annergren, M. and Wang, Y. (2012). An
ADMM Algorithm for a Class of Total Variation Regularized Estimation
Problems. ArXiv e-prints.

	Definitions
	Lipschitz continuous function
	Proximal operator

	Proofs
	Proof of Theorem 2: Optimal smoothing parameter
	Proof of Theorem 3: duality gap for the non-smooth problem
	Proof of Theorem 4: convergence of CONESTA

	State-of-the-art algorithms
	The excessive gap method
	General framework
	Application to linear regression with elastic net and total variation penalties

	The Alternating Direction Method of Multipliers (ADMM)
	The penalty parameter

	The inexact proximal gradient method

	ParsimonY: structured and sparse machine learning in Python
	References

