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AN APPROACH TO INCREASE RELIABILITY OF HPC SIMULATION,

APPLICATION TO THE GYSELA5D CODE ∗, ∗∗

Julien Bigot1, Guillaume Latu2, Thomas Cartier-Michaud2,
Virginie Grandgirard2, Chantal Passeron2 and Fabien Rozar3 ,1,2

Abstract. Reproducibility of results is a strong requirement in most fields of research for experimental
results to be called science. For results obtained through simulation software using high performance
computing (HPC) this translates as code quality requirements. While there are many works focusing on
software quality, these typically do not take the specificities of HPC scientific simulation software into
account. This paper presents an approach to introduce quality procedures in HPC scientific simulation
software while remaining the less invasive as possible so as to ease its adoption. The approach relies
on quality procedures including human code review and automated testing and offers a dedicated
procedure to help correct defects found this way. These procedures are integrated in a development
work-flow designed to improve the traceability of defects. By implementing this approach for the
development of the Gysela code, we show that it is indeed viable and that the return on investment is
positive. We also identify multiple reusable elements developed for this experiment that should reduce
the cost of adopting the approach for other codes as well as some aspects that can still be improved to
ensure a widespread propagation of the approach in the community.

1. Introduction

It is more and more common to identify simulation as the “third pillar of science” [7] together with theory and
experimentation. In the case of experimentation, results reproducibility is a strong requirement. For simulation
however, this concept is still not as widespread. Codes tend to evolve at a very fast pace which often leads to
the introduction of subtle bugs together with new features. In this context it can be difficult to identify the
exact set of features and defects present in the code used to produce a given result.

This can be improved by paying careful attention to the quality traceability of software. In terms of software
development, this means identifying and tracking defects (also known as bugs) so as to correct them as soon
as possible. These goals ensure that the cost of handling defects remains manageable and are therefore largely
shared in the software industry. This industry has thus proposed multiple solutions to handle this problem.
These solutions do however not take into account specificities of simulation codes and especially those that arise
when using high performance computing (HPC). Some work do especially focus on code quality for HPC scientific
simulation software, especially those proposing dedicated programming models and software architectures to
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improve maintainability. These approaches do however require invasive changes in the code or at least in the
habits of their developers which has hindered their adoption.

In this paper we propose a different approach to improve the situation of HPC scientific simulation software
reliability. This approach intends at minimizing the impact on the software architecture. We focus on the
development work-flow instead and propose a work-flow designed with HPC scientific simulation software in
mind. This proposition takes the tracking of defects into account at every step. It integrates software quality
assurance processes including code peer reviews and automated software testing. It finally includes an approach
designed to ease the correction of defects detected by these procedures. We implement this approach to evaluate
it in the framework of the development of the Gysela [2, 10,19] code.

This is not the first time these aspects are studied in the field of HPC scientific simulation software. There are
indeed workshops entirely dedicated to the question1 and some work identify lists of best-practices for quality in
HPC scientific simulation software [13]. Some communities have also already implemented quality procedures
such as the climate modeling community in the form of an automated testing process known as the “trusting
process” [4]. This paper does however go further by specifying a complete approach and evaluating it through
an application on a real use-case.

The remainder of the paper is organized as follows. Section 2 presents our approach with the development
work-flow we propose, the process to detect and track defects and the process to ease their correction. Section 3
evaluates the approach through its real-life application to the Gysela code. Finally, Section 4 concludes and
presents some perspectives.

2. An approach to increase reliability of HPC simulation

There is a rich literature on the various approaches that can be taken to increase the quality of code. This
section presents some specificities of HPC scientific simulation software that require these approaches to be
adapted. It proposes a dedicated development work-flow to enable the application of quality procedures for this
category of codes and focuses on two of its aspects: a) processes to identify that a given version of the code
suffers from a defect and b) processes to localize the actual defect in the code so as to be able to correct it.

2.1. HPC scientific simulation software specificities

Scientific simulation software is typically developed by scientists as a tool to study and validate a proposed
theory for the simulated field (physics, chemistry, biology, etc.). As such, the software and its quality is not
understood as a goal in itself but rather as a mean to obtain results and as a computerized version of a model,
best represented by equations. This is accentuated by the fact that software development is usually not the main
competence of the specialists of the simulated domain in charge of development. As results are obtained through
simulation or experiments, the model is refined, the equations modified and the code adapted in consequence.
The result of an execution of the code is therefore expected to change along its life and can not be predicted in
the general case; each execution can provide new, previously unknown results.

Amongst scientific simulation software, there is a sub-category of codes that require a large amount of
computation. This leads to a focus on the performance aspect so as to run in a reasonable time; this is known
as high-performance computing (HPC). It is not unusual for executions of these codes to represent an amount
of computation that would require centuries on a sequential personal computer. They are therefore executed
on supercomputers and have to be parallelized in both shared memory (e.g. OpenMP) and distributed memory
(e.g. MPI). Computer scientists are sometimes involved in the development due to this added complexity;
however even in this case, the development usually remains lead by the domain specialists as new features can
only be introduced by them. This combination of multiple very specialized fields of knowledge in each code
means that there is often no single person capable of a complete understanding of the code.

1One can for example cite the SEHPCCSE (http://se4science.org/workshops/sehpccse15/), SEH4PCS (http://se4science.
org/workshops/se4hpcs15/) and SE4Science (http://se4science.org/workshops/se4science16/) workshops.

http://se4science.org/workshops/sehpccse15/
http://se4science.org/workshops/se4hpcs15/
http://se4science.org/workshops/se4hpcs15/
http://se4science.org/workshops/se4science16/
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The use of supercomputers as an execution platform has other implications because they are expensive and
therefore shared between multiple users. This first means that the time allocated for their use by each user is
constrained and that a choice has to be made on how much to use for tests intended to improve code quality
versus actual result production. This also means that the platform is not under the full control of the developers
and that each supercomputer can have its specificities and even a single platform can change due to an update
or other change decided by the system administrator.

Another specificity of supercomputers as compared with other execution platforms such as desktop computers
is that there remains some diversity in their hardware. This can be observed by looking at the evolution of the
Top500 [1] list of the 500 most powerful supercomputers in the world. Three distinct processor architectures
(Intel & AMD x86, IBM POWER and Fujitsu SPARC64) are represented amongst the five most powerful
computers and this is even amplified by the use of accelerators in the form of GPUs or MICs co-processors. In
addition, the history of HPC shows a continuous evolution of the dominant architecture that moved from vector
processing, multi-core processing, distributed memory parallelism and now seems to move towards many-core
units such as GPUs or MICs. Codes have to be able to efficiently use this large range of hardware and their
quality should be validated on all the architectures actually used, increasing the cost of this validation.

On the other hand, HPC scientific simulation software codes present some advantages. Firsts, they are
typically run in batch mode requiring not human interaction during their execution thus easing their automated
testing. In addition, as scientific simulations, the result of their execution should mimic an experiment in the
underlying simulated domain and therefore be reproducible. This should provide a way to validate these results.
Finally and contrary to most fields of computing, the users of these codes are usually also developers or at least
have a basic understanding of the code, this enables a much better feedback from the users when a defect is
discovered.

To summarize, HPC scientific simulation software is a niche of computing with specificities that impact the
application of quality procedures that can not simply be reused as-is from other fields but must be adapted.
Codes tends to be complex to understand, developed by people for whom computer science is not the main field
of competence and executed on very complex and diverse architectures which makes quality procedures all the
more important. Their specification evolves together with the code and the platforms used to execute them
are a scarce resource making their validation difficult. On the other hand, their execution is non-interactive,
their results should be reproducible at some level and their users usually have some understanding of the
implementation, which provides opportunities that should be taken into account to ease the validation process.

2.2. A development Work-flow geared toward HPC scientific simulation software

A work-flow formalizes the various steps executed during the development of the code and provides some
rules regarding their ordering. This is required to implement efficient quality procedures; without knowing
which procedure has been applied on a given code version or how much change the code has undergone since
the last testing of its quality, one can hardly provide any information. A development work-flow at least has
to specify how to identify code versions and their relationships. It can then specify additional information that
can be attached to each code version as well as constraints and procedures that have to be applied. Information
that can be attached to a code version for example includes its purpose (e.g. development or production) or a
list of defects affecting the version. Procedures that can be specified for example include tests that might have
to be applied to the code before marking it as production-ready.

2.2.1. Tools

Although such a work-flow can be implemented without any specific tool, following complex procedures
without any support is cumbersome and typically leads to errors. Dedicated tools have thus been designed to
handle this task: the version control systems (VCSs) such as CVS or SVN. They enable to store steps in the
development of the code (revisions), and to associate them with some metadata such as a publication date,
author, comment, etc... These VCSs also order revisions so as to to retrieve their development order. This is
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however limited to a linear history which fail to capture concurrent developments. The concept of Distributed
VCS (DVCS) that handles non-linear history is therefore more and more widespread.

The DVCS concept is implemented in tools such as Git, Mercurial or Bazaar for example2. In this approach,
the graph of revisions is a directed acyclic graph (DAG). Each revision is typically either a new development
based on a single previous revision or the integration of the work from multiple previous revisions (a.k.a. a
merge). Versions are still ordered since a given revision can not be based on itself even by transitivity, however
this is only a partial ordering. While more complex in its concepts, this approach eases tracking multiple
development branches by distinct developers, for distinct features or for various maturity levels of the code. It
can also better automate3 the merge of concurrent development from multiple branches than centralized VCSs4.

There is however at least one aspect of work-flows that is not directly supported by VCSs: tracking the
identified defects with the code revisions they impact. There are tools to handle this aspect in the form of
dedicated databases known as bug (or more generally “issue”) trackers. Well known examples are for instance
Bugzilla, Trac or Jira5. Issues can be used to track defects, but also more general requirements of the code such
as non-functional behavior or missing features. The issue trackers provide a database of issues with metadata
associated to each issue such as for example a category, a list of revisions impacted or comments by the users.
They also offer an interface to interact with this database, typically in the form of a web interface.

Software forges integrates tools (including issue tacking) around a VCS in the form of a website. Some are
provided as a service such as SourceForge or GitHub while others are provided as a software that one can install
on its own server such as FusionForge or GitLab6. Another classification can be made between forges that are
VCS agnostic such as SourceForge or FusionForge and those that are closely linked to a specific VCS, Git in
the case of GitHub or GitLab. In our opinion, this second category is much more interesting as it can support
a close integration between the various tools of the forge. On both GitHub and GitLab, one can for example
directly interact with the issue database from Git and mark an issue as solved in a specific revision on the code
by using a dedicated tag in the commit message.

To support the work-flow proposed in this paper, we have made the choice to rely on Git as it seems to be
one of the most popular free and open-source DVCSs [3, 22]. In order to be able to retain the control of our
data, we have chosen to use a forge that can be installed locally. Amongst the Git dedicated forges provided
as installable software, we have chosen GitLab that seems to be a pretty active project with new releases every
month and that provide many of the tools we rely on: a web interface for Git and an issue tracker, but also a
review tool as will be discussed in Section 2.3 and a wiki that we use for documentation7.

2.2.2. Work-flow

Many work-flows have been designed around Git to formalize the way to use it, such as for example git-
flow [8], the GitHub Flow [12] and the GitLab Flow [21]. A common property of all these work-flows is that
they rely on the concept of feature branch. A feature branch starts from the shared development branch, focuses
on the implementation of a well identified feature only and is destroyed as soon as it is merged back in the
shared development branch. The advantage of this approach is that is enables to record intermediate steps of
the development of a feature without impacting any shared branch with unfinished work.

2The page https://en.wikipedia.org/wiki/List_of_version_control_software provides a more exhaustive list of both central-

ized and distributed VCSs
3Automated merge typically relies on the diff and patch tools for text files that consider two changes compatible if they affect far

enough lines and require human intervention otherwise. More specific tools with a better understanding of the underlying content
can be used and this is a requirement in order to provide any support for automated merge of binary files.
4A centralized VCS can automatically merge two branches if they have never modified the same line. A DVCS can do the same

but it can also refer to its history to replay choices already made during previous merges, an information centralized VCSs lack.
5The page https://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems provides a more exhaustive list of issue-

tracking systems
6The page https://en.wikipedia.org/wiki/Forge_(software) provides a more exhaustive list of forges in both categories.
7This aspects is not covered in this paper.

https://en.wikipedia.org/wiki/List_of_version_control_software
https://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems
https://en.wikipedia.org/wiki/Forge_(software)
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Another common property of these work-flows is that they identify multiple categories of changes for
which different procedures are applied. These categories are typically those described in semantic version-
ing [17]: “backwards-compatible bug fixes”, “backwards-compatible new functionalities” and “incompatible
API changes”. While these categories are well suited to the case of libraries, this is not so true for HPC
scientific simulation software where other categories can be identified:

• minor bug-fixes that correct an identified defect with no change of results and little impact on the code,
• optimization and improvements that have no impact on simulation results (but can have major impact

on non-functional properties such as performance),
• changes that might have small impact on simulation results due to the way things are computed,

floating-point rounding errors and such,
• change on the model such as addition of new physics that can have large impact on results.

Amongst those work-flows, the main specificity of the GitHub flow is that it targets simplicity and does not
contain a concept of release. Instead, it relies on the concept of continuous delivery where the main development
branch is supposed to always be deployable to production and new features are moved to production as often
as possible. This is well suited for web services deployed centrally where a single version of the code is used in
production at any time. For HPC scientific simulation software on the other hand, once a simulation is started
with a given version of the code, it is important to get access to the corrections of defects but not to impact
the simulation with new physics. This requires a clear distinction between bug-fixes and new features and a
concept of release.

git-flow on the other hand is a featureful work-flow with support for releases based on five different types
of branches (feature, develop, release, hotfix and production). This requires the developers to strictly follow
complex procedures and can lead to defects in the code if these are not correctly applied. In the case of HPC
scientific simulation software for example, there is no need to distinguish between the release, production and
hotfix branches. Finally, the GitLab flow offers an interesting discussion on the two previous work-flows and
proposes interesting strategies to handle common problems, but since its purpose is to tackle a large range of
cases, it does not define a single well formalized work-flow.

1 7 10 12

5 6

3 4 8 11

2 9 13

release-v1.0 release-v1.1 release-v2.0

user feature

user2 another-feature

integration

release

time

Figure 1. The HPCSSS Gitflow. Each circle, square or diamond represents a commit and
numbers a possible ordering. An arrow from a commit to another means that the first one is
a parent of the second. Text in bold represent branches with commits that were made in this
branch in the same horizontal line. Rectangles on the bottom of the figure represent tags.

These observations have lead us to propose the HPCSSS Gitflow with the specificities of HPC scientific
simulation software in mind. It is based on the previously presented work-flows and can be understood either
as a simplified git-flow or as the GitHub flow with support for releases. The work-flow is presented in Figure 1.

It is based on two main branches: the integration (◦) and release (�) branches. The release branch
contains the code used for production while the integration branch is used to integrate new developments and
to test them. Both branches are intended to be always stable.



ESAIM: PROCEEDINGS AND SURVEYS 253

Development of new features happens in feature branches (�) like user feature or user2 another-feature

started from the integration branch. Each developer can work independently of others in its branch but
should still merge work done during the development in the integration branch as exemplified by commit 8
on the figure. As soon as a feature is complete, it must be merged in the integration branch.

When one of the new features that accumulate in the integration branch is required in production, a new
release is produced by making a commit in the release branch and tagging it with an appropriate version
number. Limiting the number of such releases reduces the number of different code versions used in production
and thus the cost of support. In order to keep the release branch readable as a linear history, we have designed
a new git command that automatically generates this commit with a message summarizing all the messages of
feature merged into the integration branch since the last release.

Finally, for minor bug-fixes with no impact on the results, the correction can be made directly on the release
branch so that users can access this fix without having to include all the new features present in the integration
branch since the last release (commit 9 in the figure). The resulting version is tagged and the release branch
merged into integration so that the bug-fix is integrated in the next release (commit 10).

This work-flow distinguishes between bug-fixes and other kind of changes but it makes no difference between
the three other categories of changes previously identified. Instead, we advocate for this distinction to be
handled by a distinct version number the “code version” stored in the code and made of two parts: a major
and a minor number. When changes are made on the model simulated, for example by adding new physics,
the major number is incremented and the minor reset to zero. When changes are made that only have a minor
impact on the results due to the way computations are executed, the minor number is incremented. For changes
that have no impact on the results, this version number is kept as-is.

Tracking this independently of the release number has two advantages. First it allows to track changes at a
finer grain, for example by identifying the feature whose integration lead to a change of code version. Second,
it handles the case where two releases only include changes with no functional impact on the results at all
(non-functional aspects such as performance might change): while the release number is increased, the code
version remains the same.

By providing a well identified process for the development of code, this work-flow enables when a defect is
identified to list a set of code revisions impacted. In turn, this enables to determine whether a given simulation
result can be trusted or whether it might result from a code defect. In itself however, the work-flow does
not provide any mean to detect whether a code revision suffers from defects or to ease their correction. It
does notwithstanding exhibit some development steps that are good candidate to apply quality procedures in a
consistent way. These include:

• early in the development of feature branches when the developer wants feedback on the chosen approach,
• just before a feature branch is merged into the integration branch to give feedback on the opportunity

of the merge,
• regularly on the integration branch to ensure its quality,
• just before the integration branch is released to give feedback on the opportunity of the release,
• at each and every execution.

It also provides information on code history that can help locating defects so as to ease their correction. These
aspects are treated in the two following sections.

2.3. Defect identification process

The first difficulty to specify a defect identification process is to clearly define what constitutes a defect.
In its narrower definition, a defect or software fault is an incorrect piece of code that can lead to a failure at
execution such as a crash or incorrect results. Additional non-functional aspects can however also be included
in the definition of a defect. For example in the case of HPC, a piece of code that slows down execution could
make it impossible to run on any existing hardware. In this paper we consider any flaw in the code that can
lead to unwanted behavior at execution, be it functional or non-functional, to be a defect.
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Once the definition of a defect is clear, one must analyze the question of their visibility, that is, if a defect
is present, under what condition does it trigger a failure that can be detected? This discussion is required to
design test with a good coverage and this is therefore the first aspect presented in the remaining of this section.
Then we study the definition of procedures that can be applied to detect defects in a code and their integration
in the work-flow and we then focus on the case of regression testing for which we propose a dedicated approach
adapted to the specificities of HPC scientific simulation software. Finally, we present some tools that can help
implementing the proposed procedures.

2.3.1. Defect visibility

Defect visibility can be impacted by multiple elements that can lead a given defect to either stay silent or
lead to a failure. We have identified three such elements:

• the underlying hardware and software stack used,
• the algorithms activated in the code,
• to values manipulated by these algorithms.

The hardware and software stack covers all external dependencies of the code including the hardware, com-
pilers and libraries. Various implementations of a specification, be that of a CPU instruction set, language or
library API can react differently to uses not covered by the specification. For example, one implementation of
MPI might crash when given an invalid size for an array while another could silently ignore that. The algo-
rithms activated in the code cover the case of most HPC scientific simulation software where various modules
implementing distinct subparts of the underlying domain model can be activated. If such a module contains a
defect, this will not be detected unless the module is activated and some defects might even lie at the interface
between multiple modules thus leading to a failure only in the case where a specific combination of modules are
activated. Finally,the code can for example contain implementations of operators that do not accept the full
range of values they should; a defect that can only be detected if such values are indeed used. An example could
be a naive implementation of the binomial coefficients based on the computation of factorials that would exceed
the range of integers even for rather small inputs for which the binomial coefficient could be stored without
problem. Another example would be a defect lying in the code handling the special case of a zero value for
input that would only be triggered when such a value occurs.

These three elements impacting the visibility of defects are typically controlled by parameters specified at
three different steps of the testing process. First, the choice of the execution platform used to execute a test
determines the hardware and software stack that will be available for combination. Then, at compilation, further
choices can be made amongst multiple choices that can be available for the stack, such as in the case where
multiple compilers or implementations of a library are available. Some codes also offer compilation parameters
used to statically choose between multiple code path, typically in the form of #ifdefs. Finally, the last set
of choice is made by the configuration provided to the code at execution. This can choose between multiple
code path relying on plain dynamic ifs (or other comparable approaches such as dynamic polymorphism in
object-oriented code) rather than #ifdefs. This is also where the values that the code will manipulate are
specified.

These three axes: execution platform, compilation parameters and execution parameters define the code
testing domain. In most cases the domain is large enough that an exhaustive exploration, even for the smallest
of tests, would lead to unrealistic testing time. An analysis thus has to be done of the potential impact of each
parameter on each test so as to determine the best compromise of domain exploration versus testing time.

2.3.2. Proposed tests

Methods to detect whether code suffers from a defect is a research domain in itself, Table 1 for example
presents a list of existing procedures with their efficiency as determined by experience in the industry. Looking
at these figures, one can observe that the most efficient procedures are unfortunately hardly applicable to HPC
scientific simulation software as they typically rely either on a formal definition of the underlying model that
changes too fast to be useful in HPC scientific simulation software or on beta testing that does not apply when
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Removal Step Lowest Rate Modal Rate Highest Rate

High-volume beta test (> 1000 sites) 65% 75% 90%
Modeling or prototyping 35% 65% 80%
Formal code inspections 45% 60% 70%
Formal design inspections 45% 55% 65%
Personal desk-checking of code 20% 40% 60%
System test 25% 40% 55%
Informal design reviews 25% 35% 40%
Integration test 25% 35% 40%
Low-volume beta test (< 10 sites) 25% 35% 40%
Unit test 15% 30% 50%
New function (component) test 20% 30% 35%
Informal code reviews 20% 25% 35%
Regression test 15% 25% 30%

Table 1. Defect detection rates, extract from Code Complete [16], adapted from Programming
Productivity [14], Software Defect-Removal Efficiency [15] and What We Have Learned About
Fighting Defects [20]. Approaches that are difficult to apply to HPC scientific simulation
software such as beta testing at large scale or formal verification have been grayed.

the distinction between users and developers is blurry. Even by including those, no single procedure can catch
all defects and they should be combined for maximum efficiency as further discussed in [16].

Figure 2. As the amount of code under review increases reviewers become less effective at
finding defects assuming a constant true number of defects per line of code, extract from The
Best Kept Secrets of Peer Code Review [6]

The integration of these quality procedures in the work-flow must take into account multiple parameters.
First, the sooner a defect is detected, the cheaper it is to correct; it is much easier to correct an invalid design
during the early conception phase than once multiple development based on this design have been integrated
and released. Then, each procedure has a cost in the form of either developer or computer time and can often
not be executed as often as one would like. Finally, some tests loose interest when too much change happened
between two of their executions; for example regression tests compare execution results to ensure that no change
and thus no regression happened, this can not be used if a new feature has been introduced. The choice of
which procedure to use at what step of the work-flow thus depends on the actual procedure.

Personal desk-checking of code, informal design and code reviews are static tests that do not require running
the code and can not be automated as they rely on a human action. Personal desk-checking of code is an



256 ESAIM: PROCEEDINGS AND SURVEYS

individual procedure that should be applied as often as possible, ideally at each commit, but that can not be
enforced in the work-flow. The reviews on the other hand involve multiple people and can be enforced, but they
would be very expensive to apply to the complete code-base. With the hypothesis that a given code version is
correct however, one can limit the review to changes to the code since that version. In addition, as shown in
Figure 2, the bigger the changes, the less effective the review process is. This pleads in favor of code reviews as
frequent as possible to ensure that the amount of change to review remains reasonable. We therefore propose
to apply these procedures whenever a feature branch is merged in the integration branch.

Other static tests that are not mentioned in the table consist in static code check. This category of tests
check that the code complies with pre-defined quality standards and avoid well-known mistakes. There is a
large range of tools that implement this kind of tests, especially those based on the CLang compiler front-end8.
Unfortunately, the HPC scientific simulation software are in large part implemented in Fortran for which the
CLang-based tools provide no support; as a matter of fact, there is a scarcity of tools for this language. A static
test that can be applied for most language do however exist in the form of compilation: it tests whether the
code can indeed be compiled and the list of errors and warnings generated by the compiler. These are usually
rather inexpensive and can be run often, for example during the development of a feature branch and at least
before integration. All the tests described hereafter are dynamic tests that require the execution of some code.

Unit and component tests focus on one specific part of the code and test it independently of the rest of
the application. This has multiple advantages. First it typically requires less execution time than running the
whole application. Then, while the results of the execution of the whole application is typically not predictable
in the general case, it is often build of a set of modules that are much better understood. For example, many
scientific applications rely at some level on a linear algebra solver that is well specified. Finally, by testing
only parts of the application, it is possible to limit the tests actually executed to those testing parts that have
been modified since the last tested code revision. However, this requires the code to be developed in a modular
way where each module can be compiled independently and with well defined interfaces so that values can be
passed to it from a mock implementation rather than from the actual application; this is often not the case in
HPC scientific simulation software which limits the use of these tests. Depending on their cost, they can be run
during feature development or at integration only but in any case, they should leverage history information to
only test modified parts.

System tests execute the whole application and validate its result. In the case of HPC scientific simulation
software this means validating that the result are in compliance with the underlying model of the studied
domain. This is a complex process and only specialists of the domain can write such tests. While the more
meaningful tests are, the more difficult they usually are to design, some basic tests are often developed early
in the life of simulation software, such as conservation law validation. In order to be meaningful, these tests
do however require enough time-steps so that a divergence can be observed and distinguished from the noise
of rounding errors. Another interesting approach consists in recomputing the time derivative computed in the
code to compare them to those provided by the equations [5]. The domain must also be refined enough so
that numerical errors are lower than the observed difference. As a result, the computation cost of these test is
typically very high and they can only be executed parsimoniously on the integration branch at a fixed interval
or even only before a release. These can however sometimes be integrated in normal runs as they might only
incur a limited overhead to an otherwise normal execution. Other tests that can be executed this way are
non-functional tests such as execution time measurement or memory consumption.

Regression tests compare the results of executions of two versions of the code in which no new feature has been
added. They verify that the results of both versions are indeed comparable. Ideally this can be implemented
as unit tests but as discussed above, in the case of HPC scientific simulation software software modularity is
often low, making this approach difficult. Another solution is to execute the complete code and to compare the
results. The execution can be limited to very coarse discretization and a minimal number of iterations. This
yields results that typically have no meaning as a simulation of the underlying domain. However, if the results
are expected to be exactly the same, at a bit-exact level, from one execution to the other, this is enough for

8http://clang-analyzer.llvm.org/

http://clang-analyzer.llvm.org/
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comparison. One does not need to wait for any convergence process to happen, either a divergence appears
even of a single bit or the result is exactly identical and errors can not accumulate. This makes it possible to
run this type of tests much more frequently than realistic system tests, they can typically be executed at least
on a feature branch integration or even during a feature branch development. This does however induce two
questions: what execution results to use as a reference and how to achieve bit-exact result reproducibility? The
reference results should be those of the first version of the code that has the exact same set of feature as the
tested version. In our proposed work-flow, this is the first revision of code in the Git history that shares the
same “code version” as the tested version. When a new feature is introduced, the code version is upgraded and
regression tests can not be used anymore, it is the responsibility of the user to ensure the quality of this change,
for example by relying on other types of tests including the more expensive system tests. Achieving bit-exact
result reproducibility is more complex and is discussed in the following section.

To summarize, we propose to include five distinct types of quality procedures in our work-flow. Human code
reviews should be applied as often as possible at an individual level and at feature branch integration for team
reviews. Static tests should be executed at least at branch integration and but can also be applied during their
development. Unit tests should be executed at the same steps as static tests but can be limited to tests on the
part of the code that did indeed change. Regression tests can also be executed at the same steps, but only in the
case no new feature has been introduced, that is if the “code version” number did not change. Finally, the more
expensive system tests execution frequency should be chosen to balance their interest with their execution cost
and can typically be executed regularly on the integration branch or just before release. Some of these system
tests can also be included in the normal code-path if they do not incur too much overhead so as to leverage the
time used for production runs.

2.3.3. Achieving bit-exact reproducibility

When the underlying model does not change, i.e. at feature parity from a code point of view, HPC scientific
simulation software executions should provide comparable results given a well defined input. While results
are comparable, they are however often not similar at the bit level in practice since there are multiple source
of variation of the results. Some codes such as those relying on monte-carlo approaches do for example use
random numbers in their implementation that while they should lead to comparable result on a macroscopic
level do induce small variations. Another common source of non bit-reproducibility is due to timing issues
in parallel codes; distinct conditions at execution can lead to different ordering of execution and potentially
difference in results. Finally, a last source of difference is due to rounding errors that can change depending on
the optimization applied to floating point operations.

Regarding random numbers, one must note that it is very difficult to generate real numbers with a computer,
dedicated hardware has to be used and this is typically a very slow process. In fact codes do usually rely on
pseudo-random numbers instead that given the right algorithm can provide well understood distribution and
other properties. Pseudo-random number generator algorithms generate numbers from a sequence and use an
internal state to determine where in the sequence the next number should be chosen. This internal state can be
initialized by what is known as a seed to make the behavior of the generator reproducible from one execution
to the other. While fixing the seed might not be a good idea in the general case, offering this option enables to
provide a version of the code where this aspect is not a source of non-reproducibility.

Timing issue in multi-thread or multi-process applications makes it especially hard to offer a reproducible
execution in the general case. If a value can be modified by multiple threads executing in parallel, proving
that any correct ordering produces the same result for this value can be particularly complex. Fortunately,
both MPI and OpenMP, the typical technical implementations used in HPC scientific simulation software offer
synchronous programming models that do not suffer from this problem. In their typical use, the program consist
in parallel sections that do only work on memory local to the current thread and pre-defined synchronization
points where data is exchanged in a well defined order. There are however ways to use both model that do not
provide reproducible execution in practice such as sharing a variable with locking in OpenMP or using one-sided
communications or polling to handle messages in their reception order rather than in a pre-defined order in
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MPI. There is no general way to make programs using such strategies bit-reproducible, in most cases however
the parallelism does not induce non-reproducibility.

The last source of non-reproducibility is due to rounding approximations that change for floating-point
number depending on the ordering of operations. Operation reordering are applied for optimization purpose
and can mostly be linked to two sources. The first is the compiler and the second are libraries that offer
high-level operations such as reductions.

Regarding compiler reordering, it would sound logical that as long as a piece of code is not changed, the
binary does not change either thus leading to the exact same computations and results at run-time. Additional
parameters do however impact compilation. Optimizations are so interleaved that a change in one part of the
code can impact optimizations applied in completely unrelated parts of the code. Even without any change of
the code, compilers often have a timeout for expensive optimizations in order not to spend too much time on
a single specific optimization but this timeout uses wall-clock time and the amount of actual CPU time can
change thus leading to different optimizations. To ensure bitwise reproducibility of results, any optimization
impacting floating point reordering must thus be prevented. Fortunately, all compilers we have tested have
options to prevent such reordering9. These options typically force the order of operations encoded in the binary
to match that found in the source code at the cost of a less efficient code.

Reduction operations provided by libraries can also induce operation reordering for performance reasons. This
is especially true for parallel libraries that can take timing issue into account and thus leads to the previously
identified problem but inside libraries rather than in the user code itself. MPI will for example use a reduce tree
that depends on the network and OpenMP might apply the reduction operation in the order threads make the
data available. This can be circumvented by implementing reductions by hand instead of relying on optimized
ones. In the case of OpenMP, this has to be done in each and every code as OpenMP a compiler extension
and that we don’t know of any option that would trigger this behavior for well-known compilers. In the case
of MPI on the other hand, we have implemented a fully MPI 2.2 compatible implementation of the reduce

and allreduce operations that can either be fully bit-deterministic at the price of degraded performance and
scalability or fall back on the underlying MPI implementation. The deterministic reduce applies a gather

followed by a local deterministically ordered reduction. The allreduce simply applies this reduce followed by
a broadcast.

These small changes enable to compare results at a bit level between two executions at the cost of running
a slightly different code than the one used in production and of being slower. A defect located in the part of
the code that is modified for it to be deterministic will therefore be oversight by this approach, however these
changes should be small and localized enough that this should prove to be exceptional. Regarding performance,
the increase in execution time will be more than compensated by the reduction in problem size that can be
treated to obtain usable results.

2.3.4. Tools

Tools exist that support both human code review and automated testing. Gerrit or Review Board are
well known examples of code review tools10 but there is also one directly provided with GitLab that we have
therefore chosen to use. When a branch is proposed for integration in another (a “merge request” in the
GitLab terminology), these tools offer a web-page to display the difference between both branches and offer a
comment system to make remarks and suggest improvements. The GitLab tool supports both comments that
are either global or associated with a specific line of code as presented on Figure 3. Comments of this category
are automatically hidden if the code line is later modified so as not to pollute the review page with outdated
comments.

Automated tests on the other hand could be implemented with simple tools such as cron and shell scripts
but there are platforms specifically designed to integrate them in VCS-based work-flows. These are known
as “continuous integration platforms” after the testing approach that lead to their development. They are

9for GNU gfortran, we use -fno-cx-limited-range -frounding-math -fno-reciprocal-math -fno-associative-math

-fno-unsafe-math-optimizations -fprotect-parens, for Intel ifort -fp-model-source and for IBM xlf -qstrict
10The page https://en.wikipedia.org/wiki/List_of_tools_for_code_review offers a more exhaustive list.

https://en.wikipedia.org/wiki/List_of_tools_for_code_review
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Figure 3. GitLab interface to comment on a specific line of code in a merge request. Lines
highlighted in red are those removed by the merge while those in green are added. The stronger
highlight is applied when only part of a line changes.

however not limited to integration tests but offer a unified way to describe any kind of test and to interface with
multiple execution machines. Two such platforms are for example Jenkins or Buildbot11. GitLab also integrates
a continuous integration tool known as Gitlab-CI, but in our opinion this is still too young and has not reached
feature parity with other tools. In this paper, we base our examples on Jenkins.

In all these tools, tests are always described by two main aspects: a trigger that specifies when to run the
test and a description that specifies what to do. Pre-defined triggers usually exist, for example a) to interface
with VCSs so as to execute the test whenever an commit happens in a given branch, b) to execute the test
at a specified periodicity (potentially restrained to the case there has been at least one commit since the last
test execution), c) to execute the test when one or more previous tests have finished execution thus building a
complete test work-flow. The description of the test itself can be split in subparts that define:

(1) how to download the data required for the test (source, input parameters, expected results, etc.),
(2) on which execution machine to run the test,
(3) what to execute,
(4) and how to report the result.

Once again, the developer work is simplified by pre-defined tools that typically support download from multiple
sources, including VCSs, description of tests in specific formats or as general purpose batch scripts and many
ways to report the result of execution, on the platform website, via emails or what might be the most interesting,
on the merge request page of GitLab, thus providing direct feedback on the opportunity of its acceptation. The
tools also act as batch schedulers by queuing the tests to execute and only issuing one (or more if so specified)
test at a time on each execution machine.

2.4. Defect localization process

The process previously identified enables one to detect whether a defect has been introduced in the code. In
order to correct it, one does however have to identify where exactly the defect is located in the code base. We
propose two approaches in that purpose, one relies on the code history to find out the exact code change that
lead to the defect, the other relies on the comparison of a valid execution and the invalid one to find out at
which point of the execution the results start diverging.

11The page https://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software provides a more exhaustive list
of platforms

https://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software
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2.4.1. Code history analysis

The use of feature branches for development allows to track the history of each development at a much finer
grain than with a linear history. The result is that each commit should be much smaller in term of number of
lines of code changed and that identifying the commit that results in a defect can provide a good idea of its
location in the code base. In order to automate this process, one first has to design an automatic test that can
classify a given version of the code as either impacted or not. In the case where the defect has been detected
during the automated testing process, this is already available, otherwise it makes sense to add it as a new
test anyway. Git then offers the bisect command to automatically walk the code history. It tests the minimal
number of code revisions required to find out the exact commit responsible for the introduction of the defect.

This approach does however suffer from a limitation regarding the policy used to make commits in feature
branches and that is not covered by our proposed work-flow. On one hand, a strategy that emphasis the commit
of stable versions only can lead to very large changes. In that case, while it is possible to identify the commit
where the defect has been introduced, the situation is similar to that of a linear history where commits can
be large enough that this gives only little information regarding the exact location of the defect in the code
base. On the other hand, a strategy where commits are made very frequently often leads to the commit of
intermediate code versions that are work in progress and are expected not to generate correct results or to not
even compile at all. In that case, the hypothesis that underlies the bisect command is broken, there is no
single commit that triggers the change from a correct code to an incorrect one in the feature branch, instead
the versions can alternate between these two states and this approach can not be used. In order to apply the
approach, one has to restrict it to commits of branches expected to remain stable such as the integration

branch and this once again leads to large changes where finding the origin of the defect can be difficult.

2.4.2. Execution trace comparison

In order to circumvent this limitation, we propose another complementary approach to identify the location
of a defect. This approach compares the execution of two versions of the code, one where the defect is absent
and one where it appeared. Each version of the code is run in the same configuration and a trace of these
executions is written, following the most important variables as they are modified. This allows to pinpoint
when exactly the results start diverging. The more similar the versions are, the best result the approach gives
and it is thus typically used to compare the closest versions possible as identified by the Git bisect strategy.

In order to compare the two executions, we have designed a dedicated library called Cktrace. The library
provides a macro DBG_CKSUM_PRINT(var) to instrument the code12 as demonstrated on Figure 4a. Each call to
this macro prints four bits of information to a dedicated file: the source file name and line number, the variable
name and a value as shown on Figure 4b. For scalar variables the actual value of the variable is printed, for
arrays the size of the array and a FNV-013 [9] hash of its content are printed. This makes it possible to follow
how variables evolves while not generating an unreasonable amount of data for large arrays.

When comparing two versions of the code where modifications have been applied, the line numbers or file
names might change, a refactoring might even change the name of variables, however the values are expected
not to change. The order in which the variables appear in the trace is the same as the order in which the
DBG_CKSUM_PRINT(var) macro is called. For reasonably small changes to the code, this order is typically
preserved thus leading to comparable traces.

In order to compare two traces, the following algorithm is applied. First, the values appearing in both traces
are compared excluding other informations (line numbers, variable and file name). The first value that differs
between executions is likely to be related to the divergence in results. The associated filename, line number and
variable name can then be used to see if the divergence is actually a defect or if it was expected. In this later
case, this divergence can be ignored and the process is iterated until an unexpected divergence is found.

12This is currently limited to Fortran but could be made available for other languages such as C easily
13 The FNV-0 has is interesting because a) it allows to easily spot arrays containing zero only and b) it implements the avalanche
effect, even the smallest change to a single bit of a variable leads to a clearly observable change in the hash.
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1 #include "cktrace.inc"

2 program main

3 real , pointer :: field (:,:,:,:)

4 integer :: iter

5

6 call alloc_field(field)

7 DBG_CKSUM_PRINT(field)

8 call init_field(field)

9

10 do iter= 1, MAX_ITER

11 DBG_CKSUM_PRINT(iter)

12 DBG_CKSUM_PRINT(field)

13 call simulate(iter ,field)

14 enddo

15 endprogram

(a) Usage of Cktrace in main.F90

=== 0000000.trace ===

# main.F90:7

field = 0x0000000000000000:512

# main.F90:11

iter = 1

# main.F90:12

field = 0xB0A352C7491456F1:512

# main.F90:11

iter = 2

# main.F90:12

field = 0xD50AF4623D80D146:512

# main.F90:11

iter = 3

# main.F90:12

field = 0x6C4F1A80543E7800:512

...

(b) Trace generated by Cktrace

Figure 4. Example of use of the Cktrace library, both the field array and the iter scalar
are traced. One can follow the value of the iter scalar and see that the 512 elements of the
field array are initialized to zero on line 7.

The current file format generated by Cktrace is a plain text file. The comparison process thus relies on a
combination of the grep and diff unix tools. grep allows to filter out lines concerning non looked for aspects
(such as file name and line numbers in a first time) while diff allows to identify difference between the result
of this filtering. A work in progress is to move to a somewhat more structured file format (json is foreseen) in
order to provide a more integrated difference identification tool.

The limitation of this approach is that the location of a change can only be pinpointed at the granularity
of the code executed between two calls to the Cktrace instrumentation macro. This means that in order to
accurately locate a defect, extensive instrumentation of the code is required. Unfortunately, such an amount of
instrumentation can make the code less readable.

In order to be able to provide extensive instrumentation of the code while not impacting its readability, we
limit this instrumentation to a dedicated branch. This branch is called debug and mirrors the integration

branch with additional Cktrace instrumentation in many places. Keeping this branch up to date requires
frequent merges from the integration branch, however these are typically trivial merges. This can thus be
automated through Jenkins. Manual intervention is only required in the rare cases where a conflict occurs.

When a regression is identified in a feature branch, the debug branch in merged with this feature branch to
generate a new feature-debug branch. Since the debug branch is very close to the integration branch on
which the feature branch is based, this typically generates only very limited conflicts. The two branches debug
and feature-debug then both contain the Cktrace instrumentation and can be used to locate the defect. Once
this is done, one can go back to the original feature branch to correct it.

3. Applying the proposed approach to the Gysela code

We have applied the approach presented in the previous sections to the Gysela code. This section presents
this experiment and offers feedback on this experience. We first describe the code and the platform we have
set-up and we characterize the testing domain. Then we present the four categories of tests implemented: static
tests, bitwise comparison, unit tests and full system tests. Finally, we discuss this experiment, the gains and
costs of the approach.



262 ESAIM: PROCEEDINGS AND SURVEYS

3.1. The Gysela code

Gysela is a GYrokinetic, SEmi-LAgrangian code for the simulation of turbulence developing in Tokamak
plasma. At its core is the ion distribution function that describes the quantity of particles in the simulation
space. The main algorithm employed in the code is a self-consistent coupling between advections and quasi-
neutrality. The advection solver (based on the Vlasov/Boltzmann equation) computes the movement of the
loaded particles from the electromagnetic fields. The Quasi-neutrality solver (based on the Poisson equation)
computes the electromagnetic fields from the distribution of particles. The Quasi-neutrality solver works in the 3
dimensions of space. An advection solver based on the kinetic setting would work in 6 dimensions, 3 dimensions
of space and 3 dimensions of velocity. Gysela however relies on the gyrokinetic approach that reduces this
dimensionality and thus the amount of memory and computation required. The result is an advection solver
that works in “only” 5 dimensions. This requires the addition of a gyroaverage operator in the coupling between
the advection and quasi-neutrality solver.

The code base is not overwhelmingly large with about 60 k lines of Fortran90 and 13 k lines of C code.
As for most 5D gyrokinetic codes however, the amount of computing power required for runs of Gysela
leads to the usage of the largest existing computers. Runs of Gysela have lasted up to a full month on a
complete supercomputer (Jade at CINES, France) and runs on the full Juqueen (Jülich, Germany) machine
have demonstrated a good scalability with a 91% relative efficiency at 1 835 008 threads compared to 65 536.
To achieve such parallel efficiency, advanced numerical schemes are used and the parallelization (using MPI
and OpenMP) represents a large part of the code-base, tightly coupled with the physics related code. This
makes the resulting code difficult to write or even understand for both physicists, applied mathematicians and
computer scientists.

As many research codes, Gysela is used as a testbed for new physics and numerical schemes. Multiple
alternative or optional algorithms have been integrated and accumulated in the code over its more than 10
years of history. Ensuring that all the combinations remain functional becomes a challenge. This is even more
true since new algorithms and parallelization approaches are developed everyday, making the code a fast moving
target. There have been more than 174 k line modifications distributed over more than 1700 commits (excluding
merge) in the core repository over the last year. During the same time, 33 release have been produced: 16
feature releases and 17 bugfix releases.

As most simulation codes, Gysela started as a single person project and slowly grew, there are now about
5 daily developers and in the order of 10 users that also sometimes modify the code. The daily developers
are typically applied mathematicians and computer scientists spread over multiple locations and laboratories
in France. The users are mostly physicists and applied mathematicians that run the code, study it, test local
modifications and propose new features, usually reworked by the daily developers before inclusion in releases.

3.2. Platform setup

The platform we use to implement the described approach consists in an installation of GitLab hosted by
Maison de la Simulation14 and in an installation of Jenkins provided by CI-Inria15. We use GitLab to store our
issue database and for merge requests where we apply a human code review process as described in Section 2.3.
Together with Jenkins, CI-Inria offers virtual machines (VMs) used as execution machines. The CI-Inria
platform provides each project with its own independent Jenkins instance with full administrative rights which
enables to use distinct execution machines with specific credentials for each project. We have therefore been able
to also use the Poincare cluster of Maison de la Simulation (IDRIS, Orsay, France) as an additional execution
machine and to connect Jenkins to our GitLab so that tests are launched automatically whenever a merge
request is made on GitLab. The results of tests execution is also made accessible as a comment on the merge
request thus making GitLab the main entry point for developers.

14https://gitlab.maisondelasimulation.fr/
15https://ci.inria.fr/

https://gitlab.maisondelasimulation.fr/
https://ci.inria.fr/
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The provided VMs can be configured with either one or two cores running at 1 or 2 GHz each and with 1,
2 or 4 GB of RAM. They are also completely administered by members of the project (root access). We have
chosen to use the largest possible configuration (2× 2 GHz + 4 GB RAM) which in the context of HPC remains
small. The OS we use is Debian GNU/Linux that provides all the software dependencies of Gysela (GCC
and GFortran compilers, OpenMPI and HDF5). This does however not match production environments where
software specifically tailored for the hardware is usually available (especially for the compiler and MPI library).
Multiple VMs with distinct software can be created to test a larger range of case, however since none of them
would really match production configurations we did not explore this approach. These VMs have not been
designed to be interconnected through the network and we do not use multiple VMs together for the execution
of parallel MPI jobs. We have created 4 VMs however, but only in order to accelerate the testing process
by running distinct tests on multiple VMs in parallel. Poincare is a cluster of 92 dual E5-2670 Sandy Bridge
nodes (2 × 8 cores at 2.6 GHz) with 32 GB RAM each, connected by a QLogic QDR Infiniband interconnect.
The software environment is managed through the module command that provides the Intel compiler, intelmpi
and HDF5 thus satisfying all Gysela dependencies. This is much closer to production environments than the
VMs. In order to take into account the shared nature of Poincare and disturb other users the least possible, we
currently limit our use of this platform to 4 tests in parallel and only submit parallel tests during the night.

The use of this machine does however raise a technical issue since it is accessed through a batch scheduler
(LoadLeveler) to share it between its users. Batch schedulers offer an asynchronous interface where a job is
submitted by the user, then waits for execution resources to become available and only then is executed. Jenkins
like other CI tools implements a similar mechanism and each Jenkins job is expected to be synchronous. When
interfacing Jenkins with a batch scheduler like LoadLeveler, the job waits in the Jenkins queue until Jenkins
executes it which results in the submission of a LoadLeveler job. Once this is done, Jenkins expects to be able to
check the result of the execution, however the job might still be waiting in the LoadLeveler queue and the results
might thus not be available yet. We have worked around this problem by using an option of LoadLeveler16

that waits for the end of the job execution before returning control to the user, thus offering a synchronous
interface. This solution does however require a process to run, doing nothing during the whole execution of
the LoadLeveler job which is fragile if the scheduler is restarted and leads to a waste of resources if a job is
submitted from another job as happens for Gysela restarts. A better solution would require to integrate the
Jenkins and LoadLeveler queues by allowing to submit jobs in both directions.

It would also be very interesting to use the exact same supercomputers as those used in production in addition
of these two platforms (VMs and Poincare). This does however raise a security issue as all members of a given
project have access to the credentials used to connect to the execution machines and are all able to submit jobs
using this single account. This is considered as sharing an account amongst multiple users and goes against the
security policy of all major computing centers. We are currently investigating possible solutions in collaboration
with computing centers technical and security teams. One possible direction would be to change the automated
execution platform from Jenkins to Buildbot that has a different approach to the way execution slaves are
spawned on the execution machines. While Jenkins connects (typically through ssh) to the execution machine
to launch the slaves, in Buildbot the slaves are manually launched on each execution machine and thus require
no central storage of any shared credential.

To summarize, the platform we have set-up fulfills the needs of the approach presented in this paper. Setting
it up has however required a rather large investment in time. The Jenkins software is sometimes complex to
use, especially when it comes to its administration for installing plugins or connecting with other tools such
as GitLab. While connecting to the VMs is well integrated in the CI-Inria platforms, using other execution
machines also requires to figure out tricky technical details, integration with the batch scheduler of shared
machines is still work in progress. Overall the installation of GitLab from scratch and the configuration of both
Jenkins and the execution machines to support all tests described here required an investment of time that
can be estimated to around one month of full-time work for a single engineer. This was however not done at
a single time but as an incremental work where each new test required additional work, the initial investment

16llsubmit -s specifies that the llsubmit command will not exit until all steps of the job have completed.
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to get a simple merge request procedures with compilation work only required a few days. We haven’t even
found a solution to use real supercomputers yet. We do however believe that most of our work is reusable. In
order for the approach to be adopted by a large part of the HPC community, a pre-configured platform that
simplifies these technical aspects should be provided. This is something we are trying to achieve together with
the national computing centers.

3.3. The Gysela testing domain

Before describing the tests implemented for Gysela, let us characterize its testing domain as described in
Section 2.3.1. While there are typically about ten different execution platforms (excluding personal machines)
used to run Gysela in production at any time, the number of platforms available for testing is limited to two:
the CI-Inria VMs and Poincare.

At compilation, the compiler, its options and libraries versions are selected and choices are made amongst the
various alternative algorithms. We have chosen to limit ourselves to a single version of compiler and libraries
on each execution platform. The Gysela CMake based build-system supports three compiler configurations:
one that matches that of production, one for deterministic runs and the last one for debugging. It also exposes
12 pre-processor macros that enable or disable a code path resulting in 212 distinct configurations. In addition,
a legacy plain Makefile buildsystem remains available that offers four compilation configurations. This results
in a plain total of 3 × (212) + 4 = 12 292 possible compilations.

At execution, a Fortran namelist is specified that choses between some alternative implementations and
specifies the value for some constants. A few data fields can also be initialized from HDF5 files referenced from
the namelist. There are about 200 input fields in the namelist, including booleans, integers, floating point,
character strings and small arrays of these (typically, their size is the number of species simulated). This results
in an extremely large number of potential configurations.

3.4. Static tests

Since static analysis tools are limited for Fortran, we have developed small scripts to test two simple aspects
of the code. First, a naive dead-code detection is made at the procedure level by identifying procedures defined
but never called. Second, a scripts checks that the coding rules of the project concerning things such as case
consistency between declaration and use or indentation are correctly applied. Each of these scripts returns a
status whether a problem has been found in the code and in such a case, a list of the problems found. Since the
code is not even compiled to apply these tests, they do not depend on any of the previously identified parameters:
execution platform, compilation options or execution parameters. Each test only takes a few seconds to run.

Another static test applied is a compilation test that returns a status whether the code can be fully compiled
and the list of errors and warnings generated by the compiler. As a static test, this is not affected by the
execution parameters but the hardware and software stack and compilation options used impact the test. This
test is rather inexpensive, taking between 2 and 3 minutes for a compilation depending on the parameters.
We execute it on both Poincare and the VMs with each of the three set of compiler and linker options. The
combinatorial of testing all combinations of pre-processor macros would however require multiple days or even
weeks. Fortunately, the successful compilation of each code path is nearly unrelated to the activation status of
the others and they can be tested independently. We therefore test 13 cases, one where each of the 12 macro is
activated and one with none active. In additions, we test the 4 compilation presets of the plain Makefile-based
compilation process on the 2 stacks. This results in 2 × (3 × 13) + 4 = 82 distinct compilation tests. With 41
tests by execution machine taking about 2.5 minutes each and 4 parallel execution on each machine, the full
process usually takes slightly less than 30 minutes to complete.

These tests are fast enough to execute them frequently and they are run for every merge request as well as
for every commit in the integration branch.
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3.5. Bitwise comparison tests

Gysela is a code well suited to be made bit-reproducible. Pseudo randomly generated values are used but
only at initialization and the generator is always set-up with a fixed seed. There is no timing issue between
MPI processes or OpenMP threads because we use a pure synchronous model. We use hand-made deterministic
OpenMP reductions for portability since historically some OpenMP reduction implementations were unreliable.
For MPI, we rely on our deterministic wrapper described in Section 2.3.3 in the deterministic compilation mode.
We also use the compiler options identified in this section to obtain a deterministic rounding model.

As dynamic tests, the bitwise comparison testing domain includes the execution platform, the compilation
parameters and the execution parameters. The compilation parameter space is slightly reduced however as
the code must be compiled in deterministic mode for the tests to be possible. This still leaves an extremely
large range of parameters that can not be exhaustively explored and choices have to be made regarding the
configurations to test. The process we have adopted is to design a small basic test and derive new tests from it
whenever a defect is discovered that was not covered by the existing tests.

The base test uses the default compilation options and has been designed to run on all execution machines
including the VMs. Since the VMs only have two cores, this is the maximum number of threads that can be
used, but they can either be used as two OpenMP threads inside a single MPI process or inside distinct MPI
processes. We have chosen this second option which in in Gysela has more impact on the executed code path
than the number of OpenMP threads. The bitwise comparison approach enables to used a very small domain
size, we use 1 M points (Nr = 32, Nθ = 64, Nϕ = 16, Nv‖ = 16, Nµ = 2). Similarly, the number of iterations can
be reduced to a minimum as long as all parts of the code are executed at least once such as the computation
and output to disk of derived values in Gysela, known as “diagnostics”. We use 2 iterations and have set-up
the configuration so that diagnostic are executed every two iterations.

Additional tests have been designed to catch defects that this base test did not detect. These tests typically
differ from the base by changing the value of a parameter in the namelist used to choose between alternative
algorithm in the code. This type of change does indeed have a much larger impact on code coverage than
the values used to initialize the data manipulated by the code. The value of parameters in the namelist
are also changed much more frequently in production than those provided as pre-processor macros. As a
result of this process, the parameters explored in the tests are: the number of species (2 values), the quasi-
neutrality implementation (4 values), the collision operator (4 values), the low frequency filter (3 values) and a
parallelization choice (2 values). When possible, multiple parameters have been combined to reduce the number
of runs executed and there are currently 13 different tests run on each platform.

These tests are defined as shell scripts that all follow the same pattern: execution of the code, fetching of
reference results and comparison of the execution results with reference. This script is stored together with
the various namelist to test in the same repository as the code. Executing the code requires interfacing with
batch schedulers but this aspect was already handled by a script provided for the use of Gysela by humans
in production, the only change that was required was the support of a synchronous mode as described in
Section 3.2. This leaves two technical questions open: the approach used for comparing results and the storage
of the reference data.

We have chosen to use the HDF5 checkpoint files generated at the end of Gysela runs for comparison
since by definition they contain the whole state of the simulation. In addition to small scalar describing the
iteration number and such, the most important field stored in the Gysela checkpoint files is the ion distribution
function. HDF5 provides the h5diff command that compares arrays inside HDF5 files at the precision specified
as parameter. Comparing the ion distribution function with the h5diff command at bit-exact precision thus
offers a good comparison tool.

The reference results are binary files that would prove to be a problem if stored in the code repository since its
technology (Git) is optimized for text files. In addition, each reference is specific to a given execution platform
and can be recomputed by re-executing the version of the code that was used to generate it in the first place. As
a result, we have chosen to only store the reference for the current state of the integration branch in a specific
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directory of each execution machine. When a developer changes the code version number in the repository, thus
invalidating the reference results, he is responsible for recomputing the reference results with the new code.

Each execution lasts about 20 seconds on the VMs and about 30 seconds on Poincare due to the overhead
of the batch scheduler. The compilation takes about 2 minutes but is factorized to be executed only once for
all executions. With 13 distinct tests launched on each execution architecture with a four-way parallelism each,
this means that the whole set of tests requires less than 4 minutes to execute. The size of all reference results
currently amount to about 210 MB for each platform which leaves room to add new tests if required. The tests
are run for each merge request on the VMs, but only at night if there was an actual commit in the integration

branch on Poincare since they rely on the compute nodes that we only use at night for tests.

3.6. Unit tests

Like many HPC scientific simulation software, Gysela has been designed in a very monolithic way and
extracting unit tests is often difficult. The unit tests available are therefore limited to tests of: 1) the determin-
istic MPI reduction implementation, 2) the gyroaverage operator implementation and 3) the checkpoint-restart
mechanism.

The deterministic MPI reduction implementation has been described is Section 2.3.3 and reproduces the
pre-defined MPI interface. It is therefore as independent of Gysela as MPI and can be unit tested. The
test compares the results of reductions using the deterministic implementation with those of the underlying
implementation and returns an error in case the difference between the two crosses a threshold. It tries to use a
large range of features to validate the API as much as possible, including using the INPLACE parameter, various
kind of Fortran arrays (normal, allocatable, pointers) and different lower and upper bounds. While this test
is very limited, the number of lines of code required to implement it is surprisingly large in comparison. This
is due to the fact that no dedicated unit test library is used and that all the unit testing logic is implemented
directly in the code. The unit testing libraries for Fortran we have tried did not help much in that regard; they
typically try to mimic the design of unit testing libraries of object-oriented languages and due to the lack of
features such as reflexivity and limited use of object in Fortran this fails. This test requires less than one second
to execute.

Another test focuses on the implementation of the gyroaverage operator. Roughly speaking, this operator
consists in computing an average of a given physical quantity over a circle (the so-called Larmor circle) in a
2D plane. Several implementations of this operator are available in Gysela. They can be distinguished in
two categories: the Padé approximation and direct methods that perform integration on the gyro-ring using
interpolation methods (Hermite or cubic splines). Recent development focuses on the optimization of the
Hermite interpolation based gyroaverage. To ensure the validity of the computation done by the different
optimized versions, a unit test was required. This test is based on the knowledge of an analytical formula
of the gyroaverage for a particular family of function fm,n. The test consists to initialized the input 2D
plane with a chosen fm,n function, compute its gyroaverage, and finally compute the distance between the
numerically gyroaveraged plane and its analytical solution thanks to a L1 and L2 norm. The development
process starts with a reference implementation of the gyroaverage based on Hermite interpolation. So every
optimized implementations must reproduce the same results of the reference implementation on the unit test.
Between 15 and 20 seconds are required to test the 12 gyroaverage methods available in Gysela including
compilation.

The last test is not strictly speaking a unit test because is executes the complete code due to the lack of
modularity of Gysela. It does however specifically validate the checkpoint-restart mechanism of the code.
The approach we have implemented consist in comparing the results of two executions of the code with similar
parameters, except one stops after a checkpoint in the middle and restarts for the second half of the run while
the other executes the complete run without any restart. The comparison of the two executions uses the same
approach as for bitwise comparison. The namelist file used is the same as that used for bitwise comparison tests
except with a restart inserted. The time required for their execution is therefore very close at about 2 minutes.
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Unlike the bitwise comparison tests, this one does not require any data to be stored since the results of two
executions are compared.

Since they do not test the actual code, the domain of unit tests is not impacted by Gysela compilation and
execution options. Only the execution platform impacts their result. They are also very fast to execute and are
therefore integrated in the tests executed for any merge request. Since their number is very small currently and
their execution very fast, we have not implemented any tool to limit the execution of unit tests to the parts of
the code that did actually change.

3.7. System tests

A fist system test has been implemented that relies on the fact that Gysela uses a semi-Lagragian numerical
scheme to solve the gyrokinetic Vlasov equation. Under the assumption of a fine discretization in both time
and space, it exhibits good properties of energy conservation the two regimes of plasma simulation: linear and
non-linear17. In this context, the kinetic and potential energies are macroscopic variables that can be well
measured. The dynamics of these two energies is sensitive to any modification of the distribution function,
which is the main unknown of the simulation. They characterize the plasma dynamics state quite well. To test
both linear and non-linear regimes in realistic geometries however, no analytical case can be used, comparison
with a reference case is therefore a good solution. A divergence typically reflects a defect in one component of
the application such as the Vlasov solver, the initialization stage or the Poisson solver. This test is however
known to have limitations with respect to the defects it can detect and will typically not handle errors happening
at radial boundary conditions, errors located in initialization routines or sections of the code that are not used
in these simulations.

The test we have designed therefore measures the kinetic and potential energies during a simulation. Unlike
for bitwise tests, elements such as the values of data manipulated by algorithms, dimension of the mesh and
number of iterations have a large impact on the quality of this test. Some defects can for example yield
large errors in the non-linear case that would be completely hidden in linear case. Five distinct namelist
files have therefore been designed so as to explore interesting state of the simulation, they all use a mesh
(Nr = 64, Nθ = 128, Nϕ = 32, nv‖ = 48, Nµ = 2) during 130 iterations. The potential and kinetic energy at
each time-step are stored in an ASCII file whose total size is in the order of 20 KB. A script compares these
values with a reference and a difference larger than a few percents of the maximum absolute value indicates that
the simulations diverges. Since the reference file is small and not expected to change, we consider it part of the
test itself and store it with it in the code repository. This test requires about 12 hours of sequential execution
for each input file and more memory than the VMs contain. It is thus only executed on Poincare where it is
parallelized over 64 cores and ends up lasting 11 minutes for each of the five executions or a bit less than 15
minutes total with the four-way parallelism. The test is only executed at night when there was a commit to the
integration branch.

In addition, we use the MTM library [18] in the code that traces memory allocation and thus detects any
memory leak. Another tool is used to take performance measurements of the code at the module level. These
two tools are activated for all runs, production or tests and their result is available as part of the test results.
The execution time in particular is automatically traced by Jenkins over code revisions of the integration

branch thus making it possible to identify the change that lead to a performance drop when this happens.
Two additional tests that rely on an even deeper understanding of the physical model are currently being de-

signed [11]. The first one is known as the Rosenbluth-Hinton test and consists in computing the linear evolution
of a zonal flow component for an initial electrostatic perturbation. The second one is a linear benchmark based
on Cyclone DIII-D case for global codes. The first problem with both these tests is that due to the 5D nature of
the code, their execution is very costly. Finding the execution parameters that reduce this time to a minimum
is indeed a complex work. For the Rosenbluth-Hinton test, we managed to reach a situation where the test can
be executed in about 30 minutes on 64 cores of Poincare. Execution of the Cyclone test on the other hand, still
requires 1.7 Mh.core on a Blue Gene/Q architecture or about 10% of the yearly allocation for Gysela. It makes

17simplified geometry, no sources, no collisions are assumed.
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its execution as a regular automated test impossible an we are still investigating possible change of parameters
to make the test less expensive. Another problem with these tests is the complexity of validating their result.
The development of a script validating the results of the Rosenbluth-Hinton is in progress, however this requires
applying various post-processing steps and requires much more work than a simple value comparison.

3.8. Analysis

Before this process was adopted, each developer had to test its code himself. With access to different
machines, he only tested a small subset of the possible configurations. The two main tests that were performed
were a compilation test and a result comparison test with the last code revision using a threshold he chose.
Each developer had to determine what was acceptable in term of compiler warnings, or result similarity. As a
result, it was difficult to identify a single version of the code that even compiled with all possible combination
of compilation options and was usable for all users.

The new approach we have implemented has a cost in term of both the set-up of the platform and the
development of the tests. This however typically relies on the same work that is required to correct defects
when they appear. The additional work required to automate the test is very light in regard of the test design.
Learning the new work-flow and implementing code reviews also takes time for developers. While we have no
hard number about the defects that have been prevented from appearing, the feeling of developers is that time
spent on quality was reduced. They consider that the time gained by having to spend less time debugging the
code largely overweights the time spent implementing the work-flow.

Regarding compilation, the only compilation problem that still sometimes appear are related to platforms
not tested by the process such as the BlueGene/Q architecture. The number of tests grew fast at first to
catch new identified defects but stabilized in the last 10 month because fewer and fewer defect remain uncaught.
Determining how much remains to be done could be determined by a formal analysis of the test coverage with
a tool such as gcov18 but we have not done so yet.

In addition, the new work-flow greatly increases the confidence in new development by beginner or new
developers and can therefore augment the amount of new features accepted in the code. What might be the
most important improvement however is the increase in confidence of results and the clear identification of those
impacted by the defects that are found. This improves the quality of physics publications based on Gysela
and reduces the risk of having to retract a paper.

4. Conclusion and future work

This paper has presented an approach to increase the confidence in simulation results by applying quality
assurance procedures to HPC scientific simulation software. Classical approaches need to be adapted to take
into account the many specificities of this field regarding the hardware used, the code itself and its developers.
The approach we propose is organized around a work-flow and introduces quality procedures based on both
human review and automated testing as well as a dedicated process to ease debugging. We have applied this
approach to the Gysela code and have noted a large improvement in the code quality since we started using
it (less defects that reach production and faster correction of those that do). The tests we have implemented
are static tests, bitwise comparison tests, unit tests as well as complete system tests.

Applying this approach requires a non negligible investment that might prevent other codes from doing it.
The return on investment is however very positive in multiple aspects. The amount of computation time lost
in production due to an error is greatly reduced. Developers can focus on implementing new features rather
than correcting defects. The confidence in the results is increased and physicists spend less time figuring out if
a given result is an error or is actually physically relevant. There are two directions we are currently exploring
to extend this work.

The first direction is to extend the quality and quantity of tests executed in the Gysela automated testing
procedure. We for example plan to add a code coverage analysis to asses the amount of code actually tested.

18https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html


ESAIM: PROCEEDINGS AND SURVEYS 269

The more interesting tests we now target do however rely on more invasive approaches. Unit tests are designed
for as many modules as possible in the code; this requires that the code be made much more modular. Since
Gysela is a complex piece of code this takes time, but this is an aspect we are working on for some time now
and the infrastructure is ready for new code to be added in a more decoupled way similarly to what has been
done for the new implementations of the gyroaverage operator. We are also investigating the use of dedicated
programming models that should make this modularization easier such as software components and task based
programming.

The second direction we are exploring is to provide reusable elements everywhere it makes sense to ease the
adoption of the approach by new codes. Some part of the approach are specific to each code that use it such as
for example all tests that rely on a deep understanding of the underlying simulated model. Other parts on the
other hand can be reused from one code to the other. This is the case for multiple elements we intend to make
available to the community, including the Cktrace library, the deterministic MPI reductions or the deterministic
compilation framework. In addition, we are in the process of making an automated testing platform available
in collaboration with the computing centers so as to handle the technical aspects once for all code and to enable
the use of the same supercomputers as those used in production for testing.
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