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Scaling of the largest dynamical barrier

in the one-dimensional long-range Ising spin-glass

Cécile Monthus and Thomas Garel
Institut de Physique Théorique, CNRS and CEA Saclay, 91191 Gif-sur-Yvette, France

The long-range one-dimensional Ising spin-glass with random couplings decaying as J(r) ∝ r−σ

presents a spin-glass phase Tc(σ) > 0 for 0 ≤ σ < 1 (the limit σ = 0 corresponds to the mean-
field SK-model). We use the eigenvalue method introduced in our previous work [C. Monthus and
T. Garel, J. Stat. Mech. P12017 (2009)] to measure the equilibrium time teq(N) at temperature

T = Tc(σ)/2 as a function of the number N of spins. We find the activated scaling ln teq(N) ∼ Nψ

with the same barrier exponent ψ ≃ 0.33 in the whole region 0 ≤ σ < 1.

I. INTRODUCTION

The dynamical properties of spin-glasses have been much studied since many decades (see [1, 2] and references
therein). In particular, the scaling of dynamical barriers in the spin-glass phase has been analyzed along two different
paths, as we now recall.

A. Dynamics from an initial random configuration

For the dynamics starting from an initial random configuration at t = 0, it is useful to introduce some growing
coherence length L(t) with the following meaning : the smaller lengths l < L(t) are quasi-equilibrated whereas the
bigger lengths l > L(t) are still completely out of equilibrium. In particular, this picture is well established for pure
ferromagnets [3], where the coherence length L(t) grows as the power-law

Lpure(t) ∼ t
1
z (1)

where z is the dynamical exponent, with the numerical value z = 2 for non-conserved dynamics.
For disordered systems, the time-behavior of the coherence length L(t) has remained controversial over the years,

between a power-law similar to the pure case of Eq. 1, but with a non-universal dynamical exponent z(T,∆) that
depends on the temperature T and on the disorder strength ∆

t ∼ [L(t)]z(T,∆) (2)

and an activated scaling with a universal barrier exponent ψlinear , which does not depend on the temperature and
on the disorder strength, and characterizes the zero-temperature fixed point of the droplet scaling theory [4, 5]

ln t ∼ [L(t)]ψ
linear

(3)

For Directed Polymers in random media, the power-law behavior of Eq. 2 has been used by various authors [6],
but more recent works [7] have found the activated scaling of Eq. 3. For random ferromagnets, the debate between
the power-law behavior [8] and the activated scaling [9, 10] is still going on. Finally for spin-glasses, the same
controversy exists between power-law dynamics [11] and logarithmic dynamics [10, 12], as well as in the interpretation
of experimental data [13].

B. Scaling of the largest dynamical barrier

It turns out that another interesting dynamical observable is not controversial, and displays activated scaling :
it is the largest relaxation time teq(N) needed for a finite system containing N spins to converge towards thermal
equilibrium. It is also often called the ergodic time, since it represents the time needed to visit the whole phase space
of configurations.
For instance for the pure ferromagnet in dimension d, the largest relaxation time tpureeq (N) for a finite system

containing N = Ld spins corresponds near zero temperature to the time needed to go from one ground state (where

http://arxiv.org/abs/1309.2154v3
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all spins take the value +1) to the opposite ground state (where all spins take the value −1). As a consequence, it
satisfies the activated scaling

ln tpureeq (N = Ld) ∼ Ld−1 = N
d−1
d (4)

where Ld−1 corresponds to the energy cost of a system-size domain-wall of dimension (d−1) with respect to the ground
state energy. The difference with the power-law scaling of Eq. 1 can be explained as follows. The random initial
condition is a configuration of very high energy containing a large density of domain-walls, so that the relaxational
dynamics is dominated by the diffusion (hence the diffusion value z = 2 for the dynamical exponent) and annihilation
of the domain-walls. On the contrary, for the equilibrium time of Eq. 4, one may consider that the initial condition
is one of the ground state, and one is interested into the time needed to reach the opposite ground state by thermal
activation : so here the system has to create a system-size domain-wall as an intermediate step.
For the mean-field Sherrington-Kirkpatrick spin-glass model [14], which is the basis of the Replica-Symmetry-

Breaking scenario [15], there exists a consensus both theoretically [16, 17] and numerically [18–25] that the largest
relaxation time follows the activated scaling

ln tSKeq (N) ∝
N→∞

NψSK

(5)

with the barrier exponent

ψSK =
1

3
(6)

Again, this largest relaxation time corresponds near zero temperature to the time needed to go from one ground-state
to the opposite ground state. But the scaling of Eq. 5 is expected to be valid in the whole spin-glass phase T < Tc.
The droplet scaling theory [4, 5] also predicts that the largest relaxation time teq of a short-range spin-glass model

containing N = Ld spins satisfies an activated scaling

ln teq(N = Ld) ∝
N→∞

Lψ
linear

= Nψ (7)

where the exponent ψlinear defined with respect to the length scale is expected to coincide with the exponent of Eq.
3 as a consequence of scaling. In the following, we will use the exponent ψ = ψlinear/d defined with respect to the
total number N of spins, in order to compare more directly with the mean-field SK-model of Eq. 5 where the notion
of length does not exist.

C. Organization of the paper

The aim of the present paper is to measure the scaling of the largest dynamical barrier ln teq(N) for the one-
dimensional long-range Ising spin-glass [26] as a function of the number N of spins, via the method introduced in our
previous work [25].
The paper is organized as follows. In section II, we recall the definition of the one-dimensional long-range spin-

glass and its main static properties. In section III, we present our numerical results concerning the dynamics. Our
conclusions are summarized in section IV.

II. REMINDER ON THE STATICS OF THE ONE-DIMENSIONAL LONG-RANGE SPIN-GLASS

Since spin-glasses on hypercubic lattices are difficult to study numerically as a function of the dimension d, many
recent works have been devoted to one-dimensional long-range Ising Spin-Glass [26–41] (note that a diluted version
of the model [42, 43] also exists).

A. Definition of the Model

The one-dimensional long-range Ising Spin-Glass [26] is defined by the following energy of configurations C

U(C) = −
∑

1≤i<j≤N

JijSiSj (8)
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where the N classical spins Si = ± are placed periodically on a ring, so that the distance rij between the spins Si
and Sj reads

rij =
N

π
sin

(
|j − i| π

N

)
(9)

The couplings are chosen to decay with respect to this distance as a power-law of exponent σ

Jij = cN (σ)
ǫij
rσij

(10)

where ǫij are random Gaussian variables of zero mean ǫ = 0 and unit variance ǫ2 = 1. The constant cN (σ) is defined
by the condition

1 =
∑

j 6=1

J2
1j = c2N (σ)

∑

j 6=1

1

r2σ1j
(11)

The exponent σ is thus the important parameter of the model.
An important critical exponent that characterizes the spin-glass phase is the stiffness exponent θ associated with

the difference of the ground state energies between Periodic and Antiperiodic boundary conditions in a given sample
(see [27] for the precise meaning of Antiperiodic boundary conditions for the long-ranged model of Eq. 8)

E
(P )
GS (N)− E

(AP )
GS (N) ∼ Nθu (12)

where u is a sample random variable of order O(1) and of zero mean.

B. Non-extensive region 0 ≤ σ < 1/2

In the non-extensive region 0 ≤ σ < 1/2, Eq. 11 yields

cN (σ) ∝ Nσ− 1
2 (13)

so there is an explicit size-rescaling of the couplings as in the Sherrington-Kirkpatrick (SK) mean-field model that
corresponds to the case σ = 0. Recent studies [38, 39] have proposed that both universal properties like critical
exponents, but also non-universal properties like the critical temperature do not depend on σ in the whole region
0 ≤ σ < 1/2, and thus coincide with the properties of the SK model σ = 0. In particular, the exponent governing the
correction to extensivity of the averaged ground state energy

E
(P )
GS (N) ≃ Ne0 +Nθshifte1 + ... (14)

is then expected to keep the value measured in the SK model [44–53]

θshift(0 ≤ σ < 1/2) = θSKshift ≃ 0.33 (15)

The stiffness exponent θ(σ) of Eq. 12 measured in [27] are compatible with this constant value.
The critical temperature is also expected to remain constant in the whole non-extensive region 0 ≤ σ < 1/2 [38, 39]

Tc(0 ≤ σ < 1/2) = T SKc = 1 (16)

C. Extensive region σ > 1/2

In the extensive region σ > 1/2, Eq. 11 yields

cN (σ) = O(1) (17)

so there is no size rescaling of the couplings. The limit σ = +∞ corresponds to the short-range one-dimensional
model. There exists a spin-glass phase at low temperature for σ < 1 [26]. The stiffness exponent θ(σ) of Eq. 12
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measured via Monte-Carlo simulations on sizes 16 ≤ N ≤ 256 in [27] decays as σ grows with the following values (see
[27] for other values of σ)

θ(σ = 0.62) ≃ 0.24

θ(σ = 0.75) ≃ 0.17

θ(σ = 0.87) ≃ 0.08

θ(σ = 1) ≃ 0 (18)

These values can be recovered on smaller sizes 6 ≤ L ≤ 24 via exact enumeration [40], by considering the change be-
tween Periodic and Antiperiodic Boundary Conditions, or by considering the correction to extensivity of the averaged
ground state energy.
The critical point is mean-field-like for σ < 2/3, and non-mean-field-like for 2/3 < σ < 1 [26]. The critical

temperature decays as σ grows, with the following values [32]

Tc(σ = 0.65) ≃ 0.86

Tc(σ = 0.75) ≃ 0.69

Tc(σ = 0.85) ≃ 0.49

Tc(σ = 1) ≃ 0 (19)

D. Comparison with the short-range spin-glass in dimension d

The critical exponents for the spin-glass transition at Tc have been compared between the long-range model (LR)
in one dimension and the short-range (SR) model in dimension d [34, 43] with the following conclusion (see [34, 43]
for more details) : the SR model in dimension d = 3 is somewhat similar to the LR model of parameter σ ≃ 0.896,
whereas the LR model in dimension d = 4 is somewhat similar to the LR model of parameter σ ≃ 0.79. The mean-field
region d ≥ dc = 6 is similar to the mean-field region σ < σc =

2
3 with d = 2/(2σ − 1).

One may also establish some correspondence based on the stiffness exponent of Eq. 12 which characterizes the
zero-temperature fixed point. For the SR model in dimension d, the values measured for the stiffness exponent
θSRlinear defined with respect to the linear length L (see [54] and references therein) reads for the stiffness exponent
θSR = θSRlinear/d of Eq 12 defined with respect to the number N = Ld of spins

θSR(d = 2) ≃ −0.28

2
≃ −0.14

θSR(d = 3) ≃ 0.24

3
≃ 0.08

θSR(d = 4) ≃ 0.61

4
≃ 0.15

θSR(d = 5) ≃ 0.88

5
≃ 0.176

θSR(d = 6) ≃ 1.1

6
≃ 0.183 (20)

that may be compared to the values of the stiffness model θ(σ) for the LR model as a function of σ (see Eq. 18).

III. SCALING OF THE LARGEST DYNAMICAL BARRIER IN THE SPIN-GLASS PHASE

In this section, we explain how the largest dynamical barrier can be obtained from the Master Equation defining
the stochastic dynamics.

A. Metropolis dynamics

The Metropolis dynamics of the long-range spin-glass of Eq. 8 is defined by the Master Equation

dPt (C)
dt

=
∑

C′

Pt (C′)W (C′ → C)− Pt (C)
∑

C′

W (C → C′) (21)
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where the transition rate W (C′ → C) from configuration C′ to C reads in terms of the energy of Eq. 8

W (C → C′) = δ<C,C′>min
[
1, e−

(U(C′)−U(C))
T

]
(22)

The notation δ<C,C′> means that the two configurations are related by a single spin-flip. These rates satisfy the
detailed-balance property

Peq(C)W (C → C′) = Peq(C′)W (C′ → C) (23)

with respect to the Boltzmann thermal equilibrium

Peq(C) =
e−

U(C)
T

Z

Z =
∑

C

e−
U(C)
T (24)

B. Associated quantum Hamiltonian

As is well known (see for instance the textbooks [55–57]) any master equation satisfying detailed-balance can be
transformed into a symmetric operator via the change of variable

Pt(C) ≡ e−
U(C)
2T ψt(C) (25)

The function ψt(C) then satisfies the imaginary-time Schrödinger equation

dψt (C)
dt

= −Hψt (C) (26)

where the quantum Hamiltonian reads in configuration space

H =
∑

C

ǫ (C) |C >< C|+
∑

C,C′

V (C, C′)|C >< C′| (27)

The on-site energies read

ǫ (C) =
∑

C′

W (C → C′) (28)

whereas the hopping terms read

V (C, C′) = −e−
(U(C′)−U(C))

2T W (C′ → C) (29)

For spin models without disorder, this mapping has been used for more than fifty years [58–65]. For disordered
systems, this mapping onto a quantum hamiltonian has been also much used both for the one-dimensional diffusion
in random media [66–69] and for spin models like the Sherrington-Kirkpatrik model ([25] and Appendix B of [70]) or
disordered ferromagnets [71, 72].

C. Properties of the spectrum of the quantum Hamiltonian H

The spectral decomposition of the evolution operator e−tH associated to the quantum Hamiltonian of Eq. 27 reads
in terms of the eigenvalues En and the associated normalized eigenvectors |ψn >

e−tH =
∑

n≥0

e−tEn |ψn >< ψn| (30)

So the conditional probability Pt (C|C0) to be in configuration C at t if one starts from the configuration C0 at time
t = 0 can be written as

Pt (C|C0) = e−
U(C)−U(C0)

2T < C|e−tH |C0 >= e−
U(C)−U(C0)

2T

∑

n

e−Entψn(C)ψ∗
n(C0) (31)
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The quantum Hamiltonian H has actually very special properties which come from its relation to the dynamical
master equation :
(i) the ground state energy vanishes E0 = 0, and the corresponding eigenvector is exactly known to be

ψ0(C) =
e−

U(C)
2T

√
Z

(32)

where Z is the partition function of Eq. 24.
This corresponds to the convergence towards the Boltzmann equilibrium in Eq. 25 for any initial condition C0

Pt (C|C0) ≃
t→+∞

e−
U(C)−U(C0)

2T ψ0(C)ψ∗
0(C0) =

e−
U(C)
T

Z
= Peq(C) (33)

(ii) the other energies En > 0 determine the relaxation towards equilibrium. In particular, the lowest non-vanishing
energy E1 determines the largest relaxation time (1/E1) of the system

Pt (C|C0)− Peq(C) ≃
t→+∞

e−E1te−
U(C)−U(C0)

2T ψ1(C)ψ∗
1(C0) (34)

This largest relaxation time represents the ’equilibrium time’ discussed in the introduction

teq ≡
1

E1
(35)

In summary, the largest relaxation time teq can be computed without simulating the dynamics by any eigenvalue
method able to compute the first excited energy E1 of the quantum Hamiltonian H (where the ground state is given
by Eq. 32 and has for eigenvalue E0 = 0).

D. Conjugate gradient method in each sample to compute E1

The ’conjugate gradient method’ has been introduced as an iterative algorithm to find the minimum of functions
of several variables with much better convergence properties than the ’steepest descent’ method [73, 74]. It can be
applied to find the ground state eigenvalue and the associated eigenvector by minimizing the corresponding Rayleigh
quotient [75, 76]

R ≡ < v|H |v >
< v|v > (36)

In our previous work [25], we have proposed to adapt the method described in [75, 76] concerning the ground state E0

to compute instead the first excited energy E1 : the only change is that the Rayleigh quotient has to be minimized
within the space orthogonal to the ground state. More precisely, in spin models where there is a global symmetry under
a global flip of all the spins, the ground state ψ0 of Eq. 32 is symmetric under a global flip of all the spins, whereas
the first excited state ψ1 is anti-symmetric under a global flip of all the spins. As a consequence, it is convenient to

choose the initial trial eigenvector |v > for the conjugate gradient method as follows : denoting Cpref = {Sprefi } and

Ĉpref = {−Sprefi } the two opposite configurations where the ground state ψ0 of Eq. 32 is maximal, one introduces
the overlap between an arbitrary configuration C and Cpref

Q(C, Cpref) =
N∑

i=1

SiS
pref
i (37)

and the vector

v(C) = sgn (Q(C, Cpref ))ψ0(C) (38)

This vector is anti-symmetric under a global flip of all the spins and thus orthogonal to the ground state ψ0. Moreover,
it has already a small Rayleigh quotient (Eq. 36) because within each valley where the sign of the overlap is fixed, it
coincides up to a global sign with the ground state ψ0 of zero energy. So the non-zero value of the Rayleigh quotient
of Eq. 36 only comes from configurations of nearly zero overlap Q. As a consequence, it is a good starting point for
the conjugate gradient method to converge rapidly towards the first excited state ψ1.
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We have applied this procedure to the long-range spin-glass model of Eq. 8 for various values of σ. We have chosen
to work in the ’middle’ of the spin-glass phase, i.e. at the temperature

T =
Tc(σ)

2
(39)

where the values of the critical temperature Tc(σ) obtained in Ref [32] have been recalled in Eq. 19. The data
presented below have been obtained for systems of 6 ≤ N ≤ 20 spins (the space of configurations is of size 2N ), with
the following statistics of ns(N) independent disordered samples

N = 6; 8; 10, 12; 14; 16; 18; 20

ns(N) = 2.108; 2.108; 36.106; 63.105; 96.104; 16.104; 28.103; 3.103 (40)

These sizes are small with respect to the sizes N ≤ 1024 used in Monte-Carlo simulations to measure the largest
barrier of the SK model [21–24], but we have checked in our previous work [25] that the sizes and statistics of Eq.
40 allow to recover the correct exponent ψSK = 1

3 measured in Monte Carlo simulations on larger sizes. The large
statistics of Eq. 40 also allows to better characterize the histogram over samples.
The output is the histogram QN (Γeq) over disordered samples of the largest dynamical barrier (Eq. 35)

Γeq ≡ ln teq = − lnE1 (41)

The simplest observable is the averaged value, that defines the barrier exponent ψ of Eq. 7

Γeq(N) ≡ ln teq(N) ∝
N→∞

Nψ (42)

but it is of course also interesting to consider the width ∆(N) of the probability distribution QN(Γeq), that defines
the sample-to-sample fluctuation exponent ψwidth

∆(N) ≡
(
Γ2
eq(N)− (Γeq(N))2

)1/2

∝
N→∞

Nψwidth (43)

For the SK model, the introduction of a different exponent for the width ψwidth ≃ 0.25 < ψ = 1/3 has been proposed
in Ref. [22], but another work [23] is in favor of the same exponent ψwidth ≃ 0.33 ≃ ψ.

Finally, we will consider the rescaled distribution Q̃ of the reduced variable u ≡ Γeq−Γeq(N)
∆(N)

QN(Γeq) ∼
1

∆(N)
Q̃

(
u ≡ Γeq − Γeq(N)

∆(N)

)
(44)

and in its asymptotic behavior

ln Q̃(u) ∝
u→+∞

−uη (45)

that defines the tail exponent η.

E. Numerical results in the non-extensive region 0 ≤ σ < 1/2

As recalled in section II B, the static properties are expected to remain the same in the whole non-extensive region
0 ≤ σ < 1/2 [38, 39]. Our present numerical results for the dynamics are also compatible with this statement. As

shown on Fig. 1 (a) concerning the average value Γeq(N), the data concerning σ = 0.25 in the middle of the non-
extensive region nearly coincide (especially for the largest sizes) with our previous data concerning the SK model [25]
corresponding to σ = 0. Our conclusion is thus that the barrier exponent ψ of Eq. 42 keeps the value of Eq. 6 in the
whole non-extensive region

ψ(0 ≤ σ < 1/2) = ψSK ≃ 0.33 (46)

Note that this value also coincides with the exponent θshift(0 ≤ σ < 1/2) ≃ 0.33 of Eq. 15 and with the stiffness
exponent θ(σ) ≃ 0.33 measured in [27]

ψ(σ) ≃ 0.33 ≃ θ(σ) (47)

As shown on Fig. 1 (b), the probability distribution QN(Γeq) convergences rapidly towards the fixed rescaled

distribution Q̃(u) of Eq. 44 : the corresponding tail exponent η of Eq. 45 is of order

η(0 ≤ σ < 1/2) ≃ 1.33 (48)



8

1.5 2 2.5 3
1.3

1.4

1.5

1.6

1.7

1.8

1.9

(a)

ln N

ln Γ
eq

σ=0

σ=0.25

−2 0 2 4 6 8
−10

−8

−6

−4

−2

0

u

ln Q
~

(b)

FIG. 1: Statistics over samples of the largest barrier Γeq(N) ≡ ln teq(N) for the long-range one-dimensional spin-glass of N

spins with σ = 0.25 (middle of the non-extensive region 0 ≤ σ < 1/2) (a) Scaling of the averaged value Γeq(N) ∝ Nψ in a
log-log plot : the slope corresponds to the barrier exponent ψ ≃ 0.33. Note that the data for σ = 0.25 almost coincide with the
data concerning the SK model (σ = 0) (b) Rescaled probability distribution Q̃(u) of Eq. 44 for the sizes N = 6; 8; 10; 12; 14; 16
shown here in log-scale to see the tail of Eq. 45 : the tail exponent is of order η ≃ 1.33.

F. Numerical results in the extensive region 1/2 < σ < 1

As shown on Fig. 2 (a) concerning the average value Γeq(N), our data for σ = 0.65, 0.75, 0.85 in the extensive
region 1/2 < σ < 1 correspond to the same slope with the same value of the barrier exponent as in Eq. 46

ψ(1/2 < σ < 1) ≃ 0.33 (49)

This result is rather surprising, since the static properties, and in particular the stiffness exponent θ(σ) (Eq. 18),
decays continuously as σ grows in the extensive region. Using the numerical values of Eq. 18 obtained in Ref [27], we
note that the inequality

ψ(σ) ≃ 0.33 > θ(σ) (50)

is satisfied, in agreement with the general bound ψ ≥ θ of the droplet scaling theory [5].
As shown on Fig. 2 (b) for the value σ = 0.75, the probability distribution QN(Γeq) again convergences rapidly

towards the fixed rescaled distribution Q̃(u) of Eq. 44. From our data for the three value σ = 0.65; 0.75; 0.85, the tail
exponent η(σ) of Eq. 45 seems to slightly grow with σ. It is not clear to us whether it is only a numerical artefact or
a real effect. Nevertheless, we can at least state that it remains in the interval

1.33 ≤ η(1/2 ≤ σ < 1) ≤ 1.5 (51)

G. Discussion

In a previous work [77], we have proposed to interpret the difference between the dynamical exponent ψ and the
stiffness exponent θ as follows. The stiffness exponent θ defined by Eq. 12 at zero temperature actually character-
izes the whole finite temperature spin-glass phase, where it governs the free-energy difference between Periodic and
Antiperiodic boundary conditions

F (P )(N)− F (AP )(N) ∼ Nθu (52)

As a consequence, it is the result of a global optimization over the whole system, whereas the local dynamics cannot
maintain the global optimization at all times, and sees individual configurations, so that the dynamical exponent ψ
should actually coincide with the exponent θS

conjecture : ψ = θS (53)
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FIG. 2: Statistics over samples of the largest barrier Γeq(N) ≡ ln teq(N) for the long-range one-dimensional spin-glass of N

spins in the extensive region σ > 1/2) (a) Scaling of the averaged value Γeq(N) ∝ Nψ in a log-log plot for σ = 0.65, σ = 0.75
and for σ = 0.85 : the three slopes correspond to the same barrier exponent of order ψ ≃ 0.33. (b) Rescaled probability

distribution Q̃(u) of Eq. 44 for σ = 0.75 for the sizes N = 6; 8; 10; 12; 14; 16 shown here in log-scale to see the tail of Eq. 45 :
the tail exponent is of order η(σ = 0.75) ≃ 1.45.

which governs the scaling of the entropy difference in a given sample between Periodic and Antiperiodic boundary
conditions

S(P )(N)− S(AP )(N) ∼ NθSv (54)

where v is a sample Gaussian random variable of order O(1).

In short-range models, the droplet scaling theory [4, 5] predicts that the entropy of extensive droplets scales as L
ds
2

(coming from some Central Limit Theorem for independent local contributions along the interface of fractal dimension
ds)

SR : θlinearS =
ds
2

(55)

The conjecture of Eq. 53

ψlinearSR = θlinearS =
ds
2

(56)

has been discussed in detail in [77] for spin-glasses, but also for other disordered models like directed polymers or
random ferromagnets.
For the one-dimensional long-range model, the entropy exponent θS of Eq. 54 has been numerically measured in our

recent work [41] : the conclusion is that it takes the same simple value both in the non-extensive region 0 ≤ σ < 1/2
and in the extensive region 1/2 < σ < 1

LR : θS(0 ≤ σ ≤ 1) ≃ 1

3
(57)

Our conclusion is thus that the conjecture of Eq. 53 is satisfied with the same constant value found here for the
dynamical exponent

LR : ψ(0 ≤ σ ≤ 1) ≃ 1

3
≃ θS(0 ≤ σ ≤ 1) (58)

However, there exists an important difference between the non-extensive region and the extensive region :
(i) in the non-extensive region 0 ≤ σ < 1/2, the stiffness exponent θ also takes the same value 1/3

0 ≤ σ < 1/2 : ψ ≃ θS ≃ 1

3
≃ θ (59)
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(ii) in the non-extensive region σ > 1/2, the stiffness exponent θ(σ) takes smaller values (see Eq. 18)

1/2 ≤ σ < 1 : ψ ≃ θS ≃ 1

3
> θ(σ) (60)

So here there is an entropy-energy cancellation mechanism with respect to the free-energy as in short-ranged models
[4, 5].

IV. CONCLUSION

In this paper, we have used the eigenvalue method introduced in our previous work [25] to measure the scaling of
the largest dynamical barrier for the long-range one-dimensional Ising spin-glass as a function of the parameter σ. In
the whole region where a spin-glass phase exists, we have found the same barrier exponent

ψ(0 ≤ σ < 1) ≃ 0.33 (61)

We have proposed that this value coincides with the entropy exponent θS(σ) recently measured in [41], in agreement
with the general conjecture of Eq. 53.
If the simple value of Eq. 61 is confirmed in the future by other numerical studies on larger sizes (like the references

[21–24] concerning the SK model corresponding to the special case σ = 0), we hope that it will help to better
understand the phase space structure of the spin-glass phase.

[1] “Spin-glasses and random fields”, Edited by A.P. Young, World Scientific, Singapore (1998).
[2] “Slow relaxations and non-equilibrium dynamics in Condensed matter”, Les Houches July 2002, Edited by J.L. Barrat,

M.V. Feigelman, J. Kurchan, J. Dalibard, EDP Les Ulis, Springer, Berlin.
[3] A. J. Bray, Adv. in Phys. 43, 357 (1994).
[4] A.J. Bray and M. A. Moore, in Heidelberg colloquium on glassy dynamics, J.L. van Hemmen and I. Morgenstern, Eds

(Springer Verlag, Heidelberg, 1986).
[5] D.S. Fisher and D.A. Huse, Phys. Rev. B38, 386 (1988);

D.S. Fisher and D.A. Huse, Phys. Rev B38, 373 (1988).
[6] H. Yoshino, J.Phys. A 29, 1421 (1996) ;

A. Barrat, Phys. Rev. E 55, 5651 (1997);
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