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We propose a new parametrization of the distribution of the initial eccentricity in a nucleus-nucleus
collision at a fixed centrality, which we name the Elliptic Power distribution. It is a two-parameter
distribution, where one of the parameters corresponds to the intrinsic eccentricity, while the other
parameter controls the magnitude of eccentricity fluctuations. Unlike the previously used Bessel-
Gaussian distribution, which becomes worse for more peripheral collisions, the new Elliptic Power
distribution fits several Monte Carlo models of the initial state for all centralities.

PACS numbers: 25.75.Ld, 24.10.Nz

I. INTRODUCTION

Elliptic flow, v2, is a crucial observable of heavy-ion
collisions: the large magnitude of v2 at RHIC [1, 2] and
LHC [3–5] provides the strongest evidence that a low-
viscosity fluid is formed in these collisions [6, 7]. Elliptic
flow is determined to a good approximation by linear re-
sponse to the initial eccentricity ε2, which quantifies the
spatial azimuthal anisotropy of the fireball created right
after the collision [8]. This initial eccentricity comes from
two effects: first, the overlap area between the colliding
nuclei has the shape of an almond in non-central colli-
sions, where the smaller dimension of the almond is par-
allel to the reaction plane. This results in an eccentric-
ity which becomes larger as impact parameter increases,
and whose magnitude is model dependent [9, 10]. Sec-
ond, even in central collisions, there is a sizable eccen-
tricity due to quantum fluctuations in wave functions of
incoming nuclei [8, 11], and to the probabilistic nature
of energy deposition in nucleon-nucleon collisions. The
magnitude of these eccentricity fluctuations is again a
model-dependent issue, which involves the dynamics of
the collision at early times [12–15]. The goal of this paper
is to show that the distribution of the initial eccentricity
is to some extent independent of model details. More
precisely, it can be written to a good approximation as
a universal function of two parameters, where one of the
parameters corresponds to the reaction plane eccentric-
ity, and the other parameter characterizes the magnitude
of fluctuations. Information on the initial state is thus
encoded in two numbers.

The initial eccentricity ε2 is defined in every event from
the initial energy density profile (see below Sec. II) and
thus carries information about how energy is deposited
in the early stages of the collision. There are several
models of the initial density profile and its fluctuations,
which are typically implemented through Monte Carlo
simulations. The Monte Carlo Glauber model is used
in many event-by-event hydrodynamic calculations [16–
19]: in this model, one assumes that the energy is lo-
calized around each wounded nucleon. Other Monte
Carlo models of the initial state are inspired by satu-

ration physics [13–15, 20] and have also been used as
initial conditions in hydrodynamic calculations [21]. An-
other approach is to use an event generator from particle
physics [22] or a transport calculation [23, 24] to model
the initial dynamics. Each Monte Carlo model returns a
probability distribution for ε2 at a given centrality.
A simple parametrization of the distribution of ε2, usu-

ally referred to as the Bessel-Gaussian distribution [25],
was proposed in [26]. It works well for nucleus-nucleus
collisions at moderate impact parameters, but fails for
more peripheral collisions and/or small systems such as
proton-nucleus collisions. The reason why it fails can be
traced back to the fact that it does not take into ac-
count the fact that, by definition, ε2 < 1 in every event.
A new Power distribution was recently introduced [27]
which well describes eccentricity distributions when there
are only flow fluctuations (see also [28, 29]), and satisfies
ε2 < 1 by construction. In Sec. II, we propose a gener-
alization of this result: we take into account the eccen-
tricity in the reaction plane by distorting the Power dis-
tribution into an Elliptic Power distribution. This new,
two-parameter distribution reduces to the Power distri-
bution for an azimuthally-symmetric system. In Sec. III,
we use the Elliptic Power distribution to fit the distri-
bution of ε2 in Pb+Pb collisions calculated by Monte
Carlo methods for several models and for all centralities.
We also show that the Elliptic Power distribution repro-
duces the magnitude of eccentricity fluctuations, and the
cumulants of the distribution of ε2.

II. THE ELLIPTIC POWER DISTRIBUTION

A. Definition and example

The initial anisotropy in harmonic n is defined in every
event by [30]

εne
inψn ≡ −

∫

rneniϕρ(r, ϕ)rdrdϕ
∫

rnρ(r, ϕ)rdrdϕ
. (1)

where ρ(r, ϕ) is the energy density near midrapidity
shortly after the collision, and (r, ϕ) are polar coordi-
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FIG. 1. (Color online) (a) Two-dimensional plot of the distribution of (εx, εy), with n = 2, in a Monte Carlo Glauber [31]
simulation of Pb+Pb collisions at 2.76 TeV per nucleon pair, in the 75-80% centrality range. 40000 events are generated in
this centrality. (b) Fit using the Elliptic Power distribution Eq. (3) with ε0 = 0.61 and α = 3.3. (c) Fit using an isotropic
two-dimensional Gaussian [26], corresponding to Eq. (5) with ε0 = 0.61 and σx = σy = 0.10. The z-axis of the right panel
has been reduced by 0.6 to match the others. All fit parameters are obtained by standard χ2 fits to the distribution of ε2, see
Fig. 2 (a).

nates in the transverse plane, in a centered coordinate
system, where ϕ = 0 is the orientation of the reaction
plane. In most of this paper, we focus on the second har-
monic n = 2. ε2 is often referred to as the “participant
eccentricity” and ψ2 as the “participant plane”. This
terminology refers to Monte Carlo Glauber models [12],
in the context of which these concepts were first intro-
duced [8]. Note that 0 ≤ εn ≤ 1 by definition.
The initial anisotropy can also be written in cartesian

coordinates:

εne
inψn = εx + iεy. (2)

εx is the anisotropy in the reaction plane. For a sym-
metric density profile satisfying ρ(r, ϕ) = ρ(r,−ϕ), the
definition Eq. (1) implies εy = 0, which in turn implies
ψn = 0: the participant plane coincides with the reaction
plane. This is no longer true in the presence of fluctua-
tions.
Figure 1 (a) displays the distribution of (εx, εy), for

n = 2, obtained in a Monte Carlo Glauber simulation of
Pb+Pb collisions in the 75-80% centrality range. In this
simulation, centrality is defined according the to number
of participants. The maximum of the distribution is at a
positive value of εx, reflecting the large reaction plane ec-
centricity. Fluctuations around the most probable value
are large. They display characteristic features:

1. The width around the maximum is larger along the
y axis than along the x axis.

2. The distribution of εx is left skewed with a steeper
decrease to the right of the maximum toward a cut-
off at ε2 = 1.

The usual Bessel-Gaussian parametrization [26] assumes
that fluctuations are Gaussian and isotropic and there-
fore misses both features (see Fig. 1 (c)). These features
can be traced back to the constraint that the support
of the distribution is the unit disk ε2 ≤ 1. Our goal in

this paper is to derive a generic distribution with these
features.

B. Two-dimensional distribution

In Ref. [32],1 an exact expression for the distribution
of (εx, εy) for n = 2 was derived under the following
assumptions:

• The energy profile is a superposition of N pointlike,

identical sources: ρ(x) ∝∑N
j=1 δ(x−xj), where xj

denotes the transverse position of the sources.

• The positions of the sources xj are independent.

• The distribution of xj is a 2-dimensional Gaussian,
where the widths along x and y may differ. Here
we denote by ε0 ≡ 〈y2j − x2j 〉/〈y2j + x2j〉 the elliptic-

ity parameter, corresponding to the eccentricity of
the distribution of sources in the reaction plane. It
satisfies |ε0| ≤ 1.

Under these conditions, the distribution of (εx, εy) is

p(εx, εy) =
α

π
(1 − ε20)

α+ 1

2

(1 − ε2x − ε2y)
α−1

(1 − ε0εx)2α+1
, (3)

where α = (N − 1)/2. This probability distribution
is normalized:

∫

p(εx, εy)dεxdεy = 1, where integration
runs over the unit disk ε2x + ε2y ≤ 1.
In this paper, we argue that Eq. (3), which we name

the Elliptic Power distribution, provides a good fit to
all models of the initial state. This success can be as-
cribed to the fact that the natural support of the Elliptic

1 See Eq. (3.9) of [32]. The result was derived for the eccentricity
in momentum space, but the algebra is identical.



3

Power distribution is the unit disk: this is a major ad-
vantage over previous parametrizations. We treat both
the ellipticity ε0 and the power α as fit parameters. In
particular, we allow for arbitrary real, positive values of
α (as opposed to integer or half-integer).
For ε0 = 0, the distribution Eq. (3) is azimuthally

symmetric:

p(εx, εy) =
α

π
(1− ε2x − ε2y)

α−1. (4)

This is the one-parameter Power distribution introduced
in Ref. [27], which was shown to fit Monte Carlo results
when the eccentricity is solely created by fluctuations,
as for instance in p-p collisions2 or p-Pb collisions. The
power parameter α quantifies the magnitude of fluctua-
tions: the smaller α, the larger the fluctuations.
When the ellipticity ε0 is positive, the denominator

of Eq. (3) breaks azimuthal symmetry and favors larger
values of εx. The mean eccentricity in the reaction plane
εRP ≡ 〈εx〉 is derived in Appendix A as a function of ε0
and α. Because of fluctuations, it is not strictly equal to
the eccentricity of the underlying distribution, ε0 [35]. It
is in general smaller, and coincides with ε0 only in the
limit α ≫ 1.
A fit to Monte Carlo Glauber results using the Elliptic

Power distribution is displayed in Fig. 1 (b). The fit is
not perfect. Specifically, the maximum density is slightly
overestimated, while the width of the εy distribution is
slightly underestimated. Note that there are several dif-
ferences between the ideal case considered in [32] and the
actual Glauber calculation, specifically: the correlations
between the participants, the fact that their distribution
in the transverse plane is not a Gaussian, and the recen-
tering correction. We have checked that switching off the
recentering correction does not make agreement signifi-
cantly better. Despite these imperfections, the Elliptic
Power distribution captures both features pointed out at
the end of Sec. II A, namely, a larger width along the y
axis, and a steeper decrease to the right of the maximum.
The Elliptic Power distribution can be somewhat sim-

plified in the limit α ≫ 1, corresponding to a large system
with small fluctuations. To leading order in 1/α, Eq. (3)
reduces to a two-dimensional elliptic Gaussian distribu-
tion:

p(εx, εy) =
1

2πσxσy
exp

(

− (εx − ε0)
2

2σ2
x

−
ε2y
2σ2

y

)

. (5)

The maximum lies on the x-axis at εx = ε0 and the
widths are given by

σx =
1− ε20√

2α

2 In p-p collisions, as indicated in [27] via comparisons to DIPSY
model, fluctuation-induced eccentricity [33] plays a dominant
role irrespective of the effect of non-zero impact parameter [34].

σy =

√

1− ε20
2α

. (6)

In general, the Gaussian is more elongated along the y
axis, that is, σx < σy, which corresponds to the first
of the two properties listed in Sec. II A. It is symmetric
around its maximum and therefore does not possess the
second property, namely, the skewness along the x axis.
This property only appears as a next-to-leading correc-
tion of order 1/α, which is derived in Appendix B.
The usual isotropic Gaussian distribution introduced

in Ref. [26] is obtained by setting σx = σy = σ in Eq. (5).
This parametrization misses both properties and is there-
fore less accurate than our new Elliptic Power distribu-
tion, as can be seen in Fig. 1 (c). In particular, it over-
estimates the density at the maximum by a factor larger
than 2.

C. Radial distribution

Since the orientation of the reaction plane is not di-
rectly accessible experimentally, the magnitude of the
eccentricity εn matters more than its phase ϕ ≡ nψn.
Monte Carlo simulations of the initial state typically re-
turn a probability distribution P (εn) for each centrality
[27, 36, 37]. It is obtained by transforming p(εx, εy) to
polar coordinates and integrating over the azimuthal an-
gle:

P (εn) ≡ εn

∫ 2π

0

p(εn cosϕ, εn sinϕ)dϕ. (7)

It is normalized by construction:
∫ 1

0
P (εn)dεn = 1. In-

serting Eq. (3) into Eq. (7) and using the symmetry of
the integrand under ϕ→ −ϕ, one obtains

P (εn) = 2αεn(1− ε2n)
α−1(1− ε20)

α+ 1

2

× 1

π

∫ π

0

(1− ε0εn cosϕ)
−2α−1dϕ. (8)

The integral can be carried out analytically to give

P (εn) = 2εnα(1 − ε2n)
α−1(1− εnε0)

−1−2α(1 − ε20)
α+ 1

2×

2F1

(

1

2
, 1 + 2α; 1;

2εnε0
εnε0 − 1

)

. (9)

However, if the hypergeometric function is not available,
or not defined everywhere needed, the integral over angles
in Eq. (8) may be carried out numerically.3

For ε0 = 0, Eq. (8) reduces to

P (εn) = 2αεn(1− ε2n)
α−1, (10)

3 A fast and accurate method is to evaluate the Riemann sum over
n equally spaced angles ϕk = (2k−1)π/(2n), where k = 1, · · · , n.
Excellent accuracy is obtained with n = 50 integration points.
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FIG. 2. (Color online) Distribution of εn in 75–80% cen-
tral Pb-Pb collisions. (a): ε2, (b): ε3, (c): ε4. Histograms
are Monte Carlo Glauber simulations (same as in Fig. 1 (a)).
Dashed lines are Bessel-Gaussian fits using Eq. (11). Full
lines are Elliptic Power fits using Eq. (8) for ε2 (parameters
as in Fig. 1 (b)) and ε4 (α = 3.2 and ε0 = 0.22). The dash-
dotted line for ε3 is a Power fit using Eq. (10) (α = 3.6).

which is the “Power” distribution [27]. In the limit α ≫ 1
this becomes a Gaussian. In the limit α ≫ 1 and ε0 ≪ 1,
Eqs. (5) and (7) give

P (εn) =
εn
σ2

exp

(

−ε
2
n + ε20
2σ2

)

I0

(ε0εn
σ2

)

, (11)

which is the usual Bessel-Gaussian distribution [26],

where we have defined σ ≡ 1/
√
2α. Note that if σx 6= σy,

the two-dimensional elliptic Gaussian distribution Eq. (5)
does not give the Bessel-Gaussian distribution upon in-
tegration over ϕ [32].
Figure 2 (a) presents the histogram of ε2 obtained by

integrating the results of Fig. 1 (a) over azimuthal angle.

The fit using the Elliptic Power distribution is clearly
much better than the fit using the Bessel-Gaussian.4

For sake of completeness, Fig. 2 (b) and (c) also dis-
play the distributions of higher order Fourier harmonics
ε3 and ε4. The initial triangularity ε3 acts as a seed for
triangular anisotropy [38], in the same way as the ini-
tial eccentricity is the origin of elliptic anisotropy. Since
triangularity is solely created by fluctuations, the distri-
bution of ε3 is well reproduced by the single-parameter
Power distribution, Eq. (10) [27]. If the two-parameter
Elliptic Power distribution is used for ε3, the ε0 parame-
ter comes out to be essentially zero. The one-parameter
fit is significantly better than the two-parameter Bessel-
Gaussian fit, Eq. (11). Note that the values of α are
not necessarily the same for ellipticity and triangular-
ity. The distribution of the fourth harmonic ε4 is well
fitted by the Elliptic Power distribution. The resulting
value of ε0 is significantly smaller than for the distribu-
tion of ε2. Note, however, that the ε0 for ε4 is not the
only origin of anisotropy in the corresponding harmonic,
due to large nonlinear terms in the hydrodynamic re-
sponse [30, 39, 40].

III. ANALYZING MONTE CARLO MODELS OF

PB+PB COLLISIONS

A. Histograms

We now argue that the Elliptic Power distribution al-
ways gives good fits to distributions of ε2 in nucleus-
nucleus collisions. Figure 3 presents the histogram of ε2
in Pb+Pb at 2.76 TeV in several centrality bins, obtained
using the Monte Carlo Glauber (panels (a) to (d)) [31]
and the IP-Glasma (panels (e) to (h)) [15] models,5 to-
gether with fits using the Elliptic Power and the Bessel-
Gaussian distributions. Both distributions are able to fit
both models in the 5-10% centrality bin. Bessel-Gaussian
fits become worse as the centrality percentile is increased,
while Elliptic Power fits are excellent for both models and
for all centralities. Only four centrality bins are shown in
Fig. 3 for sake of illustration, but we have checked that
the fits are as good for the other centralities. For the
most central bin (0-5%), however, the fit parameters are
strongly correlated and cannot be determined indepen-
dently. This can be understood as follows: for central
collisions, the Elliptic Power distribution is very close to
a Bessel-Gaussian distribution, Eq. (11). Now, to order

4 Note that the Bessel-Gaussian fit is very sensitive to the weights
used in the fitting procedure. Our standard χ2 fit gives a large
weight to the last bin because the Bessel-Gaussian does not go
to zero at ε2 = 1. The Elliptic Power distribution gives a much
better fit than the Bessel-Gaussian, irrespective of the details of
the fit procedure.

5 The centrality is defined according to the number of participants
in the Glauber model and according to the gluon multiplicity [42]
in the IP-Glasma model.
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FIG. 3. (Color online) Histograms of the distribution of ε2 in Pb+Pb collisions at 2.76 TeV using the PHOBOS Monte Carlo
Glauber [31] (panels (a) to (d)) and the IP-Glasma [37, 41] (panels (e) to (h)) for four centrality bins (with decreasing centrality
or increasing centrality percentile from left to right). Solid curves are fits using the Elliptic Power distribution, Eq. (8), dashed
curves are fits using the Bessel-Gaussian distribution, Eq. (11). Each bin contains ∼40000 events for the Glauber simulation,
and ∼2000 events for the IP-Glasma, which explains the larger statistical fluctuations for the bottom row even though the bins
are twice as wide. The area under the curves is 0.5 for the 5-10% centrality bin and 1 for the other bins.

ε20, this distribution is invariant under the transformation
(σ2, ε0) → (σ2 + ε20/2, 0), i.e, the dependence on ε0 can
be absorbed into a redefinition of the width σ. Therefore
one cannot fit ε0 and σ independently when ε0 is too
small and one can actually use the one-parameter Power
distribution.
The two models plotted in Fig. 3 represent two ex-

tremes in the landscape of initial-state models. The
PHOBOS Monte Carlo model is the simplest model in-
cluding fluctuations: all participant nucleons are treated
as identical, pointlike sources of energy. By contrast, in
the IP-Glasma model, the energy density is treated as a
continuous field and contains nontrivial fluctuations at
the subnucleonic level. The Elliptic Power distribution is
able to fit both extremes. We have explicitly checked that
it works well also for the MC-KLN model [20]. We there-
fore conjecture that it provides a good fit to all Monte
Carlo models of initial conditions.

B. Power parameter and Ellipticity

The Elliptic Power distribution, Eq. (3), encodes the
information about the eccentricity distribution into two

parameters which are plotted in Fig. 4 as a function of
centrality for the IP Glasma and Monte Carlo Glauber
models. As explained above, the two parameters cannot
be disentangled for very central collisions — in practice,
the fitting procedure returns a very large error on each
parameter: therefore we exclude the most central (0−5%)
bin. Panel (a) also displays the values of α obtained by
fitting the distribution of the triangularity ε3 with the
Power distribution Eq. (10). The power parameter α in-
creases towards central collisions. This is expected, since
α is typically proportional to the system size. In the
Monte Carlo Glauber model, α is approximately propor-
tional to the number of participant nucleons Npart.

The ellipticity ε0, on the other hand, smoothly in-
creases with centrality percentile, and is somewhat larger
for the IP-Glasma than for the Glauber model, in line
with the expectations that saturation-inspired models
predict a larger eccentricity than Glauber models [10].
For the Monte Carlo Glauber model, we also show on
the same plot the reaction plane eccentricity εRP: we can
either calculate it directly in the Monte Carlo Glauber
model (full line) or estimate it using Eq. (A2) below de-
rived from the Elliptic Power distribution (dotted line).
It is close to the Glauber ε0 up to mid-centrality. The
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difference between ε0 and εRP is nevertheless much larger
than predicted by the Elliptic Power distribution. This
can be attributed to the fact that the Elliptic Power dis-
tribution does not reproduce all the fine structure of the
two-dimensional distribution (Fig. 1 (a)), even though it
provides a very good fit to the distribution of ε2 (Figs. 2
(a) and 3).
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√
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ing to pure Gaussian fluctuations (Eq. (11) with ε0).

C. Fluctuations

A standard measure of eccentricity fluctuations is the
ratio of the standard deviation to the mean [12, 43]:

σεn
〈εn〉

=

√

〈ε2n〉 − 〈εn〉2
〈εn〉

, (12)

where angular brackets denote an average over events in
a centrality class. We now check that the Elliptic Power
distribution, fitted to the histogram of ε2, correctly re-
produces the magnitude of eccentricity fluctuations.
The ratio Eq. (12) is presented in Fig. 5 for ε2 and ε3.

For central collisions, it approaches
√

4/π − 1 ≃ 0.52 [44]
for both ε2 and ε3, which is the value given by Eq. (11)
for ε0 = 0. For more peripheral collisions, relative eccen-
tricity fluctuations decrease very mildly for ε3, and more
strongly for ε2. For ε3, this mild decrease is captured by
fitting with the Power distribution, Eq. (10). The mean
of the Power distribution is given by

〈ε3〉 =
√
π Γ(α+ 1)

2 Γ(α+ 3
2
)
, (13)

while the mean square is [27] 〈ε23〉 = 1/(α+ 1).
The mean of the Elliptic Power distribution, Eq. (8),

must be calculated numerically as a function of ε0 and α.
The eccentricity fluctuations from the Elliptic Power dis-
tribution closely match the Monte Carlo Glauber result
in Fig. 5.



7

0.500

0.600

0.700

0.800

0.900

1.000

(a)

ε2{4}/ε2{2}

0.988

0.990

0.992

0.994

0.996

0.998

1.000

 0 10 20 30 40 50 60 70 80

Centrality(%)

(b)
ε2{8}/ε2{6}
ε2{6}/ε2{4}

FIG. 6. (Color online) (a): Cumulant ratio ε2{4}/ε2{2}.
(b): Cumulant ratios ε2{6}/ε2{4} and ε2{8}/ε2{6}. Lines are
Monte Carlo Glauber results. Symbols are results using the
Elliptic Power distribution Eq. (A5) with parameters fitted
to the distribution of ε2.

D. Cumulants

More detailed information about eccentricity fluctua-
tions is contained in moments or cumulants of the distri-
bution. The moment of order k is defined as 〈(εn)k〉.
Often, one solely uses even moments of the distribu-
tion 〈(εn)2k〉, because the corresponding moments of the
distribution of anisotropic flow are directly accessible
through cumulant analyses [45, 46]. The first eccentricity
cumulants [11, 28] are defined by:

εn{2} ≡ 〈ε2n〉1/2

εn{4} ≡
(

2〈ε2n〉2 − 〈ε4n〉
)1/4

εn{6} ≡
( 〈ε6n〉 − 9〈ε2n〉〈ε4n〉+ 12〈ε2n〉3

4

)1/6

. (14)

Figure 6 displays ratios of successive cumulants ob-
tained in the Monte Carlo Glauber calculation and using
the Elliptic Power distribution, Eq. (A5). ε2{4}/ε2{2}
increases from central to peripheral collisions. It is
smaller than unity by definition. Higher order ratios
ε2{6}/ε2{4} and ε2{8}/ε2{6} are exactly equal to 1
for the Bessel-Gaussian distribution. The Monte Carlo
Glauber calculation gives ratios slightly smaller than

unity, with a nontrivial centrality dependence. These
nontrivial features are reproduced by the Elliptic Power
distribution.

IV. CONCLUSIONS

We have introduced a new parametrization of the ec-
centricity distribution in nucleus-nucleus collisions. Like
the previously used Bessel-Gaussian parametrization, it
is a two-parameter distribution, but it describes periph-
eral collisions much better. This is due to the correct im-
plementation of the constraint that the eccentricity must
be smaller than unity in all events. The consequence of
our result is that any model of initial-state eccentrici-
ties can be characterized by two numbers for each cen-
trality: the ellipticity ε0, which corresponds closely to
the reaction-plane eccentricity; the power parameter α,
which governs the magnitude of fluctuations and scales
like the number of participants in the Glauber model.

Since elliptic flow is essentially proportional to the ini-
tial eccentricity [47], our result can be applied [48] to the
distribution of elliptic flow values, which has been mea-
sured recently at the LHC [36, 49]. The Elliptic Power
distribution could also be used as a kernel in the un-
folding procedure which is used to eliminate finite mul-
tiplicity fluctuations [50]. It could also be used in fitting
the distribution of the flow vector [51–53]. We expect
it to give a better result than the Bessel-Gaussian dis-
tribution, which has been found to be not precise for
peripheral collisions [36].

ACKNOWLEDGMENTS

We thank Hiroshi Masui for carrying out the Monte
Carlo Glauber calculations which inspired this work,
Björn Schenke for the IP Glasma results, C. Loizides for
the new version of the PHOBOS Glauber, M. Luzum
and S. Voloshin for extensive discussions and sugges-
tions. In particular, we thank S. Voloshin for suggest-
ing the name Elliptic Power, and for useful comments on
the manuscript. JYO thanks the MIT LNS for hospital-
ity. LY is funded by the European Research Council un-
der the Advanced Investigator Grant ERC-AD-267258.
AMP was supported by the Director, Office of Science,
of the U.S. Department of Energy.

Appendix A: Mathematical properties of the Elliptic

Power distribution

The two-dimensional Elliptic Power distribution
Eq. (3) is normalized to unity on the unit disk if α > 0
and −1 < ε0 < 1. We choose the convention ε0 ≥ 0
throughout this paper.
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For α ≥ 1, Eq. (3) has a maximum on the x-axis for
εx = εmax, where

εmax ≡ ε0(1 + 2α)

α− 1 +
√

(α− 1)2 + 3ε20(1 + 2α)
. (A1)

But for 0 < α < 1, the distribution diverges on the unit
circle ε2x + ε2y = 1.
The mean eccentricity in the reaction plane is obtained

by integrating Eq. (3):

εRP =

∫ +1

−1

εxdεx

∫

√
1−ε2

x

−

√
1−ε2

x

dεyp(εx, εy)

=
α+ 1

2

α+ 1
ε0(1− ε20)

α+ 1

2×

2F1

(

α+ 1, α+
3

2
;α+ 2; ε20

)

, (A2)

where 2F1 denotes the hypergeometric function. In the
limit ε0 ≪ 1, it simplifies to

εRP =
α+ 1

2

α+ 1
ε0 +O(ε30). (A3)

Thus ε0 is slightly bigger than εRP due to fluctuations.
We now explain how to evaluate the moments of the

Elliptic Power distribution. Multiplying Eq. (3) by (1 −
ε2x+ε

2
y)
k and integrating successively over εy and εx, one

obtains

〈(1 − ε2n)
k〉 = α

α+ k

(

1− ε20
)k×

2F1

(

k +
1

2
, k;α+ k + 1; ε20

)

. (A4)

Using this equation, one can express analytically the
even moments 〈ε2kn 〉 and the cumulants [28] εn{2k} as
a function of α and ε0. Using the shorthand notation
fk ≡ 〈(1− ε2n)

k〉 and inserting into Eq. (14), one obtains

εn{2} = (1 − f1)
1/2

εn{4} = (1 − 2f1 + 2f2
1 − f2)

1/4

εn{6} =

(

1 +
9

2
f2
1 − 3f3

1 + 3f1(
3

4
f2 − 1)− 3

2
f2

−1

4
f3

)1/6

. (A5)

Appendix B: Limiting distribution for fixed ε0 > 0
and α ≫ 1

We now study the Elliptic Power distribution Eq. (3)
in the limit α ≫ 1, corresponding to a large system.
To leading order, the distribution is a Gaussian centered
around the intrinsic ellipticity ε0, see Eq. (5). We there-
fore write εx = ε0 + δx and treat δx and εy as small

parameters of order σx ∼ σy ∼ α−1/2. Expanding the

logarithm of Eq. (3) in powers of α−1/2 and exponenti-
ating, one obtains

p(ε0 + δx, εy) = p0(ε0 + δx, εy) (1 +W1 +W3) , (B1)

where p0 is the Gaussian distribution in Eq. (5), and W1

and W3 are perturbations of order α−1/2:

W1 ≡ 3ε0δx
1− ε20

W3 ≡ −
(

δ2x
σ2
x

+
ε2y
σ2
y

)

ε0δx
1− ε20

. (B2)

W1 is linear, while W3 is cubic in δx and εy. The linear
term W1 shifts the maximum of the distribution, which
is found by setting εy ≡ 0 in Eq. (B1) and differentiating
with respect to δx:

εmax = ε0 +
3ε0(1− ε20)

2α
+O

(

1

α2

)

. (B3)

Alternatively, this result can be recovered by expanding
Eq. (A1).
The cubic term W3 skews the Gaussian and is respon-

sible for the skewness seen in Fig. 1 (b) and Fig. 2 (a).
The linear termW1 can be absorbed by shifting the max-
imum of the Gaussian according to Eq. (B3), therefore
the difference between εRP and εmax is solely due to W3:

εRP = εmax +

∫

p0(ε0 + δx, εy)W3δxdδxdεy

= ε0 −
ε0(1− ε20)

2α
+O

(

1

α2

)

. (B4)

Comparing with Eq. (B3), one sees that εRP < εmax,
which is a consequence of the skewness. Alternatively,
Eq. (B4) can be obtained by expanding Eq. (A2).
The first moments can also be evaluated to first order

in 1/α. The mean square eccentricity is

εn{2}2 = 〈ε2n〉 = ε20 +
(1− ε20)

(

1− 3
2
ε20
)

α
+O

(

1

α2

)

.

(B5)
When ε0 → 0, one recovers the result obtained with
the Power distribution [27] in the limit α ≫ 1. When

ε0 >
√

2
3

≃ 0.816, the correction is negative, so that

rms anisotropy is smaller than ε0. The fourth moment
is given by

〈ε4n〉 = ε40 +
ε20(1− ε20)(4 − 5ε20)

α
+O

(

1

α2

)

. (B6)

From Eqs. (B5) and (B6), one obtains the cumulant
εn{4} (see Eq. (14)):

εn{4} = ε0 −
ε0(1− ε20)

4α
+O

(

1

α2

)

. (B7)

Note that εn{4} < ε0 for all positive ε0 in the limit α≫
1. In the limiting case ε0 = 0, εn{4}4 is positive and of
order α−3 [27]. Higher order cumulants are all equal to
εn{4} to order 1/α.



9

Appendix C: Limiting distribution for fixed αε20 and

α ≫ 1

We now consider a different asymptotic expansion in-
troduced in [54], where one treats α as a large parameter
and ε0 as a small parameter, keeping the product αε20
fixed. The only difference with the asymptotic expan-
sion carried out in Appendix B is that we also treat ε0 as
a small parameter of order α−1/2. Therefore the pertur-
bationsW1 andW3 in Eq. (B2) are of order α−1. For sake
of consistency, one must carry out the whole expansion
to that order. One obtains

p(ε0 + δx, εy) = p0(ε0 + δx, εy) (1 +W1 +W3 +W4) ,
(C1)

where W1 and W3 are defined in Eq. (B2) and W4 is a
new quartic term:

W1 ≡ 3ε0δx
W3 ≡ −2αε0δx~δ

2

W4 ≡ −α
2
(~δ2)2 + ~δ2, (C2)

where we have introduced the shorthand notation ~δ2 ≡
δ2x+ε

2
y and simplified the expressions ofW1 andW3 using

Eq. (6) and ε0 ≪ 1. In the isotropic case ε0 = 0, both
W1 and W3 vanish and only W4 contributes.
The mean square eccentricity is given by

εn{2}2 = ε20 +
1

α
− 5ε20

2α
− 1

α2
+O

(

1

α3

)

, (C3)

where the first two terms are the leading order terms, of
order 1/α, and the two next terms are corrections of or-
der 1/α2. The first three terms are present in Eq. (B5),
while the last term is the contribution of the quartic per-
turbation W4 in Eq. (C2). Similarly, one can expand the
cumulant εn{4}, to give for the fourth power:

εn{4}4 = ε40 −
ε40
α

+
8ε20
α2

+
2

α3
+O

(

1

α4

)

, (C4)

where the first term is the leading term, of order 1/α2,
and the next three terms are corrections of order 1/α3.
In the isotropic case ε0 = 0, the exact result is εn{4}4 =
2/[(α+1)2(α+2)] [27], which reduces to εn{4}4 ≃ 2/α3

for α≫ 1, in agreement with the above result.

Ratios of cumulants are given to leading order by:

ε{4}
ε{2} =

√

αε20
1 + αε20

+O
(

1

α

)

ε{6}
ε{4} = 1− 1 + αε20

2(αε20)
2α

+O
(

1

α2

)

ε{8}
ε{6} = 1− 1

22(αε20)α
+O

(

1

α2

)

. (C5)
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