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Dynamical barriers of pure and random ferromagnetic Ising models

on fractal lattices

Cécile Monthus and Thomas Garel
Institut de Physique Théorique, CNRS and CEA Saclay, 91191 Gif-sur-Yvette, France

We consider the stochastic dynamics of the pure and random ferromagnetic Ising model on the
hierarchical diamond lattice of branching ratio K with fractal dimension df = (ln(2K))/ ln 2. We
adapt the Real Space Renormalization procedure introduced in our previous work [C. Monthus
and T. Garel, J. Stat. Mech. P02037 (2013)] to study the equilibrium time teq(L) as a function
of the system size L near zero-temperature. For the pure Ising model, we obtain the behavior

teq(L) ∼ Lαeβ2JLds
where ds = df − 1 is the interface dimension, and we compute the prefactor

exponent α. For the random ferromagnetic Ising model, we derive the renormalization rules for
dynamical barriers Beq(L) ≡ (ln teq/β) near zero temperature. For the fractal dimension df = 2,

we obtain that the dynamical barrier scales as Beq(L) = cL+L1/2u where u is a Gaussian random
variable of non-zero-mean. While the non-random term scaling as L corresponds to the energy-cost
of the creation of a system-size domain-wall, the fluctuation part scaling as L1/2 characterizes the
barriers for the motion of the system-size domain-wall after its creation. This scaling corresponds
to the dynamical exponent ψ = 1/2, in agreement with the conjecture ψ = ds/2 proposed in [C.
Monthus and T. Garel, J. Phys. A 41, 115002 (2008)]. In particular, it is clearly different from the
droplet exponent θ ≃ 0.299 involved in the statics of the random ferromagnet on the same lattice.

I. INTRODUCTION

Among real-space renormalization procedures [1], Migdal-Kadanoff block renormalizations [2] play a special role
because they can be considered in two ways, either as approximate renormalization procedures on hypercubic lattices,
or as exact renormalization procedures on certain hierarchical lattices [3–5]. Besides the study of pure models, these
hierarchical lattices have been also much used to study the equilibrium of disordered classical spin models, such as
the diluted Ising model [6], the random bond Potts model [7–10], the random field Ising model [11, 12] and spin-
glasses [13]. For spin-glasses, these hierarchical lattices have been also used to study dynamical properties [14–17].
The equilibrium properties of disordered polymer models have also been considered, in particular the wetting on a
disordered substrate [18–20] and the directed polymer model [20–29].
In the present paper, we consider the pure and the random ferromagnetic Ising model on the hierarchical diamond

lattice in order to study its dynamical properties near zero temperature. We adapt the real space renormalization
procedure introduced in [30] : using the standard mapping between the detailed-balance dynamics of classical Ising
models and some quantum Hamiltonian, we obtain the appropriate real-space renormalization rules for the quantum
Hamiltonians associated to single-spin-flip dynamics. This approach has been used previously to characterize the
dynamics of the random ferromagnetic chain [30], of the pure Ising model on the Cayley tree [30], of the random Ising
model on the Cayley tree [32], and for the hierarchical Dyson Ising model [31].
The paper is organized as follows. In section II, we introduce the notations for the stochastic dynamics of Ising

models defined on the hierarchical diamond model. In section III, we analyze via real-space renormalization the
dynamics of the pure Ising model. In section IV, we study via real-space renormalization the dynamics of the
random ferromagnetic Ising model. Our conclusions are summarized in section V. In Appendix A, we derive some
renormalization formula that are used in the text.

II. MODEL AND NOTATIONS

A. Hierarchical diamond lattice of branching ratio K

As shown on Fig. 1, the hierarchical diamond lattice of branching ratio K is constructed recursively from a single
link called generation n = 0 : generation n = 1 consists of K branches, each branch containing 2 bonds in series ;
generation n = 2 is obtained by applying the same transformation to each bond of the generation n = 1. At generation
n, the length Ln between the two extreme sites is

Ln = 2n (1)

http://arxiv.org/abs/1304.2134v1
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FIG. 1: Hierarchical construction of the diamond lattice of branching ratio K

whereas the total number Bn of bonds is

Bn = (2K)n = L
df
n (2)

so that

df =
ln(2K)

ln 2
(3)

represents the fractal dimension.
As recalled in the introduction, the equilibrium of many statistical physics models have been studied on this lattice.

Here we consider the pure and the random ferromagnetic Ising model with the classical energy

U(C) = −
∑

i<j

JijSiSj (4)

to study the properties of stochastic dynamics satisfying detailed balance.

B. Dynamics satisfying detailed balance

The stochastic dynamics is defined by the master equation

dPt (C)

dt
=
∑

C′

Pt (C
′)W (C′ → C) − Pt (C)Wout (C) (5)

that describes the time evolution of the probability Pt(C) to be in configuration C at time t. The notationW (C′ → C)
represents the transition rate per unit time from configuration C′ to C, and

Wout (C) ≡
∑

C′

W (C → C′) (6)

represents the total exit rate out of configuration C.
The convergence towards Boltzmann equilibrium at temperature T = 1

β in any finite system

Peq(C) =
e−βU(C)

Z
(7)

where Z is the partition function

Z =
∑

C

e−βU(C) (8)
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can be ensured by imposing the detailed balance property

e−βU(C)W (C → C′) = e−βU(C′)W (C′ → C) (9)

It is thus convenient to parametrize the transition rates as

W (C → C′) = G (C,C′) e−
β
2 [U(C′)−U(C)] (10)

where

G (C,C′) = G (C′, C) =
√

W (C → C′)W (C′ → C) (11)

is a symmetric positive function of the two configurations. Near zero temperature, it is convenient to introduce the
notion of dynamical barrier B defined by the asymptotic behavior

G(C,C′) ∝
β→+∞

e−βB(C,C′) (12)

C. Associated quantum Hamiltonian

The standard similarity transformation (see for instance the textbooks [33–35] or the works concerning spin models
[30, 36–42])

Pt(C) ≡ e−
β
2 U(C)ψt(C) = e−

β
2 U(C) < C|ψt > (13)

transforms the master equation of Eq. 5 into the imaginary-time Schrödinger equation for the ket |ψt >
d

dt
|ψt >= −H |ψt > (14)

with the quantum Hamiltonian

H =
∑

C,C′

G(C,C′)
[

e−
β
2 [U(C′)−U(C]|C >< C| − |C′ >< C|

]

(15)

The groundstate energy is E0 = 0, and the corresponding eigenvector corresponding to the Boltzmann equilibrium
reads

|ψ0 >=
∑

C

e−
β
2 U(C)

√
Z

|C > (16)

The other energies En > 0 determine the relaxation towards equilibrium. In particular, the lowest non-vanishing
energy E1 determines the largest relaxation time (1/E1) of the system, i.e. the ’equilibrium time’ needed to converge
towards equilibrium,

teq ≡
1

E1
(17)

D. Single-spin flip dynamics of Ising models

We will focus here on single spin-flip dynamics satisfying detailed balance of Eq. 9, where the transition rate
corresponding to the flip of a single spin Sk reads

W (Sk → −Sk) = Gini



hk =
∑

i6=k

JikSi



 e−βSk[
∑

i6=k JikSi] (18)

Gini[hk] is an arbitrary positive even function of the local field hk =
∑

i6=k JikSi. For instance, the Glauber dynamics
corresponds to the choice

GiniGlauber [h] =
1

2 cosh (βh)
(19)
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The quantum Hamiltonian of Eq. 15 reads in terms of Pauli matrices (σx, σz) [30, 36–42]

H =
∑

k

Gini





∑

i6=k

Jikσ
z
i





(

e−βσ
z
k(

∑
i6=k Jikσ

z
i ) − σxk

)

(20)

For ferromagnetic models near zero-temperature, more precisely when the temperature is much smaller than any
ferromagnetic coupling Jij

0 < T ≪ Jij (21)

the thermal equilibrium is dominated by the two ferromagnetic groundstates where all spins take the same value, and
the largest relaxation time teq ≃ 1/E1 corresponds to the time needed to go from one groundstate (where all spins
take the value +1) to the opposite groundstate (where all spins take the value −1). The aim of the renormalization
procedure introduced in [30] is to preserve the lowest non-vanishing energy E1 of the quantum Hamiltonian. We
have already explained the application of this renormalization to the random ferromagnetic chain [30], to the random
ferromagnetic Cayley tree [32], and to the Dyson hierarchical Ising model [31]. In the following, we derive the
appropriate renormalization rules for the diamond hierarchical lattice described above.

III. DYNAMICS OF THE PURE ISING MODEL

A. Principle of the Renormalization for the dynamics

To analyze the statics of the ferromagnetic Ising model on the diamond lattice, one has to renormalize bonds to
obtain the RG rules for renormalized couplings. However here to analyze the single-spin-flip dynamics, we wish to
define renormalized spins that represent ferromagnetic clusters of spins flipping together.
We start from the diamond lattice with n ≥ 2 generations, of length Ln = 2n, containing Bn = (2K)n bonds. All

bonds have the same initial ferromagnetic coupling J . All elementary spins have a dynamics characterized by the
function Gini[h] of the local field h (Eq 20).
After one RG step, we wish to have a diamond graph of generation (n− 1), where there is an alternation of initial

spins, with a dynamics still characterized by the function Gini[h], and of renormalized spins SR1 (representing clusters
of (2K + 1) initial spins), whose dynamics is represented by some renormalized amplitude GR1. The renormalized
bonds have for renormalized couplings JR1 = KJ .
More generally, after p RG steps with 1 ≤ p ≤ n− 1, we wish to have a diamond graph of generation (n− p), where

there is an alternation of initial spins, with a dynamics still characterized by the function Gini[h], and of renormalized
spins SRp

(representing clusters of (2K + 1)p initial spins), whose dynamics is represented by some renormalized
amplitude GRp

. The renormalized bonds have for renormalized couplings

JRp
= KpJ (22)

In particular, after p = n − 1 RG steps, we wish to have a diamond graph of generation 1, where the two bound-
ary spins are initial spins, with a dynamics still characterized by the function Gini[h], and where the K internal
renormalized spins SRn−1 (representing clusters of (2K +1)n−1 initial spins), whose dynamics is represented by some
renormalized amplitude GRn−1 . The renormalized bonds have for renormalized couplings JRn−1 = Kn−1J .
The last RG p = n RG step is thus special : the (K + 2) remaining spins are grouped together into a single renor-

malized spin SRn
(representing the whole sample of (K(2K +1)n−1 +2) initial spins) whose dynamics is represented

by some renormalized amplitude GlastRn
.

Let us now explain how the RG rule for the renormalized amplitude GR describing the dynamics can be obtained
for the special last RG step p = n and for the bulk RG steps 1 ≤ p ≤ n− 1 respectively.

B. RG rule for the last RG step p = n

The last RG step p = n shown on Fig. 2 involves two boundary spins Se1 and Se2 and K internal spins
(Sa1 , Sa2 , ..SaK ) with the following classical energy (Eq. 4)

U(C) = −JRn−1

K
∑

i=1

Sai(Se1 + Se2) (23)
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FIG. 2: Last RG step for the dynamics of the pure Ising model : notations for the quantum Hamiltonian of Eq. 24

The quantum Hamiltonian of Eq. 20 associated to the single-spin-flip dynamics reads

HK+2 = Gini

[

JRn−1

K
∑

i=1

σzai

]

(

e−βJRn−1
σz
e1

∑K
i=1 σ

z
ai − σxe1

)

+Gini

[

JRn−1

K
∑

i=1

σzai

]

(

e−βJRn−1
σz
e2

∑K
i=1 σ

z
ai − σxe2

)

+
K
∑

i=1

GRn−1

[

JRn−1(σ
z
e1 + σze2 )

]

(

e−βJRn−1
σz
ai

(σz
e1

+σz
e2

) − σxai

)

(24)

We are interested in the lowest non-vanishing eigenvalue E1 > 0. The eigenvalue equation

0 = (HK+2 − E1)||ψ1 > (25)

for the corresponding eigenvector in the basis

|ψ1 >=
∑

Se1=±

∑

Se2=±

∑

Sa1=±

..
∑

SaK
=±

ψ1(Se1 , Se2 , Sa1 ..SaK )|Se1 , Se2 , Sa1 ..SaK > (26)

reads

0 = [Gini

[

JRn−1

K
∑

i=1

Sai

]

e−βJRn−1
Se1

∑K
i=1 Sai

+Gini

[

JRn−1

K
∑

i=1

Sai

]

e−βJRn−1
Se2

∑K
i=1 Sai

+

K
∑

i=1

GRn−1

[

JRn−1(Se1 + Se2)
]

e−βJRn−1
Sai

(Se1+Se2) − E1]ψ1(Se1 , Se2 , Sa1 ..SaK )

−Gini
[

JRn−1

K
∑

i=1

Sai

]

ψ1(−Se1 , Se2 , Sa1 ..SaK )

−Gini
[

JRn−1

K
∑

i=1

Sai

]

ψ1(Se1 ,−Se2 , Sa1 ..SaK )

−
K
∑

i=1

GRn−1

[

JRn−1(Se1 + Se2)
]

ψ1(Se1 , Se2 , Sa1 , ...,−Sai , ..SaK ) (27)
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Let us now use the symmetry between the K spins Sai to note φ(Se1 , k, Se2) the components ψ1(Se1 , Se2 , Sa1 ..SaK )
where k ∈ 0, 1, ..,K spins among (Sa1 , .., SaK ) take the value (−)

ψ1(Se1 , Se2 , Sa1 ..SaK ) = φ1(Se1 , k =

K
∑

i=1

1− Sai
2

, Se2) (28)

Eq 27 becomes

0 = [Gini
[

JRn−1(K − 2k)
]

e−βJRn−1
Se1(K−2k) +Gini

[

JRn−1(K − 2k)
]

e−βJRn−1
Se2 (K−2k)

+kGRn−1

[

JRn−1(Se1 + Se2)
]

eβJRn−1
(Se1+Se2 ) +

(K − k)GRn−1

[

JRn−1(Se1 + Se2)
]

e−βJRn−1
(Se1+Se2 ) − E1]φ1(Se1 , k, Se2)

−Gini
[

JRn−1(K − 2k)
]

φ1(−Se1 , k, Se2)
−Gini

[

JRn−1(K − 2k)
]

φ1(Se1 , k,−Se2)
−kGRn−1

[

JRn−1(Se1 + Se2)
]

φ1(Se1 , k − 1, Se2)

−(K − k)GRn−1

[

JRn−1(Se1 + Se2)
]

φ1(Se1 , k + 1, Se2) (29)

For E0 = 0, the (non-normalized) groundstate is known to be given by Eq. 16 with the classical energy of Eq. 23

φ0(Se1 , k, Se2) = e
β
2 JRn−1

(K−2k)(Se1+Se2) (30)

so it is convenient to look for the solution of Eq. 27 via the amplitude

A(Se1 , k, Se2) =
φ1(Se1 , k, Se2)

φ0(Se1 , k, Se2)
(31)

that satisfies

0 = [Gini
[

JRn−1(K − 2k)
]

e−βJRn−1
(K−2k)Se1 +Gini

[

JRn−1(K − 2k)
]

e−βJRn−1
(K−2k)Se2

+kGRn−1

[

JRn−1(Se1 + Se2)
]

eβJRn−1
(Se1+Se2 )

+(K − k)GRn−1

[

JRn−1(Se1 + Se2)
]

e−βJRn−1
(Se1+Se2) − E1]A(Se1 , k, Se2)

−Gini
[

JRn−1(K − 2k)
]

e−βJRn−1
(K−2k)Se1A(−Se1 , k, Se2)

−Gini
[

JRn−1(K − 2k)
]

e−βJRn−1
(K−2k)Se2A(Se1 , k,−Se2)

−kGRn−1

[

JRn−1(Se1 + Se2)
]

eβJRn−1
(Se1+Se2 )A(Se1 , k − 1, Se2)

−(K − k)GRn−1

[

JRn−1(Se1 + Se2)
]

e−βJRn−1
(Se1+Se2)A(Se1 , k + 1, Se2) (32)

Let us now consider the dynamical path associated to the swap of a domain-wall between the two ferromagnetic
groundstates with the following notations for configurations

C0 = {Se1 = +1, 0, Se2 = +1}
C1 = {Se1 = −1, 0, Se2 = +1}
C2 = {Se1 = −1, 1, Se2 = +1}
Cp = {Se1 = −1, p− 1, Se2 = +1}
CK = {Se1 = −1,K − 1, Se2 = +1}

CK+1 = {Se1 = −1,K, Se2 = +1}
CK+2 = {Se1 = −1,K, Se2 = −1} (33)

The physical meaning is that the transition from C0 to C1 corresponds to the entrance of a domain-wall at the boundary
e1, the transitions between the configurations (C1, C2, .., CK+1) correspond to the displacement of this domain-wall,
and finally the transition from CK+1 to CK+2 corresponds to the exit of the domain-wall at the boundary e2.
The corresponding amplitudes A(Cq) for this dynamical path satisfy (Eq 32) for 2 ≤ q ≤ K

0 =
(

(q − 1)GRn−1 [0] + (K + 1− q)GRn−1 [0]− E1

)

A(Cq)

−(q − 1)GRn−1 [0]A(Cq−1)− (K + 1− q)GRn−1 [0]A(Cq+1) (34)
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and for q = 0, q = 1, q = K + 1 and q = K + 2

0 = [Gini
[

KJRn−1

]

e−βKJRn−1 − E1]A(C0)−Gini
[

KJRn−1

]

e−βKJRn−1A(C1)

0 = [Gini
[

KJRn−1

]

eβKJRn−1 +KGRn−1 [0]− E1]A(C1)

−Gini
[

KJRn−1

]

eβKJRn−1A(C0)−KGRn−1 [0]A(C2)

0 = [Gini
[

KJRn−1

]

eβKJRn−1 +KGRn−1 [0]− E1]A(CK+1)

−Gini
[

KJRn−1

]

eβKJRn−1A(CK+2)−KGRn−1 [0]A(CK)

0 = [Gini
[

KJRn−1

]

e−βKJRn−1 − E1]A(CK+2)−Gini
[

KJRn−1

]

e−KβJRn−1A(CK+1) (35)

For this effective one-dimensional problem with the effective transition rates

W eff (C0 → C1) = Gini
[

KJRn−1

]

e−βKJRn−1

W eff (Cq → Cq+1) = (K + 1− q)GRn−1 [0] for 1 ≤ q ≤ K

W eff (CK+1 → CK+2) = Gini
[

KJRn−1

]

eβKJRn−1 (36)

and

W eff (C1 → C0) = Gini
[

KJRn−1

]

eβKJRn−1

W eff (Cq → Cq−1) = (q − 1)GRn−1 [0] for 2 ≤ q ≤ K + 1

W eff (CK+2 → CK+1) = Gini
[

KJRn−1

]

e−KβJRn−1 (37)

we may use Eq. A21 of the Appendix to obtain the renormalized amplitude G
(e1,e2)
Rnlast

= GR(C0, CK+2) when the
domain-wall enters by the boundary e1 and exits by the boundary e2

1

G
(e1,e2)
Rnlast

=
e

β
2 [U(C0)−U(CK+2)]

W eff (C0 → C1)

[

1 +

K+1
∑

m=1

m
∏

q=1

W eff (Cq → Cq−1)

W eff (Cq → Cq+1)

]

=
2eβKJRn−1

Gini
[

KJRn−1

] +
e2βKJRn−1

GRn−1 [0]

K
∑

m=1

(m− 1)!(K −m)!

K!
(38)

Taking into account the other case where the domain-wall enters by the boundary e2 and exits by the boundary e1,
which actually gives the same contribution

G
(e1,e2)
Rnlast

= G
(e2,e1)
Rnlast

(39)

we obtain that the final total amplitude GlastRn
= G

(e1,e2)
Rnlast

+G
(e2,e1)
Rnlast

= 2G
(e1,e2)
Rnlast

reads

1

GlastRn

=
eβKJRn−1

Gini
[

KJRn−1

] +
e2βKJRn−1

2GRn−1 [0]

K−1
∑

k=0

k!(K − 1− k)!

K!
(40)

C. RG rule for the bulk RG steps 1 ≤ p ≤ n− 1

The bulk RG step p shown on Fig. 3 involves two external spins SextA and SextB , and (2K + 1) internal spins
(Sa1 , Sa2 , ., SaK , Sc, Sb1 , Sb2 , ., SbK ) with the following classical energy (Eq. 4)

U(C) = −JRp−1

K
∑

i=1

Sai(Sc + SextA )− JRp−1

K
∑

i=1

Sbi(Sc + SextB ) (41)
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FIG. 3: Bulk RG step for the dynamics of the pure Ising model : notations for the quantum Hamiltonian of Eq. 42

The quantum Hamiltonian of Eq. 20 associated to the single-spin-flip dynamics reads

H2K+1 = Gini

[

JRp−1

K
∑

i=1

(σzai + σzbi)

]

(

e−βJRp−1
σz
c

∑K
i=1(σ

z
ai

+σz
bi
) − σxc

)

+

K
∑

i=1

GRp−1

[

JRp−1(σ
z
c + SextA )

]

(

e−βJRp−1
σz
ai

(σz
c+S

ext
A ) − σxai

)

+

K
∑

i=1

GRp−1

[

JRp−1(σ
z
c + SextB )

]

(

e−βJRp−1
σz
bi
(σz

c+S
ext
B ) − σxbi

)

(42)

Let us now focus on the external Domain-Wall conditions

SextA = −1

SextB = +1 (43)

and take into account the symmetry between the K spins Sai , and the symmetry between the K spins Sbi to
note φ(ka, kb) the components of ψ1 where ka ∈ 0, 1, ..,K spins among (Sa1 , .., SaK ) take the value (−), and where
ka ∈ 0, 1, ..,K spins among (Sa1 , .., SaK ) take the value (−)

ψ1(S
ext
A = −1, Sa1, .., SaK , Sc, Sb1 , .., SbK , S

ext
B = +1) = φ1(ka =

K
∑

i=1

1− Sai
2

, Sc, kb =
K
∑

i=1

1− Sbi
2

) (44)
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Then the eigenvalue equation 0 = (H2K+1 − E1)|ψ1 > reads

0 = (Gini
[

JRp−1(2K − 2ka − 2kb)
]

e−βJRp−1
(2K−2ka−2kb)Sc

+kaGRp−1

[

JRp−1(Sc − 1)
]

eβJRp−1
(Sc−1)

+(K − ka)GRp−1

[

JRp−1(Sc − 1)
]

e−βJRp−1
(Sc−1)

+kbGRp−1

[

JRp−1(Sc + 1)
]

eβJRp−1
(Sc+1)

+(K − kb)GRp−1

[

JRp−1(Sc + 1)
]

e−βJRp−1
(Sc+1) − E1)φ1(ka, Sc, kb)

−Gini
[

JRp−1(2K − 2ka − 2kb)
]

φ1(ka,−Sc, kb)
−kaGRp−1

[

JRp−1(Sc − 1)
]

φ1(ka − 1, Sc, kb)

−(K − ka)GRp−1

[

JRp−1(Sc − 1)
]

φ1(ka + 1, Sc, kb)

−kbGRp−1

[

JRp−1(Sc + 1)
]

φ1(ka, Sc, kb − 1)

−(K − kb)GRp−1

[

JRp−1(Sc + 1)
]

φ1(ka, Sc, kb + 1) (45)

For E0 = 0, the (non-normalized) groundstate is known to given by Eq. 16 with the classical energy of Eq. 41

φ0(ka, Sc, kb) = e
β
2 JRp−1

[Sc(2K−2ka−2kb)+(2ka−2kb)] (46)

so it is convenient to look for the solution of Eq. 27 via the amplitude

A(ka, Sc, kb) =
φ1(ka, Sc, kb)

φ0(ka, Sc, kb)
(47)

that satisfies

0 = (Gini
[

JRp−1(2K − 2ka − 2kb)
]

e−βJRp−1
(2K−2ka−2kb)Sc

+kaGRp−1

[

JRp−1(Sc − 1)
]

eβJRp−1
(Sc−1) + (K − ka)GRp−1

[

JRp−1(Sc − 1)
]

e−βJRp−1
(Sc−1)

+kbGRp−1

[

JRp−1(Sc + 1)
]

eβJRp−1
(Sc+1) + (K − kb)GRp−1

[

JRp−1(Sc + 1)
]

e−βJRp−1
(Sc+1) − E1)A(ka, Sc, kb)

−Gini
[

JRp−1(2K − 2ka − 2kb)
]

e−βJRp−1
(2K−2ka−2kb)ScA(ka,−Sc, kb)

−kaGRp−1

[

JRp−1(Sc − 1)
]

eβJRp−1
(Sc−1)A(ka − 1, Sc, kb)

−(K − ka)GRp−1

[

JRp−1(Sc − 1)
]

e−βJRp−1
(Sc−1)A(ka + 1, Sc, kb)

−kbGRp−1

[

JRp−1(Sc + 1)
]

eβJRp−1
(Sc+1)A(ka, Sc, kb − 1)

−(K − kb)GRp−1

[

JRp−1(Sc + 1)
]

e−βJRp−1
(Sc+1)A(ka, Sc, kb + 1) (48)

Let us consider the dynamical path along the following (2K + 2) configurations

C0 = {0, Sc = +1, 0}
C1 = {1, Sc = +1, 0}
C2 = {2, Sc = +1, 0}
CK = {K,Sc = +1, 0}

CK+1 = {K,Sc = −1, 0}
CK+2 = {K,Sc = −1, 1}
CK+3 = {K,Sc = −1, 2}
C2K = {K,Sc = −1,K − 1}

C2K+1 = {K,Sc = −1,K} (49)

in order to describe the motion of a domain-wall corresponding to the boundary conditions of Eq. 43.
Then Eq. 45 becomes for 0 ≤ q ≤ K − 1

0 = (qGRp−1 [0] + (K − q)GRp−1 [0]− E1)A(Cq)− qGRp−1 [0]A(Cq−1)− (K − q)GRp−1 [0]A(Cq+1) (50)



10

for q = K

0 = (Gini [0] +KGRp−1 [0]− E1)A(CK)−Gini [0]A(CK+1)−KGRp−1 [0]A(CK−1) (51)

for q = K + 1

0 = (Gini [0] +KGRp−1 [0]− E1)A(CK+1)−Gini [0]A(CK)−KGRp−1 [0]A(CK+2) (52)

and for q = K + 1 + k for 1 ≤ k ≤ K

0 = kGRp−1 [0] + (K − k)GRp−1 [0]− E1)A(CK+1+k)− kGRp−1 [0]A(CK+k)− (K − k)GRp−1 [0]A(CK+2+k)(53)

For this effective one-dimensional problem with the effective transition rates

W eff (Cq → Cq+1) = (K − q)GRp−1 [0] for 0 ≤ q ≤ K − 1

W eff (CK → CK+1) = Gini [0]

W eff (Cq → Cq+1) = (2K + 1− q)GRp−1 [0] for K + 1 ≤ q ≤ 2K (54)

and

W eff (Cq → Cq−1) = qGRp−1 [0] for 1 ≤ q ≤ K

W eff (CK+1 → CK) = Gini [0]

W eff (Cq → Cq−1) = (q −K − 1)GRp−1 [0] for K + 2 ≤ q ≤ 2K + 1 (55)

we may use Eq. A21 of the Appendix to obtain the renormalized amplitude GRp
[0] = GR(C0, C2K+1)

1

GRp
[0]

=
e

β
2 [U(C0)−U(C2K+1)]

W eff (C0 → C1)

[

1 +

2K
∑

m=1

m
∏

q=1

W eff (Cq → Cq−1)

W eff (Cq → Cq+1)

]

=
1

Gini [0]
+

2

KGRp−1 [0]

K−1
∑

m=0

(m)!(K − 1−m)!

(K − 1)!
(56)

D. Conclusion

Using the combinatorial formula [43] concerning the sum of the inverse of binomial coefficients

K−1
∑

m=0

(m)!(K − 1−m)!

(K − 1)!
≡

K−1
∑

m=0

1

CmK−1

=
K

2K

K
∑

k=1

2k

k
(57)

and the form of renormalized couplings of Eq. 22

JRn−1 = Kn−1J (58)

we may rewrite the last RG step of Eq. 40 as

1

GlastRn

=
eβK

nJ

Gini [KnJ ]
+

e2βK
nJ

2K+1GRn−1 [0]

K
∑

k=1

2k

k
(59)

and the bulk RG steps 1 ≤ p ≤ n− 1 of Eq. 56 as

1

GRp
[0]

=
1

Gini [0]
+

1

2K−1GRp−1 [0]

K
∑

k=1

2k

k
(60)

with the initial condition

GR0 [0] = Gini [0] (61)
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In terms of the numerical constant

cK ≡ 1

2K−1

K
∑

k=1

2k

k
(62)

the solution of the recurrence of Eq. 60 reads for 0 ≤ p ≤ n− 1

1

GRp
[0]

=
1

Gini [0]

p
∑

q=0

(cK)q (63)

so that the final renormalized amplitude of Eq. 59 for the whole sample reads

1

GlastRn

=
eβK

nJ

Gini [KnJ ]
+

e2βK
nJ

4Gini [0]

n
∑

q=1

(cK)q (64)

The final conclusion is thus that the equilibrium time t
(n)
eq needed to go from one groundstate (where all spins

take the value +1) to the opposite groundstate (where all spins take the value −1) reads for the Ising model on the
diamond lattice of branching ratio K with n generations reads

t(n)eq ≃ 1

GlastRn

=
eβK

nJ

Gini [KnJ ]
+

e2βK
nJ

4Gini [0]

n
∑

q=1

(cK)q (65)

In particular, the dynamical barrier B(n) defined by the low-temperature exponential behavior reads in terms of the
length L2n

n and of the fractal dimension df (Eqs 1 and 3 )

B(n) ≡ lim
β→+∞

t
(n)
eq

β
= 2JKn = 2JL

df−1
n (66)

in agreement with the expected scaling Lds of the energy cost of an interface of dimension ds = d − 1 in a space of
dimension d.
Here, we have in addition computed explicitly the prefactors in Eq. 65 : the leading behavior is a power law of the

length Ln

t(n)eq ≃ eβ2JL
df−1

n (cK)n = eβ2JL
df−1

n LαK
n (67)

where the exponent reads in terms of the constant cK of Eq. 62

αK =
ln cK
ln 2

=
ln
[

1
2K−1

∑K
k=1

2k

k

]

ln 2
(68)

In particular, for the first values of K, we obtain

αK=1 = 1

αK=2 = 1

αK=3 =
ln 5

3

ln 2

αK=4 =
ln 4

3

ln 2
(69)

For K = 1 corresponding to the one-dimensional chain, the result αK=1 = 1 is in agreement with previous studies
(see [30] and references therein).

IV. DYNAMICS OF THE RANDOM FERROMAGNETIC MODEL

A. RG rule for the last RG step p = n

The last RG step p = n shown on Fig. 4 involves two boundary spins Se1 and Se2 and K internal spins
(Sa1 , Sa2 , ..SaK ) with the following classical energy (Eq. 4)

U(C) = −
K
∑

i=1

Sai(JaiSe1 + J ′
aiSe2) (70)
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last

e1

Se2

Ja2

J’a2 J’aK

JaK

J’a1

Ja1

Sa1
Sa2

SaK
S

S

FIG. 4: Last RG step for the dynamics of the disordered Ising model : notations for the quantum Hamiltonian of Eq. 71

The quantum Hamiltonian of Eq. 20 associated to the single-spin-flip dynamics reads

HK+2 = Gini

[

K
∑

i=1

Jaiσ
z
ai

]

(

e−βσ
z
e1

∑K
i=1 Jai

σz
ai − σxe1

)

+Gini

[

K
∑

i=1

J ′
aiσ

z
ai

]

(

e−βσ
z
e2

∑K
i=1 J

′
ai
σz
ai − σxe2

)

+
K
∑

i=1

Gai
[

Jaiσ
z
e1 + J ′

aiσ
z
e2

]

(

e−βσ
z
ai

(Jai
σz
e1

+J′
ai
σz
e2

) − σxai

)

(71)

Let us first consider the dynamical path where the spins are flipped in the order Se1 , Sa1 , Sa2 , .., SaK , Se2 . It is
convenient to introduce the following notations for the corresponding (K + 3) configurations

C0 = {Se1 = +1, Sa1 = +1, Sa2 = +1, .., SaK = +1, Se2 = +1}
C1 = {Se1 = −1, Sa1 = +1, Sa2 = +1, .., SaK = +1, Se2 = +1}
C2 = {Se1 = −1, Sa1 = −1, Sa2 = +1, .., SaK = +1, Se2 = +1}
Cp = {Se1 = −1, Sa1 = −1, ..., Sap−1 = −1, Sap = +1.., SaK = +1, Se2 = +1}
CK = {Se1 = −1, Sa1 = −1, ..., SaK−1 = −1, , SaK = +1, Se2 = +1}

CK+1 = {Se1 = −1, Sa1 = −1, ..., SaK = −1, Se2 = +1}
CK+2 = {Se1 = −1, Sa1 = −1, ..., SaK = −1, Se2 = −1} (72)

The physical meaning is that the transition from C0 to C1 corresponds to the entrance of a domain-wall at the boundary
e1, the transitions between the configurations (C1, C2, .., CK+1) correspond to the displacement of this domain-wall,
and finally the transition from CK+1 to CK+2 corresponds to the exit of the domain-wall at the boundary e2.
The two boundaries configurations are the two ferromagnetic groundstates of classical energy (Eq 70)

U(C0) = U(CK+2) = −
K
∑

i=1

(Jai + J ′
ai) (73)

The intermediate configurations Cp for 1 ≤ p ≤ K + 1 have a higher classical energy (Eq 70)

U(Cp) =

p−1
∑

i=1

(−Jai + J ′
ai) +

K
∑

i=p

(Jai − J ′
ai) (74)

So we may used the formula of Eq. A23 derived in the Appendix for the renormalized amplitude along this dynamical
path

1

G
(e1,a1,a2,..,aK,e2)
R (C0, CK+2)

= e−
β
2 [U(C0)+U(CK+2)]

K+1
∑

m=0

e
β
2 [U(Cm)+U(Cm+1)]

G (Cm, Cm+1)
(75)
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Taking into account the local field on the spin that is flipped between two consecutive configurations, one obtains for
the two boundary flips

G (C0, C1) = Gini

[

K
∑

i=1

Jai

]

G (CK+1, CK+2) = Gini

[

K
∑

i=1

J ′
ai

]

(76)

and for the intermediate flips 1 ≤ m ≤ K

G (Cm, Cm+1) = Gam
[

Jam − J ′
am

]

(77)

The renormalization formula of Eq. 75 for the last RG step finally reads

1

G
(e1,a1,a2,..,aK,e2)
Rlast

=
eβ

∑K
i=1 Jai

Gini
[

∑K
i=1 Jai

] +
K
∑

m=1

eβ[2
∑m−1

i=1 J′
ai

+Jam+J′
am

+2
∑K

i=m+1 Jai ]

Gam
[

Jam − J ′
am

] +
eβ

∑K
i=1 J

′
ai

Gini
[

∑K
i=1 J

′
ai

] (78)

B. RG rule for the bulk RG steps 1 ≤ p ≤ n− 1

a1
Sa2

SaK

Jb2

JbK
Jb1

Sb1
Sb2

SbK

S ext

B

S ext

A S ext

A

S ext

B

SR

J R

J’R

J’aK
J’a1

JaK
Ja1

Ja2

J’a2

Sc

b1
b2 bK

J’ J’

S

J’

FIG. 5: Bulk RG step for the dynamics of the disordered Ising model : notations for the quantum Hamiltonian of Eq. 80

The bulk RG step p shown on Fig. 5 involves two external spins SextA and SextB , and (2K + 1) internal spins
(Sa1 , Sa2 , ., SaK , Sc, Sb1 , Sb2 , ., SbK ) with the following classical energy (Eq. 4)

U(C) = −
K
∑

i=1

Sai(JaiSc + J ′
aiS

ext
A )−

K
∑

i=1

Sbi(JbiSc + J ′
biS

ext
B ) (79)
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The quantum Hamiltonian of Eq. 20 associated to the single-spin-flip dynamics reads

H2K+1 = Gini

[

K
∑

i=1

(Jaiσ
z
ai + Jbiσ

z
bi)

]

(

e−βσ
z
c

∑K
i=1(Jai

σz
ai

+Jbi
σz
bi
) − σxc

)

+
K
∑

i=1

Gai
[

Jaiσ
z
c + J ′

aiS
ext
A )

]

(

e−βσ
z
ai

(Jai
σz
c+J

′
ai
Sext
A ) − σxai

)

+

K
∑

i=1

Gbi
[

Jbiσ
z
c + J ′

biS
ext
B

]

(

e−βσ
z
bi
(Jbi

σz
c+J

′
bi
Sext
B ) − σxbi

)

(80)

Let us first consider the dynamical path where the spins are flipped in the order Sa1 , Sa2 , .., SaK , Sc, Sb1 , Sb2 , .., SbK .
More precisely, for the external Domain-Wall conditions

SextA = −1

SextB = +1 (81)

it is convenient to introduce the following notations for the corresponding (2K + 2) configurations that describe the
motion of the domain-wall

C0 = {Sa1 = +1, Sa2 = +1, .., SaK = +1, Sc = +1, Sb1 = +1, Sb2 = +1, .., SbK = +1}
C1 = {Sa1 = −1, Sa2 = +1, .., SaK = +1, Sc = +1, Sb1 = +1, Sb2 = +1, .., SbK = +1}
C2 = {Sa1 = −1, Sa2 = −1, Sa3 = +1.., SaK = +1, Sc = +1, Sb1 = +1, Sb2 = +1, .., SbK = +1}
CK = {Sa1 = −1, Sa2 = −1, .., SaK = −1, Sc = +1, Sb1 = +1, Sb2 = +1, .., SbK = +1}

CK+1 = {Sa1 = −1, Sa2 = −1, .., SaK = −1, Sc = −1, Sb1 = +1, Sb2 = +1, .., SbK = +1}
CK+2 = {Sa1 = −1, Sa2 = −1, .., SaK = −1, Sc = −1, Sb1 = −1, Sb2 = +1, .., SbK = +1}
CK+3 = {Sa1 = −1, Sa2 = −1, .., SaK = −1, Sc = −1, Sb1 = −1, Sb2 = −1, Sb3 = +1, .., SbK = +1}
C2K = {Sa1 = −1, Sa2 = −1, .., SaK = −1, Sc = −1, Sb1 = −1, Sb2 = −1, ..SbK−1 = −1, SbK = +1}

C2K+1 = {Sa1 = −1, Sa2 = −1, .., SaK = −1, Sc = −1, Sb1 = −1, Sb2 = −1, ..SbK−1 = −1, SbK = −1} (82)

The classical energy (Eq 79) of these configurations read for 0 ≤ m ≤ K

U(Cm) =

m
∑

i=1

(Jai − J ′
ai)−

K
∑

i=m+1

(Jai − J ′
ai)−

K
∑

i=1

(Jbi + J ′
bi)

U(CK+1+m) =

K
∑

i=1

(−Jai − J ′
ai) +

m
∑

i=1

(−Jbi + J ′
bi)−

K
∑

i=m+1

(−Jbi + J ′
bi) (83)

So we may used the formula of Eq. A23 derived in the Appendix for the renormalized amplitude along this
dynamical path

1

G
(a1,a2,..,aK,c,b1,b2..,bK)
R (C0, C2K+1)

= e−
β
2 [U(C0)+U(C2K+1)]

2K
∑

m=0

e
β
2 [U(Cm)+U(Cm+1)]

G (Cm, Cm+1)
(84)

Taking into account the local field on the spin that is flipped between two consecutive configurations, one obtains for
the two boundary flips for 1 ≤ m ≤ K − 1

G (Cm, Cm+1) = Gam
[

Jam − J ′
am

]

G (CK , CK+1) = Gini

[

K
∑

i=1

(Jai − Jbi)

]

G (CK+m, CK+m+1) = Gbm
[

Jbm − J ′
bm

]

(85)

For the renormalized spin SR, the two renormalized ferromagnetic couplings read

JR ≡
K
∑

i=1

J ′
ai

J ′
R ≡

K
∑

i=1

J ′
bi (86)
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and the absolute value of the renormalized local field hR in the domain-wall configurations takes the single value

|hR| = |JR − J ′
R| = |

K
∑

i=1

(J ′
ai − J ′

bi)| (87)

So one does not have to renormalize a function G[h] of an arbitrary local field h, but only a set of three correlated

variables (JR, J
′
R, G

(a1,a2,..,aK,c,b1,b2..,bK)
R [hR = JR−J ′

R]) representing the two ferromagnetic couplings (JR, J
′
R) of Eq.

86 and the corresponding numerical amplitude G
(a1,a2,..,aK,c,b1,b2..,bK)
R [hR = JR − J ′

R] given by the final formula ( Eq.
84 )

1

G
(a1,a2,..,aK,c,b1,b2..,bK)
R [hR = JR − J ′

R]
=

K
∑

m=1

eβ[
∑m−1

i=1 (2Jai
−J′

ai
−J′

bi
)+Jam−J′

bm
+
∑K

i=m+1(J
′
ai

−J′
bi
)]

Gam
[

J ′
am − Jam

]

+
eβ

∑K
i=1(Jai

+Jbi
−J′

ai
−J′

bi
)

Gini
[

∑K
i=1(Jai − Jbi)

]

+

K
∑

m=1

eβ[
∑m−1

i=1 (J′
bi
−J′

ai
)+Jbm−J′

am
+
∑K

i=m+1(2Jbi
−J′

ai
−J′

bi
)]

Gbm
[

Jbm − J ′
bm

] (88)

C. Analysis of the random ferromagnetic chain (K = 1)

For the random ferromagnetic chain corresponding to the branching ratio K = 1, the renormalization formula for
the last step (Eq. 78) becomes

1

G
(e1,a1,e2)
last

=
eβJa1

Gini [Ja1 ]
+

eβ[Ja1+J
′
a1
]

Ga1
[

Ja1 − J ′
a1

] +
eβJ

′
a1

Gini
[

J ′
a1

] (89)

For the bulk, we may rewrite Eq. 88 as

eβ[J
′
a1

+J′
b1
]

GR[J ′
a1 − J ′

b1
]

=
eβ[Ja1+J

′
a1
]

Ga1
[

J ′
a1 − Ja1

] +
eβ(Ja1+Jb1

)

Gini [Ja1 − Jb1 ]
+

eβ[Jb1
+J′

b1
]

Gb1
[

Jb1 − J ′
b1

] (90)

to make clearer that the combination e
β[J′

a1
+J′

b1
]

GR[J′
a1

−J′
b1

] has a simple renormalization rule. By iteration, we finally obtain

that the final amplitude G
(e1,e2)
last (Ln = 2n) for a system of size Ln = 2n of n generations reads in terms of the initial

function Gini[h] (with the notations J−1,0 = 0 = JLn,Ln+1)

1

G
(e1,e2)
last (Ln = 2n)

=

Ln=2n
∑

i=1

eβ(Ji−1,i+Ji,i+1)

Gini [Ji−1,i − Ji,i+1]
(91)

when the domain-wall enters by the boundary e1 and exits by the boundary e2
We should now take into account the other case where the domain-wall enters by the boundary e2 and exits by the

boundary e1, which actually gives the same contribution

G
(e2,e1)
last (Ln = 2n) = G

(e1,e2)
last (Ln = 2n) (92)

The total amplitude Glast(Ln = 2n) is the sum of these two contributions

Glast(Ln = 2n) = G
(e1,e2)
last (Ln = 2n) +G

(e2,e1)
last (Ln = 2n) = 2G

(e1,e2)
last (Ln = 2n) (93)

so that the final result reads

1

Glast(Ln = 2n)
=

1

2

Ln=2n
∑

i=1

eβ(Ji−1,i+Ji,i+1)

Gini [Ji−1,i − Ji,i+1]
(94)

in agreement with the results of Eq. (104) obtained in our previous work [30] via the Boundary Renormalization
procedure. This agreement shows the validity of the Bulk Renormalization procedure within the domain-wall approx-
imation.
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D. Dynamical barriers for branching ratio K > 1

For K > 1, we have to compare the various dynamical paths that display different dynamical barriers as a conse-
quence of the disorder.
As explained before Eq. 88, the important quantity is the numerical amplitude GR[hR = JR−J ′

R] which is correlated
with the two renormalized ferromagnetic couplings (JR, J

′
R). It is thus convenient to introduce the corresponding

dynamical barrier B(JR,J
′
R)

R defined by the low temperature behavior

GR [JR − J ′
R] ≃

β→∞
e−βB

(JR,J′
R

)

R (95)

where the notation B(JR,J
′
R)

R has been chosen to remind that this barrier is correlated with the two couplings (JR, J
′
R).

Let us now focus on the Glauber dynamics of Eq. 19 with the following low-temperature behavior

GiniGlauber [h] =
1

2 cosh (βh)
≃

β→∞
e−β|h| (96)

1. Optimization of the dynamical path for the last RG step p = n

In terms of dynamical barriers, Eq. 78 with Eq. 96 yields that the final dynamical barrier B(a1,a2,..,aK)
last associated

to the given dynamical path (a1, a2, .., aK) reads

B(a1,a2,..,aK)
last = max

[

2

K
∑

i=1

Jai ; 2

K
∑

i=1

J ′
ai ; max

1≤m≤K

(

B(Jam ,J
′
am

)
am + 2

m−1
∑

i=1

J ′
ai + Jam + J ′

am + 2

K
∑

i=m+1

Jai

)]

(97)

We now have to consider the K! possible dynamical paths : for a given permutation π of the K renormalized spins,

the dynamical barrier B(aπ(1),aπ(2),..,aπ(K))

last associated to the path (aπ(1), aπ(2), .., aπ(K)) reads by adapting Eq 97

B(aπ(1),..,aπ(K))

last

= max

[

2

K
∑

i=1

Jai ; 2

K
∑

i=1

J ′
ai ; max

1≤m≤K

(

B
(Jaπ(m)

,J′
aπ(m)

)

aπ(m) + 2

m−1
∑

i=1

J ′
aπ(i)

+ Jaπ(m)
+ J ′

aπ(m)
+ 2

K
∑

i=m+1

Jaπ(i)

)]

(98)

We now have to choose the dynamical path, i.e. the permutation π leading to the smallest barrier. So the final
renormalized barrier Blast is given by the minimum of Eq. 98 over the K! possible permutations

Blast ≡ min
π

(

B(aπ(1),..,aπ(K))

last

)

(99)

= min
π

(

max

[

2
K
∑

i=1

Jai ; 2
K
∑

i=1

J ′
ai ; max

1≤m≤K

(

B
(Jaπ(m)

,J′
aπ(m)

)

aπ(m)
+ 2

m−1
∑

i=1

J ′
aπ(i)

+ Jaπ(m)
+ J ′

aπ(m)
+ 2

K
∑

i=m+1

Jaπ(i)

)])

2. Optimization of the dynamical path for the bulk RG steps 1 ≤ p ≤ n− 1

Similarly for the bulk RG step, Eq. 88 yields that the renormalized dynamical barrier B(a1,a2,..,aK,c,b1,b2..,bK)
R

correlated with the renormalized couplings (Eq. 86)

JR ≡
K
∑

i=1

J ′
ai

J ′
R ≡

K
∑

i=1

J ′
bi (100)
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and associated to the dynamical path (a1, a2, .., aK , c, b1, b2.., bK) reads

B(a1,a2,..,aK,c,b1,b2..,bK)
R = max( max

1≤m≤K

[

B(Jam ,J
′
am

)
am +

m−1
∑

i=1

(2Jai − J ′
ai − J ′

bi) + Jam − J ′
bm +

K
∑

i=m+1

(J ′
ai − J ′

bi)

]

;

∣

∣

K
∑

i=1

(Jai − Jbi)
∣

∣ +

K
∑

i=1

(Jai + Jbi − J ′
ai − J ′

bi); (101)

max
1≤m≤K

[

B(Jbm ,J
′
bm

)

bm
+
m−1
∑

i=1

(J ′
bi − J ′

ai) + Jbm − J ′
am +

K
∑

i=m+1

(2Jbi − J ′
ai − J ′

bi)

]

)

We now have to consider the (K!)2 possible dynamical paths : for a given permutations (πa) of the am
renormalized spins, and for a given permutations (πb) of the bm renormalized spins, the dynamical barrier

B(aπa(1),aπa(2),..,aπa(K),c,bπb(1)
,bπb(2)

,..,bπb(K))

R associated to the path (aπa(1), aπa(2), .., aπa(K), c, bπb(1), bπb(2), .., bπb(K))
reads by adapting Eq 101

B(aπa(1),aπa(2),..,aπa(K),c,bπb(1)
,bπb(2)

,..,bπb(K))

R = max(

max
1≤m≤K

[

B
(Jaπa(m)

,J′
aπa(m)

)

aπa(m)
+

m−1
∑

i=1

(2Jaπa(i)
− J ′

aπa(i)
− J ′

bπb(i)
) + Jaπa(m)

− J ′
bπb(m)

+

K
∑

i=m+1

(J ′
aπa(i)

− J ′
bπb(i)

)

]

;

∣

∣

K
∑

i=1

(Jai − Jbi)
∣

∣+

K
∑

i=1

(Jai + Jbi − J ′
ai − J ′

bi); (102)

max
1≤m≤K

[

B
(Jbπb(m)

,J′
bπb(m)

)

bπb(m)
+
m−1
∑

i=1

(J ′
bπb(i)

− J ′
aπa(i)

) + Jbπb(m)
− J ′

aπa(m)
+

K
∑

i=m+1

(2Jbπb(i)
− J ′

aπa(i)
− J ′

bπb(i)
)

]

)

We now have to choose the dynamical path, i.e. the permutations (πa, πb) leading to the smallest barrier. So the

final renormalized barrier B(JR,J
′
R)

R is given by the minimum of Eq. 103 over the K! permutations (πa) and over the
K! permutations (πb)

B(JR,J
′
R)

R ≡ min
πa,πb

(

B(aπa(1),aπa(2),..,aπa(K),c,bπb(1)
,bπb(2)

,..,bπb(K))

R

)

(103)

To see more clearly the structure, let us now focus on the case K = 2.

E. Case K = 2 corresponding to the fractal dimension df = 2

1. Last step RG rule for dynamical barriers when K = 2

For K = 2, Eq. 97 involves a maximum over four terms

B(a1,a2)
last = max

[

2(Ja1 + Ja2); 2(J
′
a1 + J ′

a2);B
(Ja1 ,J

′
a1

)
a1 + Ja1 + J ′

a1 + 2Ja2 ;B
(Ja2 ,J

′
a2

)
a2 + 2J ′

a1 + Ja2 + J ′
a2

]

(104)

and Eq. 100 involves the minimum over two permutations

Blast = min( max

[

2(Ja1 + Ja2); 2(J
′
a1 + J ′

a2);B
(Ja1 ,J

′
a1

)
a1 + Ja1 + J ′

a1 + 2Ja2 ;B
(Ja2 ,J

′
a2

)
a2 + 2J ′

a1 + Ja2 + J ′
a2

]

;

max

[

2(Ja1 + Ja2); 2(J
′
a1 + J ′

a2);B
(Ja2 ,J

′
a2

)
a2 + Ja2 + J ′

a2 + 2Ja1 ;B
(Ja1 ,J

′
a1

)
a1 + 2J ′

a2 + Ja1 + J ′
a1

]

)(105)
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2. Bulk RG rules for dynamical barriers when K = 2

Eq 101 involves a maximum over five terms

B(a1,a2,c,b1,b2)
R = max[ B(Ja1 ,J

′
a1

)
a1 + Ja1 − J ′

b1 + (J ′
a2 − J ′

b2);

B(Ja2 ,J
′
a2

)
a2 + (2Ja1 − J ′

a1 − J ′
b1) + Ja2 − J ′

b2 ;

∣

∣

2
∑

i=1

(Jai − Jbi)
∣

∣+

2
∑

i=1

(Jai + Jbi − J ′
ai − J ′

bi); (106)

B(Jb1
,J′

b1
)

b1
+ Jb1 − J ′

a1 + (2Jb2 − J ′
a2 − J ′

b2));

B(Jb2
,J′

b2
)

b2
+ (J ′

b1 − J ′
a1) + Jb2 − J ′

a2 ]

and Eq. 103 involves the minimum over four terms

B(JR,J
′
R)

R = min
[

B(a1,a2,c,b1,b2)
R ;B(a2,a1,c,b1,b2)

R ;B(a1,a2,c,b2,b1)
R ;B(a2,a1,c,b2,b1)

R

]

(107)

3. Numerical results obtained via the pool method
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FIG. 6: Glauber dynamics of the random ferromagnetic model defined on the diamond hierarchical lattice of branching
ratio K = 2 corresponding to the fractal dimension df = 2 : (a) Log-log plot of the averaged-value Bbulk

av (n) and of the width
Bbulk

width(n) of the probability distribution Pn(B) of bulk dynamical barriers at generation n corresponding to the length Ln = 2n

: the slope yields the dynamical exponent ψ ≃ 0.5 (b) The distribution of the rescaled barrier u ≡ (
B−Bbulk

av (n)

Bbulk
width

(n)
) is the Gaussian

distribution g(u) of Eq. 116.

The pool method is very useful to study renormalization rules for disordered models defined on trees [32, 44–46]
and on hierarchical lattices [8, 20, 22, 47]. The idea of the pool method is the following : at each generation, one keeps
the same number Mpool of random variables to represent probability distributions. Within our present framework,
the joint probability distribution Pp(B, J, J ′) of the dynamical barrier B and of the two renormalized couplings of a
renormalized spin at generation n will be represented by a pool of Mpool = 106 triplets (Bi, Ji, J ′

i). To construct a
new triplet (BR, JR, J ′

R) of generation (p+1), one draws (2K) triplets (Bi, Ji, J ′
i) within the pool of generation p and

apply the rule of Eqs 106 and 107. At the last RG step p = n, one draws instead K triplets (Bi, Ji, J ′
i) within the

pool of generation (n − 1) and apply the rule of Eqs 104 and 105 to obtain the final barrier Blastn between the two
ferromagnetic groundstates of the whole sample of length Ln = 2n (eq 1).
For the Glauber dynamics satisfying Eq. 96, the initial condition at generation n = 0 reads in terms of the initial

disorder distribution ρ(J) of the ferromagnetic coupling reads

P bulkn=0 (B, J, J ′) = ρ(J)ρ(J ′)δ(B − |J − J ′|) (108)
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We have chosen the box distribution of width ∆ = 1

ρ(J) = θ(1 ≤ J ≤ 2) (109)

On Fig. 6, we present our numerical results concerning the probability distribution of the bulk dynamical barrier
B at generation n ≤ 100

P bulkn (B) =
∫

dJ

∫

dJ ′P bulkn (B, J, J ′) (110)

As explained in previous sections, this bulk dynamical barrier B characterizes the dynamics of a domain-wall crossing
the system after its creation. We find that both the averaged value

Bbulkav (n) ≡
∫

dB BP bulkn (B) (111)

and the width

Bbulkwidth(n) ≡
(
∫

dB B2P bulkn (B)− (Bbulkav (n))2
)

1
2

(112)

grow with the same power-law of the length Ln = 2n

Bbulkav (n) ∝ Lψn
Bbulkwidth(n) ∝ Lψn (113)

with the dynamical exponent (see Fig. 6 (a))

ψ ≃ 0.5 (114)

As shown on Fig. 6 (b), the corresponding rescaled barrier

u ≡ B −Bbulkav (n)

Bbulkwidth(n)
(115)

follows the Gaussian distribution

g(u) =
1√
2π
e−

u2

2 (116)

We have also computed the probability distribution of the last barrier Blast as a function of the generation n.
As explained in previous sections, this last dynamical barrier B characterizes the dynamics where a domain-wall is
created near a boundary and then crosses the system. We find that the averaged value grows linearly

Blastav (n) ∝ Ln (117)

as expected from the energy cost Lds of the creation of an interface of dimension ds = df − 1 = 1 in a space of
dimension df = 2, in agreement with the result of Eq. 66 corresponding to the pure case. The width around this
averaged value is found to scale as the width of the bulk barrier of Eq. 113

Blastwidth(n) ∝ Lψn with ψ ≃ 0.5 (118)

The result ψ = 1/2 for the dynamical exponent ψ is in agreement with the conjecture ψ = ds/2 proposed in
our previous work [48]. In particular, ψ = 1/2 is clearly different from the droplet exponent θ ≃ 0.299 involved
in the statics of the random ferromagnet on the diamond lattice [49], which coincides with the Directed Polymer
droplet exponent θDP ≃ 0.299 [21], since the optimization of the position of the interface in the random ferromagnet
corresponds to the optimization of the position of a directed polymer in a random medium. We refer to Ref. [48] for
a detailed discussion of the physical meaning of the conjecture ψ = ds/2 with respect to other alternative proposals.
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V. CONCLUSION

To characterize the stochastic single-spin-flip dynamics near zero-temperature of the pure and random ferromagnetic
Ising model on the hierarchical diamond lattice of branching ratio K with fractal dimension df = (ln(2K))/ ln 2, we
have adapted the Real Space Renormalization procedure introduced in our previous work [30].
For the pure Ising model, we have obtained that the equilibrium time behaves as

teq(L) ∼ Lαeβ2JL
ds

(119)

where ds = df − 1 is the expected interface dimension. We have computed the prefactor exponent α as a function of
K.
For the random ferromagnetic Ising model, we have derived the renormalization rules for dynamical barriers

Beq(L) ≡ (ln teq/β) near zero temperature. For the fractal dimension df = 2 (corresponding to the branching
ratio K = 2), we have studied numerically these renormalization rules via the pool method to obtain

Beq(L) ∼ cL+ L1/2u (120)

where u is a O(1) Gaussian random variable of non-zero mean. The non-random term scaling as L corresponds to the
energy-cost of the creation of an interface of dimension ds = df − 1 as in the pure case of Eq. 119. The dynamical
exponent ψ governing the fluctuation part characterizes the barriers for the motion of a domain-wall after its creation.
The result ψ = 1/2 is in agreement with the conjecture ψ = ds/2 proposed in [48]. In particular, the dynamical
exponent ψ = 1/2 is clearly different from the droplet exponent θ ≃ 0.299 involved in the statics of the random
ferromagnet on the same lattice [49].

Appendix A: Renormalization rule for an effective one-dimensional dynamics

1. First excited quantum state

Since the exact groundstate |ψ0 > of zero energy E0 = 0 is exactly known to be given by Eq. 16, it is natural to
look for the first excited state through an amplitude A(C)

|ψ1 >=
∑

C

A(C)
e−

β
2 U(C)

√
Z

|C > (A1)

Then the eigenequation for the quantum Hamiltonian of Eq. 15

0 = (H − E1)|ψ1 > (A2)

can be rewritten for the amplitude A(C) as

[Wout(C) − E1]A(C) =
∑

C′

W (C → C′)A(C′) (A3)

2. Explicit first non-vanishing energy E1 for an effective one-dimensional dynamics

Let us consider an effective one-dimensional dynamics between configurations (C0;C1, C2, .., Cn, Cn+1) described
by the system (Eq A3) for 1 ≤ i ≤ n

0 = [W (Ci → Ci−1) +W (Ci → Ci+1)− E1]A(Ci)−W (Ci → Ci−1)A(Ci−1)−W (Ci → Ci+1)A(Ci+1) (A4)

and by the two boundary equations for i = 0 and i = n+ 1

0 = [W (C0 → C1)− E1]A(C0)−W (C0 → C1)A(C1)

0 = [W (Cn+1 → Cn)− E1]A(Cn+1)−W (Cn+1 → Cn)A(Cn) (A5)
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Let us assume that the intermediate configurations Ci for i = 1, 2, .., n have higher classical energies U(Ci) with
respect to the two boundary configurations C0 and Cn+1. Then the groundstate |ψ0 > of zero energy E0 = 0 of Eq.
16 can be approximated at low temperature by its two leading components

|ψ0 > ≃
β→+∞

1√
e−βU(C0) + e−βU(Cn+1)

(

e−
β
2 U(C0)|C0 > +e−

β
2 U(Cn+1)|Cn+1 >

)

(A6)

Then the small energy E1 can be neglected in Eq. A4 to become for 1 ≤ i ≤ n

A(Ci) = p−(Ci)A(Ci−1) + p+(Ci)A(Ci+1) (A7)

with the notations

p−(Ci) ≡ W (Ci → Ci−1)

W (Ci → Ci−1) +W (Ci → Ci+1)

p+(Ci) ≡ W (Ci → Ci+1)

W (Ci → Ci−1) +W (Ci → Ci+1)
= 1− p−(Ci) (A8)

The leading components of the first excited state at low temperature

|ψ1 > ≃
β→+∞

ψ1(C0)|C0 > +ψ1(Cn+1)|Cn+1 > (A9)

are then fixed by orthogonality with the groundstate of Eq. A6

ψ1(C0) ≃
β→+∞

− e−
β
2 U(Cn+1)

√
e−βU(C0) + e−βU(Cn+1)

ψ1(Cn+1) ≃
β→+∞

e−
β
2 U(C0)

√
e−βU(C0) + e−βU(Cn+1)

(A10)

so that the amplitude A(C) satisfies the boundary conditions

A(C0) ≃
β→+∞

−e−β
2 [U(Cn+1)−U(C0)]

A(Cn+1) ≃
β→+∞

e
β
2 [U(Cn+1)−U(C0)] (A11)

The solution of Eq. A7 with the boundary conditions of Eq. A11 can be obtained by recurrence [50] and reads

A(Ci) = A(C0)
R0(i, n)

R0(0, n)
+A(Cn+1)

Rn+1(1, i)

Rn+1(1, n+ 1)
(A12)

in terms of the Kesten variables [51]

R0(n+ 1, n) = 0 (A13)

R0(n, n) = 1

R0(k ≤ n− 1, n) = 1 +

n
∑

m=k+1

n
∏

i=m

p+(i)

p−(i)

R0(0, n) = 1 +
n
∑

m=1

n
∏

i=m

p+(i)

p−(i)
= 1 +

p+(n)

p−(n)
+ ...+

p+(n)p+(n− 1)...p+(1)

p−(n)p−(n− 1)...p−(1)

and

Rn+1(1, 0) = 0

Rn+1(1, 1) = 1

Rn+1(1, k ≥ 2) = 1 +
k−1
∑

m=1

m
∏

i=1

p−(i)

p+(i)

Rn+1(1, n+ 1) = 1 +

n
∑

m=1

m
∏

i=1

p−(i)

p+(i)
= 1 +

p−(1)

p+(1)
+
p−(1)p−(2)

p+(1)p+(2)
+ ...+

p−(1)p−(2)...p−(n)

p+(1)p+(2)...p+(n)
(A14)
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The energy E1 can be now computed from Eq. A5 at the boundary C0 (or equivalently at the other boundary
Cn+1), and using Eqs A12 and A11, one obtains

E1 ≃W (C0 → C1)

[

1− A(C1)

A(C0)

]

≃W (C0 → C1)

[

1− R0(1, n)

R0(0, n)
− A(Cn+1)

A(C0)

Rn+1(1, 1)

Rn+1(1, n)

]

≃ W (C0 → C1)

Rn+1(1, n+ 1)

[

1− A(Cn+1)

A(C0)

]

≃ W (C0 → C1)

Rn+1(1, n+ 1)

[

1 + eβ[U(Cn+1)−U(C0)]
]

(A15)

Using Eq. A8 and Eq. A14, one finally obtains

1

E1
=

Rn+1(1, n+ 1)

W (C0 → C1)
[

1 + eβ[U(Cn+1)−U(C0)]
]

=
1

W (C0 → C1)
[

1 + eβ[U(Cn+1)−U(C0)]
]

[

1 +

n
∑

m=1

m
∏

i=1

p−(i)

p+(i)

]

=
1

W (C0 → C1)
[

1 + eβ[U(Cn+1)−U(C0)]
]

[

1 +

n
∑

m=1

m
∏

i=1

W (Ci → Ci−1)

W (Ci → Ci+1)

]

(A16)

3. Renormalized amplitude GR for an effective one-dimensional dynamics

The renormalized quantum Hamiltonian is given by the projection onto the two lowest eigenstates E0 = 0 and E1

Heff ≃ E1|ψ1 >< ψ1| (A17)

where the first excited state |ψ1 > is given by Eq A10 near zero temperature So Eq. A17 becomes

Heff ≃
β→+∞

E1

e−βU(C0) + e−βU(Cn+1)
[e−βU(Cn+1)|C0 >< C0|+ e−

β
2 U(C0)|Cn+1 >< Cn+1|

−e− β
2 [U(C0)+U(Cn+1)] (|C0 >< Cn+1|+ |Cn+1 >< C0|)] (A18)

So it is of the form of Eq. 15 with only the two configurations C0 and Cn+1

Heff ≃
β→+∞

GR(C0, Cn+1) (A19)

[

e−
β
2 [U(Cn+1)−U(C0]|C0 >< C0|+ e−

β
2 [U(C0)−U(Cn+1]|Cn+1 >< Cn+1| − |C0 >< Cn+1| − |Cn+1 >< C0

]

where the renormalized amplitude reads

GR(C0, Cn+1) ≃ E1e
− β

2 [U(C0)+U(Cn+1)]

e−βU(C0) + e−βU(Cn+1)
=
E1e

β
2 [U(C0)+U(Cn+1)]

eβU(C0) + eβU(Cn+1)
(A20)

Using Eq. A16, the final formula for the renormalized amplitude reads

1

GR(C0, Cn+1)
=

2 cosh β
2 [U(C0)− U(Cn+1)]

E1

=
e

β
2 [U(C0)−U(Cn+1)]

W (C0 → C1)

[

1 +

n
∑

m=1

m
∏

i=1

W (Ci → Ci−1)

W (Ci → Ci+1)

]

(A21)

This formula is used to obtain Eq. 38 and Eq. 56 of the text.
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4. Example of application

Let us now consider the case where the transition rates W (C → C′) of the effective one-dimensional problem of
Eqs A4 and A5 satisfy the detailed balance form of Eq. 10. Then we may rewrite the products as

m
∏

i=1

W (Ci → Ci−1)

W (Ci → Ci+1)
=

m
∏

i=1

(

G (Ci, Ci−1) e
− β

2 [U(Ci−1)−U(Ci]

G (Ci, Ci+1) e−
β
2 [U(Ci+1)−U(Ci]

)

=
G (C0, C1)

G (Cm, Cm+1)
e

β
2 [U(Cm)+U(Cm+1)−U(C0)−U(C1)] (A22)

so that the renormalized amplitude of Eq. A21 reads

1

GR(C0, Cn+1)
=

e
β
2 [U(C0)−U(Cn+1)]

G(C0, C1)e−
β
2 [U(C1)−U(C0]

[

1 +

n
∑

m=1

G (C0, C1)

G (Cm, Cm+1)
e

β
2 [U(Cm)+U(Cm+1)−U(C0)−U(C1)]

]

= e−
β
2 [U(C0)+U(Cn+1)]

n
∑

m=0

e
β
2 [U(Cm)+U(Cm+1)]

G (Cm, Cm+1)
(A23)

This formula is used to obtain Eq. 75 and Eq. 84 of the text.
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[19] L.H. Tang and H. Chaté, Phys. Rev. Lett. 86, 830 (2001).
[20] C. Monthus and T. Garel, Phys. Rev. E 77, 021132 (2008)
[21] B. Derrida and R.B. Griffiths, Eur.Phys. Lett. 8 , 111 (1989).
[22] J. Cook and B. Derrida, J. Stat. Phys. 57, 89 (1989).
[23] T. Halpin-Healy, Phys. Rev. Lett. 63, 917 (1989); Phys. Rev. A , 42 , 711 (1990).
[24] S. Roux, A. Hansen, L R da Silva, LS Lucena and RB Pandey, J. Stat. Phys. 65, 183 (1991).
[25] L. Balents and M. Kardar, J. Stat. Phys. 67, 1 (1992); E. Medina and M. Kardar, J. Stat. Phys. 71, 967 (1993).
[26] M.S. Cao, J. Stat. Phys. 71, 51 (1993).
[27] LH Tang J Stat Phys 77, 581 (1994).
[28] S. Mukherji and S. M. Bhattacharjee, Phys. Rev. E 52, 1930 (1995).

http://arxiv.org/abs/1303.5971


24

[29] R. A. da Silveira and J. P. Bouchaud, Phys. Rev. Lett. 93, 015901 (2004)
[30] C. Monthus and T. Garel, J. Stat. Mech. P02037 (2013).
[31] C. Monthus and T. Garel, J. Stat. Mech. P02023 (2013).
[32] C. Monthus and T. Garel, arXiv:1303.2483.
[33] C. W. Gardiner, “ Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences” (Springer Series

in Synergetics), Berlin (1985).
[34] N.G. Van Kampen, “Stochastic processes in physics and chemistry”, Elsevier Amsterdam (1992).
[35] H. Risken, “The Fokker-Planck equation : methods of solutions and applications”, Springer Verlag Berlin (1989).
[36] R.J. Glauber, J. Math. Phys. 4, 294 (1963).
[37] B.U. Felderhof, Rev. Math. Phys. 1, 215 (1970); Rev. Math. Phys. 2, 151 (1971).
[38] E. D. Siggia, Phys. Rev. B 16, 2319 (1977).
[39] J. C. Kimball, J. Stat. Phys. 21, 289 (1979).
[40] I. Peschel and V. J. Emery, Z. Phys. B 43, 241 (1981).
[41] C. Monthus and T. Garel, J. Stat. Mech. P12017 (2009).
[42] C. Castelnovo, C. Chamon and D. Sherrington, Phys. Rev. B 81, 184303 (2012).
[43] A.M. Rockett, Fibonacci Quart. 19, 433 (1981).
[44] R. Abou-Chacra, P.W. Anderson and D.J. Thouless, J. Phys. C : Solid State Physics 6, 1734 (1973)

R. Abou-Chacra and D. J. Thouless, J. Phys. C: Solid State Phys. 7, 65 (1974).
[45] P.M. Bell and A. MacKinnon, J. Phys. : Condens. Matt. 6, 5423 (1994).
[46] C. Monthus and T. Garel, J. Phys. A: Math. Theor. 42, 075002 (2009).
[47] J.R. Banavar and A.J. Bray, Phys. Rev. B 35, 8888 (1987); M. Nifle and H.J. Hilhorst, Phys. Rev. Lett. 68 , 2992 (1992);

T. Aspelmeier, A.J. Bray and M.A. Moore, Phys. Rev. Lett. 89, 197202 (2002).
[48] C. Monthus and T. Garel, J. Phys. A 41, 115002 (2008).
[49] C. Monthus and T. Garel, J. Stat. Mech. P01008 (2008).
[50] F. Solomon, Ann. Prob. 3 , 1 (1975); Y.G. Sinai, Theor. Prob. Appl. 27, 256 (1982); B. Derrida and Y. Pomeau, Phys.

Rev. Lett. 48, 627 (1982); B. Derrida, J. Stat. Phys. 31, 433 (1983).
[51] H. Kesten, Acta Math. 131, 207 (1973); H. Kesten, M. Koslov, F. Spitzer, Compositio Math 30, 145 (1975); B. Derrida,

H.J. Hilhorst, J. Phys. A 16, 2641 (1983); C. Calan, J.M. Luck, T. Nieuwenhuizen, D. Petritis, J. Phys. A 18, 501 (1985).

http://arxiv.org/abs/1303.2483

	I  Introduction 
	II  Model and notations 
	A  Hierarchical diamond lattice of branching ratio K
	B  Dynamics satisfying detailed balance 
	C  Associated quantum Hamiltonian
	D  Single-spin flip dynamics of Ising models 

	III  Dynamics of the pure Ising model
	A  Principle of the Renormalization for the dynamics 
	B  RG rule for the last RG step p=n 
	C  RG rule for the bulk RG steps 1 p n-1 
	D  Conclusion 

	IV  Dynamics of the random ferromagnetic model
	A  RG rule for the last RG step p=n 
	B  RG rule for the bulk RG steps 1 p n-1 
	C  Analysis of the random ferromagnetic chain (K=1) 
	D  Dynamical barriers for branching ratio K>1 
	1  Optimization of the dynamical path for the last RG step p=n 
	2  Optimization of the dynamical path for the bulk RG steps 1 p n-1 

	E  Case K=2 corresponding to the fractal dimension df=2 
	1  Last step RG rule for dynamical barriers when K=2 
	2  Bulk RG rules for dynamical barriers when K=2 
	3  Numerical results obtained via the pool method 


	V Conclusion
	A  Renormalization rule for an effective one-dimensional dynamics 
	1  First excited quantum state 
	2  Explicit first non-vanishing energy E1 for an effective one-dimensional dynamics 
	3  Renormalized amplitude GR for an effective one-dimensional dynamics 
	4  Example of application 

	 References

