
HAL Id: cea-01302826
https://cea.hal.science/cea-01302826v1

Submitted on 15 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timed-model-based Method for Security Analysis and
Testing of Smart Grid Systems

Gabriel Pedroza, Pascale Le Gall, Christophe Gaston, Fabrice Bersey

To cite this version:
Gabriel Pedroza, Pascale Le Gall, Christophe Gaston, Fabrice Bersey. Timed-model-based Method for
Security Analysis and Testing of Smart Grid Systems. 19th International Symposium on Real-Time
Distributed Computing (ISORC) 2016, May 2016, York, United Kingdom. �10.1109/isorc.2016.15�.
�cea-01302826�

https://cea.hal.science/cea-01302826v1
https://hal.archives-ouvertes.fr


Timed-model-based Method for Security Analysis
and Testing of Smart Grid Systems

Gabriel Pedroza∗, Pascale Le Gall†, Christophe Gaston∗ and Fabrice Bersey‡

∗ CEA, LIST, LISE Laboratory
Point Courrier 174,

91191, Gif-sur-Yvette, France
{gabriel.pedroza, christophe.gaston}@cea.fr

† CentraleSupélec, MICS Laboratory
Grande Voie des Vignes,

92295, Châtenay-Malabry, France
pascale.legall@centralesupelec.fr

‡ SCLE-SFE
25 Chemin de Paleficat,
31200, Toulouse, France

fabrice.bersey@scle.fr

Abstract—The progressive integration of software-based com-
ponents into the electricity grid has given raise to what is known
as Smart Grids. As long as Smart Grids gain on connectivity
and automation, new concerns on their safety and security
have arisen. It is agreed that non-negligible risks and enlarged
impact due to misbehaviors and intrusions exist [1]. Following
a model driven paradigm, a method is proposed to reinforce
the security of these complex widely distributed systems. The
method guides system re-engineering and is based upon timed
models. It encompasses reverse engineering, symbolic, and testing
techniques to model, analyze, and deploy attack testing. In
early stages of the method, a reference timed model to support
security analyses is designed via reverse engineering and symbolic
execution. During latter stages, the nominal models are enriched
so as to specify attack scenarios which are symbolically executed
to prove the ability of the system to detect attacker intrusions.
In final stages, the attack scenarios are used to specify test cases
which are later deployed to test the system. The method and main
outcomes are presented relying upon a Smart Grid subsystem
analyzed in the scope of a joint academy-industry project1.

I. INTRODUCTION

The Smart Grids are the technology committed to sup-
porting an efficient use of electricity resources. A promoted
strategy consists in integrating automated components into
the grid to drive renewable source technology (wind, solar,
hydraulic). The architecture of electric, electronic, and pro-
grammable components is quite complex and is distributed
along wide areas. In particular, the architecture is not only
deployed along the supplier’ sites but also at the customers
premises. Thus, non-negligible risks emerge as a consequence
of their physical accessibility by third parties. For instance,
dishonest clients may have interest in accessing the system and
tampering with data to obtain economical gain. The electricity-
suppliers may access and disturb the competitors network in
order to damage confidence and attract clients. Unauthorized
commercial parties may access, disclose, and exploit confi-
dential or private data transferred in the network. Last but not
least, since Smart Grids control safety-critical infrastructure,
they may be privileged targets of motivated attackers. Along
with physical vulnerabilities, other relevant weaknesses can

1This research has been partially funded by the projects SESAM Grids and
S3P categorized as “investments for the future”.

also be highlighted. On one hand, most industrial systems and
applications were originally designed to satisfy functional and
performance criteria, to operate locally, and with no security in
mind, e.g., MODBUS [2]. Those poorly protected applications
can render the overall system “vulnerable by construction”. On
the other hand, cyber-security culture is emerging and needs to
be better understood and disseminated in concerned sectors.
As observed in previous years, the improvement process is
smooth and further evolutions on the Smart Grids to reinforce
their security are foreseen. The systems’ size, their complexity,
and the associated costs for security improvement can be
mentioned as identified drawbacks.
Several methods have been proposed for intrusion detection
in cyber-physical systems. However, most of them propose a
pervasive monitoring against known attacks, e.g., classification
of bulk traffic [3]. Contrarily, our approach primarily focuses
on the detectability of intrusions in specific points of the archi-
tecture. Since it is assumed that the architecture already exists,
re-design constraints may apply. Thus, the proposed security
reinforcement is achieved by re-engineering. Our proposal is a
high-level method that proves the system detection capabilities
in order to reveal weaknesses. The method crucially depends
on a well-designed model of the system which is obtained by
reverse engineering system execution observations. A high-
level easy-to-use language and executable framework are used
for designing. Since the model is timed and executable, a
conformity relation model-system can be settled and vali-
dated by incrementally considering further system behavior
observations. During the security analysis, the well-designed
model is enriched to specify attack scenarios and the means
for detection. Again, the timed and executable features of
the model allow to prove the detection capabilities. Finally,
intrusion tests are guided by temporized routines derived from
the attack model via a deployed interface.

The rest of the paper is structured as follows. In section II,
an overview of Smart Grids is provided including a description
of the target Smart Grid system. The proposed method is ap-
plied to the target system and explained in two stages. Section
III contains the functional phase of the method whereas section
IV explains the security phase. The method is summarized and



positioned in section V and its main results listed. Finally,
some conclusions of our work come in section VI.

II. TARGET MICRO-GRID SYSTEM

A. Smart Grids Overview

Smart Grids comprise a variety of transmission, distribution,
and storage assets. The Information Technology (IT) have
progressively improved the ability to monitor and control the
overall infrastructure. In particular, the so named Supervisory
Control and Data Acquisition System (SCADA) has increased
network connectivity and automation [4]. The SCADA is
composed of programmable electronic devices that are inter-
connected via a variety of links and buses. The goals of this
widely distributed architecture are to be safe, economically
viable, and environmentally adequate. To achieve these goals,
the SCADA is dedicated to monitor the grid so as to assess and
control its status. To do so, several parameters are periodically
sampled by sensors at field level in order to obtain electricity
consumption, power generation, operation events, etc. The
sampling architecture is also referred as Advanced Metering
Infrastructure (AMI) and is mostly composed of meters. As
shown in Figure 1, the data sampled by the AMI are later
gathered by a global network center to be processed relying
upon forecast and optimization algorithms.

Fig. 1. Scheme showing a global overview of a generic Smart Grid

The optimizations are finally used to drive the overall grid
operation via AMI actuators. Most of the exchanged data
are not time critical and thus network bottlenecks are not
an issue. Nevertheless, certain safety-critical messages should
respect stringent time thresholds, like the commands to protect
substations from overload peaks (3ms) [5]. The IT components
integrate proprietary and open source technology. Along with
proprietary middleware, the distributed applications depend
upon a variety of protocols like DNP3, MODBUS, IEC61850,
and TCP/IP [5]. The complexity of this widely-distributed
highly-networked system imposes the challenge of ensuring
safety goals. First, many of the SCADA and AMI sub-
systems deployed at field level were originally designed to
operate locally. Consequently, they may be poorly protected
and become vulnerable to certain threats [6]. Secondly, grid
misbehaviors due to flawed applications or intrusions can be
propagated and possibly impact human safety. Finally, since

the collected data can be linked to identities, the privacy of
customers can also be at stake [6].

B. Micro-Grid Reference Architecture

As agreed by several European standardization committees
like CEN-CENELEC [7], the Micro-Grid is a heterogeneous
architecture deployed over multiple domains from customer
to electricity-supplier premises. The Micro-Grid consists of
assets like the AMI, including part of the SCADA, Distributed
Energy Resources (DER) - e.g., load management units -
, and auxiliary automation systems. The Micro-Grid border
encloses indeed our reference architecture. It includes the
electronic components - HW and SW -, the communication
channels, as well as the applications upon which safety and
security analyses will be conducted. Our reference Micro-
Grid is already deployed in a demonstration site at Toulouse,
France, named Smart ZAE [8].

C. Target Micro-Grid System

In this subsection, we provide a more detailed description
of the Micro-Grid architecture defined in previous subsection
II-B. The Micro-Grid subsystem is mostly located at field
level within the customers domain. It is a subset of the AMI
architecture mainly composed of two kind of components - see
Figure 2. Located at customers premises, the so named Smart
Meters are committed to permanently measure electricity
consumption. The so called Smart Controller monitors the
operation of Smart Meters and is also dedicated to collect
their measures.

Fig. 2. Refined view of the target subsystem in the Smart ZAE site

Since the Controller operates as a gateway which links
customers and supplier domains, it is capable of enforcing
a consumption policy by regulating the operation of the grid.
For instance, an electric device at customer premises can be
switched off via an Actuator. The components of the Micro-
Grid subsystem are networked via a MODBUS channel [2].
The MODBUS is a serial master-slave protocol typically used
in industry by its simplicity and reliability. The Micro-Grid
subsystem is critical with regard to the safety and security
of the overall Smart Grid since it is beyond the company
surveillance range.

D. System Observation Rationale

The Smart ZAE site is already operational and consequently
its availability for experimental purposes is limited. In addi-
tion, the target system is composed of confidential technology
which should not be disclosed. Crucially, no useful model of
the system behavior is available. To overcome these shortcom-
ings, a strategy is deployed based upon a passive observation



of the system. The strategy relies upon several modules and
components that are crucial for the system operation. First, we
focus on the application that requests and collect the measures
sampled at consumption points. The application is distributed
over the Controller, Meters, and Actuators. The Figure 3 shows
the locations of the distributed application.

Fig. 3. System observation rationale

A physically accessible point where application exchanges
occur is the MODBUS channel. Because of this, the MODBUS
channel can also be used to observe or inject frames. An
alternative to passively observing the system execution is the
data logger mechanism. Indeed, since the Controller plays the
role of master, the system actions and events are permanently
stored in a log file. The observation strategy relies on the
fact that the log file contains enough information about the
application execution and in particular actions/events time.

III. MODELING BY REVERSE ENGINEERING AND MODEL
CONFORMITY

A. Data Logger Files Analysis

The source log file is first parsed to identify: (1) the
involved Micro-Grid components; (2) SW modules; and (3)
their exchanges. Once identified, they are associated to the
architecture assets composing the target Micro-Grid described
in section II. To accomplish this stage, the syntax of log
registers is first elicited:
LogRegister:=[Date][hour][SW Module][-][Action/event]

The initial outcomes of parsing, reviewing, and understanding
the registers meaning are the following:

• Timed sequence: The log file is a sequence of registers
time-stamped according to the system clock. The time-
stamps accuracy is 1 millisecond.

• Involved modules: Several SW modules are virtually
identified in the file, namely oceamGateway, libOceam,
libModbus, and lidOceamDB.

• Kind of actions/events: The descriptions about either
outgoing or to incoming data, information, or commands
are considered as actions. The descriptions about alerts,
actions completion, etc. are considered as events.

To accomplish this stage, a python script was written.
Among others, the script decomposes the registers into their
words and is able to classify them. The script is also able
to validate that the registers match with the syntax presented
above. According to the initial results and by considering the

reference Micro-Grid architecture, it is confirmed that the log
file truly corresponds to the Controller stack.

B. Observation Hypotheses and Validation

The log file is supposed to include the relevant actions and
events of the system execution. Even so, it remains a partial
view of the whole behavior. That is why, finding an adequate
correlation between the log trace and the target system be-
havior is worth having. A reverse engineering process is thus
initiated and guided by an interpretation of the log file. The
referred interpretation is based upon several hypotheses that
need to be validated. The following hypotheses were adopted:

h.1 Main application: There exists a top SW module in the
component that controls overall execution and includes
an application launching a main thread.

h.2 Modules interactions: An interaction between modules
occurs when two consecutive registers refer to different
modules and when their actions description are logically
linked by a cause-then-effect relation. Otherwise, actions
and events are assumed as internal to the module.

h.3 Synchronous calls: The calls between SW modules are
synchronous, i.e., they block whenever a call is made
and until the respective call back is received.

h.4 Modules hierarchy: A dependency between SW modules
is assumed: the operation of lower-layer modules is
subordinated to higher-layer ones.

The validation of these hypotheses is based upon a deeper
analysis of the log file and involves a first mapping from
identified modules into specific components of the target
system. It is recalled that these hypotheses are mainly settled
to overcome the lack of a global specification of the target
system.
The next excerpt of registers shows that a data gathering
application is executed.
oceam-gateway 15024 _______________________________
oceam-gateway 15024 Téléchargement des dernières données
oceam-gateway 15024 Définition du numéro d’esclave 0A

The application will target an external slave component which
will be called via its address ID (0A). Since these lines are
periodically found all along the file and for all the slave com-
ponents in the network, it is concluded that the oceamGateway
executes a main thread thus confirming hypothesis 1. Yet
critical, hypothesis 2 is not validated at this stage and for now
it is taken for granted. Even so, its congruity will be ultimately
confirmed by the architect of the Micro-Grid system. The
validation of hypothesis 3 depends upon the consistency of
hypothesis 2. To perform the validation, the log file is first
separated in lots of consecutive registers involving the same
module - see Figure 4. The idea is to consider the internal
behavior of each module to identify potential asynchronism.

It is finally verified that whenever a module is called by
a different one, neither incoming nor outgoing calls occur
before the request is fully completed. During the processing
interval, the caller always waits for the callee until a response
is obtained. To justify the pertinence of hypothesis 4, an initial
hierarchy is assigned to SW components. The initial hierarchy



Fig. 4. Excerpt of the log file showing 3 lots: synchronous exchanges between
libOceam and libModbus modules

is proposed according to the order in which modules first
appear within the log file. It is verified that the initial hierarchy
and the roles of the caller and callee are preserved all along
the log file thus justifying hypothesis 4. The modules hierarchy
is settled as follows: 1st. oceamGateway; 2nd. libOceam and
libOceamDB; 3rd. libModbus; 4th. external Meters.
The validation of previous hypotheses was mostly automated
by an extension of the python script.

C. Log Registers Abstraction

This step is conducted to analyze actions and events in the
log file in order to filter them and exclude redundant/non-
relevant information. In addition, the actions and events are
abstracted to keep interactions at a high level, adequate to
design a model of the target system. The resulting registers
should be translated into a syntax suitable to conduct further
analyses. The abstraction of log traces is performed according
to the following criteria:

1) Avoidance of redundancy: Log registers containing
information related to the same system event or action
are grouped. A single register is selected to mark and
identify the group.

2) Actions/events dependency: To validate that a behav-
ior has been accomplished, we look for registers that
ultimately confirm such occurrence. In a sequence of
registers logically linked by a cause-then-effect relation,
the register that confirms the effect suffices as a proof
of the occurrence of the whole sequence.

3) Actions/events relevance: Registers within the log file
associated to lower-level executions, calls, or auxiliary
functions can be left out.

Once abstracted, the log registers are expressed in a sym-
bolic syntax. Indeed, the registers are expressed as a timed
sequence in which each register is represented as a couple
of Input/Output actions. Let us first introduce the following
syntax. Notice that the incoming and outgoing values are not
explicitly given but abstracted and represented symbolically.

1 ∆T1

2 Component 1!x1, x2, . . . , xn

3 ∆T2

4 Component 2?x1, x2, . . . , xn

The terms Component 1 and Component 2 are the names of
the sending and receiving components, respectively. The terms
x1, x2, . . . , xn in the second line are the outgoing symbolic
variables emitted by the component. x1, x2, . . . , xn in the
fourth line represent the symbolic values upon reception. The

terms ∆T1 and ∆T2 are respectively the initial and interme-
diate delays elapsed before sending, and between sending and
reception events. The terms {xi}, {∆Tj} are an abstraction of
the so called frozen values: xi, ∆Tj are symbols that represent
the set of values of its type domain which remain unchanged
in the model. The resulting timed sequence is also referred
as a symbolic Input/Output trace (I/O trace). Let us apply
the abstraction mechanism to the second lot of log registers
in Figure 4. The outcomes of the abstraction are depicted in
Figure 5.

Fig. 5. A lot of log registers related to libModbus after abstraction

The remaining registers respectively correspond to the send-
ing and reception of two messages over MODBUS. Notice that
these actions are performed by the libModbus module and,
consequently, they correspond to exchanges towards and from
and external slave i.e., a Meter. Finally, the abstracted registers
are represented in the symbolic syntax as follows:

∆T0

1 libModbus Source!“ModbusLV frame′′, id, crc
∆T1

2 smartMeter Target?“ModbusLV frame′′, id, crc
∆T2

3 smartMeter Source!“RespModbusLV frame′′, id, nb, crc
∆T3

4 libModbus Target?“RespModbusLV frame′′, id, nb, crc

Lines 1 and 2 respectively correspond to the sending of the
MODBUS request and its reception by the Meter. Recipro-
cally, the lines 3 and 4 stand for the emission and reception
of the response coming from the Meter. Notice that message
values are abstracted and represented by the symbols id, nb,
and crc. The unknown delays between actions -e.g., due to
bus latency- are specified by the terms ∆Tk.

D. Sequence Diagram Design

In this subsection, a timed model of the target system is
designed from the interpretation of log registers. The model is
based upon the UML standard [9] and its profile specialization
MARTE [10]. A basic knowledge on UML matters is thus
assumed. UML and MARTE have been successfully used
to model and analyze real-time systems [11]. In particular,
MARTE was specified for modeling and analyzing functional
and non-functional properties of embedded systems. Our mod-
eling approach encompasses Class, Composite and Sequence
Diagrams. First, the static parts of the target system and
its features - e.g., components, modules - are represented
using Class Diagrams. The Composite Diagrams capture the
topology of the architecture including the communication
links and ports. Finally, the dynamic elements, i.e., inferred
behaviors, are modeled as Sequence Diagrams. To exemplify
the modeling process, we reuse the log registers introduced in
previous subsections. As it is depicted in Figure 5, a lot of
log registers was abstracted as a single couple. To specify
the exchanges between involved modules or components,
the introduced symbolic syntax is recalled. Let us denote



the module libModbus and the component smartMeter by
ci, cj , respectively. The modeling steps are as follows.

a) New classes Ci and Cj are designed in the Class
Diagram.

b) New parts ci and cj are added to the Composite Dia-
gram. A new connector {ci, cj} is then created.

c) New lifelines namely (ci : Ci) and (cj : Cj) are added
to the Sequence Diagram.

d) A message from ci to cj is designed what models the
first register in Figure 5 (sending).

e) A message from cj to ci is designed to model the second
register in Figure 5 (response).

The messages are stereotyped by signals pre-defined with
the typed variables to be conveyed. These variables are finally
interpreted as symbolic values. An excerpt of the overall
Sequence Diagram is presented in Figure 6. The two messages
ModbusLV frame and RespModbusLV frame between the
libModbus and smartMeter lifelines respectively corre-
spond to the log registers in Figure 5.

Fig. 6. Excerpt of the UML model of the target Micro-Grid system

Time modeling: The timed I/O trace associated to the log
registers in Figure 5, includes the intervals ∆T0, . . . ,∆T3.
Whereas the value of ∆T0 is known (500ms), we can
only settle the following equivalence for the other intervals:
∆T1 + ∆T2 + ∆T3 = 641ms. In fact, the times at which
message reception and transmission occur on the remote
Meter are ignored. To capture the timed features of the I/O
trace, we rely upon the UML-MARTE constraints. Indeed,
the messages are annotated with VSL constraints on the time
emission/reception actions occur. Concretely, the emission of
ModbusLV frame can be explicitly constrained by ∆T0. The
expression ∆T1 +∆T2 +∆T3 = 641ms is modeled as a time-
out constraint on the reception of RespModbusLV frame.

E. Validation of Timed Model Conformity

The validation of the UML scenario is conducted by
building an executable model of the system and by verify-
ing its conformity w.r.t. additional Input/Output traces ob-
tained/abstracted from the target system. The validation relies
upon a conformity relation which is situated within the context
of the tioco conformance relation [12], [13], [14]. More
precisely, the validation of a Sequence Diagram w.r.t. an I/O
trace consists in the following steps: (1) transformation of the
Sequence Diagram into a symbolic timed I/O automata; (2)
abstraction of an I/O symbolic sequence with delays (I/O trace)

obtained from the target system; (3) computation of the verdict
based on a traversal of the symbolic I/O automata guided by
the execution trace. The first and last steps are performed off-
line with Timed Input Output Symbolic Transition Systems
(TIOSTS) for models. TIOSTS are extensions of I/O Symbolic
Transition Systems (IOSTS) [15] and of Timed Automata [16],
in which both data and time properties are expressed symboli-
cally. For reasons of space, the symbolic framework, the model
transformation, and conformity relation are not detailed here.
Interested readers can review [15] for further descriptions. The
verdicts emitted during the validation phase (PASS or FAIL)
may lead to modifications in the model design in order to
ensure its conformity w.r.t. the system behavior.

IV. SECURITY ANALYSIS AND TESTING

A. Attack Scenario Design

The security analysis begins by specifying and designing
a threat or attack scenario. The attack scenario involves the
target system and it can be selected among the outcomes of
a risk analysis. For instance, a refined view of the threat may
be necessary to assess or confirm attack severity and calculate
the impact. In our approach, the nominal UML scenario is
taken as a basis to build the attack scenario. To do so, an
attacker is first introduced to the scenario. Thus, new class,
part, and lifeline are designed to model the attacker features.
The attacker is channel-based and is modeled as follows:

• The knowledge base of the attacker is declared relying
upon typed Class attributes.

• The attacker can intervene and exploit exchanges con-
veyed by accessible connectors which are typed and
designed in the Composite Diagram.

• The attacker behavior is defined in a new Sequence Dia-
gram. The behavioral model of the attacker is inspired by
the Dolev-Yao paradigm [17] which allows the attacker
to intercept, inject, alter, delay and forge messages.

Previously in [18], we have defined a framework to model
attack scenarios relying on predefined UML patterns. The
attack scenario can be designed following that approach.
According to the outcomes of the modeling phase (section III),
the attacker can intervene during the following phases of the
system execution:

1) Data size request: the oceamGateway requests the
smartMeter for the number of bytes to transfer. The data
contains the consumption measures sampled and stored
by the smartMeter which informs the requested value.

2) Data transfer: If necessary, the data are split into several
frames which are indexed and sent by the smartMeter
upon request of the oceamGateway.

3) Acknowledgment: Once the data transfer cycle is ac-
complished, the oceamGateway acknowledges reception.
Afterward, the smartMeter can free its memory from the
transferred measures.

The data transfer phase is security sensitive since third
parties have interest in tamper with measures to obtain some
gain. An overview of the Sequence Diagram of the attack



scenario is shown in Figure 7. First, the attacker identifies the
frame request sent by the oceamGateway to the smartMeter
(messages 1 and 2). Instead of modifying the request, -which
is finally received by the smartMeter- the attacker replays on
behalf of and faster than the smartMeter (messages 3 and 4).
This MITM attack exploits the vulnerabilities associated to the
MODBUS protocol [19].

Fig. 7. Excerpt of the attack scenario: 2nd. phase of the nominal behavior

B. Observability Functions Design

A crucial aspect of our approach is the observability of
actions and events. In particular, the ones conducted to under-
mine system operation. It is assumed that system components
can be designed to deploy a monitoring strategy thus playing
the role of Security Watchdogs (SWD). The designation of
SWD’s is among the design choices. To reason on the effec-
tiveness of the means for detection, the existing and foreseen
mechanisms and functions are first modeled. The design of
means for observation considers the following aspects:

• Choice of SWD: certain component(s) of the system play
the role of SWD. This choice depends upon the role and
location of the component within the network topology
and its capacity to execute security mechanisms.

• Detection mechanisms: The functions that deploy the
monitoring and detection strategy are modeled at a high
level. The detection mechanisms must be able to emit
alerts via secured channels thus ensuring human inter-
vention, whenever necessary.

• Behavior completion: The evaluation of detection mecha-
nisms is performed w.r.t. the achievement of: (1) attacker
objectives; (2) alerts emission; and (3) system objectives.
Thus, the model should include means to signal the
completion of application runs.

As depicted in Figure 7, in our attack scenario, the oceam-
Gateway plays the role of SWD. By design, the component is
able to emit an alert upon reception of an unexpected message
(warning message 5). Finally in the last phase, the message
End() signals the completion of the application run (message
6). The assessment of the attack impact should consider the
possible combinations between alerts emission, attacker gains,
and system completion status.

C. Evaluation of Detectability

The evaluation of detectability is conducted on the symbolic
framework referred to in subsection III-E. It is mainly based
upon the notion of k-robustness introduced in [18]. This notion
allows to infer minimum bounds for the attacker actions to
be detected and signaled by alerts. It is assumed that along
with the attack scenario enriched-with-detectability-means, a
security expert should settle a suitable minimum bound k. This
evaluation phase comprises the following steps:

1) Model transformation: The attack scenario is translated
into the TIOSTS automata syntax [15]. The transfor-
mation generates an executable model useful to analyze
functional and non-functional properties of the system.

2) Symbolic execution and robustness assessment: The
TIOSTS automata are executed to compute a symbolic
tree [15] which defines the possible execution paths and
supported I/O traces. The tree computation is guided
by an algorithm that searches among the symbolic tree
paths to verify whether the k−robustness is preserved.
In case of non-fulfillment, a verdict FAIL is emitted
and the algorithm terminates. If all the tree leaves are
reached without violation, a verdict PASS is emitted.
Since paths can be infinite, stop criteria on the tree
structure can be settled, e.g., depth, width, no. of states.

To illustrate the k − robustness analysis, let us consider
the symbolic tree in Figure 8. The tree is composed of states
ECi capturing the progression of symbolic time and values.
The states are linked by directed transitions labeled with the
I/O actions that should occur for the transition to be traversed.
Roughly, the symbolic tree fulfills the k−robustness criteria
iff for any possible path, there exist a transition -at least- where
the SWD emits an alert at almost k actions of the attacker.

Fig. 8. Instance of a symbolic tree

It is clear that for the lower and middle paths, the transitions
labeled with SWD!Warning() come after one action of the
attacker: Att!Msg(x#0). However, for the upper path the
alert SWD!Warning() comes right after the attacker actions
Att!Msg(x#0) and Att!Msg(x#1). It is concluded that the
tree does not satisfy 1-robust criteria but it does 2-robust
instead - at least.
The detectability analysis was performed on the attack sce-
nario and it was confirmed that it is indeed 2-robust. This
result confirms that the SWD truly emits an alert in the
presence of unexpected duplicated messages whatsoever.

D. Detectability Testing

The final phase of the security analysis consists in perform-
ing tests guided by modeled scenarios. The objective of this
phase is to upgrade the target system so as to include the



design choices and detectability capacities already validated,
e.g., detection w.r.t. the attack scenario.
To test the detection capabilities of the target Micro-Grid
system, we proceed as follows:

1) Stimuli generation: Test cases are generated from mod-
eled scenarios. It is recalled that by applying reverse
engineering techniques, a mapping from system be-
havior onto a high level UML model was settled. By
inverting the mapping, timed sequences of I/O actions
-containing symbolic or concrete values- can be almost
automatically generated. It is recalled that I/O traces
specify a system behavior via the I/O actions executed
by modules or components.

2) Test routine coding: A TTCN like language [20] is
specified to code test routines. The language supports
declaration of typed variables, control flow expressions
like for, if, goto, and platform oriented functions like
for waiting, capturing/injecting MODBUS frames, and
computing frame’s CRC. In addition, the language ac-
cepts the timed I/O sequences which are interpreted as a
testing routine. We rely on this language to specify the
attack scenario designed in subsection IV-A.

3) HMI for testing: To automate test routines execution,
an interface with the target Micro-Grid system was
developed. The HMI is able to interpret routines written
in our ad-hoc language and to execute them. Since a
channel-based attacker should be deployed, the HMI
interfaces the test routine with the MODBUS channel.
An overview of the HMI is shown in Figure 9.

Fig. 9. Overview of the testing HMI front-end

4) Outcomes analysis: The testing HMI is able to record
the execution of test routines. The outcomes are stored
within a file in the form of a stimuli-response sequence,
i.e., a timed I/O trace. The file format is adequate
to conduct an -almost- automatic evaluation. Indeed,
to simplify attack assessment, the testing routines are
enriched to interpret system responses in real time and
determine whether the attack is already accomplished.
The designer should finally iterate on previous phases
to ensure that the system is endowed with the desired
detectability features.

V. METHOD SUMMARY, POSITIONING, AND RESULTS

A. Method Summary
In previous sections III and IV, a method for system re-

engineering and security testing by modeling was applied

to the target Micro-Grid system in section II. The method
phases were grouped in two blocks. The first block in Figure
10 mainly covers the functional aspects of the process. The
objective is to obtain a model of the target system adequate to
support the detectability analysis. To achieve it, reverse engi-
neering techniques were applied to infer a UML model from
a log file of the target system. The UML scenario captures
timed features of the system and components interactions.

Fig. 10. The stages of the detectability and testing method

To ensure a well-designed model, several hypotheses and
abstraction rules were settled and validated. To do so, the UML
scenario was translated to a TIOSTS executable automata
[15] and the tioco conformity relation [12], [13], [14] was
incrementally verified relying on further I/O traces from the
system. This step ensures the conformity of the UML model
with the system behavior. The securing block in Figure 10
starts by enriching the UML model so as to build an attack
scenario. The attacker model is inspired from the Dolev-Yao
paradigm [17]. The attack scenario is completed by introduc-
ing the means for detection. The detectability analysis is based
upon the symbolic execution of the TIOSTS automata and
the definition of k − robustness [18] introduced to evaluate
the detection of attacker interventions. In the last phase,
an ad-hoc language and HMI are respectively specified and
developed to conduct security tests. A test routine is indeed
an interpretation of the attack scenario. The testing language
supports the specification of timed I/O traces, attacker actions,
and platform-oriented functions. Finally, the security tests are
conducted and the outcomes help to confirm or improve the
detection capabilities of the system. The consistency between
the models and behavior is validated during the testing phase.

B. Approach Positioning

Our approach is similar to [21] since reverse engineering
is used for modeling. However, to our knowledge, reverse
engineering is usually applied to deduce code, e.g., [22].
So far, our method additionally allows to settle and prove
a correspondence between the model and system. Several
approaches propose model-based testing, e.g., [23]. In most
cases, code testing is covered taking for granted the conformity
between the model and test interfaces. Complementary, our
approach helps to elicit and prove such conformity prior to
the test phase. As stated in [24], security oriented testing is
a challenging topic. Our method provides means to deploy
a security-test bench driven by models. Last but not least,
the introduction of time during all phases of the method
is crucial: (1) time-stamped log registers help to annotate
models with time constraints; (2) annotated-with-time models
are necessary to validate model-system correspondence; (3)
timed models allow to produce timed test sequences; (4)



specified-with-time routines fully declare the interactions with
the system during tests execution. The method applicability
indeed depends on previous aspects. Finally, threats unveiling
and attack elicitation are challenging research topics which are
however not covered by this work.

C. Results Summary

A summary of the main outcomes of the method application
is provided in Table I. Notice that, even if the Micro-Grid size
is limited (15 Meters), the method can be directly applied to
a full-size MODBUS network (max. 255 nodes). In addition,
no restriction is identified for the method to be applied to
other networks based upon master-slave, bi-directional, and
serial protocols, even those supporting asynchronous, group or
unsolicited-answer transfer policies, like IEC60870 or DNP3.

TABLE I
SUMMARY OF RESULTS FROM THE DETECTABILITY AND TESTING METHOD

Parameter Outcome(s)
No. of log registers 11,828
Identified words 110,476
Registers Date(s) 20140916
Trace duration 13 min 44.177 s
SW modules oceam-gateway, liboceam, libmodbus, li-

boceamdb
Smart ZAE component OCEAM Smart Controller
No. of external Smart Meters 15
No. of MODBUS messages 230
Identified MODBUS frames “lv” and “ls”
Minimum response delay 0.018 s
Maximum response delay 0.234 s
No. of main app. cycles 103
UML nominal scenario 1.- Request no. of bytes to transfer

2.- Transfer and acknowledge data
3.- Convert and store data

UML attack scenario 1.- Wait for data frame request
2.- Tamper with a frame
3.- Reply faster than the Meter

Detection functions Alert in case of unexpected message, e.g.,
duplicated frame

K − robustness analysis Verdict: the scenario is 2-robust. An alert
is always emitted after 2 attacker actions.

Attack testing The attack is achieved. The system is able
to detect the intrusion

VI. CONCLUSIONS

In this paper, a method is proposed to analyze and test
the detectability features of Smart Grid systems. The method
leads to a system re-engineering process to reinforce system
security. The process is guided by modeling and to obtain a
well-designed model of the system, reverse engineering and
symbolic techniques were applied. The system model was
enriched to design attack scenarios which were completed
by introducing detection means. The analysis of detectability
was conducted in a symbolic framework to prove system
robustness. A tool chain was also deployed to perform security
testing of the system guided by the attack scenarios. The
method was applied to a Micro-Grid and its main outcomes
presented. The approach feasibility mostly depend on the
observation points, the timed features of observations and their
consistency. Our proof of concept shows that the detectability

of intrusions on particular points of the architecture is viable.
Finally, no restrictions were identified for the method to be
incrementally applied to other networks within the Smart Grid.

REFERENCES

[1] L. Zhou and S. Chen, “A survey of research on smart grid security,” in
Network Computing and Information Security, ser. Communications in
Computer and Information Science. Springer Berlin Heidelberg, 2012,
vol. 345, pp. 395–405.

[2] The Modbus Organization, Inc., “The Modbus Protocol Specification
V1.1b3,” In http://www.modbus.org/docs/.

[3] Yichi Zhang and Lingfeng Wang and Weiqing Sun and Green, R.C. and
Alam, M., “Distributed Intrusion Detection System in a Multi-Layer
Network Architecture of Smart Grids,” Smart Grid, IEEE Transactions
on, vol. 2, no. 4, pp. 796–808, Dec 2011.

[4] Al Hamadi, Hussam M.N. and Yeun, ChanYeob and Zemerly, Mohamed-
Jamal, “A Novel Security Scheme for the Smart Grid and SCADA
Networks,” Wireless Personal Communications, pp. 1–13, 2013.

[5] Wenye Wang and Zhuo Lu, “Cyber security in the Smart Grid: Survey
and challenges.” Computer Networks, vol. 57, no. 5, pp. 1344–1371,
2013.

[6] Gao, J. and Xiao, Y. and Liu, J. and Liang, W. and Chen, C.L., “A sur-
vey of communication/networking in Smart Grids,” Future Generation
Computer Systems, 2012.

[7] The European Committee for Standardization and the European Com-
mittee for Electrotechnical Standardization, “The CEN-CENELEC Web-
site,” In http://www.cencenelec.eu/.

[8] SCLE-SFE, “The experimentation Micro-Grid site Smart ZAE,” In
http://www.cofelyineo-gdfsuez.com/smart-zae.

[9] Object Management Group, “The UML standard specification,” In
http://www.omg.org/spec/UML/2.4.1/.

[10] ——, “A UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded systems, CCSL,” http://www.omg.org/spec/MARTE/.

[11] Bannour, B. and Gaston, C. and Lapitre, A. and Escobedo, J., “In-
cremental symbolic conformance testing from UML MARTE sequence
diagrams: railway use case,” in Proc. of Intl. Symposium HASE. IEEE,
2012.

[12] J. Schmaltz and J. Tretmans, “On Conformance Testing for Timed
Systems,” in Proc. of Int. Conf. Formal Modeling and Analysis of Timed
Systems (FORMATS). Springer, 2008.

[13] H. Bohnenkamp and A. Belinfante, “Timed Testing with TorX,” in Proc.
of Int. Conf. Formal Methods Europe (FM). Springer, 2005.

[14] M. Krichen and S. Tripakis, “Black-box time systems,” in Proc. of Int.
SPIN Workshop Model Checking of Software. Springer, 2004.

[15] C. Gaston, P. L. Gall, N. Rapin, and A. Touil, “Symbolic Execution
Techniques for Test Purpose Definition,” in Proc. of Int. Conf. Testing
of Software and Communicating Systems. Springer, 2006, pp. 1–18.

[16] Alur, R. and Dill, D.L., “The Theory of Timed Automata,” in Proc. of
REX Workshop the Real-Time: Theory in Practice. Springer, 1992.

[17] D. Dolev and A. C. Yao, “On the security of public key protocols,”
Information Theory, IEEE Transactions on, vol. 29, no. 2, 1983.

[18] Bannour, B. and Escobedo, J. and Gaston, C. and Le Gall, P. and
Pedroza, G., “Security Weaknesses Detection by Symbolic Analysis of
Scenarios,” in Software Engineering Conference (APSEC), 2014 21st
Asia-Pacific, vol. 1, Dec 2014, pp. 367–374.

[19] P. Huitsing, R. Chandia, M. Papa, and S. Shenoi, “Attack taxonomies for
the modbus protocols,” International Journal of Critical Infrastructure
Protection, 2008.

[20] TTCN-3 organization, “Testing and Test Control Notation Ver.3 Stan-
dards,” http://www.ttcn-3.org/index.php/downloads/standards.

[21] Rugaber, S. and Stirewalt, K., “Model-driven reverse engineering,”
Software, IEEE, vol. 21, no. 4, pp. 45–53, July 2004.

[22] Jain, A. and Soner, S. and Gadwal, A., “Reverse engineering: Journey
from code to design,” in Electronics Computer Technology (ICECT),
2011 3rd International Conference on, vol. 5, April 2011, pp. 102–106.

[23] Torens, C. and Ebrecht, L. and Lemmer, K., “Starting Model-Based
Testing Based on Existing Test Cases Used for Model Creation,” in
Computer and Information Technology (CIT), 2011 IEEE 11th Interna-
tional Conference on, Aug 2011, pp. 320–327.

[24] Hudic, A. and Zechner, L. and Islam, S. and Krieg, C. and Weippl,
E.R. and Winkler, S. and Hable, R., “Towards a Unified Penetration
Testing Taxonomy,” in Privacy, Security, Risk and Trust (PASSAT), 2012
International Conference on, Sept 2012, pp. 811–812.


