N

N

Block Renormalization for quantum Ising models in
dimension d = 2: applications to the pure and random
ferromagnet, and to the spin-glass
Cécile Monthus

» To cite this version:

Cécile Monthus. Block Renormalization for quantum Ising models in dimension d = 2: applications
to the pure and random ferromagnet, and to the spin-glass. Journal of Statistical Mechanics: Theory
and Experiment, 2015, 2015 (01), pp.023. 10.1088/1742-5468/2015/01/P01023 . cea-01322782

HAL 1d: cea-01322782
https://cea.hal.science/cea-01322782
Submitted on 27 May 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://cea.hal.science/cea-01322782
https://hal.archives-ouvertes.fr

arXiv:1409.8459v2 [cond-mat.dis-nn] 19 Jan 2015

Block Renormalization for quantum Ising models in dimension d = 2 :
applications to the pure and random ferromagnet, and to the spin-glass

Cécile Monthus
Institut de Physique Théorique, CNRS and CEA Saclay, 91191 Gif-sur-Ywvette cedex, France

For the quantum Ising chain, the self-dual block renormalization procedure of Fernandez-Pacheco
[Phys. Rev. D 19, 3173 (1979)] is known to reproduce exactly the location of the zero-temperature
critical point and the correlation length exponent v = 1. Recently, Miyazaki and Nishimori [Phys.
Rev. E 87, 032154 (2013)] have proposed to study the disordered quantum Ising model in dimensions
d > 1 by applying the Fernandez-Pacheco procedure successively in each direction. To avoid the
inequivalence of directions of their approach, we propose here an alternative procedure where the d
directions are treated on the same footing. For the pure model, this leads to the correlation length
exponents v ~ 0.625 in d = 2 (to be compared with the 3D classical Ising model exponent v ~ 0.63)
and v ~ 0.5018 (to be compared with the 4D classical Ising model mean-field exponent v = 1/2).
For the disordered model in dimension d = 2, either ferromagnetic or spin-glass, the numerical
application of the renormalization rules to samples of linear size L = 4096 yields that the transition
is governed by an Infinite Disorder Fixed Point, with the activated exponent ¥ ~ 0.65, the typical
correlation exponent viy, =~ 0.44 and the finite-size correlation exponent rrpgs ~ 1.25. We discuss
the similarities and differences with the Strong Disorder Renormalization results.

I. INTRODUCTION

The quantum Ising model defined in terms of Pauli matrices (¥, o7)

HZ—ZhlUf - Z Ji)jO'fUJZ» (1)

<i,j>

is the basic model to study quantum phase transitions at zero-temperature |1]. On a hypercubic lattice in dimension
d, the pure model with the same transverse field h on all sites, and the same ferromagnetic coupling J between
nearest-neighbors is well understood via the equivalence with the classical Ising model in dimension d®*** = d + 1,
i.e. the time plays the role of an extra space-dimension |1, and the dynamical exponent is zp,r. = 1. In particular,
the quantum model in d = 1 corresponds to the exactly solved 2D classical Ising model, the quantum model in d = 2
corresponds to the 3D classical Ising model, and the quantum model in dimension d > 3 is characterized by the
standard mean-field exponents.

From the point of view of Block-Renormalization for quantum models, there exists a special self-dual procedure
introduced by Fernandez-Pacheco [2, 3], which is able to reproduce the exact critical point (J/h). = 1 and the exact
correlation length exponent v(d = 1) = v(d®*** = 2) = 1. Various generalizations of this procedure to higher
dimensions d > 1 have been studied [446], as well as extensions to other quantum models like the Potts and the
Ashkin-Teller models [7-10].

In the disordered case, where the transverse fields h; and the couplings J; ; are random variables, many exact
results have been obtained in d = 1 by Daniel Fisher [11] via the asymptotically exact strong disorder renormalization
procedure (for a review, see [12]). In particular, the transition is governed by an Infinite Disorder Fixed Point
and presents unconventional scaling laws with respect to the pure case. In dimension d > 1, the strong disorder
renormalization procedure has been studied numerically with the conclusion that the transition is also governed by an
Infinite-Disorder fixed point in dimensions d = 2, 3,4 [13-23]. These numerical renormalization results are in agreement
with the results of independent quantum Monte-Carlo in d = 2 |24, 125]. The Strong Disorder Renormalization is thus
a very powerful method, but it leads to a complicated renormalized topology for the surviving clusters as soon as
d > 1. In particular, a large number of very weak bonds are a priori generated during the RG, that will eventually
not be important for the forthcoming RG steps. This is why recent numerical implementations of Strong Disorder
RG rules are based on algorithms avoiding this proliferation of weak generated bonds [20-23].

A natural question is whether Infinite Disorder Fixed Points can be also reproduced by more standard block-
renormalization. Recently, Miyazaki and Nishimori [26] have proposed to generalize the block-renormalization of
Fernandez-Pacheco [2] concerning the pure model in d = 1, and their extension for the pure model in d = 2,3 [5] to
the random case : their results are in agreement with the Infinite Disorder Fixed Point scalings. However in dimension
d > 1, their procedure has the drawback that the various directions are treated inequivalently, so that they need to
re-symmetrize afterward [5]. In addition, in the random case, they have used some pool method that does not keep
all the generated correlations between renormalized parameters, and the only critical exponent that they measure is
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the finite-size correlation length exponent v, whereas it is interesting to measure also the activated exponent v and
the typical correlation length exponent vy,.

In the present paper, we thus propose another generalization in dimensions d = 2 and d = 3 of the self-dual one-
dimensional block-renormalization of Fernandez-Pacheco, that we study analytically in the pure case and numerically
in the disordered case. The paper is organized as follows. In section [[I, we describe the elementary renormalization
rule that will be applied throughout the paper. The application to the one-dimensional quantum Ising model of Eq.
[l both pure and random, is recalled in section [Tl In section [[V] we derive the Block Renormalization rules for the
two-dimensional case. The applications of these two-dimensional rules are discussed respectively in section [V] for the
pure ferromagnetic model, in section [V for the random ferromagnetic model, and in section [VIIl for the spin-glass
model. Our conclusions are summarized in section [VIIIl The extension to dimension d = 3 is presented in Appendix

Al

II. ELEMENTARY RENORMALIZATION RULE

In this section, we consider the following elementary Hamiltonian involving (b + 1) spins o; with ¢ = 0,1,2,..,b

b
Hy =Y (=hio} — Jo.i0407) (2)

=1

where o plays the special role of the 'master’, and the b spins o; with ¢ = 1,2, ..,b are the ’slaves’.

A. Diagonalization of H,

For each eigenvalue Sy = %1 of ¢, one has to diagonalize independently the b Hamiltonians concerning the single
quantum spin o; in the transverse field h; and in the effective magnetic field (Jy ;.50)

h(»SO) — _hio'iz — JO,iSOUiZ (3)

3

The two eigenvalues read

AT (S0) = /17 + T3 (4)

with the following corresponding eigenvectors

. |S1 =+1> +Ci(So)|Si =—-1>

A (Sp) >
[A: (So) 1+ c(S0)
|)\;F(S()) N —Ci(So)|Si:+1>+|Si:_1> (5)
1+ Cf(So)
where
hi h? + J02,z — JO)iSQ 1
ci(So) = = = (6)

A /hf + J&l + JQJ'SQ hi ci(_SO)

In summary, the Hamiltonian Hp of Eq. Bl has two degenerate ground states labeled by the two values Sy = =+1.
The ground-state energy is simply obtained by adding the b contributions A; (Sp)

b b
ESY =3 A (S0) ==Y\ /n2 + J2, (7)

i=1 i=1
The two corresponding ground-states are obtained by the tensor products

G5 > 150 > B(&y T (50)>) ©



B. Projection onto the two lowest states of H,

The projector onto the two ground-states reads

Po= > |GSYY) >< @S|
So==%1

It is thus convenient to define the renormalized spin g from these two ground-states
oo = So >= |GSY) >= S5 > @(@%_,|\; (So) >)
with the corresponding operators

Oho = |0Ro =+ ><0Ro=+|— |0k = — >< ke = —|
Oro = |0Ro =+ ><0Ro = —|+|0Re = — >< TRo = +|

C. Projection rule for o

To evaluate P,of Py, we have to consider the action of the operator o§ on each ground state

oZ|GSB) > = 6E|S) > (RN (So) >)
= 50|80 > ®(®_1|A; (So) >)
= 5o|GS0) >

This yields the following trivial projection rule in terms of the renormalized operator c%, of Eq. Il

z z
PbUQPb = 0Ro

D. Projection rule for o}

To evaluate Pyo Py, we need to compute the action of the operator o7 on each ground state
oGS0 > =578y > @(®%_; A} (So) >)
=[S0 > ®(7 |7 (So) >) @ (@5l A7 (S0) >)
Using

- 21\~ 1—c(S Jo,i
< A; (So)lof |A; (So) >= (#) = §p——2

1+ G (SO) /h% + Jg,z

one obtains the following projection rule in terms of the renormalized operator ¢, of Eq. ]

Jo s
Pyo? P, = #0’%0
/3,2 2
hi +J5,
E. Projection rule for o§

To compute Pyo§ Py, we have to consider the action of the operator of on each ground state

o8]G8 > = 6818y > @ (@8, A7 (So) >)
= | — 50 > ®(®)_11A; (So) >)

(11)

(12)

(13)

(16)



Using

<GS |gE|Gs) > =0
b b

< GS50)|gr |G > H <A (=80)|A; (So) >= H (ﬂ> =[[| — (18)

trd®)/) e+ 2,

one obtains the following projection rule in terms of the renormalized operator o%,, of Eq. ]

b

h:
Pyog Py = H S ok (19)
=1 \\/hE TG
F. Physical meaning

The physical meaning of the procedure derived above is thus very simple : the renormalized spin ory represents
the 'master spin’ gg dressed by its b ’slave spins’ ;. For each slave i = 1,2,..,b, we may consider the two limiting
cases :

(a) if Jo,; > h;, then the slave spin o; is ferromagnetically locked to its master o (Eq. becomes Pyo? P, ~ o
to be compared with Eq. [3), ~ (Eq. 9.

(b) if Jo; < hi, then the slave spin o; is mostly disordered and only weakly polarized by its master oo (Eq.

becomes P,o? P ~ ]}; %), so that the flipping of the master spin is unchanged (Eq. [I9).

The projection rules above are thus compatible with the Strong Disorder RG rules in the two limits Jy ; > h; and
Jo,i < h; , but can also apply to cases where Jy; ~ h;. So they can be used to analyze both pure and random
quantum Ising models, as recalled in the following section for d = 1.

IIT. REMINDER ON THE APPLICATION IN DIMENSION d =1
The Hamiltonian of the quantum Ising chain reads

H:—Zh(i ZJ i)oFoi, (20)

In a block renormalization rule, one wishes to replace each block of two spins (o2;—1;02;) by a single renormalized
Spin og(2:)- It is thus convenient to rewrite Eq. as

= ZHz (21)

H, =-h(2i)o%, —h(2t—1)05,_ — 054 I:Jf(2i —1)os, + Jz(2i — 2)U§i_2] (22)

A. Block renormalization

The idea of Fernandez-Pacheco |2], written here for the random case [26], is the following choice of the intra-block
Hamiltonian

HY = —n(2i—1)0%_, — Jz(2i — 1)o3,_10%; (23)

Since Hl-(l) has the form the Hamiltonian of Eq. 2l analyzed in section[[I} the two spins (02;; 02;,—1) can be renormalized
via a single renormalized spin (Ug(%)). The application of the projection rules of Eqs[I3] [ and 19 read for the present



case
P 05 P = O
P o P, = LD
\/h2(2i—1)+J§(2z’—1j)
P ot il 1)

- \/h2(2i — 1)+ J2(2i — 1)

As a consequence, the projection of the remaining part of the Hamiltonian

g =p0) N (- B P =S HE

intra
(4) i
Hz'R = —hR(%)Ufzz(zi) - JQR;E(zi - 2)‘713(21'72)‘712%(21') (25)

has the same form as the initial Hamiltonian of Eq. B0, in terms of
(i) the renormalized transverse fields on the remaining even sites

h(2i—1
RE(2i) = h(2i) @2i-1 (26)
\/h2(2i — 1)+ 220 - 1)
(ii) the renormalized couplings between the remaining even sites
R (o : Jz(2i — 1)
Joz(21 —2) = Jz(2i — 2) (27)

\/h2(2i — 1)+ J2(2i — 1)

B. Application to the pure quantum Ising chain [2]

If the initial parameters are (h,J) on the whole chain, one obtains after one RG step the renormalized parameters
(Eqs 26] and 27)

)3 — hL
4/J2 +h2
J
LR - (28)

ST

so that the ratio K = % evolves according to the simple rule
Kr="=K?=¢(K) (29)

The disordered attractive fixed point K = 0 and the ferromagnetic attractive fixed point K — 400 are separated by
the unstable fixed point K. = 1 characterized by the correlation length exponent v = 1 obtained by 20 = ¢ (K.) =
2K, = 2. The fact that both K, and v are in agreement with the exact solution [27] shows that the Fernandez-Pacheco
choice [2] of the intra-block Hamiltonian of Eq. 23]is better than other choices [28-31].

Since the quantum Ising chain represents the anisotropic limit of the two-dimensional classical Ising model and is the
the same universality class, it is interesting to compare with all the real-space renormalization procedures concerning
classical spin models, from the early Migdal-Kadanoff schemes to the more recent tensor networks formulations (see
the recent review [32] and references therein). For the two-dimensional Ising model, whenever the two directions are
treated on the same footing, the various real-space RG procedures that have been proposed are able to produce very
good approximations of the exponent v (see for instance the Table I of the review [32]) but never yield exactly v = 1,
in contrast to the Fernandez-Pacheco quantum procedure described above. So it seems presently that the only way
to obtain exactly v = 1 for the 2D Ising model is by defining a renormalization procedure for the transfer matriz [33]
in order to inherit the exactness of the exponent v of the Fernandez-Pacheco quantum procedure.



C. Application to the disordered quantum Ising chain [26]

In terms of the ratios

Kali) = 0 (30)
the RG rules of Eq. and 27 reads
KR(@2i-2) = J7 (%_ 2 _Je (222_1, E){T;E?;,; D _ Kz(2i —2)Kz(2i — 1) (31)
and thus corresponds to a simple addition in log-variables
In KB(20 —2) = In Kz(2i —2) + In Kz(2i — 1) (32)

So after N RG steps corresponding to a length L = 2V the renormalized ratio K®(L) reads in terms of the initial
variables

L L
ImKf = WmKzi—1)=Y [InJz(i — 1) — Inh(i)] (33)

=1 =1

The Central Limit theorem yields the asymptotic behavior

WK = L[WJzi—1) ~Wh@)| + L'/ [Varln o] + VarnAlJu (34)

where u is a Gaussian random variable.
The first term yields that the critical point corresponds to the condition

InJz(i—1)—Inh(i) =0 (35)
and that the typical correlation length exponent is
Viyp = 1 (36)

Outside criticality, the competition between the first and the second term shows the finite-size correlation exponent
is
Vps = 2 (37)

At criticality where the first term vanishes, the second random term of order L'/2? corresponds to an Infinite Disorder
Fixed Point of exponent

b= (39)

All these conclusions of Eqs [35] 36| 37 [3]] obtained via the application of the Fernandez-Pacheco renormalization
to the random quantum Ising chain [26], are in agreement with the Fisher Strong Disorder renormalization exact
results [11]. Tt is thus interesting to look for an appropriate generalization of the Fernandez-Pacheco renormalization
in higher dimensions, and first of all in dimension d = 2.

IV. BLOCK RENORMALIZATION RULES IN DIMENSION d =2

The initial quantum Ising Hamiltonian defined on the square lattice of unit vectors (Z, %) reads
H=- h(iaj)a(wi,j) - Z Ufi,j) [Ja?(iaj)afi+1,j) + J?J(iuj)oizi,j)} (39)
(4.3) (4,5)

Various generalizations of the one-dimensional Fernandez-Pacheco renormalization procedure have been already pro-
posed in dimension d = 2, both for the pure case [4-6] and for the disordered case [26], with the drawbacks recalled



in the Introduction. In this section, we thus introduce another procedure where the two directions are considered on

the same footing.

We wish to define a block renormalization rule, where each block of four spins (02;,2;; 02i—1,2;; 02i,2j—1; 02i—1,2j-1
will be replaced by a single renormalized spin (Uﬁ%]) after two elementary renormalization steps. It is convenient to
start by rewriting Eq. 39 as

Z H; (40)

(4,5)
H;j; = —h(2i, 23)0{21‘,23') —h(2i—1,2j - 1)02621' 1,2j-1) — h(2i -1, 2j)0{2i—1,2j) — h(2i,25 — 1)0?21‘,%—1)
—0(9i—1,2j)[J2(20 = 1,25)0(0; 0y + J5(20 — 1,25)03, 1 5544
+J5(20 = 2,25)0(9;_0 05y + J5(20 — 1,2) — 1)0(5;_1 25_1)]
_0€2i,2j—1)[°’f(2i= 2j— 1)Uf2i+1,2j—1) + J§(2ia2j - 1)051',23‘
+Jz(20 — 1,25 — 1)U(z2i71,2j71) + J5(2i,25 — 2)0(221',23‘72)]

A. First renormalization step

For the first renormalization step, we choose the following intra-block Hamiltonian

intra 7,9
(4,5)
1 . N . Nz z
Hi(,j) = —h(2i -1, 2])0'21'71,23' — Jz(20 -1, 2])”2%1,2;“721',23‘
—h(2i,25 — 1)"51‘,2;'71 - Jﬂ(%v 2j — 1)U§i,2j71‘7§i,2j (41)

Since HZ(E) has the form the Hamiltonian of Eq. 2 analyzed in section [T} the three spins (02;25; 02i—1,2j; 02i,2j—1)

can be renormalized via a single renormalized spin (0; 5;), Whereas the spin 021,21 that is not involved in H;

remains unchanged. The application of the projection rules of Eqs [I3] [I6] and [[9 read for the present case

1 P 1 z
R(ngra Ogi 27 z(nt)ra = UR(2i,2j)
Je (26 — 1,25
Pz(fit)raUQZ 1,25 Pz(fit)ra = ( 4 j) UIZ%(Qi,Qj)
\/h2(2i —1,25) + J2(2i — 1,2j)
24,25 —1
Pz(fit)raoél ,2j— 1PZ%2TG = Jy( ke ) Ui%(2i,2j)
\/h2(2z', 2j — 1) + J2(2i,2j — 1)
2i—1,2 h(2i,25 — 1
P)z(;t)ra 51 QJPz(rizra ( ‘ ]) . ( ik ) — . O.Iw%(2i,2j) (42)
\/h2 (20 — 1,2j) + J2(2i — 1,2j) \/h2(21,2j — 1)+ J2(20,2) — 1)
As a consequence, the projection of the remaining part of the Hamiltonian reads
HY = P)i(;t)ra Z(Hi,j - Hz(l) P)z(;tra Z
(4,9) (4,9)
HfY = —h(2i —1,2) — 1)ofy 1 55 1) — (20, 2§) 024,25
_Jg(% -2, 2j)o'lz%(2i72,2j)o'lz%(2i,2j) - JR*(QZ} 2j — 2)‘7?%(21',23‘72)‘713(21',23‘)
—J5 5(2i, 2J)0R(2i,2)) 0 i41,2j—1) — J= (2, 2J)0R(2i,2§)03i—1,2j+1
Jf—i—y( = 1,25 = 1)0(3i_1,2j—1)T R(2i,25) (43)
in terms of
(i) the renormalized transverse fields of even-even sites
h(2i—1,2 h(2i,25 — 1

hR(2i,25) = h(2i,2)) 2i-12%) 2i% -1 (44)

VB0 = 1,20) + J2(2i = 1,2)) \[12(20,2) = 1) + J2(26,2) — 1)



(ii) the renormalized couplings along the horizontal directions at distance two

Jz(2i — 1,27)

JR(2i —2,25) = Jz(2i —2,29) (45)
\/h2 (20 — 1,2j) + J2(2i — 1, 2j)
(iii) the renormalized couplings along the vertical directions at distance two
Jy(21,25 — 1
T2 -2) = Jy(20,2) ~2) UL (46)
\/h2(2z, 25 — 1) + J2(2i,2j — 1)
(iv) the renormalized couplings along the diagonal directions (Z — %) and (—Z + )
Jy(21,25 — 1
JE (20,2]) = Jx(20,2) — p(20:%) — 1
\/h2 (24,25 — 1) + J2(2i,2) — 1)
Jz(21 - 1,2
IR 5(20,25) = Jy(2i —1,2)) 2 J) (47)
\/h2 2i — 1,2j) + J2(2i — 1,2j)
(v) the renormalized couplings along the diagonal direction (Z + ¢) within each block
J7(21,25 — 1
TE (20 —1,2j—1) = Js(2i—1,2j - 1) 72,25 1)
‘ \/h2(2z’,2j— 1) + J2(2i,2) — 1)
Jz(21 —1,2
(20— 1,25 — a 7) (48)
\/h2 (20— 1,25) + J2(2i — 1,29)
B. Second renormalization step
For the Hamiltonian H? of Eq. B3] we choose the following intra-block Hamiltonian
2 . - x - z z
Hi(,j) =—h(2i—1,2j5 - 1)02i—1,2j 1 Jf+y( -1,25— 1)021'—1,2‘7'—1‘71%(21',23‘) (49)

It has the form the Hamiltonian of Eq. [ analyzed in section [[Il so that the two spins (o QJ,JQZ 1,2j—1) can be
replaced by a single renormalized spin (o 2J) The application of the projection rules of Eqs[I3] I8 and I3 read for
the present case

2) 2 z
Pz(nthR(m 2])Pz(mz7‘a = ORR(2i,27)

\/h2(2i —1,2j — 1) + [J§+g(2z' —1,2j — 1)]2

P(2) 05141,2;' 1P(2)

z
intra intra O RR(2i,2j)

2 5 h(2i — 1,25 — 1) N
Pz(m:)mUR(m 2])Pz(mz7‘a = : : : - 9 RR(2i,25) (50)
\/h2(2z —1,2j — 1) + [JE, (2 — 1,2 — 1)]?

As a consequence, the projection of the remaining part of the Hamiltonian reads

2
HE = Pz(mzra Z(Hlj,%j - Hz zntra Z HZ,RJR
(4,3) (3,9)

Hi,RJR = _hRR(%a 2j)0§R(2i,2j) - sz( =2, 2])0RR(2i72,2j)UIZ%R(Qi,Qj) - JQ@(% 25 — 2)0%}%(21}2;’72)UIZ%R(Zi,Qj)(51)

i.e. it has the same form as the initial Hamiltonian on the square lattice, in terms of
(i) the renormalized transverse fields

h(2i —1,2j — 1)
\/[h(2z’ — 1,2 — D)2 + [JE, (20 — 1,2 — 1)]?

W (24, 25) = h'(2i,2))




(ii) the renormalized couplings along the horizontal directions at distance two

JE (20 —1,25 -1
Jo (20— 2,25) = Jgh(20 — 2,25) + JE (20 — 2,2j) riil i Y (53)
V(@i = 1,2) = D] + [J5, (2 - 1,25 - DP?
(ii) the renormalized couplings along the vertical directions at distance two
JR (20—1,25 -1
Jait (20,25 —2) = Jyh(2i,25 — 2) 4+ JP (20,25 — R Y (54)

2)—— ; Ty —
\/h (26— 1,25 — 1) + [JE (2 — 1,25 — 1))

In the following sections, we discuss the application of these renormalization rules to the pure case, to the random
ferromagnetic case, and to the spin-glass case.

V. APPLICATION TO THE PURE TWO-DIMENSIONAL QUANTUM ISING MODEL

If we start from the pure model of parameters (h, J), the renormalization rules of Eqs E2B3I64 reduce to

RER  _ h? h B h*
- 2 2 -
h*+J \/h2+[2Jﬁ]2 VIE+ 2\ /R2(h2 + %) + 4
J2 2.2
T = (55)

1+
Vh2+J? V(R + J2) + 474

In terms of the ratio K = %, the renormalization rule reads

RR_']RR 2 2| —
KRt = S = K [VI+ K+ 4K 427 = 6(K) (56)

We are now interested into the critical point satisfying the fixed point equation K. = ¢(K.) (between the ferro-
magnetic fixed point K, = +00 and the disordered fixed point K, = 0) : eliminating the square-root yields the fourth
degree equation

K+ 4K+ K2—1=0 (57)

The only positive root reads (the other three roots can be disregarded since one is negative, and the two others are
imaginary)

u = (18103 — 179)'/3

/ 11
v =4/104+u— —
U

1 108v/3
K. — _\/90 n V3 g Y1 ~os38752 (58)
6 v 2v/3

The correlation length exponent v can be obtained from

NI

_ K2(2+8K.+3K?)

= ¢(Ke) 1—2K3

(59)

and the corresponding numerical value
v ~ 0.624758.. (60)

is very close to the numerical estimate v ~ 0.63 for the 3D classical Ising model.

The two-dimensional procedure that we have proposed is thus much simpler that the Miyazaki-Nishimori-Ortiz
procedure that needs re-symmetrization between the two directions [5] and yields a very good approximation for the
correlation length exponent v, better than other real-space renormalization procedures [34-36]. The extension to the
pure model in d = 3 is described in the Appendix A, and we now turn to the random models in dimension d = 2.
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VI. APPLICATION TO THE RANDOM FERROMAGNETIC TWO-DIMENSIONAL QUANTUM
ISING MODEL

A. Numerical details

In order to compare with the Strong Disorder renormalization numerical results |20, 23], we have adopted the
standard choice of a flat distribution of couplings between J =0 and J =1

P(J)=00<J<1) (61)

and a flat distribution of transverse fields between h = 0 and hy

Q) = 100 < b < ) (62)

so that the control parameter of the zero-temperature transition is
0 =1Inhy (63)

We have applied numerically the renormalization rules derived above to ns = 25000 disordered two-dimensional
samples of linear size

L, =22 = 4096 (64)

(containing L? = 224 spins) with periodic boundary conditions. The renormalization procedure is stopped at the scale
L = 2'' where there remains only four sites and eight links in each sample. As a consequence for this largest length
L = 2!, the statistics is over 4n; = 10° random fields and over 8n, = 2 x 10° random couplings.

At each renormalization step corresponding to the lengths L = 2™ with 0 < n < 11 we have analyzed the statistical
properties of the renormalized transverse fields and of the renormalized couplings. More precisely, we have measured
the RG flows of the typical values defined by

A" =nhg
InJPY? =MnJg (65)

and of the widths of the probability distributions

AlnhL = \/(lnhL)2 - (lnhL)2

Ay, =\ - (W) (66)

as a function of the length L for 28 values of the control parameter 6 of Eq.

The linear size Ly = 4096 and the statistics over ny = 25000 are thus of the same order of those used in recent
Strong Disorder Renormalization studies in d = 2 |20, 23], but of course the implementation is much simpler here
since the spatial structure remains a square lattice upon RG instead of an evolving non-trivial topology. Another
difference is that we analyze the statistics over samples at fixed control parameter 6 and fixed size L, whereas Strong
Disorder Renormalization studies of Ref. [20, 23] are based on the determination of the pseudo-critical parameter for
each sample.

B. RG flow of the renormalized transverse fields

On Fig. Il we show in log-log scale the RG flows of the typical renormalized transverse field htLyp of Eq.

In REvP _I2
niL |0<96 L—>O-<|—oo
Inhilg—p, o« —L% with ¢ ~0.65
L——+o0
nhyPlose, o Cst o)

L—+o0
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and of the width Ay, p, of Eq. [68

Ain by lo<o, X L
Ay lo=6. Lﬂosroo LY with ¢ ~0.65
Amnn, oo, X Cst (68)

8

6 I i
4+ i

B 7"

i g

5L 5 ]

a5 —

-25 1 1 1 1 1 0 i I I I

2 3 4 5 6 7 8 0 2 4 6 8

FIG. 1: RG flow of the logarithm of the transverse fields in log-log scale

a) Yo = In(—Inhl¥?) = ln(—ln hr) as a function of X =In L :

i) Ordered phase 6 < 6. : the asymptotic slope is d = 2, as shown here for § = 0.5 (squares) and 6 = 1.245 (diamond)

ii) Disordered phase 6 > 9 : the asymptotic slope is 0, as shown here for § = 1.5 (triangles up) and 6 = 1.27 (triangles right)
iii) Critical point 6. = 1. 256 (circles) : the asymptotic slope is 9 ~ 0.65.

b) Yy =In(App,) = ln(\/(ln hr)? — (Inhr)?) as a function of X =In L :
i Ordered phase 6 < 6. : the asymptotic slope is 1, as shown here for § = 0.5 (squares) and 6 = 1.245 (diamond)

ii) Disordered phase 6 > 9 : the asymptotic slope is 0, as shown here for § = 1.5 (triangles up) and 6 = 1.27 (triangles right)
iii) Critical point 6. = 1. 256 (circles) : the asymptotic slope is 1 ~ 0.65.

(
(i
(i
(
(
(i
(i
(

At the critical point 6., the RG flows of the typical value and of the width display the same activated scaling of an
Infinite Disorder Fixed Point

Inhrlg—g, = —LYv. (69)

where v, is some O(1) random variable. The values obtained here for the location of the critical point 6, ~ 1.256 and
the activated exponent v ~ 0.65 turn out to be different from the estimations 657 ~ 1.678 and ¢°” ~ 0.48 obtained
via the Strong Disorder Renormalization (see |20, 23] and references therein) : the origin of these differences is not
clear to us.

In the ordered phase, the logarithm of the typical renormalized transverse field grows extensively with respect to
the volume L% (with d = 2 here)

ma o — (L ’ (70)
L L—o0 §h

where the length scale &, represents the characteristic size of finite disordered clusters within this ordered phase.
From our numerical data concerning the ordered phase, the asymptotic behavior of Eq. [{0] allows to measure &, and
its divergence near criticality

& o< (Bo—60)"" with vy ~0.84 (71)

—60.

In the disordered phase, the asymptotic typical value h'¥P diverges with an essential singularity as a function of the
control parameter

Inh'¥ = Tnhoo & —(0 — 0.)™%  with  ~ 0.82 (72)
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In the critical region, the finite-size scaling form is governed by some finite-size scaling correlation length exponent
VFs
— 1
A =Tnhy = —LVE), (L 7S (0 — 96)) (73)

The matching with the behavior in the ordered phase (Eqs [[0] and [T]) and in the disordered phase (Eq. [[2]) yields
the relations

vp, = <1 — %) Vrs (74)
and
K =1vps (75)
The previous numerical measures of ¥, v, and k yield the estimate
vpg ~ 1.25 (76)

As shown on Fig. [ this value of vpg gives satisfactory finite-size scaling plots of the numerical data of Fig. [l

2 2
K
18 . 18 - .
N
16 F < . 16 - .
V4
O
1.4 - Av E 14 b N |
12 1 12 b &y .
v N
1r % . 10 7 .
5 By
08 | . 0.8 |- z .
@T @7\’ .
0.6 ﬁ@% 0.6 b
% N
04 | og 1 04 | Y, 1
S 4 8
&0 &N X

02 | O 02 o

O L L L L L L L 0 L L L L L L L

-2 -15 -1 -05 0 05 1 15 2 -4 -3 -2 -1 0 1 2 3 4

FIG. 2:

Finite-size scaling plots of the numerical data of Fig. [ corresponding to the sizes 26 < L < 2! with the values

0. = 1.256 for the critical point and vrs = 1.25 for the finite-size correlation length exponent :

In htYP 1
(a) Yo = (— L > as a function of X = (0 — 0.)L"Fs .

v
(b) i = (

Alnng . L
7o ) as a function of X = (6 — 0.)LvFs .

This value for vpg (Eq. [[6) agrees with the estimations obtained via the Strong Disorder Renormalization (see
[20, 23] and references therein), and with the asymmetric block renormalization of Ref |26].

C. RG flow of the renormalized couplings

On Fig. Bl we show in log-log scale the RG flows of the typical renormalized coupling Jzyp of Eq.

In J;"%|g<p. L5 InL
I lomg, o —LY with ¢ 0.65
In Jzyp|9>ec x —L (77)

L—+oo
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8 0 2 4 6 8

FIG. 3: RG flow of the logarithm of the couplings in log-log scale

(a) Yo = In(—In J}’?) =In(—InJz) as a function of X =InL :

(i) Ordered phase § < 6. : the flow is non-monotonic, as shown here for 6 = 0.5 (squares) and 6 = 1.245 (diamond) : the
asymptotic behavior (not visible on this plot appropriate to the critical region) corresponds to the classical random ferromagnet
growth Jj*? oc L¥ ' = L

(ii) Disordered phase 6 > 0. : the asymptotic slope is 1, as shown here for § = 1.5 (triangles up) and 6 = 1.27 (triangles right)
(iii) Critical point 6. = 1.256 (circles) : the asymptotic slope is 9 ~ 0.65.

b)Yy =InAyy, = ln(\/(ln Jr)?2 — (InJr)2) as a function of X =InL :

(i) Ordered phase 6 < 6. : the asymptotic slope is (—1/2), as shown here for § = 0.5 (squares)

(

(

ii) Disordered phase 6 > 0. : the asymptotic slope is (+1/2), as shown here for § = 1.5 (triangles up)
iii) Critical point 6. = 1.256 (circles) : the asymptotic slope is 9 ~ 0.65.

and of the width Ay, 5, of Eq.

_1
A g, |o<o. L%Oioo L2
A g, lo=0. X LY with 1 ~ 0.65
1
Ay g lo>6. S L= (78)

At the critical point 0, ~ 1.256, the RG flows of the typical value and of the width display the same activated
scaling of Infinite Disorder Fixed Point as in Eq.

InJ, =—-LY%u, (79)

where u, is some O(1) random variable.
In the disordered phase, the typical renormalized coupling Jzyp decays exponentially with the size L

L
o< R
L—4o00 é.typ

InJ¥P =nJy (80)

where ¢, represents the typical correlation length. From our numerical data concerning the disordered phase, the
asymptotic behavior of Eq. B0 allows to measure &, and its divergence near criticality

Etyp Xo—0, (0c —0)77"  with vy >~ 0.44 (81)
The compatibility with the finite-size scaling form analogous to Eq.
InJ¥ =TnJg = ~LVF; (L% 0 — 96)) (82)
implies the relation
Viyp = (1 — ¢)vps (83)

It is satisfied by the previously quoted estimates of 14y, vrpg and 1.
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VII. APPLICATION TO THE TWO-DIMENSIONAL SPIN-GLASS QUANTUM ISING MODEL

To study the two-dimensional spin-glass quantum Ising model, we have replaced the probability distribution of Eq.
[6T] concerning the random ferromagnetic case by the flat distribution of zero-mean

Psa(J) = %9(—1 <J<1) (84)

We have then repeated exactly the same numerical analysis as in the previous section [V : the critical point is now
found at 6, ~ 1.088, and the critical exponents 1 ~ 0.65, vy, =~ 0.84, vty >~ 0.44, vpg =~ 1.25 are the same as for the
random ferromagnet presented in the previous section, as expected for Infinite Disorder Fixed Points [13, 14], and as
found within the Miyasaki-Nishimori asymmetric scheme [26].

VIII. CONCLUSION

In this paper, we have proposed a simple generalization in d > 1 of the self-dual block renormalization procedure of
Fernandez-Pacheco [2], that we have tested for pure and random quantum Ising models, with the following conclusions.

For the pure models, where the Fernandez-Pacheco procedure is known to reproduce the exact correlation length
exponent v(d = 1) = 1 [2], we have obtained v(d = 2) ~ 0.625 (to be compared with the 3D classical Ising model
exponent v ~ 0.63) and v(d = 3) ~ 0.5018 (to be compared with the 4D classical Ising model mean-field exponent
v=1/2).

For the random models, where the Fernandez-Pacheco procedure is known to reproduce exactly the location of the
critical point and the critical exponents ¥ (= 1) = 1/2, vy, = 1 and vpg = 2 of the Infinite Disorder Fixed Point [26],
we have applied numerically the renormalization rules to two-dimensional samples of linear size L = 4096, with either
random ferromagnetic disorder or spin-glass disorder, both types of disorder leading to the same Infinite Disorder
Fixed Point : the finite-size correlation exponent vpg ~ 1.25 coincides with Strong Disorder Renormalization result
(see [20, [23] and references therein), and with the asymmetric block renormalization of Ref [2G], but the activated
exponent 1) ~ 0.65 turns out to be somewhat higher than Strong Disorder Renormalization estimate ¢ ~ 0.48 (see
[20, 23] and references therein). The origin of this difference remains to be clarified. We have also analyzed the RG
flows in the disordered and ordered phases, in order to extract the typical correlation length exponent vy, ~ 0.44
and the analog v, ~ 0.84, and tested the finite-size scaling.

In summary, the generalization in d > 1 of the self-dual block renormalization procedure of Fernandez-Pacheco |2]
is able to reproduce both the conventional scaling of pure critical points and the activated scaling of Infinite Disorder
Fixed Points. It would be thus interesting to develop such methods in models governed by Strong (not Infinite)
Disorder Fixed Points like the Quantum Ising model with long-ranged interactions [37] or the superfluid-insulator
transition [38], as well as in models where the transition at weak disorder could be in another universality class
138, 139].

Appendix A: Renormalization Rules in d =3

The initial quantum Hamiltonian on the cubic lattice reads

H=- Z h(i,j, k)azci,j,k) - Z Ufi,j,k) [Jf(zvjv k)o'fiJrl,j,k) + Jg(ivjv k)a(zi,jJrl,k) + Jf(ivjv k)ofi,j,k+1) (Al)
(i,5,k) (i,5,k)

We wish to define a block renormalization rule, where each block of 23 = 8 spins (021,252 02i—1,2j,2k; 02i,2j—1,2k;

02i,2j,2k—1} 02i—1,2j—1,2k5 02i—1,2j,2k—1} 02i,2j—1,2k—1; 02i—1,2j—1,2k—1) Will be replaced by a single renormalized spin

RRR ot
(09;3;.05), after three elementary renormalization steps.



15

It is thus convenient to start by rewriting Eq. [AT] as

H= Y Hp
(i,3,k)

H; ;= —h(2i,27, 2/{)0&-12%%) —h(2i—1,25—1,2k — 1)0?21-711%-7112]671)
—h(2i — 1,27, 2k)0'(m2i71,2j,2k) — h(2i,25 — 1, 2]{:)0?21',23'71,21@) — h(2i, 25,2k — 1>U(I2i,2j,2k71)
—h(20i — 1,25 = 1,2k)0(%; 1 951,05 — 1M(26,2] — 1,2k = 1)07(%; 91 op—1) — (20 — 1,25, 2k — 1)0(5;_1 2 051y
—0(oi—1,2j,2k) [J2(20 — 1,25, 2Kk)0 o 0 o) + J5(26 — 1,25, 2k) 001 9511 08y + J2(20 — 1,25, 2K)0 (5,1 2j o1
+J7(2i — 2,25, 2]{)0(221'72,2%21@) + J5(2i = 1,25 - 1, 2]{)0(221'71,23'71,21@) + Jz(20 - 1,25, 2k — 1)U(z2i71,2j,2k71)]
—0(25,2j—1,2k) [J7(21, 2] — 1,2k)0(o; 0 oy + J2(26, 25 — 1,2K)0 05,11 051 o) + J2(26, 25 — 1,2K)0(5; 051 ok 41y
+J5(21,25 — 2, 2/{)0?21-)%_2)%) + Jz(20 — 1,25 — 1, 2k)af2i_172j_172k) + Jz(24,25 — 1,2k — 1)Uf2i,2j—1,2k—1)]
_O'(ZZi,Qj,Qkfl) [J=(24, 27, 2k — 1)0(221',23',21@) + Jz(2i,25, 2k — 1)0(ZZi+1,2j,2k71) + Jg(2i, 25,2k — 1)0(22i,2j+1,2k71)
+J2(24, 25, 2k — 2)‘7?21',23',21@72) + Jz(2i — 1,25, 2k — 1)‘7?21'71,2;21@71) + J5(2i, 25 — 1,2k — 1)0'(221',2%1,%71)]
_Uf2i—l,2j—l,2k—1)[‘]5ﬂ'(2i —1,25 - 1,2k - 1)Uf2i—1,2j—1,2k) + Jﬁ(% —-1,25 1,2k - 1)Uf2i—1,2j,2k—1)
+J2(20 — 1,25 — 1,2k — 1)0521'71,23'71,21@) + Jz(20 — 2,25 — 1,2k — 1)0(221-72_’2%1_’%71)
+J5(2i — 1,25 — 2,2k — 1)”52%1,2;'72,21@71) +J2(2i — 1,2 — 1,2k — 2)0521'71,23'71,21@72)] (A2)

1. First renormalization step

In the first renormalization step, we choose the following intra-block Hamiltonian

7O

intra

= —h(2i - 1,24, 2k)o'§i71,2j,2k — Jz(2i — 1,27, 2k)05i71,2j,2k0'§i,2j,2k

—h(2i,2j — 1,2k)05; 5,1 25 — J5(24,2) — 1,2k)05; 9,1 2105; 25,2k

—h(2i,25,2k — 1)03; 5 01 — J=(24,25,2k — 1)03; 2 01— 105; 2.2k (A3)
It has the form the Hamiltonian of Eq. analyzed in section [l so that the four spins ( o02i2j2k; 02i—1,2j.2k
i 02i2j—12k ;02,2j2k—1 ) are replaced by a single renormalized spin (0572%%), whereas the four other spins

. . . ; ; 1) ;
02i—1,2j—1,2k;02i—1,2§,2k—1;024,2j—1,2k—1;02;—1,2j—-1,2k—1 that are not involved in Hintra remaln unchanged.

The application of the projection rules of Eqs[I3] [ and (9 read for the present case
1 P 1 z
Pi(mzraUQi,Qj,QkPi(nzra = OR(2i,25,2k)
1 ~ 1 J (28 — 1,24, 2k)
‘Pi(ngraUQi—l,2j,2kPi(nt)ra
\/h2(2z' — 1,25, 2k) + J2(2i — 1,2, 2k)
B J, (21,25 — 1,2k)
\/h2(2z', 25 — 1,2k) + J2(2i,2j — 1,2k)
B J.(2i,25,2k — 1)
\/h2(2z’, 25,2k — 1) + J2(2i,2j, 2k — 1)
B h(2i — 1,2§,2k) h(2i,2j — 1,2k)
\/h2(2z' — 1,24, 2k) + J2(2i — 1,25, 2k) \/h2(2z', 2j — 1,2k) + J2(2i,2j — 1,2k)
h(2i,25,2k — 1)
\/h2(2z’, 25,2k — 1) + J2(2i,2j, 2k — 1)

z
O R(2i,2j,2k)

1) = (1) 2
Pintru,UQi,ijl,QkPintra O R(2i,25,2k)

1 =z &) 2
‘PintraUQi,Qj,Qkflpintra O-R(2i72j72k)

(1) = (1)
Pintraa2i,2j,2kpintra

Uf%(2i,2j,2k) (A4)
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As a consequence, the projection of the remaining part of the Hamiltonian reads

1 1) 1)
HR = Pi(nt)ra Z (Hi7.7) HZ(J k ‘Pz(ntra Z H 4,5,k
(i,4,k) (4,5)

Hzg k= _hR(%a 27, 2/{)02(21',23‘,21@) —h(20—1,2j — 1,2k — 1)0521‘—1,23‘—1,21@—1)
—h(2i —1,25 -1, 2k)0262i71,2j71,2k) — h(2i,25 — 1,2k — 1)0?21',23'71,21@71) — h(2i —1,25,2k — 1)02”21-71@-12,@71)
_UIZ%(Qi 2j,2k) [JQR;E(Qi —2,2j, 2/{)0}3(21- 2,2j,2k) T JQR;*(Q@ 2j -2, 2]{)0}%(21}2;’72,2]@) + JQR;*(%a 27,2k — 2)0%(2i,2j,2k72)
+JE
+JE
R
+J7-
5

720,25, 2K)0%; 1 9510 + I T2y (20,25, 2K)0%; 1 551 01
(24,24, 2k)03; 41, 2j,2k—1 T J§f+2(2ia 2j,2k)03; 1 25,2641
(24,25, 2k)0%; 5541 061 + I 24 2(20,25,2K)05; 55 1 241
(20— 1,25 — 1,2k)05, 1 95 1 op + J& (20 — 1,25,2k — 1)05; 1 9 011
+Jﬂ+z(2z 2j — 1,2k - 1)U§i,2j—1,2k—1]
(2i71,2j71,2k71)[J5(2i -1,2j - 1,2k — )U(z2i 1,2j-12k) T J*(% -1,2j - 1,2k — 1)051'71,2;21@71
+Jz(2i — 1,25 — 1,2k — 1)05;_q ;106 + J2(20 — 2,25 — 1,2k — 1)0(3_5 251 2_1)
(20— 1,25 = 2,2k = 1)0%y;_1 059051y + J2(2i — 1,2) — 1,2k — 2)075_1 55 1 ap_)] (A5)
with
(i) the renormalized transverse fields
h(2i — 1,27, 2k)
\/h2 2i — 1,2j,2k) + J2(2i — 1,2j, 2k)
h(2i,2j — 1,2k) h(2i,2j,2k — 1) (46)
\/h2(2z', 2j — 1,2k) + J2(23,2j — 1,2k) \/h2(2i, 2j, 2k — 1) + J2(2i, 24,2k — 1)

R®(2i,24,2k) = h(2i,2],2k)

(ii) the renormalized couplings along the lattice directions at distance two
Jz(2i — 1,25,2k)

\/h2(2i — 1,25, 2k) + J2(2i — 1,2j, 2k)
Jg(2i,25 — 1,2k)

\/h2(2z', 25 — 1,2k) + J2(2i,25 — 1,2k)
Jz(24,25,2k — 1)

\/h2(2z', 25,2k — 1) + J2(2i,2j, 2k — 1)

JR(2i —2,2j5,2k) = Jx(2i — 2,24,2k)

Jab(2i,25 — 2,2k) = Jz(2i,25 — 2,2k)

JE(2i,25,2k —2) = J(2i,25,2k — 2)



(iii) the renormalized couplings along the diagonal directions (Z—4) ; (—Z+9); (Z—2); (—Z+2); (§—2) ; (-§+2)
Jy(2i,25 — 1, 2k)

\/h2(2i, 2j — 1,2k) + J2(20,2j — 1,2k)
Jz(2i — 1,24, 2k)

\/hQ (2 — 1,24, 2k) + J2(2i — 1, 25, 2k)
Jz(24,24,2k — 1)

\/h2(2z', 25,2k — 1) + J2(2i,2j, 2k — 1)
Jz(2i — 1,24, 2k)

\/h2(2i —1,2j,2k) + J2(2i — 1,25, 2k)
J=(2i,25,2k — 1)

\/h2(2z’, 25,2k — 1) + J2(2i, 25,2k — 1)
J5(2i,25 — 1,2k)

R . . _ . .
Jzo (2,25, 2k) = Jz(21,25 — 1,2k)

IR 5(20,25,2k) = Jz(2i — 1,24, 2k)

TR 2(20,25,2k) = Jx(2i,2j,2k — 1)

IR 2(20,25,2k) = J=(2i — 1,24, 2k)

JE (2i,2),2k) = Jg(2i,2),2k — 1)

TR #(20,25,2k) = J=(2i,25 — 1,2k) — ) (48)
\/h2(21, 2j — 1,2k) + J2(2i,2j — 1,2k)
(iv) the renormalized couplings along the diagonal directions (Z + %); (£ + 2) ; (¥ + 2)
J#(2i,25 — 1,2k
TR (20 —1,2) — 1,2k) = J(2i — 1,2 — 1,2k) 7(2i, 2§ —1,2k)
\/h2 (24,25 — 1,2k) + J2(2i,2) — 1, 2k)
(2 — 1,2 Jz(2i — 1,25, 2k)
g ) -
\/h2 2 —1,2j,2k) + J2(2i — 1,2j, 2k)
2i,24,2k — 1
JB+2(2i_172ja2k_1) :Jf(2i—1,2j,2k—1) Jz( LA )
\/h2(2i7 24,2k — 1) + J2(2i,24,2k — 1)
(20— 1,25,2k — 1) Jz(2i — 1,2j, 2k)
\/h2(2i —1,2j,2k) + J2(2i — 1,24, 2k)
J=(2i,27,2k — 1
Jiea(20,2) = 1,2k = 1) = J5(2i,2) — 1,2k — 1)\/h2(2' 24 2/5 ; 1;+ J2(2') 24,2k — 1)
1,47, - z 1,47, —
J#(2i,25 — 1,2k
+J2(20,2) — 1,2k — 1) 7(26,2] — 1,2k) (49)

2 . . _ 2 . . _
\/h (2i,2) — 1,2k) + J3(2i,2j — 1,2k)

2. Second renormalization step

For the second renormalization step, we choose the following intra-block Hamiltonian

2 . . x , . z
H( e —h(2i — 1,25 — 1,2k)oy, 1,2j—1,2k) — J§+g(2’ - 1,25 -1, k)o(zz 1,25—1,2k) 9 R(24,25,2k)

ntra
—h(2i —1,25,2k — 1)‘7?21 1,2§,2k—1) — J§+2( i—1,25,2k = 1)o(y; 1,2j,2k71)‘7R(2i,2j,2k)
—h(2i,2j — 1,2k — 1)‘7%21 2j—1,2k—1) J§+2(2% 2j— 1,2k — )0(21 2j—1,2k—1) O R(2i,2),2k) (A10)

It has the form the Hamiltonian of Eq. ] analyzed in section [[Il so that the four spins (a(lgi 9j.2k) 30(2i—1,2j—1,2k)
;U(Qi—1,2j,2k—1) 5 0'(27;72]‘_172]@_1)) are replaced by a single renormalized spin URR(2i,2j,2k)'
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The application of the projection rules of Eqs I3l I8 and [[9 read for the present case

2 2 z
Pz(lef)raoR(Zz 2j,2k) Pz(nt)ra O RR(2i,2j,2k) (All)
JER (20 —1,2j —1,2k)
2 z 2 T+7 9 ) .
Pz('rzzzra021 1,2j—1 Qsz(nt)ra = = O RR(2i,2,2k)

\/h2(2i —1,2j — 1,2k) + [JE, ;20 — 1,2j — 1,2k)]?
JE (20— 1,252k — 1)

2 2 z
Pz(nt)mazz 1,2j,2k— 1P1(m)m = o - = : 2URR(2i,2j,2k)
\/h (20— 1,2j,2k — 1) + [JE, (20 — 1,25, 2k — 1)]
JR (20,25 — 1,2k — 1)
2 2 +Z ’ I
Pz(m?ra 02 ,27—1,2k— lf)z(nt)ra = =

Yy TRy 2"7%1%(21',23‘,21@)
\/h (20,25 — 1,2k — 1) + [JE (20,2 — 1,2k — 1)]

h(2i — 1,25 —1,2k)
\/h2(2i — 1,25 — 1,2k) + [JE _;(2i — 1,2j — 1,2k)]2
h(2i —1,2j,2k — 1) h(2i,25 — 1,2k — 1)

\/h2(2i—1,2j,2k—1) [JE (20 1,2j,2k—1)]2\/h2(2z',2j—1,2k—1)+[J§+2(2z’,2j—1,2k—1)]2

2
Pz(rzzraoR(Ql 237,2k) Pz(mzra -

xT
O RR(2i,2j)

As a consequence, the projection of the remaining part of the Hamiltonian reads

2 2)
H ‘Pz(ngra Z (H 1,5,k HZ(J k zntra Z H ,j,
(4,5,k) (4,5)

H .3, k = _hRR(QZ 27, 2k)URR(2z 2j,2k) — h(2i — 1,25 — 1,2k — 1)U(m2i—1,2j—1,2k—1)
_JQR;*R@’ — 2,25, 2k)URR(2i72,2j,2k)URR(Qi,Qj,Qk) - JQR;*R(%? 2j -2, 2k)0}Z%R(2i,2j72,2k)UIZ%R(Zi,Qj,Zk)
_JQR;*R(%a 2j,2k — Q)UIZ%R(Qi,Qj,QkfmUIZ%R(Qi,Qj,Qk)
—JBR* =(24,27, 2k)UIZ%R(2i,2j,2k)052i+1,2j71,2k71) - Jfgm’—z(%a 2J, Zk)U}Z%R(Qi,Qj,Qk)U(ZQifl,QjJrl,Qkfl)
—JE g+2(21, 27, Qk)UJZ%R(zi,zj,zk)U(Zzi—l,2j—1,2k+1)
Jfﬁﬂ(m -1,2j - 1,2k - 1)U(Z2i—1,2j—1,2k—1)U;’,R(%,ijk) (A12)

in terms of
(i) the renormalized transverse fields

h(2i — 1,25 —1,2k)
\/h2(2z' — 1,25 —1,2k) + [JB_(2i — 1,25 — 1,2k)]2

RER(2i,25, 2k) = h'(2i, 2], 2k)

T+y
h(2i —1,2j,2k — 1) h(2i,25 — 1,2k — 1)

\/h2(2i —1,2j,2k — 1) + [JE (2 —1,25,2k — 1)]2 \/h2(2i, 2j — 1,2k — 1) + [JI _(2i,2j — 1,2k — 1))

(A13)




(ii) the renormalized couplings along the lattice directions at distance two

JRR(2i — 2,25, 2k) = JR(2i — 2,24, 2k)
JE (2 —1,2j —1,2k)

\/[hR(2i —1,2j — 1,2k)] + [JE, ;20 — 1,25 — 1,2k)]2
JE (20 —1,2§,2k - 1)

\/[hR(Qi —1,25,2k — D)2 + [JE (2i — 1,24, 2k — 1)]2

T+z
Jof (20,25 — 2,2k) = J3h(2i,2) — 2,2k)

+J8 (2 — 2,24, 2k)

x

+JE (20 — 2,24, 2k)

TR (2 —1,2) — 1,2k)

+ IR (20,25 — 2,2k)

\/[hR(% — 1,25 — 1,2k)]2 + [JE, (2 — 1,25 — 1,2k)]?
JE (20,25 — 1,2k —1

+JR (2i,25 — 2, 2k) 722 2) )

‘ \/[hR(%, 2j — 1,2k — 1) + [JF, (2i,2j — 1,2k — 1)]2

JER(26,25, 2k —2) = JE(2i,25,2k — 2)

TR (20— 1,2§,2k — 1)
\/[hR(% — 1,2, 2k — D)2 + [JE, (20 — 1,2j,2k — 1)]?

JE (26,25 — 1,2k —1
+ IR (24,24, 2k — 2) 722 2) )
\/[hR(%, 2j — 1,2k — 1) + [JF, .(2i,2j — 1,2k — 1)]?

+ I8 (20,25, 2k — 2)

(iii) the renormalized couplings along (Z —§—2) ; (—Z+ 4§ —2) ; (—Z+ ¥ — 2)

) JEB (20,2 1,2k - 1)
\/h2(2i, 2j — 1,2k — 1) + [JE_(2i,2j — 1,2k — 1)]?2
) TR (2 —1,2§,2k — 1)
\/h2(2i —1,2j,2k — 1) + [JB, (20 — 1,24, 2k — 1)]?
JE (20 —1,2j — 1,2k)

2k)
\/h2(2i —1,2j — 1,2k) + [JE_(2i — 1,2j — 1,2k)]2

RR o _ o
Jrtg £(21,25,2k) = Jz(20,25 — 1,2k -1

JRE . (20,25,2k) = Jy(2i —1,25,2k — 1

JRE L (2i,2],2k) = JA2i—1,2j - 1

(iv) the renormalized couplings along (¥ + ¢ + 2)

JB (20,2 —1,2k - 1)
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(A14)

(A15)

JER (20 —1,2j—1,2k—1) =Jz(20—1,2j— 1,2k —1

)
\/h2(2i, 2j — 1,2k — 1) + [JJ .
JEB (20 —1,25,2k -1
+J5(2i — 1,25 — 1,2k — 1 7 J )

(2i,2 — 1,2k — 1)]2

)
\/h2(2z’— 1,24,2k — 1) + [JE

T+z
JE (20— 1,25 — 1,2k
+Jx(20 - 1,2 - 1,2k — 1 g j )

(2 — 1,24, 2k — 1)]2

3. Third renormalization step

For the third renormalization step, we choose the following intra-block Hamiltonian

) £A16)
\/h2(2z' — 1,2 — 1,2k) + [JE (2 — 1,25 — 1,2k)]2

3 . . . . . . .
Hl(j)k =-h(2i-1,2j - 1,2k - 1)0(2i71,2j71,2k71) - Jaj?%ﬁﬁz(m -1,2j - 1,2k - 1)0(2i71,2j71,2k71)0RR(2i,2j,2k§A17)
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It has the form the Hamiltonian of Eq. 2l analyzed in section [T, so that the two spins (0?21.7172%17%71) , U%R(2i72j72k))

can be replaced by a single renormalized spin (0rgr(2i,25,2¢))- The application of the projection rules of Eqs 3]
and [[9 read for the present case

3 2 2 z
Pi(mf)raURR(2i,2j,2k)Pi(nt)ra = ORRR(2i,2j,2k)
3 = @) JER (20 —1,2j — 1,2k — 1) .
Pitra%2i-12j-12k-1Fintra = vy - R - - 5 9 RRR(2i,24,2k)
\/h (20 —1,2j — 1,2k — 1) + [JEE (20 — 1,2 — 1,2k — 1))

B h(2i—1,2j — 1,2k — 1)
\/h2(2i —1,2j— 1,2k — 1)+ [JEF,, (20 — 1,2 — 1,2k — 1)]2

0%RR(2i,2j,2k£A18)

(3) ()
Pintrao'f%R(2i,2j,2k) Pintra
The projection of the remaining part of the Hamiltonian reads

3 3 3
HIE = Pl | 30 (HIG = H3W) | Pola = 3 HIGY
(4,5,k) (4,5,k)
Hi},%j},%kR = _hRRR(%a 27, 2/{)021%1%(21',23‘,21@)
_JQR}RR(% — 2,2y, 2k)UIZ%RR(2i72,2j,2k)UIZ%RR(2i,2j,2k) - JQR;*RR@@ 2j -2, 2k)0}Z%RR(2i,2j72,2k)UIZ%RR(2i,2j,2k)
_JQR;*RR(%a 25,2k — 2)Ulz%RR(2i,2j,2k72)UIZ%RR(Qi,Qj,Qk) (A19)
i.e. it has the same form as the initial Hamiltonian, in terms of
(i) the renormalized transverse fields

h(2i— 1,25 — 1,2k — 1)

RBER(25 25 2k) = hBF(2i,25,2k) (A20)
\/h2(2i —1,2j — 1,2k — 1) + [JER, (20 — 1,2 — 1,2k — 1)]2
(ii) the renormalized couplings along the lattice directions at distance two
JRER (25 — 2,25 2k) = JEF(2i — 2,25, 2k)
JRE. (20 —1,2j—1,2k—1
+ IR (2 — 2,25, 2k) royiel d )
\/h2(2i —1,2j — 1,2k — 1) + [JEE (20 — 1,2 — 1,2k — 1)]?
JiRR(20,2) — 2,2k) = J3(24,2) — 2,2k)
JRE. (20 —1,2j—1,2k—1
+JBE o (2i,25 — 2,2k) Erpiel J )
‘ \/h2(2i ~1,2j— 1,2k — 1) + [JER (20 — 1,2j — 1,2k — 1)]2
JRRR (2425 2k —2) = JE(2i,25,2k — 2)
JERE (20 —1,2j—1,2k—1
+IRE L (2i,2),2k — 2) Frgesl J ) (A21
h2(2i — 1,25 — 1,2k — 1) + [JRE. (20 — 1,25 — 1,2k — 1)]2
TH+y+2z

4. Application to the pure quantum Ising model in d = 3

If we start from the pure model of parameters (h,J), the renormalization rules of Eqs [A20] and [A2T] reads for the
ratio K = < to
h

JRRR

KRRR

hrrr

1+ K2+ 4K 1 36K
— K211 K2 + 4K1 |12K* + (4K? + 1+K2+4K4)\/ + 1++K2+ = §(K) (A22)
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The critical point satisfying K. = ¢(K.) is found to be
K, =~ 0.398425 (A23)
The correlation length exponent v given by 2v = ¢’ (K.)

v ~0.5018 (A24)

is very close to the mean-field value vy = 1/2 of the 4D classical Ising model.
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