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ABSTRACT

Context. Radiative transfer plays a crucial role in the star formation process. Because of the high computational cost, radiation-
hydrodynamics simulations performed up to now have mainly been carried out in the grey approximation. In recent years, multi-
frequency radiation-hydrodynamics models have started to be developed in an attempt to better account for the large variations in
opacities as a function of frequency.
Aims. We wish to develop an efficient multigroup algorithm for the adaptive mesh refinement code RAMSES which is suited to heavy
proto-stellar collapse calculations.
Methods. Because of the prohibitive timestep constraints of an explicit radiative transfer method, we constructed a time-implicit
solver based on a stabilized bi-conjugate gradient algorithm, and implemented it in RAMSES under the flux-limited diffusion approxi-
mation.
Results. We present a series of tests that demonstrate the high performance of our scheme in dealing with frequency-dependent
radiation-hydrodynamic flows. We also present a preliminary simulation of a 3D proto-stellar collapse using 20 frequency groups.
Differences between grey and multigroup results are briefly discussed, and the large amount of information this new method brings
us is also illustrated.
Conclusions. We have implemented a multigroup flux-limited diffusion algorithm in the RAMSES code. The method performed well
against standard radiation-hydrodynamics tests, and was also shown to be ripe for exploitation in the computational star formation
context.

Key words. radiation: dynamics – radiative transfer – hydrodynamics – methods: numerical – stars: formation

1. Introduction

Numerical studies of star formation are very demanding, as
many physical mechanisms need to be taken into account
(hydrodynamics, gravity, magnetic fields, radiative transfer,
chemistry, etc.). Models are rapidly increasing in complexity,
providing increasingly realistic interpretations of today’s highly
advanced observations of protostellar systems, such as the recent
groundbreaking images taken by the ALMA interferometer1.
Radiative transfer plays an important role in star formation; it
acts as a conduit to remove compressional heating during the ini-
tial stages of cloud collapse, enabling an isothermal contraction
(Larson 1969; Masunaga et al. 1998), and it also inhibits cloud
fragmentation in large-scale simulations (see e.g. Bate 2012).
State-of-the-art simulations thus require the solutions to the
full radiation magneto-hydrodynamics (RMHD) system of equa-
tions, and 3D simulations have only just recently become possi-
ble with modern computers (see e.g. Commerçon et al. 2011a;
Tomida et al. 2013). In particular, including frequency dependent
radiative transfer is essential in order to properly take into ac-
count the strong variations of the interstellar gas and dust opac-
ities as a function of frequency (see e.g. Ossenkopf & Henning
1994; Li & Draine 2001; Draine 2003; Semenov et al. 2003;
Ferguson et al. 2005). Three-dimensional calculations including

1 http://www.almaobservatory.org/en/press-room/press-
releases/771-revolutionary-alma-image-reveals-
planetary-genesis

full frequency-dependent radiative transfer are still out of reach
of current computer architectures.

In order to overcome this difficulty, much effort has been
spent in recent years developing mathematically less compli-
cated, yet accurate approximations to the equations of radia-
tive transfer. Such representations include diffusion approxima-
tions, the M1 model, short and long characteristics methods, and
Variable Eddington Tensor descriptions. One of the simplest and
most widely used is the flux-limited diffusion (FLD) approxi-
mation (Levermore & Pomraning 1981) that has been applied to
many areas of physics and astrophysics.

These methods tend to drastically reduce computational cost,
but still they are often integrated over all frequencies (also
known as the grey approximation) as the multifrequency for-
malism remains too expensive. Only in recent years have multi-
group methods (whereby the frequency-dependent quantities are
binned into a finite number of groups and averaged over the
group extents) appeared in numerical codes (Shestakov & Offner
2008; van der Holst et al. 2011; Vaytet et al. 2011, 2013b; Davis
et al. 2012; Zhang et al. 2013, to mention a few) as a first step to-
wards accounting for the frequency dependence of gas and dust
quantities in calculations. Multigroup methods are very suited to
astrophysics as they allow adaptive widths of groups, thus en-
abling the use of a small number of groups, concentrating fre-
quency resolution where it is needed (i.e. mostly where opacity
gradients are strong). Group boundaries are usually chosen once
at the start of the simulations, but more complex schemes have
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also been written with moving adaptive borders (Williams 2005),
as absorption and emission coefficients generally vary with the
material temperature and density.

Commerçon et al. (2011b) implemented frequency-
integrated FLD in the adaptive mesh refinement (AMR)
code RAMSES (Teyssier 2002; Fromang et al. 2006), and de-
vised an adaptive time-stepping scheme in a follow-up paper
(Commerçon et al. 2014). In this third paper, we extend the
method to a multigroup formalism. Even though multigroup ef-
fects were found to have only a small impact on 1D simulations
of star formation (Vaytet et al. 2012, 2013a), they are expected
to be enhanced in 3D where the optical thickness can markedly
vary along different lines of sight (see Kuiper et al. 2011).
Using a frequency-dependent method is also the only way to
correctly model ultraviolet radiation from stars being absorbed
by surrounding dust and re-emitted in the infrared. Finally,
multigroup formalisms, compared to grey methods, are known
to significantly affect the structures of radiative shocks (Vaytet
et al. 2013b), alter energy transport in stellar atmospheres
(Chiavassa et al. 2011), and are essential to neutrino transport in
core collapse supernovae explosions (see e.g. Mezzacappa et al.
1998).

We first present the numerical method we have used, fol-
lowed by a series of tests against analytical solutions, and we
end with an application to the collapse of a gravitationally un-
stable cloud, comparing grey and multigroup results.

2. Numerical method

The FLD multigroup radiation hydrodynamics equations in the
frame comoving with the fluid are

∂tρ + ∇ · [ρu] = 0

∂t(ρu) + ∇ · [ρu ⊗ u + PI] = −

Ng∑
g=1

λg∇Eg

∂tET + ∇ · [u(ET + P)] =

Ng∑
g=1

[
− Pg : ∇u − λgu · ∇Eg

+∇ ·

(
cλg
ρκRg

∇Eg

) ]
∂tEg + ∇ · [uEg] = −Pg : ∇u + ∇ ·

(
cλg
ρκRg

∇Eg

)
+κPgρc

(
Θg(T ) − Eg

)
+∇u :

∫ νg+1/2

νg−1/2

∂ν(νPν)dν,

(1)

where c is the speed of light; ρ, u, P, and T are the gas density,
velocity, pressure, and temperature, respectively; ET is the total
energy ET = ρε + 1/2ρu2 +

∑Ng
g=1 Eg (ε is the internal specific

energy); and I is the identity matrix. We also define

Xg =

∫ νg+1/2

νg−1/2

Xνdν, (2)

where X = E, P, which represent the radiative energy and pres-
sure inside each group g, which holds frequencies between νg−1/2
and νg+1/2; Ng is the total number of groups; and Θg(T ) is the
energy of the photons having a Planck distribution at tempera-
ture T inside a given group. The coefficient λg is the flux-limiter,
and κPg and κRg are the Planck and the Rosseland means of the
spectral opacity κν inside a given group.

We employ a commonly used operator splitting scheme
whereby the equations of hydrodynamics are first solved explic-
itly using the second-order Godunov method of RAMSES includ-
ing the radiative terms involving ∇ · u and ∇Eg, while the evo-
lution of the radiative energy density and its coupling to the gas
internal energy is solved implicitly (for more details on the dif-
ferent equations which are solved explicitly and implicitly, see
the exhaustive description in Commerçon et al. 2011b).

To discretize the equations solved in the implicit step, we
linearize the source term following

Θg(T n+1) = Θg(T n) + Θ′g(T
n)(T n+1 − T n) , (3)

where the prime denotes the derivative with respect to temper-
ature. This then enables us to write a set of discretized equa-
tions, expressed here in 1D for simplicity, for the evolution of
the gas temperature (where Cv is the gas heat capacity at constant
volume)

T n+1
i =

Cn
v iT

n
i −

∑
g κP

n
g,iρ

n
i c∆t

(
Θg(T n

i ) − T n
i Θ′g(T

n
i ) − En+1

g,i

)
Cn

v i +
∑
g κP

n
g,iρ

n
i c∆tΘ′g(T

n
i )

(4)

and the radiative energy

En+1
g,i

1+κP
n
g,iρ

n
i c∆t+

c∆t
Vi

(
λg

ρnκR
n
g

S
∆x

)
i−1/2

+
c∆t
Vi

(
λg

ρnκR
n
g

S
∆x

)
i+1/2


−

c∆t
Vi

(
λg

ρnκR
n
g

S
∆x

)
i−1/2

En+1
g,i−1 −

c∆t
Vi

(
λg

ρnκR
n
g

S
∆x

)
i+1/2

En+1
g,i+1

−κP
n
g,iρ

n
i c∆tΘ′g(T

n
i )

∑
α

κP
n
α,iρ

n
i c∆t

Cn
v i +

∑
β κP

n
β,iρ

n
i c∆tΘ′β(T

n
i )

En+1
α,i =

En
g,i + κP

n
g,iρ

n
i c∆t

(
Θg(T n

i ) − T n
i Θ′g(T

n
i )

)
+κP

n
g,iρ

n
i c∆tΘ′g(T

n
i )

Cn
v iT

n
i −

∑
α κP

n
α,iρ

n
i c∆t

(
Θα(T n

i )−T n
i Θ′α(T n

i )
)

Cn
v i +

∑
α κP

n
α,iρ

n
i c∆tΘ′α(T n

i )
·

(5)

The terms with superscripts n + 1 refer to the variables evaluated
at the end of the timestep ∆t, while superscripts n indicate the
state at the beginning of the timestep. Subscripts i represent the
grid cell, and i±1/2 are for cell interfaces. In addition, V , S , and
∆x are the cell volume, the interface surface area, and the cell
width, respectively. The subscripts α and β denote the frequency
groups where the subscript g is already in use.

The implicit step requires the inversion of a large matrix
that holds the system of Eqs. (4) and (5), and this is performed
using a parallel iterative method2. In the case of the grey ap-
proach (and in our specific case of Cartesian coordinates), the
matrix to invert in the implicit step is symmetric, which allows
the use of the conjugate gradient method (for further details,
see Commerçon et al. 2011b, 2014). However, in the multi-
group case, the interaction between radiative groups adds non-
symmetric terms, for which we had to implement a similar but
more advanced stabilized bi-conjugate gradient (BiCGSTAB)
algorithm (van der Vorst 1992).

Finally, the term that depends on a derivative with respect
to frequency (∂ν) accounts for energy exchanges between neigh-
bouring groups due to Doppler effects. It is computed using the
method described in Vaytet et al. (2011), and treated explicitly
as part of the final line in Eq. (11) in Commerçon et al. (2011b).
We note that we now have one such line per frequency group.
2 The use of a direct inversion method is not suited to the very large
systems of equations that need to be solved in heavy 3D simulations.

A12, page 2 of 9



M. González et al.: Multigroup radiation hydrodynamics with adaptive mesh refinement

3. Method validation

We present the numerical tests performed to assess the accuracy
of our method.

3.1. Dirac diffusion

We consider the 1D two-group radiation diffusion equation in
a static medium with no coupling to the gas. The equations to
solve are then

∂tE1 − ∇
(

c
3ρκR1
∇E1

)
= 0

∂tE2 − ∇
(

c
3ρκR2
∇E2

)
= 0.

(6)

For a constant ρκR coefficient and a Dirac amplitude value of
E0 at x0 as initial condition, the analytical solution Ea in a
p-dimensional space is

Ea(x, t) =
E0

2p(πχt)p/2 e−
(x−x0)2

4χt , (7)

where χ = c/(3ρκR).
We choose a box of length L = 1 cm, where x0 = 0.5 cm.

The gas has a uniform density ρ = 1 g cm−3. The initial total ra-
diative energy is set to 1 erg cm−3 except in the centre (inside the
two central cells) where the peak value E0 is set to 105 erg cm−3.
The boundaries of the two frequency groups are (in Hz) [105,
1015] and [1015, 1019], chosen so that, in the central region, the
radiative energy in the first group is about two orders of mag-
nitude lower than in the second one. The Rosseland opacity in
the first group is set to κR1 = 1 cm2 g−1 and 10 times higher in
the second group. The domain is initially divided into 32 cells
(coarse grid level of 5) and 4 additional AMR levels are enabled
(effective resolution of 512). The refinement criterion is based
on the gradient of the total radiative energy. There is no flux-
limiter (i.e. λg = 1/3) for both groups, and a fixed timestep of
∆t = 2.5×10−15 s is used for the coarse level (since we are using
the adaptive time-stepping scheme of Commerçon et al. 2014,
the timestep is divided by two per AMR level increase).

Figure 1 (top) shows the radiative energy density profiles at
time t = 2 × 10−13 s. The two radiative energies are in good
agreement with the analytical curves. The relative error (bottom
panel) on the total radiative energy is always less than 10%. The
zones where the relative error on group 2 exceeds the 10% mark
correspond to regions where this group does not contribute to the
total energy, making this error largely unimportant.

3.2. Radiating plane

Graziani (2008) proposed an analytical multigroup test in spher-
ical geometry. We consider a sphere of radius R and tempera-
ture Ts that is surrounded by a cold medium at temperature T0 <
Ts, heat capacity Cv, and spectral absorption coefficient ρκν =
σν. The test consists in computing the time-dependent spectrum
at a given distance r > R from the sphere centre in the absence of
any hydrodynamic motion. In the case where the heat capacity
tends to infinity, the gas temperature is constant, and the spec-
trum is the superposition of the black-body spectrum of the cold
medium and the spectrum of the radiation emitted by the hot
sphere. The analytical solution for the spectral energy is

Eν = B(ν,T0) +
R
r

[B(ν,Ts) − B(ν,T0)] F(ν, r − R, t), (8)
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Fig. 1. Diffusion test: numerical (circles and squares) and analytical so-
lutions (solid lines) at time t = 2 × 10−13 s. Bottom panel: relative error.
The dotted line corresponds to the AMR levels in the simulation.

where

F(ν, d, t) =
e−
√

3σνd

2

erfc

1
2

√
3σν
4ct

d −
√

ctσν


+ erfc

1
2

√
3σν
4ct

d +
√

ctσν

 . (9)

As our grid is Cartesian, we adapted this test to a slab geometry.
Instead of a radiating sphere, we consider a radiating plane. The
analytical solution can then be found by setting r = R = +∞
while keeping the distance r − R constant (Gentile 2008). We
then simply have

Eν = B(ν,T0) + [B(ν,Ts) − B(ν,T0)] F(ν, r − R, t). (10)

In our simulation, the temperature of the hot slab was set to
Ts = 1500 eV and the medium was at T0 = 50 eV. The do-
main size is 0.1347368 cm with the hot slab located at the left
boundary. The domain was divided into 32 identical cells. We
considered 60 groups logarithmically evenly spaced in the range
[0.5 eV, 306 keV], a fixed timestep of ∆t = 10−11 s was used, and
no flux limiter (i.e. λg = 1/3) was applied. The gas absorption

coefficient was set toσg = 2×1013
( hνg

1 eV

)−3
cm−1 with hνg the en-

ergy in eV of the middle of each radiative group. Figure 2 shows
the spectral radiative energies obtained compared to the analyti-
cal ones at a time t = 10−10 s, sampled at a distance x = 0.04 cm
(which implies that r − R = 0.04 cm in the analytical solution),
which corresponds to the centre of the tenth cell. The numerical
results are in excellent agreement with the analytical solution.

3.3. Non-equilibrium radiative transfer with picket fence
model

Su & Olson (1999) developed analytical solutions for a 1D prob-
lem involving non-equilibrium radiative transfer with two radia-
tive energy groups (see also Zhang et al. 2013). Radiative energy
is injected into a small region of a uniform domain, diffuses, and
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Fig. 2. Radiating plane test: numerical (circles) and analytical solutions
at time t = 10−10 s.

heats up the gas. The two groups have different opacities, and
so the radiative energies propagate at different speeds through
the medium. There are several assumptions in their analytical
study. The heat capacity at constant volume is assumed to be
Cv = dε/dT = αT 3, where α is a parameter. The group inte-
grated Planck distribution is assumed to be

Bg = pg
(aRc

4π

)
T 4, (11)

where aR is the radiation constant, and pg are parameters that
verify the condition

∑
g pg = 1. They then define the dimen-

sionless coordinate x = σ̄z, where z is the coordinate in phys-
ical units, and σ̄ =

∑
g pgσg. The absorption coefficients σg

are independent of frequency, and scattering is ignored. The
dimensionless time is

τ =

(
4aRcσ̄
α

)
, (12)

and the dimensionless radiative energy density and internal en-
ergy are

Ug =
Eg

aRT 4
0

and V =

(
T
T0

)4

, (13)

respectively, where T0 is a reference temperature.
The radiation source is applied for a finite period of time

(0 ≤ τ < τ0) inside the region |x| < x0, and gas dynamics are
neglected. The equations solved are then

∂tET =

Ng∑
g=1

∇ ·

(
cλg
ρκRg

∇Eg

)
∂tEg − ∇ ·

(
cλg
ρκRg

∇Eg

)
= κPgρc

(
Θg(T ) − Eg + Γg

)
,

(14)

where

Γg =


pgσ̄aRT 4

0

κPgρ
if τ < τ0 and |x| < x0 ,

0 otherwise.
(15)

Following Zhang et al. (2013), we performed case C of Su &
Olson (1999) and compared the results with their analytical so-
lution for the radiation diffusion. In case C there are two radia-
tion groups, with p1 = p2 = 1/2. The absorption coefficients are
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Fig. 3. Non-equilibrium radiative transfer test from Su & Olson (1999).
Profiles from the numerical simulation of U1 (top), U2 (middle), and
V (bottom) are shown for τ = 3 (solid lines) and τ = 30 (dashed lines).
The results are compared to the analytical solutions of Su & Olson
(1999) for τ = 3 (circles) and τ = 30 (diamonds).

chosen as σ1 = 2/101 cm−1 and σ2 = 200/101 cm−1, and the
parameter α used to evaluate the heat capacity is α = 4aR. The
reference temperature is set to T0 = 106 K. The radiation source
parameters are x0 = 1/2 and τ0 = 10. To avoid spurious bound-
ary condition effects, we used a computational domain twice the
size of Zhang et al. (2013), spanning −102.4 < x < 102.4, di-
vided into 2048 identical cells. The left and right boundary con-
ditions were both set to periodic. The initial state of the physi-
cal variables were ρ = 1 g cm−3 and T = 1 K, and matter and
radiation were in equilibrium. A fixed timestep ∆τ = 0.1 was
used, and no flux limiter (i.e. λg = 1/3) was applied. The results
are shown in Fig. 3, where an excellent agreement between the
numerical and analytical solutions can be seen.

3.4. Radiative shocks with non-equilibrium diffusion

The fourth test looks at the coupling between the fluid mo-
tion and the radiative transfer, solving the complete radiation-
hydrodynamics equations (Eq. (1)). Lowrie & Edwards (2008)
developed semi-analytic solutions to a 1D non-equilibrium dif-
fusion problem involving radiative shocks of various Mach num-
bers M. We simulated the M = 2 and M = 5 cases using six
frequency groups. For both runs, the domain was split into two
uniform regions where the hydrodynamic and radiation variables
satisfy the Rankine-Hugoniot jump relations for a radiating fluid
in an optically thick medium. The fluid variables inside the ghost
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cells at the left and right boundary conditions were kept as the
initial pre- and post-shock state values throughout the simulation
(imposed boundary condition). The gas has an ideal equation of
state with a mean atomic weight µ = 1 and a specific heat ra-
tio γ = 5/3, and the Planck and Rosseland opacities are set to
ρκP = 3.93× 10−5 cm−1 and ρκR = 0.848902 cm−1, respectively,
in all frequency groups. We used the HLL Riemann solver for
the hydrodynamics with a CFL factor of 0.5 and no flux-limiter
for the radiation solver (i.e. λg = 1/3).

For the M = 2 case, the initial conditions in the left (pre-
shock) region are ρL = 5.45887 × 10−13 g cm−3, uL = 2.3547 ×
105 cm s−1, and TL = 100 K, and in the right (post-shock) re-
gion ρR = 1.2479 × 10−12 g cm−3, uR = 1.03 × 105 cm s−1,
and TR = 207.757 K. The domain ranges from –1000 cm
to 1000 cm. Five frequency groups were evenly (linearly) dis-
tributed between 0 and 2 × 1013 Hz, and the sixth group ranged
from 2 × 1013 Hz to infinity. The domain was initially divided
into 32 cells and four additional AMR levels were enabled (ef-
fective resolution of 512). The refinement criterion was based on
gas density and total radiative energy gradients. The density and
temperature (gas and radiation) profiles are shown in Figs. 4a,b.
The numerical solutions show an excellent agreement with the
semi-analytical solutions of Lowrie & Edwards (2008). The sim-
ulation data were shifted by 13.67 cm to place the density dis-
continuity at x = 0 for comparison with the analytical solutions;
this corresponds to the shift the shock suffers as the radiative
precursor develops and until the stationary state is reached.

In theM = 5 case, the initial conditions are ρL = 5.45887 ×
10−13 g cm−3, uL = 5.8868 × 105 cm s−1, TL = 100 K, and
ρR = 1.96405 × 10−12 g cm−3, uR = 1.63 × 105 cm s−1, and
TR = 855.72 K. The domain ranges from –4000 cm to 4000 cm.
Five frequency groups were evenly (linearly) distributed be-
tween 0 and 1014 Hz, and the sixth group ranged from 1014 Hz
to infinity. The domain was initially divided into 32 cells and
seven additional AMR levels were enabled (effective resolution
of 4096). The refinement criterion was based on gas density,
gas temperature, and total radiative energy gradients. The results
in Figs 4c,d show again an excellent agreement with the semi-
analytical solutions. The simulation data were this time shifted
by 193.5 cm to bring the density discontinuity to x = 0.

4. Algorithm performance

We present in this section some tests to assess the scaling per-
formance of our algorithm.

4.1. Strong and weak scaling

The strong and weak scaling runs were performed on
the CINES Occigen3 supercomputer, which uses Intel R©

E5-2690 (2.60 GHz) processors. We compared the scaling of our

3 https://www.cines.fr/calcul/materiels-et-logiciels/
occigen/
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1D diffusion problem (circles) and a 1D non-stationary radiative shock
(squares) as a function of the number of frequency groups Ng used. The
curve for a time proportional to N2

g is shown as a dotted line.

radiative transfer scheme to the native MHD scheme in RAMSES.
The setups used for the RHD and MHD runs were a 2D ver-
sion of the Dirac diffusion test using four frequency groups and
a 2D Orszag-Tang vortex simulation (Orszag & Tang 1979), re-
spectively. In the RHD calculation, the fluid is static and only
the radiation solver was called by RAMSES, bypassing the hydro-
dynamic Godunov solver. Both setups used a 20482 mesh.

The strong scaling results are given in Fig. 5a. We can see
that as we go beyond the 12-core limit of the Occigen pro-
cessors, the speedups drop below the ideal curve (grey area)
as communications begin to take longer to complete. Our ra-
diative transfer method appears to perform slightly better than
the native MHD scheme in RAMSES, as the coupling between
hydrodynamics and radiation is ignored (the Godunov solver is
not used in the RHD simulations). In the weak scaling RHD
runs, when the size of the problem is doubled with the number
of CPUs, it takes the implicit BiCGSTAB solver more iterations
to converge because there is a stronger propagation of round-
off errors originating from the calls to the MPI_ALLREDUCE rou-
tine when more CPUs are used. To ensure a fair comparison,
we forced all simulations to execute the same number of itera-
tions (500) for every timestep, chosen as the maximum observed
number of iterations in the 1024-core run. All simulations also
performed the same number of timesteps (100) of a fixed length
in time (∆t = 10−17 s), and each CPU held a grid of 1282 cells.
The weak MHD simulations were run for 300 timesteps, with
each CPU processing a grid of 5122 cells4. The results in Fig. 5b
show that the weak scaling performance of the RHD solver is
below the native MHD solver. The iterative implicit solver suf-
fers from heavy communication operations to compute residuals
and scalar quantities which need to be performed at each itera-
tion for each timestep, while the MHD solver only requires one
communication operation per timestep. We believe that a weak
scaling efficiency of 60% is acceptable for our purposes.

4.2. Group scaling

Our final performance test was to assess the scaling of our multi-
group algorithm for a given problem when the number of fre-
quency groups Ng is increased. The results of the simulation time
divided by the total number of BiCGSTAB iterations for a 1D
multigroup diffusion test performed on a single Intel R© Xeon R©

E5620 (2.40 GHz) CPU core on a local HP-Z800 workstation
are shown in Fig. 5c. The algorithm appears to scale with N2

g ,
which is expected from the double sum over Ng in the term in
the third line of Eq. (5). We carried out a second group scaling
study, this time running the subcritical radiative shock test from
Sect. 3.4 (although with a lower resolution; only three levels of
refinement were used5), where the radiative transfer is fully cou-
pled to the hydrodynamics. The results are given in Fig. 5c, and
the behaviour is very similar to the diffusion-only solver. The
radiative transfer step completely dominates over the hydrody-
namic step6 in terms of computational cost, and it is thus not sur-
prising to see the same scaling for a RHD run as for a calculation
which only calls the radiation solver.

5. Application to star formation

In this final section, we apply the multigroup formalism to a
simulation of the collapse of a gravitationally unstable dense
cloud core, which eventually forms a protostar in its centre.
The collapsing material is initially optically thin and all the
energy gained from compressional heating is transported away

4 These resolutions and number of timesteps were chosen so that both
RHD and MHD simulations run for approximately the same amount of
time.
5 This explains a smaller time per iteration for the radiative shock sim-
ulations than for the diffusion runs.
6 The radiation solver takes up to 90% of the computation time during
one timestep.
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by the escaping radiation, which causes the cloud to collapse
isothermally. As the optical depth of the cloud rises, the cool-
ing is no longer effective and the system starts heating up, tak-
ing the core collapse through its adiabatic phase. A hydrostatic
body (also known as the first Larson core; Larson 1969) ap-
proximately 10 AU in size is formed and continues to accrete
material from the surrounding envelope and accretion disk; this
first core will eventually form a young star, after a second phase
of collapse triggered by the dissociation of H2 molecules (see
Masunaga & Inutsuka 2000, for instance). In this preliminary
astrophysical application, however, we focus on the properties
of the first Larson core for the sake of simplicity.

We adopt initial conditions similar to those in Commerçon
et al. (2010), who follow Boss & Bodenheimer (1979). A mag-
netized uniform-density sphere of molecular gas, rotating about
the z-axis with solid-body rotation, is placed in a surrounding
medium a hundred times less dense. The gas and radiation tem-
peratures are 10 K everywhere. The prestellar core mass has
a mass of 1 M�, a radius R0 = 2500 AU, and a ratio of ro-
tational over gravitational energy of 0.03. To favor fragmen-
tation, we use an m = 2 azimuthal density perturbation with
an amplitude of 10%. The magnetic field is initially parallel
to the rotation axis. The strength of the magnetic field is ex-
pressed in terms of the mass-to-flux to critical mass-to-flux ratio
µ = (M/Φ)/(M/Φ)c = 5 (Mouschovias & Spitzer 1976). The
field strength is invariant along the z direction, and it is 100 times
stronger in a cylinder of radius R0 (with the dense core in its cen-
tre) than in the surrounding medium7. We used a gas equation
of state modelling a simple mixture of 73% hydrogen and 27%
helium (in mass), which takes into account the effects of rota-
tional (for H2 which is the dominant form of hydrogen for tem-
peratures below 2000 K) and vibrational degrees of freedom.
The frequency-dependent dust and gas opacities were taken from
Vaytet et al. (2013a), assuming a 1% dust content. We used the
ideal MHD solver of RAMSES, and the grid refinement criterion
was based on the Jeans mass, ensuring the Jeans length was al-
ways sampled by a minimum of 12 cells. The coarse grid had
a resolution of 323, and 11 levels of AMR were enabled, re-
sulting in a maximum resolution of 0.15 AU at the finest level.
The Minerbo flux limiter (Minerbo 1978) was used for these
simulations.

We performed two simulations; one under the grey approx-
imation and a second using 20 frequency groups. The first and
last groups spanned the frequency ranges (in Hz) [0→ 5× 1010]
and [1.3 × 1014 → ∞], respectively. The remaining 18 groups
were evenly (logarithmically) distributed between 5 × 1010 and
1.3 × 1014 Hz. The results are shown in Figs. 6 and 7. The gas
temperature as a function of density for all the cells in the com-
putational domain is shown in Fig. 6a. While the two simula-
tions show similar results overall, there are several differences
we wish to point out. For relatively low densities in the range
5 × 10−17 < ρ < 3 × 10−15 g cm−3, the multigroup run is hotter
than the grey simulation. This is also visible in the temperature
maps of Fig. 7, where the gas is hotter in the 20-group run for
r > 20 AU, this being most obvious in panel c. It appears that the
radiation transport from the central core to the surrounding en-
velope is more efficient in the multigroup case. More energy has
left the core, leaving it colder than in the grey case, while more
energy has been deposited in the thus warmer outer envelope.

7 This was chosen as an attempt to reproduce the dragging in of field
lines that would have happened in the formation of the dense core (see
e.g. Gillis et al. 1974), while also retaining in the simplest manner the
divergence-free condition for the MHD.

1
1.

5
2

2.
5

3
lo

g(
T

)
(K

)

a

: grey
: multigroup

−20 −18 −16 −14 −12 −10 −8
log(ρ) (g cm−3)

−5
−4

−3
−2

−1
0

1
lo

g(
B

)
(G

)

b

Fig. 6. a) Temperature as a function of density in the grey and multi-
group simulations at a time t = 24 265 yr. The colour blue represents
regions where the grey simulation either dominates (in terms of mass
contained within the figure pixels) over the multigroup simulation, or
where there is no multigroup data. Likewise, red codes for the regions
of the diagram where the multigroup run prevails. The white areas in-
dicate where both simulations yield identical results. The black contour
line delineates the region where data are present. b) Same as for a) but
showing the strength of the magnetic field as a function of density.

Higher temperatures are also observed in the bipolar outflow,
along the vertical axis, relatively close to the first core. Kuiper
et al. (2011) found that using a frequency-dependent scheme
in simulations of high-mass stars could enhance radiation pres-
sure in the polar direction compared to the grey simulations of
Krumholz et al. (2009), producing much stabler outflows. This
could be similar to what we are observing here; confirmation of
this would require further study.

Conversely, the strength of the magnetic field does not
change significantly when using a multigroup model. For
densities below 10−15 g cm−3, the two runs are virtually iden-
tical (see Fig. 6b). In the ideal MHD limit, the magnetic field
is not directly related to the thermal properties of the gas, and
it is therefore not surprising that the multigroup formalism has
little impact. However, in the future we plan to study star for-
mation using a non-ideal description of MHD (Masson et al.
2012), where magnetic and thermal interactions are twofold.
First, magnetic diffusion contributes additional gas heating from
ion-neutral frictions and Joule heating. Second, the chemical
properties of the gas, which strongly depend on temperature,
also affect the magnetic resistivities, which govern the diffu-
sion processes. We will investigate this in detail in a forthcoming
study.

A12, page 7 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201525971&pdf_id=6


A&A 578, A12 (2015)

10

100

1000

T (K)

20 40 60 80 100 120 140
R (AU)

0 20 40 60 80 100 120 140
R (AU)

-150

-100

-50

0

50

100

150
h 

(A
U

)

0 0.5 1 1.5 2 2.5

velocity in the rOz plane (km.s-1)

20 40 60 80 100 120 140
R (AU)

-150

-100

-50

0

50

100

150

h 
(A

U
)

-0.1

-0.05

0

0.05

0.1

log10(T20/T1)

a b c
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The use of multigroup RHD may not yield significantly dif-
ferent results in the early stages of molecular cloud collapse, but
it does provide a wealth of physical information in the system.
Channel maps such as the ones presented in Fig. 8 or spectral en-
ergy distributions (SEDs; Fig. 9) are directly available from the
simulation data and do not require any post-processing software.
The channel maps show a peak intensity around a wavelength
of 100 µm, close to the synthetic observations of Commerçon
et al. (2012). Interestingly, the SEDs show departures from a
black-body spectrum (most obviously at the low-frequency end)
close to the protostar (20 AU; Fig. 9b). We do not wish to carry
out a detailed study here on the effects of multifrequency radia-
tive transfer on the structures of protostars, we simply wish to
illustrate the power of the method. We leave the detailed work
on collapsing objects for a future paper, as this is first and fore-
most an article focused on methodology.

6. Conclusions and future work

We have implemented a method for multigroup flux-limited dif-
fusion in the RAMSES AMR code for astrophysical fluid dy-
namics. The method is based on the time-implicit grey FLD
solver of Commerçon et al. (2011b), and uses the adaptive time-
stepping strategy of Commerçon et al. (2014), where each level
is able to evolve with its own timestep using a subcycling pro-
cedure. The multigroup method allows the discretization of the
frequency domain to any desired resolution, enabling us to take
into account the frequency dependence of emission and absorp-
tion coefficients. The radiative energy density in the frequency
groups are all coupled together through the matter temperature
and terms reproducing Doppler shift effects when velocity gra-
dients are present in the fluid. A consequence of this coupling
is the apparition of non-symmetric terms in the matrix we have
to invert in our implicit time-stepping procedure. We therefore
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Fig. 9. Spectral energy distributions extracted in a cell lo-
cated 2000 AU a) and 20 AU b) from the protostar. The black
solid lines represent the energy inside the 20 frequency groups. They
are compared to a black-body distribution (dashed red), which would
have the same total energy.

had to abandon the original conjugate gradient algorithm of
Commerçon et al. (2011b) for a bi-conjugate gradient iterative
solver. A more evolved BiCGSTAB solver was preferred for its
greater stability compared to a raw bi-conjugate algorithm.

The method was fully tested against standard radiation dif-
fusion, frequency-dependent, and full radiation hydrodynamics
tests. It performed extremely well in all of these tests, and its
scaling performance was also found to be very satisfactory.

The multigroup formalism was finally applied to a simula-
tion of the gravitational collapse of a dense molecular cloud core
in the context of star formation. The method has revealed differ-
ences between grey and frequency-dependent simulations, but
more importantly uncovered departures from a black-body radi-
ation distribution. We also illustrated the wealth of information
the method brings to astrophysical studies, with the ability to
directly produce channel maps and SEDs. We will carry out a
much more thorough study of the effects of multigroup radiative
transfer on the structures of protostars and protoplanetary discs,
as well as their observable quantities, as part of a much wider
parameter space study in a forthcoming paper.
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