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Viscous hydrodynamics is commonly used to model the evolution of the matter created in an
ultra-relativistic heavy-ion collision. It provides a good description of transverse momentum spectra
and anisotropic flow. These observables, however, cannot be consistently derived using viscous
hydrodynamics alone, because they depend on the microscopic interactions at freeze-out. We derive
the ideal hydrodynamic limit and the first-order viscous correction to anisotropic flow (v2, v3 and v4)
and momentum spectrum using a transport calculation. The linear response coefficient to the initial
anisotropy, vn(pT )/εn, depends little on n in the ideal hydrodynamic limit. The viscous correction
to the spectrum depends not only on the differential cross section, but also on the initial momentum
distribution. This dependence is not captured by standard second-order viscous hydrodynamics.
The viscous correction to anisotropic flow increases with pT , but this increase is slower than usually
assumed in viscous hydrodynamic calculations. In particular, it is too slow to explain the observed
maximum of vn at pT ∼ 3 GeV/c.

I. INTRODUCTION

Relativistic viscous hydrodynamics [1, 2] is the state
of the art for describing the evolution of the strongly-
coupled system formed in an ultrarelativistic heavy-ion
collision at RHIC or LHC. It has long been realized [3]
that ideal hydrodynamics naturally explains the large
magnitude of elliptic flow [4, 5]. However, the system
formed in such a collision is so small that deviations
from local thermal equilibrium are sizable, resulting in
the inclusion of viscosity [6] in hydrodynamic calcula-
tions. Viscosity typically reduces the magnitude of ellip-
tic flow by 20% [7]. Viscous effects on higher harmonics
of anisotropic flow [8, 9], such as triangular flow [10], are
even larger [11].

Even though there is a consensus that viscosity mat-
ters, the calculation of viscous corrections to observables
is not yet under control. The reason is that viscosity af-
fects not only the space-time history of the fluid [12], but
also the momentum distribution of particles at “freeze-
out”, which has an off-equilibrium part proportional to
viscosity [13, 14]. Viscous hydrodynamics itself does not
fully specify this off-equilibrium part. The only require-
ment is that the system of particles should generate the
same energy-momentum tensor as the fluid just before
freeze out [15]. This requirement, however, does not con-
strain the dependence of the relative deviation to equilib-
rium on the momentum p in the rest frame of the fluid,
which is essentially a free function χ(p). This function is
not universal, and involves the differential cross sections
between constituents [16]. It is typically put by hand in
hydrodynamic calculations.

The common lore is that effects of viscosity are
more important for particles with larger transverse mo-
menta [2]. This is due to the fact that most hydrody-
namic calculations use the “quadratic” ansatz [13] χ(p) ∝

p2. While this choice generally results in a improved de-
scription of experimental data [2] (see however [15]), it
is not supported by any theoretical argument [16]. We
evaluate viscous corrections to observables (specifically,
transverse momentum spectra and anisotropic flow) by
solving numerically a relativistic Boltzmann equation.
We simulate relativistic particles undergoing 2 → 2 elas-
tic collisions with a total cross section σtot. In the limit
σtot → +∞, a generic observable f(σ) can be expanded
in powers of 1/σtot:

f(σtot) ≈
σtot→∞

f (0) +
1

σtot
δf +O

(

1

σ2
tot

)

. (1)

The leading term f (0) is the limit of infinite cross sec-
tion, which corresponds to ideal hydrodynamics in the
limit of a vanishing freeze-out temperature [17, 18]. The
next-to-leading term δf is a viscous correction: since the
shear viscosity η scales like 1/σtot [19], this correction is
proportional to η.1

We evaluate f (0) and δf by solving numerically the rel-
ativistic Boltzmann equation for several large values of
the cross section σtot. Our primary goal is to illustrate
by an explicit calculation how the viscous correction to
anisotropic flow depends on transverse momentum pT ,
and to what extent this dependence is sensitive to the
structure of the differential cross section. We do not
mean here to carry out a full realistic simulation of a
heavy-ion collision. In particular, for sake of simplicity,
our transport calculation uses massless particles which
supply the possibility of having only shear viscosity with

1 Note that in hydrodynamic calculations, δf often denotes the vis-
cous correction at freeze-out. Here, δf is the full viscous correc-
tion, which also contains a contribution from the hydrodynamic
evolution.
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no bulk viscosity [20–22]. The resulting equation of state
is harder [23] than that of QCD near the deconfinement
crossover [24]. This results in larger vn and harder pT
spectra.
We also study the dependence of observables on ini-

tial conditions. In second-order viscous hydrodynamics,
the evolution is completely specified by the initial value
of the energy-momentum tensor T µν [2, 12]. At the mi-
croscopic level, however, the initial momentum distribu-
tion contains more information than just T µν . Usual
viscous hydrodynamics assumes that this additional in-
formation is washed out by the system evolution. Our
simulation provides a means of testing this assumption,
by constructing two different initial conditions with the
exact same T µν , and comparing the observables at the
end of the evolution.

II. INITIAL CONDITIONS AND EVOLUTION

Initial conditions follow Bjorken’s boost-invariant pre-
scription [25], but with a finite extent in space-time ra-
pidity −2.5 < η < 2.5. The evolution is started at time
τ0 = 0.6 fm/c [26] after the collision. The initial con-
ditions of the Boltzmann equation are specified by the
one-body density f(x, p) in coordinate (x) and momen-
tum (p) space at time τ0.
The initial density profile in transverse coordinate

space (x, y) is taken from an optical Glauber [27] calcula-
tion for a central Au-Au collision at

√
s = 200 GeV, cor-

responding to the top RHIC energy. This initial density
is azimuthally symmetric, so that anisotropic flow van-
ishes by construction. We introduce anisotropy artifically
by deforming the initial distribution, thus mimicking an
initial state fluctuation [10]. In hydrodynamics, one typi-
cally deforms the initial energy density profile [11, 28]. In
a transport calculation, where the initial conditions are
specified by the initial positions of particles, it is simpler
to just shift these positions by a small amount. Introduc-
ing the complex notation z = x+ iy, in order to generate
flow in harmonic n, we shift z according to

z → z + δz ≡ z − αz̄n−1, (2)

where z̄ ≡ x− iy, and α is a real positive quantity chosen
in such a way that the correction is small. This transfor-
mation is invariant under the change z → e2iπ/nz, i.e.,
it has 2π/n symmetry. Therefore, to leading order in α,
the only nonvanishing anisotropic flow coefficient is vn.

2

The initial eccentricity in harmonic n is defined for n ≥ 2

2 Note that the deformation used in Refs. [11, 28] is singular at
the origin z = 0 for n 6= 2. By contrast, the deformation defined
by Eq. (2) is regular at the origin, but has a singularity at large
|z| (see also [29]). On the x axis, the singularity is located at the
point where ∂δx/∂x = −1. If α is small, this singularity occurs
at a point where the density is low.

by [29, 30]

εn ≡ −
∑

j(zj + δzj)
n

∑

j |zj + δzj |n
, (3)

where the sum runs over all particles with initial position
z′j. Inserting Eq. (2) into Eq. (3), and using the fact
that the distribution of zj is azimuthally symmetric, one
obtains, to leading order in α and for a large number of
particles

εn ≃ −
∑

j nz
n−1
j δzj

∑

j |zj|n
= nα

∑

j |zj |2(n−1)

∑

j |zj |n

≃ nα
〈r2(n−1)〉

〈rn〉 , (4)

where, in the right-hand side, angular brackets denote
an average taken with the optical Glauber profile, and

r = |z| =
√

x2 + y2. We carry out simulations for
n = 2, 3, 4. For each n, we fix α in such a way that
εn = 0.2. We have checked that this value is sufficiently
small that the response is linear [11]. In hydrodynamics
with fluctuating initial conditions, v2 and v3 are deter-
mined to a good approximation by linear response to
the eccentricity in the corresponding harmonic [31, 32].
On the other hand, v4 is the superposition of a linear
term [33], and a nonlinear term induced by v2 [34]. The
present study only addresses the linear term.
In momentum space, we consider two different types of

initial conditions. The first case is a thermal Boltzmann
distribution

dN/d3p ∝ exp(−p/T ). (5)

In addition, one requires that the temperature T and the
local density n be such that n/T 3 is a constant through-
out the transverse plane, as in a thermal gas of massless
particles with zero chemical potential. Thus this initial
condition is that of a hydrodynamic calculation with zero
chemical potential [23]. The initial temperature at the
center of the fireball is T0 = 340 MeV. The second case
is a constant distribution:

dN/d3p ∝ θ(p0 − p). (6)

The maximum momentum p0 and the proportionality
constant are chosen such that the particle density n and
the energy density ε are the same as with the previous
initial condition. Similar initial conditions have been pre-
viously used in transport calculations in order to mimic
the effect of saturation in high-energy QCD [35, 36]. Both
types of initial conditions have exactly the same energy-
momentum tensor.
The evolution of the system is determined by the rela-

tivistic classical Boltzmann equation. We use a relativis-
tic transport code developed to study heavy-ion collisions
at RHIC and LHC energies [19, 37–41], which uses the
test-particle method. The collision integral is solved by
using Monte Carlo methods based on the stochastic in-
terpretation of transition amplitudes [19, 37, 42]. The
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total cross section is fixed throughout the evolution. The
differential cross section is

dσ

dt
∝ 1

(t−m2
D)

2 , (7)

where t is the usual Mandelstam variable. This differen-
tial cross section is typically used in parton cascade ap-
proaches [37, 38, 42–44] and by symmetry the u-channel
is included. The limit mD → ∞ corresponds to an
isotropic cross section. The opposite limit, where mD

is smaller than the typical particle energy, corresponds
to a forward-peaked cross section.
In a transport approach, one can follow the evolution of

the system until the last collision, but this is numerically
expensive. Instead, we choose to follow the system until
a fixed final time, and check stability of our results with
respect to this final time. The calculations presented in
this paper are carried out with a final time tf = 8 fm/c,
but we have checked that the momentum spectra are un-
changed if we extend the final time to tf = 12 fm/c. Since
the initial density profile possesses φ → −φ symmetry
(where φ is the azimuthal angle), we define anisotropic
flow as vn = 〈cosnφ〉, where angular brackets denote an
average over particles at the end of the evolution.
Throughout this paper, we carry out four sets of calcu-

lations: Three sets with the thermal initial distribution
(5) and the values mD = 0.3 GeV, mD = 0.7 GeV and
an isotropic cross section, and a fourth set with the con-
stant initial distribution (6) and an isotropic cross sec-
tion. Thus we study how results depend on the initial
distribution and on the differential cross section.
For each set of parameters, we perform different cal-

culations for the following set of total cross sections:
σtot = 20, 25, 30 and 35 mb. Results for anisotropic
flow vn [1] are shown in Fig. 1. The dependence of these
observables on 1/σtot is essentially linear, corresponding
to the regime where viscous hydrodynamics applies. In
order to improve the accuracy, we fit these results with
a polynomial of order 2 in 1/σtot and extract the ideal
hydrodynamic limit and the first viscous correction us-
ing Eq. (1): specifically, the ideal hydrodynamic limit
f (0) is the extrapolation to 1/σtot → 0 and the viscous
correction δf is the slope at the origin.

III. IDEAL HYDRODYNAMICS

We first study the ideal hydrodynamic limit, defined by
the extrapolation σtot → +∞ in the Boltzmann equation.
Ideal hydrodynamics corresponds to local thermal equi-
librium [23]. One expects thermalization to wash out de-
tails of initial conditions, so that observables should not
depend on the initial momentum spectrum provided the
energy density is fixed. Similarly, the momentum distri-
bution in thermal equilibrium is universal, therefore one
expects observables to be independent of the differential
cross section in this limit.

FIG. 1. Left panel: vn(pT ) as a function of 1/σtot (thermal
initial distribution, isotropic scattering cross section) in the
rapidity interval |y| < 0.5. The y-intercept is the ideal hydro-

dynamic limit v
(0)
n , while the slope corresponds to the viscous

correction δvn, as defined by Eq. (1).
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FIG. 2. Ideal hydrodynamic limit for the pT spectrum in the
rapidity interval |y| < 0.5. The spectra have been divided by
dN/dy so that they are normalized to unity.
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FIG. 3. Ideal hydrodynamic limit of anisotropic flow vn. Top
to bottom: n = 2, 3, 4. For all harmonics, we have chosen
εn = 0.2, so that the linear response coefficients κn ≡ vn/εn
are larger by a factor 5.

Figure 2 displays the ideal hydrodynamic limit for the
transverse momentum distribution in the rapidity inter-
val |y| < 0.5. As expected, it is independent of initial
conditions and of the differential cross section. The dis-
tribution is essentially exponential in pT , with a slight
upward curvature which is a typical consequence of col-
lective motion [3, 45]. The ideal hydrodynamic limit of
anisotropic flow coefficients is displayed in Fig. 3. vn(pT )
is linear at high pT , as observed in previous numerical
calculations [11]. This behavior is general in ideal hy-
drodynamics [33] in the linear regime εn ≪ 1. Inter-
estingly, the magnitude of the linear response κn(pT ) ≡
vn(pT )/εn [46] is approximately the same for n = 2, 3, 4.
It would be interesting to reproduce these results using
ideal hydrodynamics with the same ideal gas equation of
state (constant sound velocity cs = 1/

√
3) and a small

freeze-out temperature.

IV. VISCOUS CORRECTION

We now present results for the first-order viscous cor-
rection to observables, corresponding to the term δf in
Eq. (1). We scale the viscous correction δf by the ideal
hydrodynamic limit f (0). Eq. (1) shows that δf/f (0) has
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FIG. 4. First-order relative viscous correction to the normal-
ized transverse momentum distribution in the rapidity inter-
val |y| < 0.5. Dashed lines are power-law fits.

the dimension of the cross section σtot. The relative vis-
cous correction is δf/f (0) divided by the total cross sec-
tion σtot. As a rule of thumb, viscous hydrodynamic
applies if δf/f (0) is significantly smaller than σtot in ab-
solute value.
Figure 4 displays δf/f (0) for the transverse momen-

tum spectrum. Viscous effects result in a particle excess
at large pT , corresponding to an increase of the aver-
age pT , that is, a higher effective temperature. The rea-
son is that viscosity decreases the longitudinal pressure,
thereby reducing longitudinal cooling[47, 48].
Unlike the ideal hydrodynamic limit, the first-order

viscous correction depends on the differential cross sec-
tion. It is larger for smaller values of mD. This is due to
the fact that the scattering is forward peaked and less ef-
ficient in thermalizing the system. For an isotropic cross
section, the relative viscous correction is almost linear in
pT : δf/f (0) ∝ pT

0.98. This result is consistent with the
results obtained in [49] in the Chapman-Enskog approx-
imation.
Surprisingly, the viscous correction also depends on the

initial momentum distribution. Two initial conditions
with exactly the same energy-momentum tensor T µν lead
to different first-order viscous corrections to observables,
at variance with usual viscous hydrodynamics [12]. The
reason is that the constant momentum distribution (6)
is strongly out of equilibrium, therefore hydrodynamics
does not apply at early times. Figure 4 shows that with
this constant distribution, δf is smaller at high pT than
with a thermal initial distribution. This depletion at high
pT can be understood as a memory of the initial condi-
tions, where all particles initially have momenta below a
threshold p0.
Finally, we study the viscous correction to anisotropic

flow vn(pT ). Figure 5 displays −δvn/v
(0)
n as a function
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of transverse momentum pT . Viscous effects decrease
anisotropic flow [13], therefore the correction is shown
with a minus sign. The viscous correction to vn in-
creases as a function of harmonic order n, as already
observed in viscous hydrodynamic calculations [11]. At
large transverse momentum, it scales approximately like

the order n [50], −δvn(pT )/v
(0)
n ∝ n. This dependence

is weaker than the n2 dependence reported in previous
studies [33, 51–53].
As expected, the viscous correction depends on the dif-

ferential cross section. As for the spectrum, it is larger
with a forward-peaked cross section (mD = 0.3 GeV)
than with an isotropic cross section. Results with the
thermal distribution (5) and with the constant distribu-
tion (6) (not shown) are consistent within error bars,
thereby suggesting that the viscous correction to vn is
roughly independent of the initial momentum distribu-
tion.
With an isotropic cross section, the relative viscous

correction saturates at high pT , while the usual quadratic
freeze-out ansatz [13] predicts a linear increase. A mild
increase with pT is observed with a forward-peaked cross
section, but it is still much slower than linear. Note
that our viscous correction must be compared with the
full viscous correction in hydrodynamics, which results
in part from the hydrodynamic evolution, and in part
from the freeze-out. With a quadratic freeze-out ansatz,
however, the behavior of vn at large pT in hydrodynam-
ics is dominated by the correction at freeze-out. Thus
the quadratic freeze-out ansatz currently used in most

viscous hydrodynamic calculations is not supported by
microscopic transport calculations.

V. CONCLUSIONS

We have calculated the ideal hydrodynamic limit and
the first-order viscous correction for the transverse mo-
mentum (pT ) distribution transverse-momentum spec-
tra and anisotropic flow vn(pT ) by solving numerically a
Boltzmann equation and studying the limit of large scat-
tering cross section σtot → ∞. The ideal hydrodynamic
limit is found to be independent of microscopic details, as
expected from the universality of thermodynamic behav-
ior. The linear response coefficients vn(pT )/εn depends
little on harmonic n in the ideal hydrodynamic limit.
The first order viscous corrections to observables, on

the other hand, are not universal. As expected [16], they
depend on the differential cross section. For all the dif-
ferential cross sections investigated in this paper, we find
that the relative viscous correction to anisotropic flow,
vn, does not increase significantly with pT at large pT .
Our results suggest that first-order viscous corrections
do not explain the decrease of vn at high pT , at variance
with common lore [2], and that a different mechanism,
such as jet quenching [54], is needed at high pT .
The viscous correction to vn increases linearly with n.

The stronger (n2) dependence typically found in hydro-
dynamics [33] leads to negative values of v4 and v5 at
large pT [14], even for small viscosities. A weaker de-
pendence on harmonic n is therefore likely to improve
agreement with experimental data.
Finally, our results clearly show that usual, second-

order relativistic hydrodynamics does not fully capture
the first-order viscous correction to observables. Two ini-
tial conditions with exactly the same energy-momentum
tensor, which would therefore yield the exact same hydro-
dynamical flow, are found to yield different momentum
spectra at the end of the evolution. Specifically, the first-
order viscous correction is found to retain the memory of
the initial condition. Within a strong coupling calcula-
tion, a proper treatment of the underlying microscopic
degrees of freedom leads to an evolution equation which
is second-order rather than first-order [56], so that the
solution is not solely determined by the initial value of
T µν . Our calculation provides an explicit illustration,
within a weak-coupling calculation, that the initial value
of T µν does not solely determine the evolution.
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