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ABSTRACT

Seismic observations by the space-borne mission Kepler have shown that the core of red giant stars slows down while evolving,
requiring an efficient physical mechanism to extract angular momentum from the inner layers. Current stellar evolution codes fail to
reproduce the observed rotation rates by several orders of magnitude and instead predict a drastic spin-up of red giant cores. New
efficient mechanisms of angular momentum transport are thus required. In this framework, our aim is to investigate the possibility
that mixed modes extract angular momentum from the inner radiative regions of evolved low-mass stars. To this end, we consider
the transformed Eulerian mean (TEM) formalism, which allows us to consider the combined effect of both the wave momentum flux
in the mean angular momentum equation and the wave heat flux in the mean entropy equation as well as their interplay with the
meridional circulation. In radiative layers of evolved low-mass stars, the quasi-adiabatic approximation, the limit of slow rotation,
and the asymptotic regime can be applied for mixed modes and enable us to establish a prescription for the wave fluxes in the mean
equations. The formalism is finally applied to a 1.3 M� benchmark model, representative of observed CoRoT and Kepler oscillating
evolved stars. We show that the influence of the wave heat flux on the mean angular momentum is not negligible and that the overall
effect of mixed modes is to extract angular momentum from the innermost region of the star. A quantitative and accurate estimate
requires realistic values of mode amplitudes. This is provided in a companion paper.
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1. Introduction

Rotation has important consequences on stellar evolution. In
particular, it induces meridional circulations, as well as shear
and baroclinic instabilities, which contribute to the redistribu-
tion of angular momentum and to the mixing of chemical ele-
ments (see for instance Talon 2008; Maeder 2009; Mathis 2013;
Palacios 2013, for comprehensive reviews). Except for the Sun,
the observational constraints remained sparse until the advent of
the space-borne missions CoRoT (Baglin et al. 2006a,b; Michel
et al. 2008) and Kepler (Borucki et al. 2010; Bedding et al. 2010;
Chaplin et al. 2011). These were mainly constraints on the effi-
ciency of the transport of chemicals (e.g., Charbonnel & Zahn
2007) provided by observations of surface abundances.

Based on seismic measurements, Beck et al. (2012) and
Deheuvels et al. (2012, 2014) brought stringent observational
constraints on the rotation profiles in the innermost layers of sub-
giant stars observed by Kepler. They concluded that the core of
subgiant stars spins up, while their envelope decelerates. Their

� Appendix A is available in electronic form at
http://www.aanda.org

core rotates about three to ten times faster than the envelope,
depending on the evolutionary state of the star. On the other
hand, Mosser et al. (2012) analysed a sample of about 300 red-
giant stars observed by Kepler and found that, surprisingly, the
mean core rotation rate decreases significantly during the red-
giant phase.

Current models of red-giant stars including angular momen-
tum redistribution processes are unable to explain such low core
rotation rates in subgiant and red giant stars. They are also un-
able to explain the deceleration of the core during the ascent of
the red-giant branch. Indeed, Eggenberger et al. (2012), Marques
et al. (2013), and Ceillier et al. (2013) computed stellar models
with transport of angular momentum by both meridional circula-
tion and shear instabilities, concluding that these processes can-
not explain the observed rotation profiles. The authors empha-
sised the need for an additional physical mechanism to do so.
Along the same lines, Cantiello et al. (2014) included the rota-
tionally induced circulations and shear instabilities together with
the effect of a magnetic field generated through the Tayler-Spruit
dynamo (Spruit 1999, 2002) and reached the same conclusion.
However, a recent work by Rüdiger et al. (2015) has shown
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that magneto-rotational instabilities of a toroidal magnetic field
could explain the angular momentum redistribution in subgiants
and early red giants (see also Maeder & Meynet 2014). Internal
gravity waves1 can also transport angular momentum (e.g., Press
1981) and it has been demonstrated that they could explain the
nearly flat rotation profile in the inner radiative zone of the Sun
(Charbonnel & Talon 2005). While this process is still to be in-
vestigated for subgiant and red giant stars, Fuller et al. (2014)
have found that internal gravity waves are likely to couple the
convective region and the upper radiative region, but not the in-
nermost layers. Hence, the question remains open, and we still
need an efficient physical mechanism that explains the slow-
down in the core of evolved low-mass stars.

Our aim in this paper is to investigate the influence of nor-
mal modes (more precisely, mixed modes) on the core rota-
tion of subgiant and red giant stars. Angular momentum can
be transferred through energy exchanges between the oscilla-
tions and the mean flow, which results in a modification of the
rotation profile. Non-radial modes in subgiants and red giants
have two interesting properties. Firstly, they have large ampli-
tudes both in the outer layers and in the core of the star so that
they are efficiently excited by turbulent convection while hav-
ing a non-negligible effect on the innermost layers. Secondly,
their amplitudes can be inferred, since they have been observed
by CoRoT and Kepler (e.g., Bedding et al. 2011; Mosser et al.
2011; Chaplin & Miglio 2013). It is possible, therefore, to pro-
vide not only qualitative but also quantitative estimates of the
angular momentum transport.

The problem of the redistribution of angular momentum by
progressive waves and normal modes has been considered for a
long time from a theoretical point of view. For modes, the pio-
neer work of Ando (1983) addressed the question of the inter-
action of wave and rotation through wave momentum stresses
in the mean angular momentum equation. Following this work,
efforts have been made to theoretically address the problem of
the redistribution of angular momentum in classical pulsators by
unstable modes (e.g., Ando 1986; Lee & Saio 1993; Lee 2007;
Townsend & MacDonald 2008; Townsend 2014). Nevertheless,
a quantitative estimate is difficult to make since it remains a chal-
lenge to predict the amplitude of modes in classical pulsators
(see, however, Lee et al. 2014). In parallel, Press (1981), Zahn
et al. (1997), Kumar et al. (1999), Mathis et al. (2008, 2013)
have considered the interaction of the wave with the mean flow
for progressive internal gravity waves (IGW) with a slightly dif-
ferent formalism. Nevertheless, all these works mainly focused
on the effect of waves on the mean angular momentum equation
and neglected their effects on the mean energy equation.

In contrast, the interaction between waves/modes and merid-
ional circulations has been extensively studied in geophysical
flows in the 60 s and 70 s in the context of middle atmosphere
dynamics (e.g., Andrews et al. 1987; Holton 1992). Andrews
& McIntyre (1976, 1978b) proposed the transformed Eulerian
mean formalism (TEM) to account for the interaction between
waves and the mean flow in a general way. That allowed them
to demonstrate the non-acceleration theorem: if the waves are
steady, conservative, and of small amplitudes, the mean flow is
not accelerated. In the present series of papers, we adopt this
formalism and adapt it to model angular momentum transport
by mixed modes in stars. In this paper, which is the first of the
series, we establish the formalism and discuss numerical results

1 Note that all along this paper, we will distinguish between progres-
sive waves (hereafter mentioned by waves) and stationary waves (here-
after mentioned by modes).

for a benchmark model. In a companion paper (Belkacem et al.
2015, hereafter Paper II) we consider realistic mode amplitudes
to quantitatively estimate the efficiency of the angular momen-
tum transport by modes along the evolution of low-mass stars.

This paper is organised as follows: Sect. 2 introduces
the mean flow equations. Section 3 discusses the transformed
Eulerian mean (TEM) formalism and its particular form in the
case of stellar shellular rotation. In Sect. 4, we model the wave
fluxes for mixed modes. In Sect. 5, the rate of angular mo-
mentum transport is computed numerically for a benchmark
model of an evolved 1.3 M� star, representative of CoRoT and
Kepler observations. Section 6 is dedicated to discussions and
conclusions.

2. Preliminary remarks on the wave mean-flow
equations

In this section, we derive the equations that describe the inter-
action between the mean flow and waves. We use an Eulerian
averaging process to derive the equations of the mean flow. It
allows us to discuss the coupling between waves and the merid-
ional circulation as well as the role of the wave heat flux.

The continuity, momentum, and energy equations in an iner-
tial frame can be written as

∂ρ

∂t
+ ∇ · (ρu) = 0 (1)

∂ (ρu)
∂t
+ ∇ · (ρuu) = −∇p − ρ∇Φ + X (2)

∂ (ρs)
∂t
+ ∇ · (ρus) = Q, (3)

where ρ is the density, u the velocity field, p the pressure,
s the specific entropy, Φ the gravitational potential, X is a non-
conservative mechanical forcing (e.g., turbulent dissipation), and
Q represents heating or cooling terms.

The azimuthal component of Eq. (2) can be written in a form
that represents the conservation of specific angular momentum:

∂ (ρh)
∂t
+ ∇ · (ρhu) = −∂p

∂φ
− ρ∂Φ

∂φ
+� Xφ, (4)

where the specific angular momentum is h = �vφ = �
2Ω, with

Ω representing the angular velocity, � = r sin θ, and vφ the az-
imuthal component of the velocity field.

A given field can be decomposed into a mean part and a per-
turbation. The perturbation is associated with linear non-radial
waves. More precisely, for a given field A, we have

A = A + A′, (5)

where A is the Eulerian-mean azimuthal average

A =
1

2π

∫ 2π

0
A dφ. (6)

Introducing the decomposition given by Eq. (5) into Eqs. (1), (3),
and (4) and azimuthal averaging them, we obtain the following
system:

∂ρ

∂t
+ ∇⊥ · (ρ u⊥) = D (7)

ρ
∂h
∂t
+ ρ

(
u⊥ · ∇⊥) h = −∇⊥ ·

(
�ρ v′φu

′⊥
)
+�Xφ +H (8)

ρ
∂s
∂t
+ ρ

(
u⊥ · ∇⊥) s = −∇⊥ ·

(
ρ s′u′⊥

)
+ Q + S, (9)
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with

H = −ρ′u′⊥ · ∇⊥h −�∂ρ′v′φ
∂t
− ρ′ ∂Φ

′

∂φ
− ∇⊥ ·

(
�ρ′v′φ u⊥

)
, (10)

S = −ρ′u′⊥ · ∇⊥s − ∇⊥ ·
(
ρ′s′ u⊥

)
− ∂ρ

′s′

∂t
, (11)

D = −∇⊥ ·
(
ρ′ u′⊥

)
, (12)

and ∇⊥, ∇⊥ · (), u⊥ are the gradient, divergence, and velocity
vector in the meridional plane, respectively. They are defined by

∇⊥ = er
∂

∂r
+ eθ

1
r
∂

∂θ
, and u⊥ = vr er + vθ eθ. (13)

The terms involving the density perturbation (ρ′) are generally
considered to be small (e.g., Ando 1983; Unno et al. 1989).
This is particularly the case for low-frequency waves (σR � N,
where σR is the wave frequency and N the buoyancy frequency)
where the anelastic approximation applies (e.g., Dintrans &
Rieutord 2001). Therefore, we neglect the terms ρ′ u′⊥, ρ′s′,
and ρ′ v′φ in Eqs. (10) to (12). In addition, we use the Cowling
approximation by neglecting the perturbation of the gravitational
potential, so that Eqs. (7) to (9) become

∂ρ

∂t
+ ∇⊥ · (ρ u⊥) = 0 (14)

ρ
∂h
∂t
+ ρ

(
u⊥ · ∇⊥) h = −∇⊥ ·

(
�ρ v′φu

′⊥
)
+�Xφ (15)

ρ
∂s
∂t
+ ρ

(
u⊥ · ∇⊥) s = −∇⊥ ·

(
ρ s′u′⊥

)
+ Q, (16)

where the effect of waves now appears through the wave mo-
mentum flux in the mean angular momentum equation, Eq. (15)
and the wave heat flux in the mean entropy equation, Eq. (16).

However, the mean specific entropy s and mean specific an-
gular momentum h are not independent. They are connected by
the baroclinic equation (also known as the thermal wind balance
equation), obtained by taking the curl of the hydrostatic equilib-
rium equation:

ρ2 ∇⊥
⎛⎜⎜⎜⎜⎝ h
�2

vφ

⎞⎟⎟⎟⎟⎠ × ∇⊥� + ∇⊥ρ × ∇⊥p = 0 , (17)

together with the equation of state s = s (ρ, p).
Therefore, we must solve the complete set of Eqs. (14)

to (17) to compute the effect of waves on the mean flow, includ-
ing both wave stresses in the mean angular momentum equa-
tion, Eq. (15), and the wave heat flux in the mean entropy equa-
tion, Eq. (16). However, the effect of the wave heat flux is often
neglected in the literature related to transport of angular momen-
tum in stars by waves (e.g., Press 1981; Ando 1983; Lee & Saio
1993; Zahn et al. 1997; Kumar et al. 1999; Pantillon et al. 2007;
Mathis et al. 2013; Townsend 2014).

It is potentially misleading to overlook the effect of the wave
heat flux. To illustrate this point, we consider the extreme case
of a conservative and stationary wave field. Under these assump-
tions, the non-acceleration theorem states that the mean flow is
not accelerated by waves, although the wave momentum and
heat fluxes defined in Eqs. (15) and (16) do not vanish. In other
words, the wave fluxes of heat and momentum produce a merid-
ional circulation that cancels their tendency to affect the mean
flow. Indeed, the wave momentum and wave heat fluxes are not

independent and, in the presence of wave forcing, the merid-
ional circulation must ensure that h and s satisfy the baroclinic
equation.

Consequently, both the wave momentum and wave heat
fluxes must be considered to account for the effect of waves
on the mean flow. To do so, we adopt in the following section
the TEM formalism introduced by Andrews & McIntyre (1976,
1978b).

3. Transformed Eulerian mean equations

3.1. Formalism

The wave heat flux R = s′u′⊥ can be split into a component along
an isentropic surface, the skew flux, and a component perpendic-
ular to it. Following Vallis (2006),

R = (n× R) × n+ (n · R) n, (18)

with n = ∇⊥s/|∇⊥s|. The divergence of the skew flux can be
rewritten as

∇⊥ · [(n× R) × n] = ∇⊥ ·
(∇⊥s × R
|∇⊥s|2 × ∇⊥s

)

=

(
∇⊥ × ∇⊥s × R

|∇⊥s|2
)
· ∇⊥s

= ũ · ∇⊥s, (19)

where we used the relation ∇ · (a×∇α) = ∇α · (∇× a), valid for
any scalar α and vector a.

Equation (19) shows that the skew flux behaves like an ad-
vection by the velocity ũ. The main motivation underlying the
TEM is thus to incorporate the advective part of the wave heat
flux into the mean meridional velocity field (u).

The residual meridional circulation is thus defined by

ρ u†⊥ = ρ u⊥ + ∇⊥ ×
(
ρψ eφ

)
, (20)

where the stream function ψ is defined, from Eq. (19), by

ψ =
∇⊥s × R
|∇⊥s|2 · eφ =

1
|∇⊥s|2

[(
∂s
∂r

)
v′θs′ − 1

r

(
∂s
∂θ

)
v′r s′

]
. (21)

We note that the definition for ψ given in Eq. (21) is not unique
(see Plumb & Ferrari 2005; Vallis 2006, for details).

Inserting Eqs. (20) and (21) into Eq. (14) to Eq. (16), we
have

∂ρ

∂t
+ ∇⊥ ·

(
ρ u†⊥

)
= 0 (22)

ρ
∂h
∂t
+ ρ

(
u†⊥ · ∇⊥

)
h = −∇⊥ · (ρ F) +�Xφ (23)

ρ
∂s
∂t
+ ρ

(
u†⊥ · ∇⊥

)
s = −∇⊥ · (ρG) + Q, (24)

where the components of the vectors F and G are given by

Fr = �v′φ v′r +
ψ

r
∂h
∂θ

, Fθ = �v′φ v
′
θ − ψ

∂h
∂r

, (25)

Gr = s′ v′r +
ψ

r
∂s
∂θ

, Gθ = s′ v′θ − ψ
∂s
∂r
· (26)

Equation (17) is left unmodified.

A30, page 3 of 12



A&A 579, A30 (2015)

Finally, when F and G are specified, the residual veloc-
ity u†⊥ becomes part of the solution of Eqs. (22) to (24) together
with Eq. (17). They are strictly equivalent to Eqs. (14)–(16), but
present several conceptual and practical advantages:

– The TEM equations enable distinguishing the advective and
diffusive parts of the wave heat flux and incorporating the
advective component in the mean velocity field.

– Andrews & McIntyre (1978b) showed that ∇ · (ρF) and
∇ · (ρG) only depend on wave dissipation and non-steady
terms. It is the non-acceleration theorem. Therefore, the
TEM makes the adiabatic and non-adiabatic contributions of
waves more explicit, the latter being able to modify the mean
flow.

– Finally, depending upon the considered problem, the TEM
formalism allows us to gather in a single equation and in
the single term F both the wave momentum and wave heat
fluxes. It explicitly shows that wave momentum fluxes and
wave heat fluxes do not influence the mean flow separately,
but only in the combination given by F. For instance, in the
quasi-geostrophic approximation G ≈ 0 so that the term F
(the Eliassen-Palm flux) is the only wave contribution to the
problem. As we will show in the companion paper, we are
in the same situation for mixed modes in the limit of shel-
lular rotation, in which the radial component of G can be
neglected.

3.2. Equation for the mean angular momentum: shellular
rotation

Following the work of Zahn (1992), Maeder & Zahn (1998),
Mathis & Zahn (2004) (see also Maeder 2009, for an exten-
sive discussion), shellular rotation has been an approximation
widely used in 1D stellar evolutionary codes. It is based on the
assumption that turbulence is highly anisotropic in stellar radia-
tive zones (e.g., Talon & Zahn 1997; Maeder 2003; Mathis et al.
2004); it is much stronger in the horizontal than in the vertical di-
rection. Accordingly, efficient horizontal turbulent viscosity en-
sures that the angular velocity is almost constant on isobars. We
then consider the TEM equations in this framework.

Given that the specific angular momentum is defined by h =
�2Ω(r, θ), we introduce the following decomposition

Ω(r, θ) = Ω0 (r) + Ω̂ (r, θ) , (27)

with

Ω0 =

∫ π

0
sin3 θ Ω(r, θ) dθ∫ π

0
sin3 θ dθ

=
3
4

∫ π

0
sin3 θ Ω(r, θ) dθ, (28)

where, with the shellular approximation, Ω0 � Ω̂. The scalar
quantities are developed as

X(r, θ) = 〈X〉 (r) + X̂ (r, θ) , (29)

with

〈X〉 =
∫ π

0
sin θ X(r, θ) dθ∫ π

0
sin θ dθ

=
1
2

∫ π

0
sin θ X(r, θ) dθ, (30)

and the velocity field equals to u†⊥ (r, θ) = ṙ er + U† (r, θ), where
ṙ comes from the contraction or dilatation of the star and U† is
the residual meridional circulation.

The various physical quantities are expanded in Legendre
polynomials

U† (r, θ) =
∑
�

[
U†
�
(r) P�(cos θ) er + V†

�
(r)

dP�(cos θ)
dθ

eθ

]
(31)

Ω̂ (r, θ) =
∑
�

Ω�Q� (cos θ) (32)

X̂ (r, θ) =
∑
�

X�(r)P� (cos θ) , (33)

where Q� = P� − δ�,0 + δ�,2/5 (see Mathis & Zahn 2004), and,
for slow to moderate rotation, we assume that X̂ � 〈X〉.

Following these assumptions, the specific entropy is nearly
constant on isobars and the stream functionψ (Eq. (21)) becomes
at dominant order

ψ =

(
d 〈s〉
dr

)−1

v′θs′ , (34)

which is the same expression as for geostrophic flows (e.g.,
Holton 1992).

Introducing Eqs. (31)–(33) into Eq. (23), horizontal averag-
ing, neglecting the time-variation of the density, and using the
expression of the residual stream function given by Eq. (34), we
obtain, at dominant order,

〈ρ〉
d
(
r2Ω0

)
dt

= − 1
r2

∂

∂r

[
r2 (Fcirc + Fshear + Fwaves)

]
(35)

with the fluxes defined by

Fcirc = −1
5
〈ρ〉 r2Ω0 U†2 (36)

Fshear = − 〈ρ〉 νvr2 ∂Ω0

∂r
(37)

Fwaves = 〈ρ〉
〈
�

⎡⎢⎢⎢⎢⎢⎣v′φ v′r + 2 cos θΩ0 v
′
θs
′
(
d 〈s〉
dr

)−1⎤⎥⎥⎥⎥⎥⎦
〉
. (38)

The turbulent stresses are described by an anisotropic eddy vis-
cosity denoted νv and νh for the vertical and horizontal compo-
nent, respectively (see Zahn 1992; Mathis & Zahn 2004, for de-
tails). We also note that we introduced the Lagrangian derivative
d/dt = ∂/∂t + ṙ ∂/∂r.

Under the assumptions used for Eq. (35), we obtain for the
entropy equation

〈ρ〉 d 〈s〉
dt
= − 1

r2

∂

∂r

〈
r2 S

〉
+ 〈Q〉 (39)

with

S = 〈ρ〉 s′ v′r, (40)

and

〈T 〉 〈Q〉 = 〈ρε〉 + 1
r2

∂

∂r

(
r2 〈χ〉 ∂ 〈T 〉

∂r

)
, (41)

where T is the temperature, ε is the nuclear energy genera-
tion rate, and χ is the thermal conductivity (see, e.g., Sect. 6
of Mathis & Zahn 2004; and also Maeder & Zahn 1998). This
expresses energy conservation on a level surface. To obtain
Eq. (39), we used Eq. (34) and assumed that the horizontal
derivative of entropy is negligible at dominant order.
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3.3. Discussion

As mentioned in Sect. 2, transport of angular momentum by
waves in stars has been extensively studied, but often ignoring
the effect of the wave heat flux (e.g., Press 1981; Ando 1983;
Lee & Saio 1993; Zahn et al. 1997; Kumar et al. 1999; Townsend
2014). Following the work of Bretherton (1969), Pantillon et al.
(2007) have also considered an additional wave contribution in
the momentum equation, equal to 2 cos θΩ0 v′rξθ in our nota-
tion (see also Lee 2008; Mathis 2009). This term corresponds
to a Lagrangian correction that can be understood as follows:
on the typical time-scale of the momentum transport by waves
(the modal period, for example), rotation advects a wave-related
momentum flux. This term arises naturally in Lagrangian mean
wave-flow theories such as the generalized Lagrangian mean
(GLM) formulation by Andrews & McIntyre (1978a) (see also
Grimshaw 1984; Lee 2013).

For linear waves, one can show that this Lagrangian term can
be recovered from the TEM equations if one assumes that the
Lagrangian perturbation of entropy vanishes (i.e. δs = 0). The
wave flux in the mean angular momentum equation (Eq. (35)) is

v′φ v′r + 2 cos θΩ0 v
′
θs
′
(
d 〈s〉
dr

)−1

· (42)

We can then express the entropy Eulerian perturbation in terms
of the Lagrangian perturbation at first order: δs = s′ +
ξr d 〈s〉 /dr, where ξr is the wave displacement. Using Eq. (45)
and the expression for the wave velocity u′ = i (σR + mΩ0) ξ −
� (ξ · ∇Ω0) eφ (where σR is the modal frequency), we obtain

v′θ ξr = −v′r ξθ. (43)

Therefore, if the entropy Lagrangian perturbation vanishes (i.e.
δs = 0), the term (42) becomes

v′φ v′r + 2 cos θΩ0 v′rξθ, (44)

which is the expression given in Pantillon et al. (2007) as
claimed. Finally, Eq. (44) shows that the Lagrangian correction
introduced by Pantillon et al. (2007), Lee (2008), Mathis (2009)
is recovered from the TEM equations. In this framework, it can
be understood as originating from the wave heat source term in
the mean entropy equation.

However, the contribution related to the entropy Lagrangian
perturbation is not negligible (see the results presented in
Sect. 5.2 below). Therefore, it is not enough to consider the wave
flux in the mean angular momentum given by Eq. (44).

4. Modelling the wave fluxes: the case of mixed
modes in evolved low-mass stars

In this section, we focus on the transport of angular momentum
by mixed normal modes in the radiative region of evolved low-
mass stars (i.e. subgiants and red giants). These modes have a
dual nature; they behave as acoustic modes in the upper layers
and as gravity modes in the inner layers. Therefore, they are de-
tectable at the stellar surface while providing information on the
innermost regions. They have been detected in several thousands
of evolved stars (e.g., Bedding et al. 2011; Mosser et al. 2012,
2014) and have provided a wealth of information on the core of
red giants (e.g., Mosser et al. 2012). These modes must not be
confused with progressive gravity waves, often called internal
gravity waves in the literature.

4.1. Simplifying approximations

We restrict ourselves to the case of strictly shellular rotation (see
Sect. 3.2). Moreover, we focus on the inner radiative regions
since our aim in this series of papers is to investigate the trans-
port of angular momentum in the core of evolved low-mass stars.
These restrictions allow us to use several approximations to de-
scribe the wave field:

1. The quasi-adiabatic approach: it consists of neglecting the
difference between adiabatic and non-adiabatic eigenfunc-
tions in the full wave equations. This approximation is valid
when the local thermal time-scale is much longer than the
modal period. This is the case in the radiative region of
evolved low-mass stars.

2. The low-rotation limit: we assume that the modal period is
much shorter than the rotation period. This is justified by
recent inferences of the rotation in the core of subgiants
(Deheuvels et al. 2012, 2014) and red giants (Mosser et al.
2012) using seismic constraints from Kepler.

3. The asymptotic limit: finally, we use an asymptotic de-
scription for gravity modes (e.g., Dziembowski et al. 2001;
Godart et al. 2009), which is valid for mixed modes in the in-
ner radiative region of subgiants and red giants (e.g., Goupil
et al. 2013).

4.2. Derivation of the wave fluxes

We assume that the perturbations consist of non-radial oscilla-
tions such that, for any perturbed variable f ′, we have

f ′ = aRe

{
f̃ ′(r, θ) ei(σRt+mφ)

}
, (45)

where Re denotes the real part, a is the amplitude, and σR is the
real frequency (so that non-adiabatic effects are neglected). The
amplitude is considered as statistically constant in time since we
deal with solar-like oscillations resulting from a balance between
mode driving and damping (see Samadi 2011, for details).

We now consider the equations governing non-radial and
non-adiabatic oscillations in the presence of rotation (e.g.,
Eqs. (36.12) to (36.15) of Unno et al. 1989). For sake of sim-
plicity, tildes, bars, and brackets will be dropped from now on
unless necessary. The equations are

Du′⊥
Dt
− 2h
�2

v′φ∇⊥� = −
1
ρ
∇⊥p′ +

ρ′

ρ2
∇⊥p (46)

Dv′φ
Dt
+

1
�
u′⊥ · ∇⊥h = − im

�

p′

ρ
(47)

D
Dt

(
ρ′

ρ
− p′

Γ1 p
+ ρT

δs
cp

)
= −u′⊥ · A (48)

Dρ′

Dt
+ ∇⊥ · (ρu′⊥) + imρ

�
v′φ = 0, (49)

where Γ1 = (∂ ln p/∂ lnρ)s, ρT = − (∂ ln ρ/∂ ln T )p, and

D
Dt
=
∂

∂t
+ Ω0

∂

∂φ
, A = ∇ ln ρ − 1

Γ1
∇ ln p, (50)

so that N2 = ρ−1∇p · A.
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Given the assumption that the mode amplitude is statistically
constant in time, Eqs. (46) to (49) reduce to

i(σR + mΩ0) u′⊥ −
2h
�2

v′φ∇⊥� = −
1
ρ
∇⊥p′ +

ρ′

ρ2
∇⊥p (51)

i(σR + mΩ0) v′φ +
1
�
u′⊥ · ∇⊥h = − im

�

p′

ρ
(52)

i(σR + mΩ0)

(
ρ′

ρ
− p′

Γ1 p
+ ρT

δs
cp

)
= −u′⊥ · A (53)

i(σR + mΩ0) ρ′ + ∇⊥ · (ρu′⊥) + imρ
�

v′φ = 0. (54)

Using Eqs. (51) to (54) and the assumptions detailed in Sect. 4.1,
and after stirring vigorously as detailed in Appendix A, we ob-
tain for a mode of a given angular degree � and azimuthal order
m an expression of the form

− 1
r2

∂

∂r

(
r2Fwaves

)
= (55)

a2
�,m

⎡⎢⎢⎢⎢⎢⎢⎣Am
�

∂2
(
r2Ω0

)
∂r2

+ Bm
�

∂
(
r2Ω0

)
∂r

+ Cm
� r2Ω0 + mσ̂Dm

�

⎤⎥⎥⎥⎥⎥⎥⎦ ,
where σ̂ = σR + mΩ0 and the coefficients Am

� ,Bm
� ,Cm

� ,Dm
� are

given by Eqs. (A.24) to (A.27), respectively. The amplitude a�,m
corresponds to the amplitude of a mode of angular degree �, and
azimuthal order m.

The derivation of the wave fluxes in Eq. (39) is more direct.
Using the asymptotic expression for the Lagrangian perturbation
of entropy given by Eq. (A.21), we obtain

1
r2

∂

∂r

〈
r2 S

〉
=

a2
�,m

2r2

∂

∂r

(
r2 ρ α

ds
dr

k2
r |ξ�,mr |2

)
, (56)

where

α = − L
4πr2ρT

(∇ad

∇ − 1

) (
ds
dr

)−1

(57)

k2
r �

�(� + 1)
r2

⎛⎜⎜⎜⎜⎝N2

σ2
R

− 1

⎞⎟⎟⎟⎟⎠ , (58)

with L being the luminosity, N the buoyancy frequency,
∇ and ∇ad the actual and adiabatic temperature gradients,
respectively.

5. Case of an evolved 1.3 M� star

The aim of this section is to qualitatively discuss the effect of
mixed modes on the mean angular momentum profile within the
TEM framework. To this end, we consider a stellar model for
an evolved 1.3 M� star that is representative of the oscillating
red giant stars observed by CoRoT and Kepler. A quantitative
estimate as well as a discussion of the effect of mixed modes
throughout the evolution is given in Paper II.

5.1. Computing the benchmark model

The equilibrium model was computed with the stellar evolution
code CESTAM (Marques et al. 2013). The atmosphere was com-
puted assuming a grey Eddington approximation. Convection
was included according to Canuto et al. (1996), with a mixing-
length parameter α = 0.67. The initial chemical composition

Fig. 1. Rotation rate normalised by its central value (solid line) and
buoyancy frequency normalised by its maximum value (dashed dots
lines) versus normalised radius for the model described in Sect. 5.1
(logarithmic scale in both axes).

Table 1. Characteristics of the models computed with rotation and with-
out rotation for comparison.

Model R/R� L/L� Teff (K) Age (Myr)
Rotating 3.558 6.830 4952 4716
Non-rotating 3.555 6.784 4945 4590

was the solar composition of Asplund et al. (2005), with a he-
lium mass fraction Y = 0.261 and metallicity Z = 0.0138, and
diffusion was not included. We used the OPAL equation of state
(Rogers et al. 1996) and opacities (Iglesias & Rogers 1996),
complemented, at T < 104 K, by the Alexander & Ferguson
(1994) opacities. We adopted the NACRE nuclear reaction rates
(Angulo et al. 1999) except for the 14N + p reaction, where we
used the reaction rates of Imbriani et al. (2004). The model was
computed without rotation.

To obtain a rotation profile as realistic as possible, we com-
puted an equivalent model with rotation (using the procedure
described in Marques et al. 2013) and rescaled the rotation pro-
file to gain a core rotation rate Ωc/(2π) = 1 μHz. This value is
consistent with the mean central rotation rate of evolved low-
mass stars derived from Kepler observations (see Mosser et al.
2012; Deheuvels et al. 2014). The resulting rotation profile and
buoyancy frequency are shown in Fig. 1. Consistently with the
slow rotation limit we consider, this procedure is equivalent to
assuming that rotation has a negligible effect on the star equi-
librium structure. The equivalent model including rotation was
computed using the same input physics and parameters as the
model without rotation. It has a radius as close as possible to the
radius of the model without rotation and is in the same evolu-
tionary phase. The main characteristics of the models are given
in Table 1.

Finally, we used the ADIPLS code for adiabatic oscillations
(Christensen-Dalsgaard 2008, 2011) to compute eigenfunctions
and eigenfrequencies. The effect of rotation was also neglected
in computing the eigenfunctions and eigenfrequencies.

5.2. Effect of prograde and retrograde mixed modes

We will show in Paper II that the wave fluxes in the mean energy
equation, Eq. (39), is negligible. Therefore, within the TEM for-
malism, the contribution of the mixed modes to the mean flow
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consists entirely of the wave flux in the mean angular momen-
tum equation (see Eq. (35)). Thus, for ease of notation, we define
the rate of temporal variation of the mean specific angular mo-
mentum induced by mixed modes by

J̇ = − 1
r2

∂

∂r

(
r2Fwaves

)
, (59)

where we recall that Fwaves is given by Eq. (38). Note that J̇
is normalised so that for a given mode of angular degree � and
azimuthal order m one has |ξ�,mr /R| = 1 at the photosphere.

Computing J̇ as described in Sect. 4.2 leads to the conclu-
sion that prograde modes (m < 0) extract angular momentum in
the regions near the maximum of the buoyancy frequency and
the maximum of the rotation rate, therefore slowing down the
core. Conversely, the retrograde modes (m > 0) tend to spin up
the core. This is illustrated in Fig. 2 (top and middle panels)
for the sectoral modes � = 2, m = {−2,+2} at the frequency
νR = σR/(2π) = 300.9 μHz, but this conclusion is valid for the
other modes as well. When we consider unstable modes, the op-
posite situation is found, that is, the retrograde modes extract an-
gular momentum (e.g., Ando 1986; Lee & Saio 1993; Townsend
& MacDonald 2008; Townsend 2014; Lee et al. 2014). In this
case, the wave stresses in the mean angular momentum equation
are dominated by transient terms.

We have also found that, despite an important rotation gra-
dient in the hydrogen burning shell, the dominant contribution
to the angular momentum transport comes from the term Dm

� so
that, from Eq. (55) and for a mode of a given angular and az-
imuthal degree, we can write

J̇ ≈ mσ̂ a2
�,mDm

� , (60)

whereDm
� is given by Eq. (A.27).

To proceed, we considered the sum of the contributions of
a prograde and a retrograde mixed modes to the mean angular
momentum profile. In the absence of rotation, both prograde and
retrograde modes transport angular momentum, but the sum van-
ishes so that there is no net transport. Including rotation, the net
transport of angular momentum is a small residual (see Fig. 2
bottom panel). The asymmetry between prograde and retrograde
modes arises from the Doppler shift terms in the mode frequen-
cies (i.e., σ̂ = σR + mΩ0). More precisely, the dominant term
of Eq. (60) comes from the first term of Dm

� in Eq. (A.27). This
term originates in the second term of Eq. (38), thus from the
wave heat flux. To illustrate it, we added a prograde and retro-
grade mode, expand in Ω0/σR, and only kept the leading term to
obtain

J̇(�,−|m|) + J̇(�, |m|) ≈ 2|m|2ρk2
r a2

�,|m||ξ�,|m|r |2
(
Ω0

σR

) (
N
σR

)
α, (61)

which is negative, since the term α (see Eq. (57)) is nega-
tive. The sum of the contributions of prograde and retrograde
mixed modes thus implies an extraction of angular momentum.
Nonetheless, in the regions where the contribution of the pro-
grade mode has nodes, the contribution of the retrograde mode
dominates due to the second and third terms ofDm

� in Eq. (A.27).
It therefore results in a complex situation where there is a spa-
tial alternation between regions where mixed modes decrease
and increase the mean momentum, as shown in Fig. 2 (bottom
panel). However, before reaching a conclusion, we have to con-
sider the collective effect of mixed modes.

Fig. 2. Rate of angular momentum transport by mixed modes (J̇ as de-
fined by Eq. (59)) computed as described in Sect. 4.2 for the 1.3 M�
model described in Sect. 5.1 versus the radius normalised by the radius
of the radiative region. J̇ is normalised so that |ξ�,mr /R| = 1 at the pho-
tosphere. The colour code is as follows: the solid red line corresponds
to J̇ < 0 (thus to a spin down) and the solid blue line to J̇ > 0 (thus
to a spin up). The top panel exhibits the result for the prograde mode
� = −m = 2 of frequency νR = 300, 9 μHz, the middle panel corre-
sponds to the retrograde mode � = m = 2, and the bottom panel to
summation of J̇ for the prograde and retrograde modes. We only show
the inner radiative region, for which our formalism is valid.

5.3. Collective influence of mixed mode

Oscillation spectra of low-mass evolved stars exhibit quasi-
periodic patterns with periods that correspond to the large sep-
aration as depicted in Fig. 3 (top panel). Each pattern is made
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Fig. 3. Top panel: mode inertia versus mode frequencies for angular
degrees � = 0 and � = 2. Mode inertias are computed by integrating the
squared eigendisplacement over the stellar mass. Bottom panel: same as
Fig. 2, except that J̇ is computed by considering the total contribution
of the � = 2 modes for the selected range displayed in red in the top
panel.

of p-dominated mixed modes separated by several g-dominated
modes. It is therefore instructive to consider the collective effect
of mixed modes on the mean angular momentum.

We selected a range of modes, shown in red in Fig. 3 (top
panel), and computed the total contribution to J̇ by summing the
contribution of all modes belonging to this range, including the
different values of the azimuthal order m for each mode. Given
the spatial shift between the consecutive mixed modes, the sum-
mation induces a smoothing of J̇, as shown by Fig. 3 (bottom
panel). The collective effect of mixed modes is to decrease the
mean angular momentum and thus to slow down the core rota-
tion of the star.

Nevertheless, we emphasise that to realistically compute the
effect of the modes on the mean angular momentum profile, we
need to consider all modes with realistic individual amplitudes
This is the scope of Paper II.

6. Conclusion

Our aim here was to establish a formalism allowing us to calcu-
late the transport of angular momentum by mixed modes in the
inner radiative region of evolved low-mass stars. We thus con-
sidered the transformed Eulerian mean (TEM) formalism that
allowed us to take into account the combined effect of both the
wave momentum flux in the mean angular momentum equation

and the wave heat flux in the mean energy equation. Indeed, the
effect of the wave heat flux on the mean flow is generally ne-
glected in the context of angular momentum transport by waves
in stars. Here, the TEM allows us to include its impact on the
mean angular momentum in a relatively simple way.

Given the important contraction of the core and expansion of
the envelope of low-mass stars after the main sequence, a strong
radial rotation gradient appears. This was taken into account by
adopting the shelullar approximation. While a two-dimensional
treatment is certainly desirable and more accurate (e.g., Espinosa
Lara & Rieutord 2013), this approximation provides a first ap-
proach of the problem while keeping it tractable.

Subsequently, the wave field has been modelled so as to ac-
count for the transport of angular momentum by mixed modes.
We limited our investigation to the inner radiative regions. Thus,
several simplifications are justified; the low-frequency limit (i.e.
σ2

R � {N2, S 2
� }), the quasi-adiabatic approach (the local ther-

mal time-scale is higher than the modal period), and the low-
rotation limit as suggested by recent asteroseismic observations
(Deheuvels et al. 2012; Mosser et al. 2012). It allowed us to ob-
tain an explicit expression of the wave-related terms appearing
in the mean angular momentum equation.

Then, the formalism was applied to a benchmark model of
a 1.3 M� evolved star. We found that the influence of the wave
heat flux on the mean angular momentum is not negligible and
even dominant when considering the sum of prograde and ret-
rograde modes. In addition, we showed that the overall effect of
mixed modes is to extract angular momentum in the innermost
radiative layers.

Nevertheless, more realistic estimates of mode amplitudes
are required for a more quantitative determination of the amount
of angular momentum transported by mixed modes. The second
paper of this series is dedicated to this.
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Appendix A: Derivation of the wave flux in the mean
angular momentum equation (Eq. (35))

We assume that the perturbations consist in non-radial oscilla-
tions and that they behave linearly as exp

[
i (σt + mφ)

]
, where σ

is the modal frequency, t the time, and m the azimuthal degree.
Consequently, for a given quantity f , its perturbation can be
written

f ′ = aRe
{
f̃ ′(r, θ) ei(σRt+mφ)

}
, (A.1)

where a is the amplitude,σR the real part of the frequencyσ, and
Re stands for the real value. From Eq. (A.1) one immediately
deduces a relation for squared quantities that reads

2 f ′g′ = a2 Re
{
f̃ ′g̃′∗

}
. (A.2)

One can then express the Eulerian perturbation of the entropy
in terms of the Lagrangian one, using δs = s′ + ξr d 〈s〉 /dr,
where ξr is the radial component of the wave displacement. It
allows us to rewrite the divergence of the wave flux in the mo-
mentum equation (see Eq. (39)) such as

− 1
r2

∂

∂r

(
r2Fwaves

)
= − 1

2r2

∂

∂r
Re

{〈
a2r2� 〈ρ〉 S1

〉}
(A.3)

with

S1 = ṽ
′
r ṽ
′∗
φ − 2 cos θΩ0

⎡⎢⎢⎢⎢⎢⎣ṽ′θξ̃′∗r − ṽ′θδs∗
(

d 〈s〉
dr

)−1⎤⎥⎥⎥⎥⎥⎦ · (A.4)

In the following, our objective is to provide a general expression
of Eq. (A.3) using the full set of equations governing waves.
Note that in the following, the tilde will be omitted for the per-
turbation as well as overbar and brackets for the unperturbed
quantities.

A.1. Using the full wave equations for expressing Eq. (A.4)

In this subsection, we aim to express the correlation products
appearing in Eq. (A.4) using the set of Eq. (51) to Eq. (54).

A.1.1. Derivation of the first term of Eq. (A.4)

First, Eqs. (52) and (53) are inserted into (54), and an integration
by part is performed. Second, Eqs. (51) to (53) are used as well
as the relation
v′∗φ ρu

′⊥
�|σ̂|2 σ̂∇⊥h =

2m
σ̂∗

h
�2

ρv∗φ
(
u′⊥ · ∇⊥�

) −�ρv′∗φ u′⊥ · ∇⊥
(

1
σ̂∗

)
· (A.5)

Finally, taking the real part and considering that the imaginary
part of the frequency vanishes (σI = 0) since we consider steady
waves (see Sect. 4.2), one gets

− ∇⊥ ·
[
ρ�u′⊥v′φ

]
= −mρ

2

⎡⎢⎢⎢⎢⎢⎢⎣
(
u′⊥ · ρ−1∇⊥p

)
u′∗⊥ · A

σ̂2

⎤⎥⎥⎥⎥⎥⎥⎦
I

− mρ
2�

(
ρ�2

m2Γ1 p
− 1
σ̂2

) [
σ̂u′⊥v

′∗
φ

]
R
· ∇⊥h

− ρ
2

[ (
u′⊥ · A + u′⊥ · ∇⊥

) (
u′∗⊥ · ∇⊥h

)
σ̂

]
I

+
ρ�

2

[
v′∗φ σ̂ρT

δs
cp

]
I

+
mρ
2

⎡⎢⎢⎢⎢⎢⎢⎣
(
u′⊥ · ρ−1∇⊥p

)
ρTδs∗/cp

σ̂

⎤⎥⎥⎥⎥⎥⎥⎦
R

, (A.6)

where we introduced the notation σ̂ = σR + mΩ0, ρT =
− (∂ ln ρ/∂ ln T )p, and the subscripts I and R denote the imag-
inary and real part, respectively. Note that this expression corre-
sponds to Eq. (36.16) of Unno et al. (1989) and was first derived
by Ando (1983).

To go further, we assume shellular rotation and that the equi-
librium state is not deformed by rotation. Moreover, integration
over the solid angle is performed so that it finally gives

− 1
2r2

∂

∂r

〈
r2�ρv′rv

′∗
φ

〉
R
= − ρr

2mc2
s

∂
(
r2Ω0

)
∂r

σ̂
〈
sin3 θ v′rv

′∗
φ

〉
R

− ρr2Ω0

mc2
s
σ̂

〈
sin2 θ cos θ v′θv

′∗
φ

〉
R
+

mρΩ0

σ̂

〈
cos θ v′θv

′∗
φ

〉
R

+
mρ
2rσ̂

∂
(
r2Ω0

)
∂r

〈
sin θ v′rv

′∗
φ

〉
R
− ρ(Ar − 1)Ω0

σ̂

〈
cos θ sin θ v′rv

′∗
θ

〉
I

− ρrΩ0

σ̂

〈
cos θ sin θ v′r

∂v′∗θ
∂r

〉
I

− ρ

2rσ̂

∂
(
r2Ω0

)
∂r

〈
sin2 θ v′θ

∂v′∗r
∂θ

〉
I

+
ρrρT

2
σ̂

〈
sin θ

δs
cp
v′∗φ

〉
I

+
mρT

2σ̂
∂p
∂r

〈
v′r
δs∗

cp

〉
R

. (A.7)

A.1.2. Derivation of the second term of Eq. (A.4)

We start from Eq. (52), which immediately gives

2Ω0 cos θ v′θ = −
imp′

�ρ
− iσ̂v′φ −

(
sin θ

r

)
∂
(
r2Ω0

)
∂r

v′r. (A.8)

Equation (A.8) is further multiplied by r2ρ�ξ∗r and radial deriva-
tion is performed to give

1
r2

∂

∂r

(
2Ω0r2�ρ cos θv′θξ

′∗
r

)
= −im

⎡⎢⎢⎢⎢⎢⎢⎣ p′

r2

∂
(
r2ξ∗r

)
∂r

+ ξ∗r
∂p′

∂r

⎤⎥⎥⎥⎥⎥⎥⎦
− i�ρσ̂

(
v′φ
∂ξ∗r
∂r
+ ξ∗r

∂v′φ
∂r

)
− ρ sin2 θ

∂2
(
r2Ω0

)
∂r2

v′rξ
∗
r

− ρ sin2 θ
∂
(
r2Ω0

)
∂r

[(
2
r
+
∂ lnρ
∂r

)
v′rξ
∗
r +

(
v′r
∂ξ∗r
∂r
+ ξ∗r

∂v′r
∂r

)]

− i sin θρσ̂v′φξ
∗
r

⎡⎢⎢⎢⎢⎢⎢⎣1 + ∂ lnρ
∂ ln r

+
2σR

σ̂
+

m
rσ̂

∂
(
r2Ω0

)
∂r

⎤⎥⎥⎥⎥⎥⎥⎦ · (A.9)

Now one needs to express both the perturbation of pressure and
its radial derivative. To this end, we use Eqs. (53) and (54) as
well as Eqs. (51) to (53) to get

p′

Γ1 p
= − iv′rA

σ̂
+

i∇ · (ρu′⊥)
ρσ̂

− mv′φ
�σ̂
+ ρT

δs
cp

(A.10)

and

∂p′

∂r
= −i

⎡⎢⎢⎢⎢⎢⎢⎣ρσ̂ − sin2 θ

mc2
s

∂p
∂r

∂
(
r2Ω0

)
∂r

− A
σ̂

∂p
∂r

⎤⎥⎥⎥⎥⎥⎥⎦ v′r (A.11)

+

[
2ρΩ0 sin θ − �σ̂

mc2
s

∂p
∂r

]
v′φ + 2i

∂p
∂r

r sin θ cos θΩ0

mc2
s

v′θ − ρT
∂p
∂r

δs
cp
·
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Finally, inserting Eqs. (A.11) and (A.10) into Eq. (A.9), integrat-
ing over the solid angle and taking the real part gives

1
2r2

∂

∂r
Re

〈
2Ω0r2�ρ cos θv′θξ

′∗
r

〉
R
=

ρ

2

[
Ar + 3 +

m
rσ̂

∂
(
r2Ω0

)
∂r

] 〈
sin θ vφv

∗
r

〉
R
− mρT

2σ̂
∂p
∂r

〈
δs
cp
v∗r

〉
R

+
mρc2

s

2r3σ̂

〈
1

sin θ
∂ (sin θvθ)

∂θ

∂
(
r2ξ∗r

)
∂r

〉
R

+
m

2r2
ρTΓ1 p

〈
δs
cp

∂
(
r2ξ∗r

)
∂r

〉
I

+
ρr
2
σ̂

〈
sin θ

[
v′φ
∂ξ∗r
∂r
+
∂v′φ
∂r

ξ∗r

]〉
I

− m2ρc2
s

2r3σ̂

〈
1

sin θ
v′φ
∂
(
r2ξ∗r

)
∂r

〉
I

− ρΩ0

σ̂

1
Γ1

∂ ln p
∂ ln r

〈
cos θ sin θ v′θv

∗
r
〉

I . (A.12)

A.1.3. Derivation of the third term of Eq. (A.4)

The derivation is similar to the previous subsection, it gives

− 1
2r2

∂

∂r

〈
2Ω0r2�ρ cos θv′θξ

′∗
s

〉
R
=

mρ
2
σ̂

[
1 − A

ρσ̂2

∂p
∂r

] 〈
v′rξ
∗
s
〉

R

− ρ
2
σ̂

⎡⎢⎢⎢⎢⎢⎢⎣Ar + 3 +
m
rσ̂

∂
(
r2Ω0

)
∂r

⎤⎥⎥⎥⎥⎥⎥⎦ 〈
sin θ v′φξ

∗
s

〉
I

+
ρ

2

⎡⎢⎢⎢⎢⎢⎢⎣(Ar + 2)
1
r

∂
(
r2Ω0

)
∂r

+
∂2

(
r2Ω0

)
∂r2

⎤⎥⎥⎥⎥⎥⎥⎦ 〈
sin2 θ v′rξ

∗
s

〉
R

+
ρ

2

∂
(
r2Ω0

)
∂r

〈
sin2 θ

(
v′r
∂ξ∗s
∂r
+ ξ∗s

∂v′r
∂r

)〉
R

− ρr
2
σ̂

〈
sin θ

(
v′φ
∂ξ∗s
∂r
+ ξ∗s

∂v′φ
∂r

)〉
I

+
mAΓ1 p
2r2σ̂

〈
v′r
∂
(
r2ξ∗s

)
∂r

〉
R

− mc2
s

2r2σ̂

〈
∇⊥ · (ρu⊥)

∂
(
r2ξ∗s

)
∂r

〉
R

+
m2ρc2

s

2r3σ̂

〈
1

sin θ
vφ
∂
(
r2ξ∗s

)
∂r

〉
I

− rΩ0

c2
s

∂p
∂r

〈
sin θ cos θ v′θξ

∗
s
〉

R , (A.13)

where we have introduced the notations

ξs =

(
ds
dr

)−1

δs and v′s = iσ̂ξs. (A.14)

A.2. The case of low rotation and frequency limit

As described in the main text (see Sect. 4.2) we restrict ourselves
in the limit of low rotation (i.e. σR � Ω0) and low frequency
(i.e. σR � N, where N is the buoyancy frequency). Those ap-
proximations will permit us to derive tractable expressions for
Eqs. (A.7), (A.12), and (A.13). To this end, the first step consists
in considering the wave equations without rotation and introduc-
ing them into Eqs. (A.7), (A.12), and (A.13). This is equivalent
in considering a first-order development in term of rotation for
Eq. (A.4).

Projection onto the spherical harmonics is thus performed
in the limit of low rotation. For one normal mode of a given m
and �, the eigen-displacement and velocity can be decomposed
such as

ξm = ξ�,mr R�,m + ξ
�,m
h S�,m, (A.15)

where (Rieutord 1987)

R�,m = Ym
� er , and S�,m =

(
∂Ym

�

∂θ
eθ +

1
sin θ

∂Ym
�

∂φ
eφ

)
, (A.16)

so that

ξ′r = ξ�,mr Ym
� , ξ

′
θ = ξ�,mh

∂Ym
�

∂θ
, ξ′φ = ξ�,mh

1
sin θ

∂Ym
�

∂φ
, (A.17)

and

v′r = i um
� Ym

� , v
′
θ = i vm

�

∂Ym
�

∂θ
, v′φ = i vm

�

1
sin θ

∂Ym
�

∂φ
, (A.18)

where we used um = iσ̂ξm.
In the non-rotating limit and providing the decomposition

given by Eq. (A.15), using Eqs. (51) to (54), vm
� can be expressed

as a function of δsm
� and um

� only through the relation

vm
� = rG

⎡⎢⎢⎢⎢⎢⎢⎣σRρT
δsm

�

cp
− 1

r2

d
(
r2um

�

)
dr

− um
�

Γ1

d ln p
dr

⎤⎥⎥⎥⎥⎥⎥⎦ (A.19)

with

G = c2
s

r2 σ2
R

⎡⎢⎢⎢⎢⎣1 − S 2
�

σ2
R

⎤⎥⎥⎥⎥⎦−1

, and S 2
� = �(� + 1)

c2
s

r2
. (A.20)

To go further, in the asymptotic, quasi-adiabatic limit (σR � N),
δsm

� is a function of um
� (or equivalently ξ�,mr ) so that vm

� depends
only on um

� . It reads (see Godart et al. 2009, for details)

iσRδsm
� =

L
4πr2ρT

(∇ad

∇ − 1

)
k2

r ξ
�,m
r (A.21)

and

dξ�,mr

dr
� �(� + 1)

r
ξ�,mh , (A.22)

where L is the luminosity, T the temperature, ρ the density,
∇ the temperature gradient, and ∇ad the adiabatic temperature
gradient.

Finally, after projection onto the spherical harmonics and us-
ing Eqs. (A.19), (A.21), and (A.22), one obtains for a mode of a
given angular degree (�) and azimuthal degree (m) an expression
of the form

− 1
r2

∂

∂r
r2Fwaves = (A.23)

a2
�,m

⎡⎢⎢⎢⎢⎢⎢⎣Am
�

∂2
(
r2Ω0

)
∂r2

+ Bm
�

∂
(
r2Ω0

)
∂r

+ Cm
� r2Ω0 + mσ̂Dm

�

⎤⎥⎥⎥⎥⎥⎥⎦ ,
with

4πA�,m =
ραk2

r

2
K1 |ξ�,mr |2, (A.24)

4πB�,m
ρk2

r |ξ�,mr |2
=

1
2
α

(
A + 2ζ1 +

d
dr

ln
[
r2ζ2

])
K1 (A.25)

+
r2σRσ̂

2c2
s
Gζ0K1 +

m2

2
αGζ3 − σR

σ̂
Gζ0

(
m2 +

K0

2

)

4πC�,m
ρk2

r |ξ�,mr |2
= −σR

σ̂

1
Γ1 p

dp
dr
GK2 (ζ0 − αζ3) (A.26)

+
σR

σ̂
Gζ0K2

[
(Ar − 1)

r
+

d
dr

ln
(
rGk2

r ζ0

)
+ ζ1

]
,
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and

4πD�,m

ρk2
r |ξ�,mr |2

=
α

2

[
1 − A

ρσ̂2

dp
dr

]
(A.27)

− r2

2
Gζ0

[
A +

1
r
+ ζ1 +

d
dr

ln
(
rGk2

r ζ0

)
− 1
Γ1

d ln p
dr

]

+
r2

2
Gαζ3

[
A +

3
r
+ 2ζ1 +

d
dr

ln (rGσRζ3) +
d
dr

ln (ζ2)

]
,

where for Eq. (A.27) we use the approximationG−1 = −�(� + 1)
obtained in the limit S 2

� � σ2
R, and

α = − L
4πr2ρT

(∇ad

∇ − 1

) (
ds
dr

)−1

ζ0 = α
ρT

cp

(
ds
dr

)
; ζ1 =

�(� + 1)
r

ξ�,mh

ξ�,mr

ζ2 =
αk2

r

σR
; ζ3 =

2
r
+ ζ1 +

1
Γ1

d ln p
dr

(A.28)

as well as

K0 = �
2
(
Jm
�+1

)2
+ (� + 1)2

(
Jm
�

)2

K1 = 1 −
(
Jm
�+1

)2 −
(
Jm
�

)2

K2 = �
(
Jm
�+1

)2 − (� + 1)
(
Jm
�

)2
. (A.29)

Finally, we note that the normalization condition for spherical
harmonics is

〈
Ym
� Ym′

�′
〉
= δ�,�′ δm,m′ , where δ is the Kronecker

symbol. Note also that the following relation have been used

cos θ Ym
� = Jm

�+1Ym
�+1 + Jm

� Ym
�−1, (A.30)

sin θ
∂Ym

�

∂θ
= �Jm

�+1Ym
�+1 − (� + 1)Jm

� Ym
�−1 , (A.31)

∂2Ym
�

∂θ2
+

cos θ
sin θ

∂Ym
�

∂θ
+

1

sin2 θ

∂2Ym
�

∂φ2
= −�(� + 1)Ym

� , (A.32)

where

Jm
� =

[
�2 − m2

(4�2 − 1)

]1/2

, (A.33)

if � > |m|, and Jm
� = 0 otherwise.
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