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Pure and Random Quantum Ising Chain :

Shannon and Rényi entropies of the ground state via real space renormalization

Cécile Monthus
Institut de Physique Théorique, CNRS and CEA Saclay, 91191 Gif-sur-Yvette cedex, France

The Shannon and the Rényi entropies of the ground state wavefunction in the pure and in the
random quantum Ising chain are studied via the self-dual Fernandez-Pacheco real-space renormal-
ization procedure. In particular, we analyze the critical behavior of the leading extensive term at
the quantum phase transition : the derivative with respect to the control parameter is found to be
logarithmically divergent in the pure case, and to display a cusp singularity in the random case.
This cusp singularity for the random case is also derived via the Strong Disorder Renormalization
approach.

I. INTRODUCTION

After its introduction in fluid dynamics in order to characterize the statistical properties of turbulence (see the book
[1] and references therein), the notion of multifractality has turned out to be relevant in many areas of physics (see
for instance [2–8]), in particular at critical points of disordered models like Anderson localization transitions [9, 10] or
in random classical spin models [11–18]. More recently, the wavefunctions of manybody quantum systems have been
found to be generically multifractal, with many studies concerning the Shannon-Rényi entropies of the ground states
of pure quantum spin models [19–31]. The understanding of Shannon-Rényi entropies of excited states in disordered
models is also essential to characterize the Many-Body Localization transition [32, 33].
In the present paper, we analyze via real-space renormalization the multifractal properties of the ground state of

the quantum Ising chain

H = −
∑

i

Jiσ
z
i σ

z
i+1 −

∑

i

hiσ
x
i (1)

where the ferromagnetic couplings Ji > 0 and the transverse fields hi > 0 are either uniform or random. For the
pure chain, we compare with the previous results of Refs [19, 20, 22–25, 28, 30, 31] in order to test the validity of the
RG approach. For the random case, we are not aware of previous works concerning the multifractality of the ground
state.
The paper is organized as follows. In section II, we recall the multifractal formalism for quantum wavefunctions.

In section III, we derive the real space renormalization rule for the Shannon-Rényi entropies. The application to the
pure and to the random quantum Ising chain are described in sections IV and V respectively. Our conclusions are
summarized in section VI.

II. REMINDER ON MULTIFRACTALITY OF MANYBODY WAVEFUNCTIONS

For an Hilbert space of size M (growing exponentially with the volume), the expansion of a given wave-function
|ψ > onto a basis of M vectors |m >

|ψ >=
M
∑

m=1

ψm|m > (2)

involves M coefficients ψm subjected to the global normalization

1 =< ψ|ψ >=
M
∑

m=1

|ψm|2 (3)

The multifractal formalism allows to characterize the statistical properties of these M weights |ψm|2 as we now recall.

http://arxiv.org/abs/1501.05416v2
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A. Inverse Participation Ratios and Shannon-Rényi entropies

The Inverse Participation Ratios Yq(M) define the exponents τ(q)

Yq(M) ≡
M
∑

m=1

|ψm|2q ∝
M→+∞

M−τ(q) (4)

The related Rényi entropies involve the generalized fractal dimensions Dq

Sq(M) ≡ lnYq(M)

1− q
∝

M→+∞
D(q) lnM (5)

with the simple relation

D(q) =
τ(q)

q − 1
(6)

For q = 1, Eq. 5 corresponds to the standard Shannon entropy

S1(M) ≡ −
M
∑

m=1

|ψm|2 ln |ψm|2 ∝
M→+∞

D(1) lnM (7)

B. Multifractal spectrum f(α)

Among the M configurations, the number NM (α) of configurations m having a weight of order |ψm|2 ∝ M−α

defines the multifractal spectrum f(α)

NM (α) ∝
M→∞

Mf(α) (8)

The saddle-point calculus in α of the Inverse Participation Ratios of Eq. 4 yields

Yq(M) ≃
∫

dα Mf(α) M−qα∝Mf(αq)−qαq =M−τ(q) (9)

where the saddle point value αq is determined by the condition

f ′(αq) = q (10)

i.e. τ(q) and f(α) are related via the Legendre transform

τ(q) + f(α) = qα

τ ′(q) = α

f ′(α) = q (11)

This yields the following parametric representation of f(α)

αq = τ ′(q) =
−∂q lnYq
lnM

= −
∑M
m=1 |ψm|2q ln |ψm|2
∑M
m=1 |ψm|2q lnM

(12)

f(αq) = −
∑M
m=1 |ψm|2q ln |ψm|2q

∑
M
m=1 |ψm|2q

∑M
m=1 |ψm|2q lnM

(13)

Let us now mention some important special values of the index q.
For q = 0, the IPR of Eq. 4 simply measures the size of the Hilbert space Y0(M) =M corresponding to τ(0) = −1

and D(0) = 1 and to f(α0) = 1 : this means that there exists an extensive number O(M) of configurations having a
weight M−α0 , so that

α0 = −
∑M

m=1 ln |ψm|2
M lnM

(14)
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is called the typical exponent.
For the Shannon value q = 1, the IPR of Eq. 4 is normalized to unity, so that τ(1) = 0 and

α1 = −
∑M
m=1 |ψm|2 ln |ψm|2

lnM
= f(α1) = D(1) (15)

is called the ’information dimension’ that characterizes the Shannon entropy of Eq. 7.
In the limit q → +∞, the IPR of Eq. 4 is dominated by the configuration having the highest weight Yq→+∞ ≃

|ψmax|2q ∝M−qα+∞ , i.e. α+∞ represents the smallest exponent

α+∞ = − ln |ψmax|2
lnM

= D(+∞) (16)

and the corresponding singularity spectrum vanishes f(α+∞) = 0

C. Application to the ground state of the quantum Ising chain

For the quantum Ising chain of Eq. 1 containing N spins, the expansion of the wave function in the σz basis

|ψ >=
∑

S1=±1

∑

S2=±1

..
∑

SN=±1

ψ(S1, S2, ..., SN )|S1, S2, .., SN > (17)

involve M = 2N coefficients ψ(S1, S2, ..., SN ).

1. Ferromagnetic limit hi = 0

In the ferromagnetic limit where all transverse fields vanish hi = 0, the ground state is simply the linear combination
of the two ferromagnetic states (both for periodic or free boundary conditions)

|ψ >ferro= |+,+, ..,+ > +|−,−, ..,− >√
2

(18)

so that among the M = 2N coefficient ψm, only two are non-vanishing and equal to 1/
√
2. As a consequence the IPR

of Eq. 4 reduces to

Y ferroq (M = 2N) = 21−q (19)

and the corresponding Rényi entropies all take the simple finite value

Sferroq (M) =
lnYq(M)

1− q
= ln 2 (20)

i.e. all generalized fractal dimensions of Eq. 5 vanish

Dferro
q = 0 (21)

2. Paramagnetic limit Ji = 0

In the paramagnetic limit where all ferromagnetic couplings vanish Ji = 0, the ground state is simply given by the
tensor product of the ground state of σx for each spin (both for periodic or free boundary conditions)

|ψ >para= ⊗Ni=1

( |Si = + > +|Si = −1 >√
2

)

(22)

i.e. all M = 2N coefficients are equal to 2−
N
2 so that the IPR of Eq. 4 read

Y paraq (M = 2N) = 2N(1−q) (23)
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and the Rényi entropies all have the same extensive value

Sparaq (M) = − lnYq(M)

q − 1
= lnM = N ln 2 (24)

i.e. all generalized fractal dimensions of Eq. 5 are equal to unity

Dpara
q = 1 (25)

3. Generic case

Apart from the two extreme cases just discussed, one expects that the ground state wavefunction is characterized by
a non-trivial multifractal spectrum. For the pure case where Ji = J and hi = h, exact expressions for the generalized
dimension Dq as a function of the control parameter K = J

h exist in the limit q = ±∞ [19–21, 23, 25]

Dpure
q=±∞(K) =

1

2
− 1

2π ln 2

∫ π

0

du ln

[

1± K − cosu√
1 +K2 − 2K cosu

]

(26)

and thus also for q = 1/2 as a consequence of the duality relation [19–21, 23, 25, 28]

Dpure

q= 1
2

(K) = 1−Dpure
q=+∞

(

1

K

)

(27)

These functions are continuous in the control parameter K, but the derivatives are singular at the critical point
Kc = 1

∂KD
pure
q=±∞(K) = − 1

2π ln 2

∫ π

0

du

[

± 1√
1 +K2 − 2K cosu

− K − cosu

1 +K2 − 2K cosu

]

= ∓ 1

π(ln 2)(1 +K)
K
(

4K

(1 +K)2

)

+
1

2K ln 2
sgn(K − 1) (28)

where K(m) ≡
∫ π

2

0
dθ√

1−m sin2 θ
is the elliptic integral of the first kind displaying the logarithmic singularity K(m) ≃

− 1
2 ln(1 − m) for m → 1−. As a consequence, the first term corresponds to a logarithmic divergence, whereas the

second term corresponds to a discontinuity

∂KD
pure
q=±∞(K) ≃

|K−1|≪1
∓ 1

2π(ln 2)
ln |K − 1|+ 1

2 ln 2
sgn(K − 1) (29)

Other values of q, especially the Shannon value q = 1, have been studied numerically [19–21, 23, 25]. In the following
sections, we describe how the Fernandez-Pacheco real-space renormalization allows to derive a simple approximation
for the multifractal properties, both for the pure and for the random chain.

III. ANALYSIS VIA REAL-SPACE RENORMALIZATION

The pure quantum Ising chain is the basic model to study quantum phase transitions at zero-temperature [34] :
it is in the same universality class as the exactly solved 2D classical Ising model. The random quantum Ising chain
has been solved by Daniel Fisher [35] via the asymptotically exact strong disorder renormalization procedure : the
transition is governed by an Infinite Disorder Fixed Point and presents unconventional scaling laws with respect to
the pure case.
From the point of view of Block-Renormalization for quantum models, there exists a simple self-dual procedure

introduced by Fernandez-Pacheco [36, 37], which is able to reproduce the exact critical point (J/h)c = 1 and the exact
correlation length exponent νpure = 1 of the pure chain [38], even if it is not able to reproduce the exact magnetic
exponent [36]. Its application to the disordered chain also reproduces correctly the location of the critical point, the
activated exponent ψ = 1/2 and the two correlation length exponents [39, 40], even if it is not able to reproduce the
properties dominated by rare events [35]. In this section, we describe how it leads to simple renormalization rules for
the Shannon and Rényi entropies of the ground state wavefunction.
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A. Reminder on the Fernandez-Pacheco self-dual real space renormalization

The goal is to replace each block of two spins (σ2i−1;σ2i) by a single renormalized spin σR(2i). The idea of Fernandez-
Pacheco [36], written here for the case of arbitrary transverse fields and arbitrary ferromagnetic couplings [39, 40], is
to decompose the Hamiltonian of Eq. 1 as the sum H = Hintra +Hextra with the following choice

Hintra =
∑

i

[

−h2i−1σ
x
2i−1 − J2i−1σ

z
2i−1σ

z
2i

]

Hextra =
∑

i

[

−h2iσx2i − J2iσ
z
2iσ

z
2i+1

]

(30)

Since Hintra is diagonal in the σz basis for the even spins σ2i, we have to diagonalize Hintra independently in
each subspace (S2, S4, .., S2i, ..). In addition, the odd spins σ2i−1 are independent of each other and submitted to the
one-spin Hamiltonian

H(S2i)
2i−1 = −h2i−1σ

x
2i−1 − J2i−1S2iσ

z
2i−1 (31)

The two eigenvalues are independent of the value of S2i = ±1

λ±2i−1 = ±
√

h22i−1 + J2
2i−1 (32)

with the following corresponding eigenvectors

|λ−2i−1(S2i) > =

√

√

√

√

1 + J2i−1S2i√
h2
2i−1+J

2
2i−1

2
|S2i−1 = +1 > +

√

√

√

√

1− J2i−1S2i√
h2
2i−1+J

2
2i−1

2
|S2i−1 = −1 >

|λ+2i−1(S2i) > = −

√

√

√

√

1− J2i−1S2i√
h2
2i−1+J

2
2i−1

2
|S2i−1 = +1 > +

√

√

√

√

1 + J2i−1S2i√
h2
2i−1+J

2
2i−1

2
|S2i−1 = −1 > (33)

Projecting onto the ground state for the odd spins yields the renormalized Hamiltonian for the even spins

HR =
∑

i

[

−hR2iσxR(2i) − JR2i−2σ
z
R(2i−2)σ

z
R(2i)

]

(34)

with the renormalized transverse fields

hR2i = h2i
h2i−1

√

h22i−1 + J2
2i−1

(35)

and the renormalized couplings

JR2i−2 = J2i−2
J2i−1

√

h22i−1 + J2
2i−1

(36)

B. RG rules for the IPR and for the Shannon-Rényi entropies

From the point of view of the IPR of Eq. 4, the real-space renormalization yields

Yq(N) =
∑

S1=±1

∑

S2=±1

..
∑

SN=±1

|ψ(S1, S2, ..., SN )|2q

=
∑

S2=±1

∑

S4=±1

..
∑

SN=±1

|ψR(S2, S4..., SN )|2q
N
2
∏

i=1

ỹq(2i− 1) (37)
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where ỹq(2i − 1; 2i) represents the IPR of the wavefunction λ−2i−1(S2i) (Eq. 33) of the odd spin S2i−1 in the field of
the even spin S2i

ỹq(2i− 1; 2i) ≡
∑

S2i−1=±1

| < S2i−1|λ−2i−1(S2i) > |2q

=





1 + J2i−1√
h2
2i−1+J

2
2i−1

2





q

+





1− J2i−1√
h2
2i−1+J

2
2i−1

2





q

(38)

Since ỹq(2i− 1; 2i) is actually independent of the value S2i = ±1, and only depends on the ratio K2i−1 ≡ J2i−1

h2i−1
, it is

convenient to introduce the auxiliary function

yq(K) ≡
[

1 + K√
1+K2

2

]q

+

[

1− K√
1+K2

2

]q

(39)

Then Eq. 37 can be rewritten as

Yq(N) =
∑

S1=±1

∑

S2=±1

..
∑

SN=±1

|ψ(S1, S2, ..., SN)|2q =





N
2
∏

i=1

yq(K2i−1)



Y Rq (
N

2
) (40)

where

Y Rq (
N

2
) ≡

∑

S2=±1

∑

S4=±1

..
∑

SN=±1

|ψR(S2, S4..., SN )|2q (41)

is the IPR of the renormalized system of the N
2 even spins with the renormalized parameters given in Eqs 35 and 36.

The multiplicative RG rule of Eq. 40 translates into the following additive RG rule for the Shannon-Rényi entropies
of Eq. 5

Sq(N) =
lnYq(N)

1− q
=

N
2
∑

i=1

ln yq(K2i−1)

1− q
+ SRq (

N

2
) (42)

where SRq (
N
2 ) =

lnY R
q (N

2 )

1−q is the entropy of the renormalized system of the N
2 even spins with the renormalized

parameters given in Eqs 35 and 36.
In the following sections, we analyze the consequences of the RG rule of Eq. 42 for the pure chain and for the

random chain respectively.

IV. MULTIFRACTAL SPECTRUM FOR THE PURE CASE

A. RG rules for the couplings [36]

If the initial parameters are (h, J) on the whole chain, the Fernandez-Pacheco renormalization yields after one RG
step the renormalized parameters (Eqs 35 and 36)

hR = h
h√

J2 + h2

JR = J
J√

J2 + h2
(43)

so that the ratio K ≡ J
h evolves according to the simple rule

KR ≡ JR

hR
= K2 ≡ φ(K) (44)

The disordered attractive fixed point K = 0 and the ferromagnetic attractive fixed point K → +∞ are separated by
the unstable fixed point Kc = 1 characterized by the correlation length exponent ν = 1 obtained by 2

1
ν = φ′(Kc) =

2Kc = 2. So the location of the critical point Kc = 1 and and the correlation length exponent ν = 1 are in agreement
with the exact solution [38].
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B. RG rule for the Shannon-Rényi entropies

The factors yq(K2i−1) in Eq. 38 are all the same, and depend only on the control parameter K = J/h so that the
RG rule of Eq. 42 for the Shannon-Rényi entropies reads

Sq(K;N) =
N

2

ln yq(K)

1− q
+ Sq(KR = K2;

N

2
) (45)

where the function yq(K) has been introduced in Eq. 39. The iteration yields

Sq(K;N) =
N

2

ln yq(K)

1− q
+
N

4

ln yq(K
2)

1− q
+
N

8

ln yq(K
4)

1− q
+ ...+

N

2k
ln yq(K

2k−1

)

1− q
+ ... (46)

where the kth term corresponds to the contribution of the kth RG step, where N
2k

spins coupled via K2k−1

are

eliminated, and where N
2k

spins survive with the renormalized coupling K2k .

C. Generalized fractal dimensions Dq(K)

From Eq. 46, one obtains the generalized fractal dimensions Dq(K) of Eq. 5 as a series over the RG steps
k = 1, 2, ..,+∞

Dq(K) = lim
N→+∞

Sq(K;N)

N ln 2
=

+∞
∑

k=1

dq(K
2k−1

)

2k
(47)

in terms of the auxiliary function dq(K) obtained from Eq. 39

dq(K) ≡ ln yq(K)

(1− q) ln 2
=

ln

(

[

1+ K√
1+K2

2

]q

+

[

1− K√
1+K2

2

]q
)

(1 − q) ln 2
(48)

that becomes for the Shannon value q = 1

dq=1(K) = −

[

1+ K√
1+K2

2

]

ln

[

1+ K√
1+K2

2

]

+

[

1− K√
1+K2

2

]

ln

[

1− K√
1+K2

2

]

ln 2
(49)

As it should, one recovers at the paramagnetic fixed point K = 0 where dq(K = 0) = 1 the value of Eq. 25

Dq(K = 0) = 1 (50)

and at the ferromagnetic fixed point K = +∞ where dq(K = +∞) = 0 the value of Eq. 21

Dq(K = +∞) = 0 (51)

D. Multifractal spectrum at the critical point Kc = 1

At the critical point Kc = 1, the generalized fractal dimensions Dq(Kc = 1) of Eq. 47 simply coincide with the
auxiliary function of Eq. 48

Dq(Kc = 1) = dq(1) =

ln

([

1− 1√
2

2

]q

+

[

1+ 1√
2

2

]q)

(1 − q) ln 2
(52)
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FIG. 1: Pure quantum Ising chain at the critical point Kc = 1
(a) Generalized fractal dimension Dq(Kc = 1) as a function of the Rényi index q

(b) Corresponding multifractal spectrum f(α) as a function of α.

This function is plotted on Fig. 1 (a) for the Rényi index in the interval q ∈ [−5,+5]. Let us quote some special
values

Dq→0(K = 1) = 1− q

2
+O(q2)

Dq=1/2(K = 1) =
ln
(

1 + 1√
2

)

ln 2
= 0.771553

Dq=1(K = 1) =

−
(

1− 1√
2

2

)

ln

(

1− 1√
2

2

)

−
(

1+ 1√
2

2

)

ln

(

1+ 1√
2

2

)

ln 2
= 0.600876

Dq=2(K = 1) =
ln 4− ln 3

ln 2
= 0.415037

Dq=+∞(K = 1) = −
ln

[

1+ 1√
2

2

]

ln 2
= 0.228447 (53)

in order to compare them with the explicit exact values for q = 1/2 and q = +∞ [23, 25] and the numerical values
for q = 1 and q = 2 [20]

Dexact
q=1/2(K = 1) =

2Catalan

π ln 2
= 0.841267..

Dnum
q=1 (K = 1) =

0.42327...

ln 2
= 0.61065...

Dnum
q=2 (K = 1) =

0.21380...

ln 2
= 0.30845...

Dexact
q=+∞(K = 1) = 1− 2Catalan

π ln 2
= 0.158733.. (54)

Our conclusion is thus that the RG yields a very good approximated value for the Shannon value q = 1, whereas the
approximation is clearly worse for the other Rényi indices q 6= 1. This seems to indicate that the Fernandez-Pacheco
RG procedure is well suited for the initial Hamiltonian corresponding to q = 1, whereas it should probably be modified
for q 6= 1 in order to take into account the deformation of the measure with respect to the initial quantum problem
corresponding to q = 1. Indeed from the point of view of the equivalent 2D classical Ising model, the case where
M = 2q is an integer corresponds to the ’Ising book’ (see Fig. 4 of [20]) where M = 2q half-planes are glued together.
This clearly changes the measure of the spin distribution and should be taken into account within the RG procedure
in order to obtain better values for q 6= 1.
On Fig. 1 (b), the corresponding multifractal spectrum fKc=1(α) is plotted as a function of α (see section II B for
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a reminder on its meaning) from the parametric form of Eqs 12 and 13

αq(Kc = 1) = − 1

ln 2









[

1+ 1√
2

2

]q

ln

[

1+ 1√
2

2

]

+

[

1− 1√
2

2

]q

ln

[

1− 1√
2

2

]

[

1+ 1√
2

2

]q

+

[

1− 1√
2

2

]q









fKc=1(αq) = qαq(Kc = 1) +

ln

([

1− 1√
2

2

]q

+

[

1+ 1√
2

2

]q)

ln 2
(55)

In particular for q = 0, the typical exponent of Eq. 14 takes the simple value

α0(Kc = 1) =
3

2
(56)

E. Singularities at the critical point Kc = 1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

K

D
1

(K)

(a)

0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

K

D’
1

(K)

(b)

FIG. 2: Pure quantum Ising chain at the Shannon value q = 1
(a) The generalized fractal dimension D1(K) is continuous a function of the control parameter K = J

h

(b) The derivative ∂KD1(K) as a function of the control parameter K = J

h
displays a logarithmic singularity at the critical

point Kc = 1.

The values Dq(K = 1) are not universal, but the derivatives of Dq(K) with respect to the control parameter K are
expected to display universal singularities at the critical point. The first derivative of Eq. 47

D′
q(K) =

1

2K

+∞
∑

k=1

K2k−1

d′q(K
2k−1

) (57)

clearly diverges at Kc = 1. Since this divergence is due to the region of large RG-step k, we may evaluate the form
of the singularity by replacing the series over the integer k by the corresponding integral over the real variable k, and

then perform a change of variable from k to KR = K2k−1

D′
q(K) ≃

|K−1|≪1

1

2

∫ +∞

1

dkK2k−1

d′q(K
2k−1

)

≃
|K−1|≪1

1

2

∫ +∞

K

dKR

(lnKR)(ln 2)
d′q(KR) (58)

i.e. the second derivative displays a pole singularity

D′′
q (K) ≃

|K−1|≪1
− d′q(K)

2(ln 2)(lnK)
≃

|K−1|≪1
− d′q(1)

2(ln 2)(K − 1)
+ ... (59)
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The singularity of the first derivative is thus given by the following logarithmic divergence

D′
q(K) ≃

|K−1|≪1
− d′q(1)

2(ln 2)
ln |K − 1|+ ... (60)

This behavior is in agreement with the logarithmic singularity of Eq. 29 concerning the limit q → ±∞.
Finally, the function itself is continuous with the following logarithmic singularity

Dq(K) ≃
|K−1|≪1

Dq(1)−
d′q(1)

2(ln 2)
(K − 1) ln |K − 1|+ ... (61)

For the Shannon index q = 1, the generalized fractal dimension D1(K) and its derivative ∂KD1(K) are plotted as
a function of the control parameter K = J

h on Fig. 2. The corresponding coefficient of the logarithmic singularity on
these figures is

−
d′q(1)

2(ln 2)
= −arccoth(

√
2)

4
√
2(ln 2)2

= −0.32429 (62)

F. Duality functional relation

As a final remark, let us mention that the RG result of Eq. 47 satisfies the exact duality relation quoted in Eq. 27
Indeed for the index value q = 1/2, the auxiliary function of Eq. 48 reads

dq= 1
2
(K) =

ln

(

[

1+ K√
1+K2

2

]

1
2

+

[

1− K√
1+K2

2

]

1
2

)2

ln 2
=

ln

(

1+ K√
1+K2

2 +
1− K√

1+K2

2 + 2

√

1− K2

1+K2

4

)

ln 2

=
ln
(

1 + 1√
1+K2

)

ln 2
(63)

whereas for the index value q = +∞, it reads

dq=+∞(K) = −
ln

(

1+ K√
1+K2

2

)

ln 2
= 1− dq= 1

2

(

1

K

)

(64)

so that the duality relation of Eq. 27 is satisfied term by term in the series representation of Eq. 47.

V. MULTIFRACTAL SPECTRUM FOR THE RANDOM CHAIN

A. RG rules for the couplings [39, 40]

In terms of the ratios

Ki ≡
Ji
hi+1

(65)

the RG rules of Eq. 35 and 36 read

KR
2i−2 ≡ JR2i−2

hR2i
=
J2i−2J2i−1

h2i−1h2i
= K2i−2K2i−1 (66)

that generalize the pure RG rules of Eq. 44.
Since this corresponds to a simple addition in log-variables

lnKR
2i−2 = lnK2i−2 + lnK2i−1 (67)
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one obtains after k RG steps in terms of the initial variables

lnKRk

=
2k
∑

i=1

lnKi−1 =
2k
∑

i=1

[ln Ji−1 − lnhi] (68)

The Central Limit theorem yields the asymptotic behavior

lnKRk ≃
k→+∞

2k
[

ln Ji−1 − lnhi
]

+
√
2k
√

[V ar[ln Ji] + V ar[lnhi]]u (69)

where u is a Gaussian random variable of zero mean and of variance unity. So for large RG step k, the probability

distribution Pk(KR) of the renormalized coupling KR = KRk

is log-normal

Pk(KR) ≃
k→+∞

1

KR

√
2πV 2k

e−
(lnKR−2k lnK)2

2V 2k (70)

with the notations

lnK ≡ ln Ji−1 − lnhi

V ≡ V ar[ln Ji] + V ar[ln hi] (71)

The first term of Eq. 69 yields that the critical point corresponds to the condition

lnKc ≡ ln Ji−1 − lnhi = 0 (72)

and that the typical correlation length exponent with respect to the length scale L = 2k is

νtyp = 1 (73)

Outside criticality, the competition between the first and the second term of Eq. 69 shows that the finite-size
correlation exponent is

νFS = 2 (74)

At criticality where the first term vanishes, the second random term of order L1/2 corresponds to an Infinite Disorder
Fixed Point of exponent

ψ =
1

2
(75)

All these conclusions of Eqs 72, 73, 74, 75 obtained via the application of the Fernandez-Pacheco renormalization
to the random quantum Ising chain [39, 40], are in agreement with the Fisher Strong Disorder renormalization exact
results [35].

B. RG rule for averaged Shannon-Rényi entropies

Averaging Eq. 42 over the disorder yields the following RG rule for averaged Shannon-Rényi entropies

Sq(N) =
N

2

ln yq(K2i−1)

1− q
+ SRq (

N

2
) (76)

where SRq (
N
2 ) is the averaged entropy of the renormalized system of the N

2 even spins with the renormalized parameters
given in Eq 66. Note that whenever multifractality appears in disordered systems (see for instance the review [10]
on Anderson localization transitions), one should make the distinction between the ’averaged multifractal sprectrum’
based on the disorder-average of the IPR, and the ’typical multifractal sprectrum’ based on the disorder-average of
the logarithm of the IPR. Here we only consider the disorder-averaged entropies of Eq. 76, corresponding to the
disorder-average of the logarithm of the IPR that define the typical multifractal spectrum.
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FIG. 3: Random quantum Ising chain at the Rényi index q = 1

(a) Information dimension D1(K) as a function of the control parameter K = eln Ji−lnhi

(b) The derivative ∂KD1(K) as a function of the control parameter K displays a cusp singularity at the critical point Kc = 1.

C. Generalized fractal dimensions Dq

So in terms of the auxiliary function dq(K) of Eq. 48, the iteration of Eq. 76 yields the generalized fractal dimension

Dq ≡ lim
N→+∞

Sq(N)

N ln 2
=

+∞
∑

k=1

∫ +∞

0

dKRPk−1(KR)
dq(KR)

2k
(77)

where Pk(KR) is the probability distribution of the renormalized variable KR after k RG steps (Eq. 68). Of course
the values Dq of Eq. 77 are non-universal as in the pure case, since they depend on the contribution of the first RG
steps. In particular they thus depend upon the initial disorder distribution P0(K). On Fig. 3, we show D1(K) and its
derivative ∂KD1(K) as a function of the control parameter K of Eq. 71 for the special case where the initial disorder
distribution P0(K) is itself given by the log-normal form of Eq. 70 with the value V = 1, so that Eq. 70 is valid for
all RG steps k

Dq(K) =

+∞
∑

k=1

∫ +∞

0

dKR
dKR

KR

√
2πV 2k−1

e−
(lnKR−2k−1 lnK)2

2V 2k−1
dq(KR)

2k

=

+∞
∑

k=1

∫ +∞

−∞

du√
2π
e−

u2

2
dq(K

2k−1

e
√
V 2k−1u)

2k
(78)

On Fig. 3, it is clear that D1(K) and its derivative ∂KD1(K) are both continuous at the critical point Kc = 1, but
that the derivative displays a cusp (see the difference with the corresponding Figure 2 concerning the pure case). To
understand the origin of this singularity, we may take into account the Infinite Disorder nature of the critical point
and the Strong Disorder nature of the critical region. More precisely at large RG step k, the renormalized coupling

KR ≡ K2k−1

e
√
V 2k−1u (79)

is either very small (if 2k−1 lnK +
√
V 2k−1u < 0) or either very big (if 2k−1 lnK +

√
V 2k−1u > 0) with the following

leading contributions of the auxiliary function of Eq. 48

dq(K) ≃
K→0

1 +O(K2)

dq(K) ≃
K→+∞

0 +O(max(
1

K2
,

1

K2q
)) (80)

Let us thus make the approximation that the singular part is given in the critical region by

Dsing
q (K) ≃

+∞
∑

k=1

1

2k

∫ − 2k−1 lnK√
V 2k−1

−∞

du√
2π
e−

u2

2 (81)
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Since the singularity is due to the region of large RG-step k, we may evaluate the first derivative by replacing the
series over the integer k by the corresponding integral over the real variable k, and then perform a change of variable

from k to x = 2k−1

2V (lnK)2

∂KD
sing
q (K) ≃ −2

+∞
∑

k=1

1√
2πV 2k−1K

e−
2k−1

2V (lnK)2

≃ −2

∫ +∞

1

dk
1√

2πV 2k−1K
e−

2k−1

2V
(lnK)2

≃ − | lnK|
(ln 2)V

√
πK

∫ +∞

(lnK)2

2V

dx

x
3
2

e−x

≃ − 1

(ln 2)V
√
πK

[

2
√
2V − 2

√
π| lnK|+ 2

(lnK)2√
2V

+O
(

(lnK)2
)

]

(82)

is continuous at the critical point Kc = 1, but displays a cusp as a consequence of the second term containing the
factor | lnK| ∝ |K − 1| near criticality.

D. Analysis of the Shannon-Rényi entropies via Strong Disorder RG

For the random quantum Ising chain, the strong disorder renormalization procedure has been shown to be asymp-
totically exact by Daniel Fisher [35] so that it can be used to derive all universal critical properties (see [35] and the
review [41]), as well entanglement properties (see [42] and the review [43]). It is thus interesting to consider its ap-
plication to the Shannon-Rényi entropies, even if only the singularities will be meaningful, whereas the non-universal
values dominated by the first RG steps will of course not be reproduced faithfully.
In the Strong Disorder RG procedure [35, 41], the strongest term Ω among the ferromagnetic couplings Ji and the

transverse fields hi

Ω = max(Ji, hi) (83)

is decimated iteratively. If the strongest term is a coupling Ji, the two spins linked by this coupling are coupled
ferromagnetically to form a new renormalized spin (the two kept states are |++ > and | −− >). So the contribution
of this decimation to the Shannon-Rényi entropies is actually zero

SJdecimq (N) = SRq (N − 1) (84)

If the strongest term is a transverse field hi, the corresponding spin is in the eigenstate of σx, so that the contribution
of this decimation to the Shannon-Rényi entropies is the maximal value ln 2

Shdecimq (N) = SRq (N − 1) + (ln 2) (85)

As a consequence, the generalized fractal dimension is simply

Dq =
Sq(N)

N ln 2
=

Nh

Nh +NJ
(86)

where Nh is the total number of h-decimations along the RG flow, and NJ is the total number of J-decimations along
the RG flow.
We refer to Refs [35, 41] for the renormalization rules and for the asymptotic probability distributions of the

renormalized couplings and of the renormalized transverse fields as a function of the RG scale Γ = − lnΩ and of the
usual control parameter δ [35, 41] related to the previous notations (K,V ) of Eq. 71

δ ≡ ln Ji−1 − lnhi
V ar[ln Ji] + V ar[ln hi]

=
lnK

V
(87)

Here we only need the probability P0(Γ)dΓ to decimate a coupling in the interval [Γ,Γ + dΓ] and the probability
R0(Γ)dΓ to decimate a transverse field in the interval [Γ,Γ + dΓ], that read [35, 41]

P0(Γ) =
2δ

1− e2δΓ

R0(Γ) =
2δ

e2δΓ − 1
(88)
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In particular, the density nδ(Γ) of surviving spins at scale Γ evolves according to [35]

∂Γnδ(Γ) = − [P0(Γ) +R0(Γ)]nδ(Γ) (89)

and the solution starting from the initial condition nδ(Γ0) = 1 at the initial scale Γ0 reads [35]

nδ(Γ) =
sinh2 δΓ0

sinh2 δΓ
(90)

The fraction of h-decimations is then given in the thermodynamic limit by

Dq(δ) =
Nh

Nh +NJ
=

Nh

N
=

∫ +∞

Γ0

dΓR0(Γ)nδ(Γ) = sinh2 δΓ0

∫ +∞

Γ0

dΓ
δe−δΓ

sinh3 δΓ

= sinh2 δΓ0

[

1
2e

−2δΓ − 1

sinh2 δΓ

]Γ=+∞

Γ=Γ0

(91)

At criticality δ = 0, the fraction of h-decimation is of course

Dq(δ = 0) =
1

2
(92)

by symmetry. In the ordered phase δ > 0, it is given by

Dq(δ > 0) = 1− 1

2
e−2δΓ0 (93)

whereas in the disordered phase δ < 0 it reads

Dq(δ < 0) =
1

2
e2δΓ0 (94)

In particular the derivative

∂δDq(δ) = Γ0e
−2|δ|Γ0 (95)

is continuous but displays a cusp at criticality δ = 0, in agreement with the result 82 of the Fernandez-Pacheco
renormalization.

VI. CONCLUSION

In this paper, we have studied via real space renormalization the Shannon and the Rényi entropies of the ground
state wavefunction in the pure and in the random quantum Ising chain. Our main conclusion is that the leading
extensive term presents the following singularities at the quantum phase transition : the derivative with respect to
the control parameter is logarithmically divergent in the pure case, and displays a cusp singularity in the random case.
This cusp singularity for the random case has been also confirmed via the Strong Disorder Renormalization approach.
Although the logarithmic divergence for the pure quantum chain is reminiscent of the logarithmic divergence of the
specific heat of the 2D classical Ising model, the cusp singularity found for the random quantum chain is different
from the specific heat singularity of the corresponding 2D McCoy-Wu model [44].
We should stress that the leading extensive terms of the Shannon and the Rényi entropies do not depend on the

boundary conditions. As other extensive thermodynamic observables, their values are dominated by the small scales
in the bulk and are thus non-universal, whereas their singularities at the critical point are dominated by the large
scales and are thus universal. The subleading non-extensive terms of the Shannon and the Rényi entropies for finite
chains of size N are of course also very interesting. In the pure chain, these subleading contributions are universal,
but depend upon the boundary conditions as follows :
(i) for the periodic chain, the subleading term is of order O(1) and is non-trivial only at the critical point Kc = 1

and for the Shannon value q = 1 [19–21, 24, 26, 28], whereas the direct application of the real space RG described in
the text would produce a non-trivial O(1) term only at the critical point Kc = 1, but for all value of the Rényi index
q. This suggests, as already mentioned after Eq. 54, that the RG procedure probably needs to be improved for q 6= 1,
to take into account the deformation of the measure with respect to the initial quantum problem corresponding to
q = 1.
(ii) for the open chain, the subleading term at criticality is logarithmic and q-dependent [22, 28, 30, 31], as predicted

from the presence of ’corners’ in the Conformal Field Theory of the replicated associated statistical physics model.
It would be interesting to better understand the origin of these logarithmic terms directly in the framework of the
quantum Ising chain, and to reproduce them by some appropriate real-space RG procedure.
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