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ABSTRACT

We study the effective physics of F-theory at order α′3 in derivative expansion. We show

that the ten-dimensional type IIB eight-derivative couplings involving the graviton and the

axio-dilaton naturally descend from pure gravity in twelve dimensions. Upon compactification

on elliptically fibered Calabi-Yau fourfolds, the non-trivial vacuum profile for the axio-dilaton

leads to a new, genuinely N = 1, α′3 correction to the four-dimensional effective action.

http://arxiv.org/abs/1506.06756v2


Contents

1 Introduction and outlook 1

2 Type IIB couplings from twelve dimensions 5

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Eight-derivative couplings of gravity and axio-dilaton . . . . . . . . . . . . . . . . 7

2.2.1 t̂8t̂8R̂4 in 12d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 ǫ̂12ǫ̂12R̂4 in 12d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Four-dimensional N = 1 compactifications 11

A Conventions 16

B Higher-derivative actions 17

B.1 Redefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.2 Intermediate results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1 Introduction and outlook

F-theory [1] provides an elegant framework to combine all key ingredients for realistic models

of particle physics. At the same time, type IIB string theory with D7-branes/O7-planes, of

which F-theory is the strongly coupled formulation, is one of the corners of the string landscape

where the process of lifting vacuum degeneracies is best understood (see [2,3] for comprehensive

reviews).

As opposed to other types of moduli, the Kähler moduli of type IIB compactifications are

stabilized by quantum effects. Within the Large Volume Scenario [4], in particular, besides

euclidean D-brane instantons, a crucial role is played by the leading α′ corrections to the

effective four-dimensional (4d) Kähler potential. Due to the (extended) no-scale structure of

these models, it turns out that the main impact on effective masses and couplings typically
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comes from a certain α′3 correction1, which originates from reducing known ten-dimensional

(10d) R4 couplings on Calabi-Yau (CY) threefolds2 and performing the Weyl rescaling needed

to bring the 4d action into the Einstein frame [11–13]. For a CY threefold X3 of Euler number

χ(X3) and classical volume V3 in units of 2π
√
α′, this has the general form

K = −2 log(V3 + ξ

g
3/2
s

) , ξ = − ζ(3)
32π3

χ(X3) , (1.1)

where we have only displayed its tree-level part in string perturbation theory, which is the

dominant one if the string coupling is stabilized at values gs ≪ 1. An important feature of

the correction (1.1) is that it originates from the underlying N = 2 sector of closed strings

propagating on CY threefolds, and hence it does not capture the effects of D7-branes and

O7-planes, which are responsible for halving the amount of preserved supersymmetry. One

therefore expects additional contributions to (1.1), which are purely N = 1 corrections and

which are sensitive to the 7-brane content of the theory. None of these corrections are known

yet3, and one of the aims of the present paper is to investigate on possible modifications of

(1.1) within the framework of F-theory.

We will show that, for very small values of the string coupling, the orientifold background

affects this α′3 correction in a way that amounts to replacing

χ(X3) Ð→ χ(X3) + 2∫
X3

D3
O7 , (1.2)

where DO7 is the class Poincaré dual to the divisor wrapped by the O7-plane in X3. At order-

one string coupling, i.e. in F-theory, these two terms merge into a single correction, which

however is non-topological (see section 3).

In this sense, our computation generalizes [11] to N = 1 compactifications. However, this

analysis is not sufficient to make statements about the N = 1 metric for the Kähler moduli, and

must be supplemented, in this context, by a more complete reduction which includes the kinetic

terms for the scalars. Corrections to the Kähler metric at one-loop level have been recently

derived in [15], through a two-point function computation of closed string vertex operators

in toroidal orientifold models. Our analysis is complementary to [15], and it would be very

important, especially for phenomenological studies of string vacua, to extrapolate the results

of [15] to the smooth CY regime and combine them with those presented here.

Another caveat is that our study neglects the warp factor. Recently, warping effects were

considered jointly with higher derivative corrections, in the context of M-theory reductions on

1Corrections to the Kähler potential at order α′ 2 have been computed in toroidal orbifold models [5], and their

general behavior studied in the blown-up phase. Some models are robust against inclusion of such corrections,

due to certain cancellations happening at the level of the scalar potential [6–8]. See [9] for a review.
2This analysis has been extended lately to compactifications on SU(3) structure geometries [10].
3Recently, new α′ 3 corrections to the 4d scalar potential of type IIB orientifolds, without counterparts in

the Kähler potential, have been indirectly inferred from the known 10d R4 couplings [14].

2



CY fourfolds [16, 17]. Progress has also been made in identifying the warped Kähler potential

of F-theory/type IIB compactifications [18]. It would be of great interest to use these results

to combine the α′ effects discussed here with warping and infer the consequences for the 4d,

N = 1 effective action. These effects will give a separate contribution to the Kähler potential,

dependent on the warp factor, which will represent a different structure and cannot cancel

the correction we describe in this paper. Nevertheless, this extra contribution could be equally

relevant when studying phenomenological effects. We hope to report on this analysis in a future

publication.

Our main focus in this paper are α′3 corrections in F-theory, from which the result (1.2),

valid for type IIB CY orientifold vacua, arises upon taking a weak gs coupling limit. The 4d,

N = 1 effective action of F-theory compactifications on CY fourfolds was first discussed at low-

est order in α′ in [19]. Later, there have been a number of efforts in deriving α′ corrections to

these theories [20–24]. In most of these studies4 the effective physics of F-theory was examined

by exploiting the duality with M-theory: One first considers M-theory compactified on ellipti-

cally fibered CY fourfolds, and then sends the volume of the torus fiber to zero, which turns the

N = 2 effective action in three dimensions (3d) to an N = 1 one in 4d. Under this zero-size limit

(F-theory limit), the eleven-dimensional (11d) Planck length lM becomes infinitely smaller than

the string length, and consequently not all lM corrections in 3d lift to α′ corrections in 4d. The

way the lM corrections in 3d are derived from reducing higher-derivative couplings in 11d super-

gravity does affect their behavior under the F-theory limit. While classical compactifications on

elliptic fibrations were considered [22, 23], one may perform “quantum” reductions which take

into account non-zero Kaluza-Klein modes along the torus. This procedure was introduced for

a constant torus in [25] (see also [26] and [27]), and was proven to lead to corrections surviving

the F-theory limit. This is indeed the 11d origin of the correction in (1.1) [11]. It is therefore

natural to expect that the generalization of (1.1) to include the effects of 7-branes would arise

from extending the computation of [25] to the case of a non-trivially fibered torus.

In this paper, however, we adopt a different point of view on F-theory, which helps us

bypassing eleven dimensions and thus the quantum reductions mentioned above. We are by

no means proposing a more fundamental formulation of F-theory: Our approach essentially

uses the original twelve-dimensional (12d) logic of Vafa’s paper [1] and pushes it to the eight-

derivative level. We use 12d quantities to make manifest a larger symmetry group in 10d: The

SL(2,R) transformations of type IIB supergravity will be encoded in 12d diffeomorphisms.

Nevertheless, we will not have a standard supergravity theory in 12d, as not all components of

the 12d metric propagate5: There will indeed be no lift of the 10d measure to 12d, and hence

the overall size of the two additional directions, which always parametrize a torus, will not

4In [21] Heterotic/F-theory duality was used instead to derive all perturbative α′ corrections to a specific 4d,

N = 2 F-theory compactification. In [24], various terms in D-brane/O-plane actions were analyzed to extract

α′ 2 corrections to the N = 1 Kähler potential.
5A somewhat similar point of view can be found in the recent works [28,29], which however do not go beyond

two-derivative level.
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correspond to a physical degree of freedom.

The advantage of the 12d perspective is that it allows us to package all possible kinematical

structures of 10d couplings of gravity and axio-dilaton into much simpler, purely gravitational

12d couplings. The easiest instance of this arises at two-derivative level, whereby both the 10d

Einstein-Hilbert term and the kinetic term for the axio-dilaton can be seen to descend just

from a 12d Einstein-Hilbert term, upon Kaluza-Klein reduction on a torus. In this paper we

show that a similar phenomenon happens also at the eight-derivative level, where the relevant

12d structure we find has the familiarly looking form

L(3) = f0(τ, τ̄)(t̂8t̂8 + 1
96
ǫ̂12ǫ̂12)R̂4 , (1.3)

which contains various kinds of Lorentz-invariant contractions of four 12d Riemann tensors R̂

(see section 2). Here τ fully determines the torus part of the 12d metric, and f0 is a specific real

analytic function encoding the string dynamics. Upon Kaluza-Klein reduction on a torus of

fixed size, the simple 12d coupling (1.3) gives rise to an SL(2,R)-invariant set of eight-derivative
couplings containing 10d gravity and gradients of the axio-dilaton. The four-point part of these

terms was computed in string theory at tree-level, using the pure spinor formalism [30, 31],

and our result is in perfect agreement with this. Beyond four-point, formula (1.3) contains a

prediction on the flux-less sector of the type IIB lagrangian at order α′3. It would be very

important to test (1.3) further, by computing the relevant five-point functions in string theory.

The disadvantage of the 12d framework is that it can only capture the kinematical structure

of the 10d couplings, and ignores the dynamical factors multiplying them. However, supersym-

metry and SL(2,Z) invariance are powerful enough to allow just a single dynamical structure

which is given by the f0(τ, τ̄) present in (1.3) [32]. In order to actually derive the f0 factor,

rather than infer it, one needs to use the 11d perspective and generalize the quantum reduction

of [25] to external gravitons polarized along the torus.6

Now that we have established (1.3) as the 12d F-theory effective lagrangian at order α′3

with zero flux, just like we do with the analogous l6M lagrangian in 11d supergravity, we can use

it to derive α′ corrections to the 4d effective action by classically reducing it on an elliptically

fibered CY fourfold. As in M/F-theory duality, the complex structure of the CY takes into

account the 7-brane data of the vacuum (through the pinching of the fiber over some loci of the

base). However, the Kähler structure of the CY cannot be treated the same way as in M-theory.

Therefore, we argue that, in our 12d approach, the physics is captured by the behavior of (1.3)

over a 10d slice of the 12d fibration, i.e. by the action

S(3) = ∫
R1,3×B3

L(3)∣R1,3×B3
∗10 1 , (1.4)

where the internal part of the 10d slice is diffeomorphic to the base B3 of the elliptic CY. Note

that, if we consider smooth elliptic fibrations in Weierstrass form, this is well-defined, since

6We thank P. Vanhove for discussions concerning this point.
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every fiber comes with a marked point and there is a holomorphic embedding of the base in

the total space of the fibration (zero-section)7.

Let us conclude this introductory section with a final remark. It is possible to extend the 12d

approach to include couplings of the three-form flux of type IIB string theory, G3 = F3 − τH3.

However, the analysis is trickier, as more kinematical and dynamical structures can appear in

10d, each of which need not be individually SL(2,R)-invariant like in (1.3). Moreover, while

the G3 flux will give a contribution to the effective action, it will not contribute to the 4d

Weyl rescaling which we are looking at in this paper, to the order we are considering. To see

this, we note that fluxes could only contribute to the Weyl rescaling through their substitution

into higher-derivative terms in 10d. These are already suppressed by a factor of α′3 compared

with the two-derivative part. If the fluxes F3,H3 are quantized as (F3,H3) = α′(F flux
3 ,Hflux

3 ), so
that (F flux

3 ,Hflux
3 ) integrate over 3-cycles to order-one integers (as is the case for fluxes fixed by

higher-derivative terms through tadpole cancellation), substituting this result into the higher-

derivative terms will give a contribution suppressed by more than three powers of α′, which is

beyond the order we care about here. A detailed analysis of such fluxes, within both the 12d

and the 11d approaches, will hopefully be presented in a forthcoming publication.

The structure of the paper is as follows. In section 2 we will discuss the promotion to 12d

of the 10d eight-derivative couplings of type IIB involving gravity and axio-dilaton. Expanding

this result, we will then demonstrate that our 12d proposal reproduces all known four-point

string amplitudes with gravitons and axio-dilatons as external legs [30, 31]. In section 3 we

will consider non-trivial vacuum profiles for the axio-dilaton and reduce our 12d result to 4d

on elliptically fibered CY fourfolds. In this way, we will determine the N = 1 correction to

the 4d Weyl rescaling. In appendix A we summarize the conventions we use in performing our

computations, whereas in appendix B we comment on the effect of field redefinitions on the

eight-derivative corrections and record certain intermediate results.

2 Type IIB couplings from twelve dimensions

One is used to thinking of F-theory either as type IIB string theory in non-trivial axio-dilaton

backgrounds or as a certain decompactification limit of M-theory on elliptically fibered man-

ifolds. In this section, we will explore this duality in order to derive the 10d eight-derivative

couplings of type IIB, involving Riemann tensors and derivatives of the axio-dilaton.

7For fibrations with no sections, one may consider the associated Jacobian fibration, which always has a

zero-section [33].
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2.1 Preliminaries

We will start by reviewing the two-derivative 10d effective action of type IIB theory. The part

which depends on the metric gmn and the axio-dilaton τ = C0 + ie−φ is of the form

S(0) = ∫ (R − 2PmP̄
m) ∗10 1 , (2.1)

where the index m = 0, . . . ,9 and R is the Ricci scalar for the metric gmn. In this expression

the kinetic term for τ has been packaged in terms of Pm in such a way that the SL(2,R)/U(1)
coset structure of the action is made manifest. The relationship between Pm and τ is given by

Pm = i

2τ2
∇mτ , P̄m = − i

2τ2
∇mτ̄ , τ = τ1 + iτ2 , (2.2)

and covariant derivatives of Pm can be formed as

DmPn = ∇mPn − 2iQmPn , DmP̄m = ∇mP̄ n + 2iQmP̄ n , Qm = − 1

2τ2
∇mτ1 = i

2
(Pm − P̄m) .

(2.3)

It is useful to note that these definitions imply that D[mPn] = 0. This will be true as long as

τ remains a globally well-defined quantity. However, if there are 7-brane sources for τ , D[mPn]

will instead pick up additional delta function contributions.

We note that the action (2.1) should be multiplied by a factor of 1/((2π)7α′4). In this

section we will mainly be concerned with the functional forms of the actions we discuss, and

so we will neglect such factors. However, they will become relevant in section 3, and we will

consistently include them there.

One of the key statements made by F-theory is that the axio-dilaton τ may be associated

with the complex structure of an auxiliary torus. This may be seen in that, if we define a 12d

metric given by ĝMN where M = 0, . . . ,11 and where

ĝMN =
⎛⎜⎜⎝
gmn 0 0

0 1
τ2

τ1
τ2

0 τ1
τ2

τ21+τ
2
2

τ2

⎞⎟⎟⎠ , (2.4)

the action (2.1) can be rewritten as

S(0) = ∫ R̂ ∗10 1 , (2.5)

where R̂ is the Ricci scalar built from the metric ĝMN . There is no 12d promotion of the

10d measure, as the internal torus is taken to have fixed (unphysical) volume. We note here

that only derivatives with respect to 10d directions are allowed in our analysis, such that

∂M = ( ∂m 0 0 ).
6



If we had not known the two-derivative τ -dependent terms in the 10d action, but we had

known that it should be possible to rewrite the action in terms of ĝMN , then we could have

used the above analysis to derive the action (2.1). We would begin with the Einstein-Hilbert

term in 10d, promote this to the 12d Einstein-Hilbert term (2.5), and then by expanding this

expression in τ we would derive (2.1).

Alternatively, we could have taken the 11d Einstein-Hilbert term and we could have reduced

it on a torus with metric:
ν

Imτ
( 1 Reτ

Reτ ∣τ ∣2 ) , (2.6)

where ν is the torus volume, which in this case is physical. Using the relation which links lM

to α′ through ν, we would have then exactly obtained (2.1) by taking the F-theory limit ν → 0.

In the following we will pursue the idea of constructing quantities which are covariant under

the subgroup of 12d diffeomorphisms preserving the decomposition (2.4). In this way we will

derive 10d eight-derivative couplings of type IIB which are automatically invariant under the

SL(2,R) symmetry8. Furthermore, it should always be kept in mind that these 10d expressions

may alternatively be obtained from the F-theory limit of M-theory, even though, as opposed

to the two-derivative level, “quantum” reductions of 11d quantities are needed [25].

2.2 Eight-derivative couplings of gravity and axio-dilaton

At the eight-derivative order, the 10d type IIB supersymmetric effective action for terms which

depend only on the metric is known [25, 26, 36]. It consists of a parity even-even part, given

by f0t8t8R4, which reproduces the four-point string amplitudes, and a parity odd-odd part,

given by f0ǫ10ǫ10R4, which instead gives a vanishing contribution at four-point. However, the

equivalent set of couplings depending on the derivatives of τ are not fully known. Expressions

for them (including the G3-flux) were proposed in the past, based upon an SL(2,Z)-invariant
extension of known NSNS terms [37, 38]. We will instead use the strategy outlined in section

2.1 to derive these couplings.

8It is tempting to try and rephrase the flux-dependent type IIB action in terms of objects carrying 12d

indices. One may define the four-form ĜMNRS such that

Ĝmnr1 =Hmnr , Ĝmnr2 = Fmnr , Ĝmnrs = Ĝmn12 = 0 ,

but these rules appear to be more ad hoc, and such a lift might require not only four-form fluxes but also a

four-form potential [34, 35]. We will not need the knowledge of G-dependent, 10d α′ 3 terms for our purposes,

and we leave their study for a future publication.
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2.2.1 t̂8t̂8R̂4 in 12d

The part of the 10d eight-derivative action which non-trivially contributes to the four-point

amplitudes is given by f0t8t8R4 [25,26,36]. In this expression we have introduced the function

f0, which is the SL(2,Z)-invariant, non-holomorphic Eisenstein series of weight 3/2
f0(τ, τ̄) = ∑

(m,n)≠(0,0)

τ
3/2
2∣m + nτ ∣3 . (2.7)

It is useful to note that, for large values of τ2, the function f0 has the expansion

f0(τ, τ̄) = 2ζ(3) τ 3/22 + 2π2

3
τ
−1/2
2 + O(e−τ2) . (2.8)

We may then promote this part of the action to a quantity with 12d covariance built from the

metric ĝMN . This gives

S
(3)

t8
= ∫ f0(τ, τ̄) t̂8t̂8R̂4 ∗10 1 , (2.9)

where again there is no 12d promotion of the 10d measure, and

t̂8t̂8R̂
4 = t̂M1...M8

8 t̂8N1...N8R̂
N1N2

M1M2R̂
N3N4

M3M4R̂
N5N6

M5M6R̂
N7N8

M7M8 , (2.10)

with t̂8 as defined in appendix A.

Expanding out9 this expression using (2.4) gives the complete O(α′3) 10d action involving

gravity and axio-dilaton. The explicit expression is long and not very illuminating, but for

completeness we give it in appendix B.2.

The t8t8R4 part of this expansion (see equation (B.10)) is known to correspond to the four-

point graviton amplitude, and so it is natural to ask if the other four-point terms in this action

reproduce the remaining four-point amplitudes, which have been computed in [30, 31]. Many

of the terms in (B.10) contain more than four fields so they cannot contribute to four-point

amplitudes. Removing these terms gives the simpler result

S(3)

t8
∣4pt = 2ζ(3)

g
3/2
s

∫ [t8t8R4 + 1536DmP nDmP nD
rP̄ sDrP̄ s + 1536DmP nDrP̄ sRm

t
r
uRnust

−1536DmP̄
rDmP nRn

stuRrstu + 192DmP̄ nD
mP nRrstuRrstu + 1536DmP nDrP̄ sRm

t
n
uRrtsu] ∗10 1 .

(2.11)

In this expression we have taken the vacuum expectation value of τ , because its fluctuation

necessarily contributes to higher-point functions. Moreover, we have restricted to the first term

9Most of the computations and symbolic manipulations needed in this paper were performed in Mathematica,

using the package xAct.
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of the f0-expansion (2.8), which corresponds to string tree-level and dominates at small values

of the string coupling gs = e⟨φ⟩. This gives the constant prefactor in (2.11). To test whether

this reproduces the correct four-point amplitudes, we now make a further expansion, where

τ = C0 + ie−φ , gmn = ηmn + hmn , (2.12)

and work to forth order in the fields C0, φ and hmn. The quantities in (2.11) are then given by

Rmnrs = −∂[m∣∂rh∣n]s + ∂[m∣∂sh∣n]r + . . . , DmPn = 1

2
(∂m∂nφ + i∂m∂nC0) + . . . , (2.13)

where the dots represent terms at higher order in the fields. By going to momentum space,

we can consider the individual parts of the effective action, expressed in terms of Mandelstam

variables. Ignoring the constant prefactor in (2.11), this gives

L(3)

t8
φ2R2 = 12t2u2φ̃(k1)φ̃(k2)h̃mn(k3)h̃mn(k4) + . . . + perms , (2.14)

L(3)

t8
C2

0R
2 = 12t2u2C̃0(k1)C̃0(k2)h̃mn(k3)h̃mn(k4) + . . . + perms , (2.15)

L(3)

t8
φ4 = 2(s4 + t4 + u4)φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4) + perms , (2.16)

L(3)

t8
φ2C2

0 = 12(−s4 + t4 + u4)φ̃(k1)φ̃(k2)C̃0(k3)C̃0(k4) + perms , (2.17)

L(3)

t8
C4

0 = 2(s4 + t4 + u4)C̃0(k1)C̃0(k2)C̃0(k3)C̃0(k4) + perms , (2.18)

where, as in [31], the ellipses hide terms with contractions between km and hmn, and the extra

permutations give the terms with all possible exchanges of k1, k2, k3 and k4. These expressions

represent the various parts of the momentum-space-transformed integrand in (2.11). Comparing

them with the analogous expressions for the four-point string amplitudes given in [31], we see

that (B.10), and thus the torus reduction of (2.9), exactly reproduces the known four-point

results10.

A similar analysis also confirms the observation of [31] that, defining

δDPmn
rs = δ[m[rDn]P

s] , (2.20)

(2.14) and (2.15) can be compactly written as t8t8R2δDPδDP̄ , but that (2.17) is not compatible

with the structure t8t8δDP 2δDP̄ 2.

10To see this explicitly, it is convenient to use the identity

(s4 + t4 + u4)φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4) + perms = 3(−s4 + t4 + u4)φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4) + perms , (2.19)

where the difference is re-absorbed by the set of extra permutations. Similar expression holds for terms with

four C̃0’s.
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Strictly speaking, the above represents a sufficient comparison only for (2.16) to (2.18).

But to check that our result agrees with [31] for (2.14) and (2.15), we should also match the

dotted part, which is not given explicitly in [31]. Fortunately, in these terms the number

of explicit derivatives is lower. Hence we can directly match the R2DPDP̄ terms of (2.11)

with those coming from t8t8R2δDPδDP̄ , which was proven in [31] to correctly package this

sector of the four-point effective action (two gravitons + two axio-dilatons). This match can

be demonstrated to hold if we make use of a large number of total-derivative identities and of

the field equations at lowest order in α′ and in points. The latter imply that DmPm = Rmn = 0,
as is proven in detail in appendix B.1. Altogether, we are able to show that

24∫ t8t8R
2δDPδDP̄ ∗10 1 = ∫ [1536DmP nDrP̄ sRm

t
r
uRnust − 1536DmP̄

rDmP nRn
stuRrstu

+ 192DmP̄ nD
mP nRrstuRrstu + 1536DmP nDrP̄ sRm

t
n
uRrtsu] ∗10 1

+O(Rmn) +O(DmP
m) . (2.21)

This fully confirms that our result (2.11) correctly reproduces the known four-point effective

action.

2.2.2 ǫ̂12ǫ̂12R̂4 in 12d

Next, let us consider the equivalent generalization of the f0ǫ10ǫ10R4 terms present in 10d.

Promoting this part of the 10d action to a quantity with 12d covariance, we find

S(3)
ǫ12
= 1

96 ∫ f0(τ, τ̄) ǫ̂12ǫ̂12R̂4 ∗10 1 , (2.22)

where

ǫ̂12ǫ̂12R̂
4 = ǫR1R2R3R4M1...M8ǫR1R2R3R4N1...N8R̂

N1N2
M1M2R̂

N3N4
M3M4R̂

N5N6
M5M6R̂

N7N8
M7M8 . (2.23)

Expanding out this expression gives a formula which is too unwieldy to be placed in the main

text. Yet, for completeness, we provide the full expansion in appendix (B.2).

As before, we may perform our four-point analysis by restricting to only the small part of
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the action (B.11) which can contribute. This is given by

S(3)
ǫ12
∣4pt = ζ(3)

4g
3/2
s

∫ [ǫ10ǫ10R4 − 192DmP̄ nD
mP nR2 + 192DmPmD

nP̄ nR
2 − 768DmP nDrP̄ rRRmn

+ 768DmP nDrP̄ sRRmrns + 1536DmP̄
rDmP nRRnr − 768DmPmD

nP̄ rRRnr

+ 3072DmP nDrP̄ sRm
tRnrst − 1536DmP nDrP̄ sRmrRns + 1536DmP nDrP̄ rRm

sRns

+ 768DmP nDrP̄ sRmr
tuRnstu − 768DmP nDrP̄ rRm

stuRnstu + 1536DmP nDrP̄ sRm
t
r
uRntsu

+ 1536DmP nDrP̄ sRmnRrs − 3072DmP̄
rDmP nRn

sRrs + 1536DmPmD
nP̄ rRn

sRrs

+ 768DmP̄ nD
mP nRrsRrs − 768DmPmD

nP̄ nR
rsRrs + 1536DmP̄

rDmP nRn
stuRrstu

− 768DmPmD
nP̄ rRn

stuRrstu − 192DmP̄ nD
mP nRrstuRrstu + 192DmPmD

nP̄ nR
rstuRrstu

− 3072DmP nDrP̄ sRmsntRr
t − 1536DmP nDrP̄ sRm

t
n
uRrtsu + 1536DmP nDrP̄ rRmsntR

st

− 3072DmP̄
rDmP nRnsrtR

st + 1536DmPmD
nP̄ rRnsrtR

st] ∗10 1 . (2.24)

This expression is not exactly short and elegant, but it can be subjected to a basic sanity test.

Indeed, we may expand the fields as described in (2.12) and (2.13) and go to momentum space,

where we find that

L(3)
ǫ12

φ2R2 = L(3)
ǫ12

C2
0R

2 = L(3)
ǫ12

φ4 = L(3)
ǫ12

φ2C2
0 = L(3)

ǫ12
C4

0 = 0 . (2.25)

This is consistent with the results of [31], and shows that, like the standard ǫ10ǫ10R4 part, also

its axio-dilaton completion leads to a vanishing four-point amplitude.

3 Four-dimensional N = 1 compactifications

In this section we would like to take the 12d framework one step further. We want to compactify

the purely gravitational sector of the 12d action, corrected at order α′3 as discussed in the

previous section, down to 4d on an elliptically fibered CY fourfold, and study the consequences

on the ensuing N = 1 effective action at two-derivative level. Anticipating the result, this is

going to give us a new, genuinely N = 1 correction to the 4d effective action: This correction is

due to backreaction effects of 7-branes on the closed string background, and therefore modify

the long-known correction [11, 12], which instead originates from the N = 2 configurations of

closed strings living on Ricci-flat spaces.

First, let us consider the two-derivative action (2.5)

S(0) = 1

(2π)7α′4 ∫ R̂ ∗10 1 , (3.1)

and reduce it to 4d using the following ansatz for the 12d metric:

dŝ2 = gµνdxµdxν + 2gab̄dyadyb̄ . (3.2)
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In this expression gµν is the metric on the 4d external space R1,3 and gab̄ is the metric on the CY

fourfold X4, which we take to be a smooth elliptic fibration over a base B3, a six-dimensional

Kähler manifold. This represents an expansion about a solution to the lowest order 10d field

equations, where the external space metric is that of flat Minkowski space. The ∗101 in (3.1)

represents the volume form on the 10d space given by the product of the 4d external space and

the base11 B3. After Kaluza-Klein reduction, we simply get

S
(0)

(4d)
= 1

2πα′ ∫ VbR(4d) ∗4 1 , (3.3)

where R(4d) is the Ricci scalar in 4d and Vb is the classical volume of B3 in units of 2π
√
α′. Had

we started with ∗121 in 12d, we would have seen more terms in (3.3) due to the non-triviality of

the fibration. These additional terms are precisely the ones which in the F/M-theory duality are

killed by the F-theory limit [19]. In the present 12d framework, instead, they are automatically

excluded by the use of ∗101 in (3.1) and the restriction to the base which we have performed.

In order to put the action (3.3) into the Einstein frame, a Weyl rescaling must be performed

where gµν → gµν/Vb. In what follows we will study how the higher-derivative terms modify such

rescaling. We emphasize that corrections to the Weyl rescaling translate into corrections to the

Kähler potential, but there might be yet further corrections to the latter, which could be equally

relevant for phenomenology [15]. We would also like to stress that the process of deriving

a correction to the Kähler potential from a correction to the Weyl rescaling factor is well-

established in situations where there is a supergravity description for the higher-dimensional

theory12. In this regard, we are adopting the logic of the M-theory approach to F-theory,

according to which the higher-dimensional theory in question is the 11d supergravity. Thus, all

gs effects are codified by the curvature of the compactification manifold (the elliptic fibration),

and the source terms are conveniently “geometrized”. Where our method slightly differs from

the M-theory approach is in that it does not require the zero-size limit of the fiber. This concerns

only how one treats the Kähler structure of the internal manifold. As far as its complex structure

is concerned (which is what really controls gs effects), our approach is totally equivalent to the

traditional M-theory one.

Let us now move on to the action at order α′3. Combining (2.9) and (2.22), we have

S(3) = 1

(2π)7 ⋅ 3 ⋅ 211 ⋅ α′ ∫ f0(τ, τ̄) (t8t8 + 1
96
ǫ12ǫ12)R̂4

∗10 1 . (3.4)

As with the two-derivative part, the action in (3.4) has to be thought of as the integral over

a 10d slice of the 12d space. To avoid cluttering the notation, we omit the symbol indicating

the restriction to this slice. By decomposing the part of the 12d integrand which contributes

to the 4d Weyl rescaling we find

∫ f0
1

96
ǫ̂12ǫ̂12R̂

4
∗10 1 = −768(2π)3∫ R(4d) ∗4 1∫

B3

f0 ∗8 (J ∧ c3(X4)) ∗6 1 + . . . , (3.5)

11More precisely, here we mean the zero-section of the fibration, which is a holomorphic 6-cycle, diffeomorphic

to the base. In this paper we only consider fibrations admitting such a zero-section.
12We thank the referee for raising this point.
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where ∗8 represents the Hodge dual on the CY fourfold, ∗61 is the volume form of B3 and the

ellipses indicate terms which are not linear in the 4d Ricci scalar. In this expression we have

also introduced c3(X4) which is the third Chern form on the CY fourfold given by (A.4). It is

important to note that this is a particular representative of the third Chern class of the tangent

bundle of X4 and does not represent the class as a whole, because exact shifts in c3(X4) modify

the result (3.5). If we then demand, as in section 2, that all derivatives in fiber directions

vanish and use the Kähler property of the CY metric, we see that c3(X4) only has legs in base

directions and so is a top-form on B3, given by the restriction c3(X4)∣B3 . This means that we

may rewrite the r.h.s. of (3.5) as

−768(2π)3∫ R(4d) ∗4 1∫
B3

f0 ∗8 (J ∧ ∗61)c3(X4)∣B3 . (3.6)

Next, we make a decomposition of the CY fourfold Kähler form J into J = Jf + Jb, where

Jb is the Kähler form on the base and Jf the fixed volume of the fiber. As the space is a

non-trivial fibration, Jf ∧ Jf does not vanish, but instead is cohomologically equivalent to a

quantity proportional to c1(B3) ∧ Jf , where c1(B3) is the first Chern class of B3. However,

for dimensional reasons, these non-linear powers of Jf comes with extra factors of α′, so that

∗8(J ∧ ∗61) = 1 +O(α′). All of the α′ corrections in this expansion give contributions to our

result which are higher-order than α′3, and thus may be neglected in our analysis. Therefore,

combining (3.6) with the classical action (3.3), we find the following corrected factor of the 4d

Weyl rescaling:

S(4d) = 1

2πα′ ∫ (Vb −
1

64π3 ∫B3

f0(τ, τ̄) c3(X4)∣B3) R(4d) ∗4 1 , (3.7)

For backgrounds with constant axio-dilaton (trivial elliptic fibrations, no 7-branes), the base

is a CY threefold and formula (3.7) exactly reproduces the known N = 2 correction of [11, 12].

However, if the vacuum expectation value of τ depends on the coordinates of the base, which

is the case in N = 1 backgrounds, the correction in (3.7) is non-topological, and the integral is

difficult to perform.

One might worry that this correction diverges, but we argue that this does not happen.

Indeed, f0 is a real analytic function on the upper half τ plane H. Moreover, since it is SL(2,Z)-
invariant, its domain of definition can be taken to be the fundamental region H/SL(2,Z), and
its only pole is at imaginary infinity, which is the value of τ at D7-brane locations. Hence we

need to check that, despite this divergence, the integral in (3.7) is still finite. On the basis of

arguments analogous to those of [39], we argue that the Riemann tensors contained in c3(X4)
do not cause problems, so we concentrate just on f0. Consider then a disk of unit radius around

a D7-brane. The profile of τ in this disk is given by

τ = τ (0) + 1

2πi
log(z) , (3.8)

where z is the complex coordinate on the disk and τ (0) is the “asymptotic” axio-dilaton, i.e.

(τ (0)2 )−1 = gs is the stabilized value of the string coupling. Using the fact that τ diverges as
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−i log(∣z∣) when approaching the D7 at z = 0, and that, for large τ2, f0 goes like (τ2)3/2 (see

equation (2.8)), it is easy to verify that the integral of f0 on the disk is indeed finite.

At this point, we would like to make a brief consideration on the validity of our approach,

based, as remarked above, on having a supergravity description in 11d. The main possible

objection could be that there are regions of high curvature, as a result of the presence of regions

of strong coupling from the type IIB perspective, which may invalidate the 11d supergravity

approximation. The key feature, which we believe helps us avoiding this issue, is the SL(2,Z)
invariance of the higher-derivative couplings we are discussing. Even though in F-theory a global

SL(2,Z) rotation to weak string coupling cannot be performed, we can still work patch-wise

on the string internal manifold B3, and in each patch use a frame in which the string coupling

is small and the supergravity analysis can be trusted. We can do that precisely because the

integrand which expresses our correction in formula (3.7) is the same in every frame (being

SL(2,Z)-invariant). We believe that the fact that the integral in (3.7) is not divergent is a

strong indication that such a “patch-wise integration” is sensible. To conclude, we notice that

the problem already arises at lowest order in α′ and that the same argument may be used in

showing that everything should work out correctly. In that case, the statement is that at strong

coupling the Kähler potential should be proportional to the logarithm of the classical volume of

the base of the elliptic fibration (which replaces the classical volume of the Calabi-Yau threefold

double cover at weak coupling) [19]. Indeed, the classical volume of the base (in the Einstein

frame) is also an SL(2,Z)-invariant quantity.
Formula (3.7) can be drastically simplified by going to the Sen weak coupling limit of F-

theory [40]. Sen’s prescription consists in moving to a region of the complex structure moduli

space of the CY fourfold, where none of the monodromies acting on τ involves the string

coupling (τ2)−1, which thus can be kept small in a globally well-defined way. One can describe

this weakly coupled physics by means of type IIB string theory compactified on an orientifolded

CY threefold X3. The latter has the property of being the double cover of B3, branched along

the divisor wrapped by an O7-plane. The Poincaré dual of this divisor is the pull-back class

DO7 ≡ π∗c1(B3), under the projection map π ∶ X3 → B3. Moreover, there is a single, orientifold

invariant D7-brane, wrapping the divisor of class 8π∗c1(B3).
In this regime, where we take gs ≪ 1, we may consistently neglect the varying part of τ2 in

equation (3.8), and therefore pull f0 out of the integral. We must be careful, though, because at

O(e−1/gs) distances from the D7-brane, the varying contribution in (3.8) becomes comparable

to the constant part. However, it is easy to check by explicit computation, that the dominant

term of the integral goes like g
−3/2
s and is just given by the constant part of (3.8). Hence, for

very small string coupling, we have

S(4d) = 1

2πα′ ∫ (Vb −
ζ(3)

32π3 g
3/2
s

∫
B3

c3(X4)∣B3) R(4d) ∗4 1 + O(g−1/2s ) . (3.9)

At this point our correction becomes topological, and the quantity c3(X4)∣B3 can as well be re-

garded as a cohomology class. Notice that the next-to-leading order correction appears already
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at O(g−1/2s ), and not at O(g1/2s ), as was the case for [11, 12]. This was expected, due to the

presence of the D7-brane and the O7-plane, which allow for non-trivial contributions of both

open string and non-orientable string diagrams.

We can simplify (3.9) further, by expressing c3(X4)∣B3 in terms of Chern classes of the CY

threefold X3. Using adjunction formulae, it is easy to show that, in cohomology,

c3(X4)∣B3 = c3(B3) − c1(B3)c2(B3) , π∗(c3(B3) − c1(B3)c2(B3) − 2c31(B3)) = c3(X3) . (3.10)

Substituting this into (3.9) and turning integrals over B3 into integrals over X3, we find the

following correction to the classical volume V3 of the CY threefold:

Ṽ3 = V3 − ζ(3)
32π3 g

3/2
s

(χ(X3) + 2∫
X3

D3
O7) + O(g−1/2s ) , (3.11)

where we recall that DO7 ≡ π∗c1(B3) is the class Poincaré dual to the O7-plane in X3. The first

correction term in (3.11) is the one of [11, 12]. The second term is new, and it is a genuinely

N = 1 correction. From a string point of view, it should arise from tree-level closed string

scattering in this CY orientifold background.

We might be concerned that the correction to the Weyl rescaling (3.11) does not properly

take into account the contribution from source terms which should be present in the type

IIB effective action. Performing the reduction of our proposed 12d action, using the metric

decomposition (2.4), we get the bulk IIB action. But, when the profile for τ becomes non-

trivial, the latter is certainly corrected by source terms. However, it is important to note

that (2.4) is only well-defined away from 7-brane sources, around which τ undergoes non-

trivial monodromies. In this section, instead, our reduction is performed with the metric

decomposition (3.2), which should be true globally. If the CY metric in (3.2) is smooth, we

believe that the difference from (2.4) should be such that the source terms are already taken

into account by our 12d expressions, and the full action is (3.1) plus (3.4) to order α′3. If the F-

theory CY fourfold is singular, which is always the case when we have non-trivial gauge groups

at low energy, it may seem impossible to perform our analysis, as in our 12d approach we are

not allowed to perform resolutions. However, if gauge groups are engineered via the standard

Tate algorithm [41], we believe that our correction should persist even if it gets modified by

further additional terms. Indeed, singularities would arise away13 from the zero-section, where

our correction (3.7) lives, and so would be unable to alter it. In cases where extra source terms

should be added to our proposed 12d action, these may result in additional terms to those

shown in (3.7), and consequently to those in (3.11).

Let us end by noting a few caveats related to this correction. Firstly, we assumed that the

full set of eight-derivative, 10d terms containing only gravity and axio-dilaton is given by (3.4)

at all orders in the fields. In section 2 we have demonstrated that this is true at four-point,

13Embedding the fiber in WP
2

231
with homogeneous coordinates X,Y,Z, the zero section is at the point Z = 0,

whereas singularities are usually enforced at X = Y = 0.
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but whether (3.4) is enough to correctly account also for higher-point amplitudes remains to

be seen. Secondly, the effect of corrections to the vacuum solution that will be induced by the

higher-derivative terms we have included has not been taken into account here. These terms will

modify the 12d equations of motion and can make the solution deviate from the CY one, which

is present at lowest order. These sorts of corrections include those associated with warping and

changes to the internal space metric that can significantly alter the ansatz (3.2) at order α′3, as

seen in [16,17,42–44]. These effects could also give contributions which are equally relevant to

those we compute here in the Weyl rescaling, and may modify our result. Finally, while we have

computed a contribution to the Weyl rescaling, this does not fully determine the correction to

the Kähler potential. One would need to also compute corrections to the kinetic terms for the

moduli appearing in the dimensional reduction [15], in order to draw precise conclusions about

the corrected Kähler potential.
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A Conventions

We adopt the following conventions for the Christoffel symbols and the Riemann tensor

Γ̂R
MN = 1

2
ĝRS(∂M ĝNS + ∂N ĝMS − ∂S ĝMN) , R̂MN = R̂R

MRN ,

R̂M
NRS = ∂RΓ̂M

SN − ∂SΓ̂
M

RN + Γ̂
M

RT Γ̂
T
SN − Γ̂

M
ST Γ̂

T
RN , R̂ = R̂MN ĝ

MN . (A.1)

The tensor t̂8 is given by the product of metrics

t̂N1...N8
8 = 1

16
( − 2 (ĝN1N3 ĝN2N4 ĝN5N7 ĝN6N8

+ ĝN1N5 ĝN2N6 ĝN3N7 ĝN4N8
+ ĝN1N7 ĝN2N8 ĝN3N5 ĝN4N6)

+ 8 (ĝN2N3 ĝN4N5 ĝN6N7 ĝN8N1
+ ĝN2N5 ĝN6N3 ĝN4N7 ĝN8N1

+ ĝN2N5 ĝN6N7 ĝN8N3 ĝN4N1)
− (N1 ↔N2) − (N3 ↔N4) − (N5 ↔ N6) − (N7 ↔ N8)) . (A.2)
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The epsilon tensor is defined such that

ǫ̂R1⋯RpN1...Nd−pǫR1...RpM1...Md−p
= (−1)s(d − p)!p!δN1

[M1
. . . δNd−p

Md−p] , (A.3)

where s = 0 for a Riemannian signature metric and s = 1 for a Lorentzian signature metric.

Equivalent definitions are used for the relevant 10d quantities.

In the reduction of section 3 we have introduced c3(X4), which is the third Chern form

associated to the CY metric gab̄. This is given by

c3(X4) = − i

3(2π)3Ra
b
∧Rb

c
∧Rc

a . (A.4)

B Higher-derivative actions

In this appendix we show some redefinitions useful in writing higher-derivative couplings in the

effective actions, as well as a collection of formulae that are too big to fit in the main text.

B.1 Redefinitions

Let us consider an action known at second order in derivatives such that

S = S(0)(gmn, τ) . (B.1)

When the fields undergo a small shift, the induced shift of the action is given by

δS = ∫ (E(0)(g)mnδgmn +E
(0)(τ)δτ +E(0)(τ̄)δτ̄) ∗10 1 , (B.2)

where

E(0)(g)mn = 1√
−g

δS(0)

δgmn

, E(0)(τ) = 1√
−g

δS(0)

δτ
, (B.3)

represent the quantities which vanish on the equations of motion.

If we now include a set of higher-derivative terms in the action suppressed by α′, the total

action becomes

S = S(0)(gmn, τ) + α′ 3S(3)(gmn, τ) . (B.4)

Next, let us consider a redefinition of the fields such that

τ → τ + α′
3
T , gmn → gmn + α

′ 3Gmn , (B.5)

17



The action written in terms of the new fields is then given by

S = S(0)(gmn, τ) + α′ 3S(3)(gmn, τ) + α′ 3∫ (E(0)(g)mnGmn +E
(0)(τ)T +E(0)(τ̄)T̄ ) ∗10 1 . (B.6)

This shifts the higher-derivative part without shifting the lowest-order part. Thus we see

that the higher-derivative part of the action is defined only up to terms which vanish on the

lowest-order field equations, as such terms may always be absorbed by an α′-dependent field

redefinition.

In our case

S(0) = ∫ (R − 2PmP̄
m) ∗10 1 , (B.7)

so that

E(0)(g)mn = Rmn −
1

2
Rgmn − 2P(mP̄ n) + gmnPrP̄

r , E(0)(τ) = −2i
τ 2

DmP
m , (B.8)

which imply that

DmP
m = 0 , Rmn = 2P(mP̄ n) . (B.9)

In the four-point effective action we consider, substituting in Rmn = 2P(mP̄ n) will automat-

ically produce a quantity which is five-point or higher, as R and P are both linear in fields at

lowest order. We may therefore treat the second equation as Rmn = 0 when considering the

four-point effective action.

B.2 Intermediate results

Here we collect two formulae that may turn useful, but due to their size are unpleasant to

include in the main body of the paper.
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The full expansion of (2.9), using the 12d metric decomposition (2.4), yields

S
(3)

t8
= ∫ f0(τ, τ̄)[t8t8R4

+ 1536DmP nDmP nD
rP̄ sDrP̄ s − 3072P̄

nP̄ rDnP
sDrP̄ sP

mPm

+ 1536P̄ nP̄ nDrP̄ sD
rP sPmPm − 3072P̄

rP̄ sDmP rDnP̄ sP
mP n

− 3072P̄ rP̄ rDmP
sDnP̄ sP

mP n

+ 7680P̄ rP̄ sDmP nDrP̄ sP
mP n

+ 6144P̄mP̄
rDnP

sDrP̄ sP
mP n

− 768P̄mP̄ nDrP̄ sD
rP sPmP n

+ 1536P̄ rP̄ sDmP̄ nDrP sP
mP n

+ 4608P̄ rP̄ rP̄
sP̄ sP

mPmP
nP n − 2304P̄nP̄ rP̄

sP̄ sP
mPmP

nP r

+ 576P̄mP̄ nP̄ rP̄ sP
mP nP rP s

− 3072P̄ nDrP̄
tDrP sPmRmnst + 3072P̄

nDnP̄
tDrP sPmRmrst

+ 3072P̄ nDnP
rDsP̄ tPmRmsrt − 3072P̄

nDmP̄
tDrP sPmRnrst − 3072P̄

nDmP
rDsP̄ tPmRnsrt

− 1536P̄mD
nP rDsP̄ tPmRnsrt + 768P̄

rP̄ rP
mP nRm

stuRnstu + 1536D
mP nDrP̄ sRm

t
r
uRnust

+ 1536P̄ rP̄ sPmP nRm
t
r
uRnust − 1536DmP̄

rDmP nRn
stuRrstu + 768P̄

nP̄ rPmPmRn
stuRrstu

− 3072P̄mP̄
rPmP nRn

stuRrstu + 192DmP̄ nD
mP nRrstuRrstu − 192P̄

nP̄ nP
mPmR

rstuRrstu

+ 480P̄mP̄ nP
mP nRrstuRrstu + 1536D

mP nDrP̄ sRm
t
n
uRrtsu + 1536P̄

rP̄ sPmP nRm
t
n
uRrtsu] ∗10 1 .
(B.10)
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The analogous expansion of (2.22) gives instead

S(3)
ǫ12
= 1

8 ∫ f0(τ, τ̄)[ǫ10ǫ10R4
− 192DmP̄ nD

mP nR2
+ 192DmPmD

nP̄ nR
2
+ 384P̄ nP̄ nP

mPmR
2

− 384P̄mP̄ nP
mP nR2

+ 32P̄mP
mR3

− 768DmP nDrP̄ rRRmn − 1536P̄
rP̄ rP

mP nRRmn

− 384P̄ nPmR2Rmn + 768D
mP nDrP̄ sRRmrns + 1536P̄

rP̄ sPmP nRRmrns

+ 1536DmP̄
rDmP nRRnr − 768D

mPmD
nP̄ rRRnr − 1536P̄

nP̄ rPmPmRRnr

+ 3072P̄mP̄
rPmP nRRnr + 1536P̄

nPmRRm
rRnr − 384P̄mP

mRRnrRnr

− 768P̄ nPmRRm
rstRnrst + 3072D

mP nDrP̄ sRm
tRnrst + 6144P̄

rP̄ sPmP nRm
tRnrst

+ 96P̄mP
mRRnrstRnrst − 1536D

mP nDrP̄ sRmrRns − 3072P̄
rP̄ sPmP nRmrRns

+ 1536DmP nDrP̄ rRm
sRns + 3072P̄

rP̄ rP
mP nRm

sRns + 768D
mP nDrP̄ sRmr

tuRnstu

+ 1536P̄ rP̄ sPmP nRmr
tuRnstu − 768D

mP nDrP̄ rRm
stuRnstu − 1536P̄

rP̄ rP
mP nRm

stuRnstu

+ 1536DmP nDrP̄ sRm
t
r
uRntsu + 3072P̄

rP̄ sPmP nRm
t
r
uRntsu + 1536P̄

nPmRRmrnsR
rs

+ 1536P̄ nPmRmr
tuRnstuR

rs
+ 3072P̄ nPmRm

t
r
uRntsuR

rs
+ 1536DmP nDrP̄ sRmnRrs

+ 3072P̄ rP̄ sPmP nRmnRrs − 3072DmP̄
rDmP nRn

sRrs + 1536D
mPmD

nP̄ rRn
sRrs

+ 3072P̄ nP̄ rPmPmRn
sRrs − 6144P̄mP̄

rPmP nRn
sRrs − 3072P̄

nPmRm
rRn

sRrs

+ 512P̄mP
mRnrRn

sRrs + 768DmP̄ nD
mP nRrsRrs − 768D

mPmD
nP̄ nR

rsRrs

− 1536P̄ nP̄ nP
mPmR

rsRrs + 1536P̄mP̄ nP
mP nRrsRrs + 1536P̄

nPmRmnR
rsRrs

+ 1536P̄ nPmRm
stuRn

rRrstu + 1536DmP̄
rDmP nRn

stuRrstu − 768D
mPmD

nP̄ rRn
stuRrstu

− 1536P̄ nP̄ rPmPmRn
stuRrstu + 3072P̄mP̄

rPmP nRn
stuRrstu + 1536P̄

nPmRm
rRn

stuRrstu

− 768P̄mP
mRnrRn

stuRrstu − 192DmP̄ nD
mP nRrstuRrstu + 192D

mPmD
nP̄ nR

rstuRrstu

+ 384P̄ nP̄ nP
mPmR

rstuRrstu − 384P̄mP̄ nP
mP nRrstuRrstu − 384P̄

nPmRmnR
rstuRrstu

− 3072DmP nDrP̄ sRmsntRr
t
− 6144P̄ rP̄ sPmP nRmsntRr

t
− 3072P̄ nPmRmsntR

rsRr
t

− 1536DmP nDrP̄ sRm
t
n
uRrtsu − 3072P̄

rP̄ sPmP nRm
t
n
uRrtsu − 3072P̄

nPmRm
t
n
uRrsRrtsu

+ 3072P̄ nPmRm
rstRn

u
s
vRrvtu − 256P̄mP

mRnrstRn
u
s
vRrvtu + 1536D

mP nDrP̄ rRmsntR
st

+ 3072P̄ rP̄ rP
mP nRmsntR

st
− 3072P̄nPmRmsrtRn

rRst
− 3072DmP̄

rDmP nRnsrtR
st

+ 1536DmPmD
nP̄ rRnsrtR

st
+ 3072P̄ nP̄ rPmPmRnsrtR

st
− 6144P̄mP̄

rPmP nRnsrtR
st

− 3072P̄ nPmRm
rRnsrtR

st
+ 768P̄mP

mRnrRnsrtR
st
− 768P̄ nPmRm

rstRnr
uvRstuv

+ 64P̄mP
mRnrstRnr

uvRstuv + 1536P̄
nPmRm

r
n
sRr

tuvRstuv] ∗10 1 . (B.11)
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