
HAL Id: cea-01300573
https://cea.hal.science/cea-01300573

Submitted on 11 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Measuring cluster masses with CMB lensing: a
statistical approach

Jean-Baptiste Melin, James G. Bartlett

To cite this version:
Jean-Baptiste Melin, James G. Bartlett. Measuring cluster masses with CMB lensing: a statistical
approach. Astronomy and Astrophysics - A&A, 2015, 578, pp.A21. �10.1051/0004-6361/201424720�.
�cea-01300573�

https://cea.hal.science/cea-01300573
https://hal.archives-ouvertes.fr


A&A 578, A21 (2015)
DOI: 10.1051/0004-6361/201424720
c© ESO 2015

Astronomy
&

Astrophysics

Measuring cluster masses with CMB lensing: a statistical approach

Jean-Baptiste Melin1 and James G. Bartlett2,3

1 DSM/Irfu/SPP, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
e-mail: jean-baptiste.melin@cea.fr

2 APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris Cité,
10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
e-mail: bartlett@apc.univ-paris7.fr

3 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California, USA

Received 31 July 2014 / Accepted 10 April 2015

ABSTRACT

We present a method for measuring the masses of galaxy clusters using the imprint of their gravitational lensing signal on the cosmic
microwave background (CMB) temperature anisotropies. The method first reconstructs the projected gravitational potential with a
quadratic estimator and then applies a matched filter to extract cluster mass. The approach is well-suited for statistical analyses that bin
clusters according to other mass proxies. We find that current experiments, such as Planck, the South Pole Telescope and the Atacama
Cosmology Telescope, can practically implement such a statistical methodology, and that future experiments will reach sensitivities
sufficient for individual measurements of massive systems. As illustration, we use simulations of Planck observations to demonstrate
that it is possible to constrain the mass scale of a set of 62 massive clusters with prior information from X-ray observations, similar
to the published Planck ESZ-XMM sample. We examine the effect of the thermal (tSZ) and kinetic (kSZ) Sunyaev-Zeldovich (SZ)
signals, finding that the impact of the kSZ remains small in this context. The stronger tSZ signal, however, must be actively removed
from the CMB maps by component separation techniques prior to reconstruction of the gravitational potential. Our study of two
such methods highlights the importance of broad frequency coverage for this purpose. A companion paper presents application to the
Planck data on the ESZ-XMM sample.

Key words. large-scale structure of Universe – galaxies: clusters: general – cosmic background radiation – methods: data analysis –
gravitational lensing: weak – methods: statistical

1. Introduction

The most important property of galaxy clusters for cosmolog-
ical studies is their mass; it is also the most difficult to mea-
sure, because it is not directly observable. Accurate mass mea-
surements are needed, in particular, to calibrate scaling laws
relating mass to observable cluster properties, such as rich-
ness (Yee & Ellingson 2003; Gladders et al. 2007; Rozo et al.
2009), X-ray properties (Arnaud et al. 2005, 2007; Stanek
et al. 2006; Vikhlinin et al. 2006; Pratt et al. 2009; Mantz
et al. 2010; Rozo et al. 2014b) or Sunyaev-Zeldovich (SZ) sig-
nal strength (Marrone et al. 2012; Planck Collaboration Int. III
2013; Bocquet et al. 2015; Rozo et al. 2014a; von der Linden
et al. 2014; Hoekstra et al. 2015). The uncertainty in the
mass calibration of these relations now limits the constrain-
ing power of cluster counts as a cosmological probe (Rozo
et al. 2013; Planck Collaboration XX 2014; Hasselfield et al.
2013; Reichardt et al. 2013; Rozo et al. 2010; Mantz et al.
2010, 2015; Vikhlinin et al. 2009; Böhringer et al. 2014;
Planck Collaboration 2015).

Cluster masses can be determined dynamically, by applica-
tion of the virial theorem to the velocity distribution of mem-
ber galaxies, from X-ray studies of the intra-cluster medium, as-
suming hydrostatic equilibrium for the gas, and via the effects of
gravitational lensing that distort the shapes of background galax-
ies. Each approach presents its own advantages while suffering
from specific systematic biases (Allen et al. 2011).

In this work, we discuss lensing of the cosmic microwave
background (CMB) anisotropies as a promising new technique
for measuring cluster masses, presenting a methodology for
practical application with the specific aim of calibrating clus-
ter scaling relations. We evaluate the potential of current and
future experiments to employ the methodology and show how
to account for astrophysical biases from other cluster signals.
As illustration, we apply the technique to Planck simulations of
massive clusters and demonstrate that it is possible to recover an
unbiased estimate of the mass scale of the Planck XMM-Early
Release SZ catalogue (ESZ-XMM, Planck Collaboration VIII
2011; Planck Collaboration XI 2011). A companion paper
presents results obtained with the Planck dataset for the
ESZ-XMM sample.

Study of CMB lensing (for a review see Lewis & Challinor
2006) is a rapidly growing field driven by the current gener-
ation of sensitive, high resolution CMB experiments. Recent
measurements of lensing in the CMB temperature power spec-
trum have been given by the Atacama Cosmology Telescope
(ACT, Das et al. 2014), the South Pole Telescope (SPT, Story
et al. 2013) and the Planck mission (Planck Collaboration XVI
2014). Direct reconstruction of the matter power spectrum us-
ing higher order statistics, designed to capture lensing’s spe-
cific non-Gaussian mode coupling signature (Hu & Okamoto
2002), have also been reported by ACT (Das et al. 2011) and
SPT (van Engelen et al. 2012), as well as Planck, which in addi-
tion produced an all-sky map of the projected matter distribution
(Planck Collaboration XVII 2014).
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Lensing of the CMB by galaxy clusters was first discussed at
length by Zaldarriaga & Seljak (1999) when developing methods
for reconstruction of the gravitational lensing potential. Seljak
& Zaldarriaga (2000) considered instead the characteristic per-
turbation to the unlensed CMB temperature field, approximated
locally as a pure gradient, induced by cluster lensing, an idea
further studied by Holder & Kosowsky (2004) and Vale et al.
(2004). In an approach analogous to the first authors, Maturi
et al. (2005) built a filter nonlinear in CMB temperature to recon-
struct the lensing convergence field around clusters as a means
of studying their density profiles.

In this paper, we develop a cluster mass extraction method
based on a matched filter for the projected gravitational poten-
tial. Our approach is similar in spirit to the work of Zaldarriaga
& Seljak (1999) and Maturi et al. (2005) in that we first recon-
struct the lensing field around a cluster, rather than working with
the lensing perturbation in the CMB temperature itself. In the
present work, however, we focus on determining total cluster
mass even in relatively low signal-to-noise regimes. Once we
have the map of a cluster potential, obtained using the quadratic
estimator of Hu & Okamoto (2002), we then apply a matched
filter designed to optimally extract the cluster’s mass, assuming
a density profile. This allows us to obtain measurements for indi-
vidual clusters, even when noise dominated, and use them in sta-
tistical analyses; for example, finding the mean mass of clusters
by binning according to SZ signal strength or, in other words,
the mass-SZ scaling relation.

In practice, we must confront a number of possible system-
atic biases. We consider the effects of and ways to mitigate as-
trophysical signals contaminating the CMB map required as in-
put for reconstruction of the gravitational potential. The most
difficult in this context are signals generated by the cluster it-
self, such as the thermal SZ (tSZ, Sunyaev & Zeldovich 1972)
and the kinetic SZ (kSZ, Sunyaev & Zeldovich 1980) effects.
Component separation is therefore a crucial step prior to recon-
struction of the potential, and our study will demonstrate the
importance of multi-frequency observations in this context. The
kSZ effect, having the same spectral signature as the CMB, re-
quires separate treatment; fortunately, we will see that the lens-
ing potential reconstruction significantly reduces its impact by
averaging it with uncorrelated CMB anisotropies.

We organize the paper as follows. We begin in Sect. 2 by
establishing our data model and discussing the reconstruction
of the lensing potential and application of the matched filter;
the presentation focuses at this point on the ideal case where
we have a clean CMB map of known noise properties. This al-
lows a preliminary evaluation of the potential of current and fu-
ture CMB experiments to measure cluster masses. Section 3 fo-
cuses on the tSZ and kSZ signals. We employ two techniques
to remove the tSZ signal and produce clean CMB maps from
a set of individual frequency maps, and we evaluate the im-
pact of the kSZ signal. We simulate Planck observations of a
set of massive clusters in Sect. 4 to illustrate the method, show-
ing that it is possible (Sect. 5) to recover an unbiased estimate
of the cluster mass scale for a sample similar to the Planck
ESZ-XMM catalogue (Planck Collaboration XI 2011). We fin-
ish with a discussion (Sect. 6) and our conclusions (Sect. 7).
Throughout, we adopt a flat ΛCDM cosmological model with
H0 = 70 km s−1 Mpc−1 and ΩM = 1 −ΩΛ = 0.3.

2. Mass estimation

We first define our data model in the general context, and
then present the matched filter mass estimation by focussing

on the ideal case where we have a clean map of lensed
CMB anisotropies with only instrumental noise.

2.1. Cluster signals

Consider a patch of sky centered on a galaxy cluster of
mass M500 at redshift z. We refer to cluster mass inside the ra-
dius R500, interior to which the mean mass density is 500 times
the critical density at the cluster’s redshift, ρc(z); i.e., M500 =
500(4π/3)ρc(z)R3

500. The hot, gaseous intra-cluster medium
(ICM) generates both tSZ and kSZ effects, and the cluster’s (pro-
jected) gravitational potential, φ, lenses the CMB anisotropies by
bending light rays and displacing the apparent line-of-sight.

We model the mass distribution with a NFW (Navarro et al.
1996) profile,

ρ(r) =
ρ0

(r/rs)(1 + r/rs)2 , (1)

described by its central density, ρ0, and physical scale rs. The
latter can be related to R500 using the concentration parameter,
c500, as rs = R500/c500. Unless otherwise stated, we take c500 = 3
in this work; in reality, it is expected to depend weakly on cluster
mass and redshift, i.e., c500(M500, z) (Bullock et al. 2001; Neto
et al. 2007; Muñoz-Cuartas et al. 2011). Integrating along the
line-of-sight yields the projected surface mass density at angular
position x from the center,

Σ(x) = φ0 Σm(x/θm), (2)

where x = |x| and Σm is a template characterized by the angular
scale θm = rs/Dclus, with Dclus the angular diameter distance to
the cluster. The integral along the line-of-sight is performed out
to r = 5R500. The normalization, φ0, is given below.

For the pressure of the ICM, we employ the modified
NFW profile of Nagai et al. (2007) with parameters given by
the X-ray observations of Arnaud et al. (2010), the so-called
universal pressure profile in the non self-similar case (Eq. (12)
of that paper). Integrating the pressure profile along the line-
of-sight gives the tSZ angular template, Tt(x/θt), characterized
by its scale radius, θt, and which is normalized by the cluster’s
central Compton y value, yo, to obtain the complete tSZ profile.
The kSZ signal is proportional to the optical depth through the
cluster with profile Tk(x/θk) characterized by the scale radius
θk. It is normalized by the cluster peculiar velocity, β, to obtain
the kSZ signal. In our numerical calculations below, we use the
same radial profile for the ICM pressure and optical depth, which
is equivalent to approximating the gas as isothermal; this is not
strictly the case, but the approximation has little effect on our
conclusions.

We suppose that the region is observed in several
millimeter/sub-millimeter bands, producing a set of maps at N
different frequencies νi (i = 1, ...,N) that we arrange in a col-
umn vector m(x), a function of angular position x on the sky and
whose ith component is the the map mi(x) at frequency νi. We
assume the maps are in units of thermodynamic temperature, so
the CMB and kSZ signals remain constant across frequencies,
and we denote the beam at frequency νi by bi.

The maps contain the cluster tSZ and kSZ signals, lensed
CMB anisotropies and noise,

m(x) = yo t t(x) + βtk(x) + s(x) + n(x), (3)

where t t(x) is the vector whose ith component is
jν(νi)[bi ∗ Tt](x), the beam-convolved tSZ template modu-
lated by the tSZ frequency spectrum, jν, in temperature units.
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The components of the kSZ vector, tk(x), are [bi ∗ Tk](x), and
those of the CMB vector, s(x), are si(x) = [bi ∗ S ](x), where
we denote the CMB signal on the sky as S (x). As for Σm, the
integration along the line-of-sight for Tt and Tk is performed out
to r = 5R500.

The unlensed (and unobservable) CMB field, S̃ (x), is trans-
formed into the observed sky signal as (e.g., Bartelmann &
Schneider 2001)

S (x) = S̃ (x) + δS (x), (4)
δS (x) = ∇S (x) · ∇φ(x), (5)

to first order in the lensing potential, which is related to the
convergence,

κ(x) = Σ(x)/Σcr, (6)

by

φ(x) =

∫
d2x′ κ(x′) ln(|x − x′|) (7)

= φ0

∫
d2x′

Σm(x′/θm)
Σcr

ln
∣∣∣x − x′

∣∣∣ (8)

≡ φ0Φ(x/θm). (9)

All integrals are restricted to x′ < 5θ500. The critical surface
mass density, Σcr = c2

4πG
DCMB

DclusDclus−CMB
, is defined in terms of the

angular diameter distances DCMB, Dclus and Dclus−CMB between
the observer and the CMB, the observer and the cluster, and the
cluster and the CMB, respectively. The third equality in Eq. (9)
defines our (dimensionless) model template for the lensing po-
tential, Φθm , parameterized by the angular scale θm. It is normal-
ized by φ0 (see Eq. (2)), defined such that Φθm (0) = 1.

The noise term in Eq. (3), n(x), includes instrumental noise
and astrophysical signals that are not related to the cluster.
Examples of the latter are Galactic foreground emission, extra-
galactic point sources and lensing by matter randomly projected
along the line-of-sight (large-scale structure, or LSS, noise). The
effects of LSS correlated with cluster position can only be evalu-
ated with numerical simulations and remain beyond the scope of
the present work. Similarly, the background extragalactic point
source population is modified near the cluster by lensing, creat-
ing a second order cluster-related signal that we do not consider
in this work.

2.2. Reconstruction of the Lensing Potential Map

Given a map of CMB temperature anisotropy, Ŝ – obtained from
a prior component separation step, as describe below – centered
on a cluster, we apply the flat-sky quadratic estimator from Hu
& Okamoto (2002) to find the Fourier modes of the projected
gravitational potential:

φ̂(K) = A(K)
∑

k

Ŝ ∗(k)Ŝ (k′)F(k, k′), (10)

with K = k − k′[mod n], where n is the number of pixels along
the x (or y) axis, and

A(K) =

∑
k

f (k, k′)F(k, k′)
−1

. (11)

The weights F(k, k′) are defined so that φ̂ is the minimum vari-
ance estimator:

F(k, k′) =
f ∗(k, k′)

2PŜ (k)PŜ (k′)
, (12)

in which PŜ (k) = |b(k)|2Ck + Pnoise(k) is the observed power
spectrum with a contribution from the effective noise, Pnoise, of
the cleaned CMB map; b(k) represents the effective instrumental
beam1; Ck is the power spectrum of the (true) lensed CMB sig-
nal, S (x); and f (k, k) is given by

f (k, k′) = b∗(k)b(k′)
[
C̃k k · K − C̃k′ k′ · K

]
, (13)

where C̃k is the power spectrum of the unlensed CMB sky, S̃ (x).
Equation (10) gives us an unbiased estimate of φ(K) for a

cluster of given properties in the sense that if averaged over
all realizations of the (unlensed) CMB and instrumental noise,
〈φ̂(K)〉 = φ(K). The variance of the estimate about the mean is
given by A(K), and the reconstruction is optimal in that it mini-
mizes this variance for each mode K.

2.3. Matched filter

Adopting the model potential template of Eq. (9), our matched
filter operates on the lensing potential map to extract the normal-
ization, φ0, for a given scale θm. Each mode K of the estimated
potential, φ̂, is an independently measured variable with standard
deviation A1/2(K). We therefore construct the matched filter for
the potential amplitude as

φ̂0 =

∑
K

|Φ(K)|2

A(K)

−1 ∑
K

Φ∗(K)
A(K)

φ̂(K), (14)

where Φ(K) is the Fourier transform of the model template
(Eq. (9)). This yields an unbiased estimate of φ0 with minimal
variance given by

Var(φ̂0) =

∑
K

|Φ(K)|2

A(K)

−1

· (15)

Once normalized by our measurement, φ̂0, the cluster mass
model is completely specified. We could quote our filter mea-
surements directly as φ̂0, but choose instead to express them in
terms of the integrated convergence calculated using the model:

K5θ500 ≡ 2π
∫ 5θ500

0
dx xκ(x) =

1
D2

clus(z)Σcr(z)
M5R500. (16)

Note that θ500 = R500/Dclus(z) = c500θm. The first equality de-
fines our preferred observable, and the second relates it to cluster
mass calculated within the radius 5R500; this is easily translated
into M500 given the concentration parameter, c500. Our estimator
for this observable is

K̂5θ500 ≡ 2πφ̂0

∫ 5θ500

0
dx x

Σm(x/θm)
Σcr(z)

(17)

=
1

D2
clus(z)Σcr(z)

M̂5R500· (18)

Hereafter, we consider K̂5θ500 as the output of the filter; it is di-
mensionless and expressed in arcmin2. The second line defines
our cluster mass estimator, whose units are set by the prefactor.

These estimators are unbiased over the CMB and noise en-
sembles: 〈K̂5θ500〉 = K5θ500 and 〈M̂5R500〉 = M5R500. They are also
optimal in that they minimize their respective variances over the
same ensemble. Explicitly, we have

Var(M̂5R500) =
[
D2

clus(z)Σcr(z)
]2
σ2

K5θ500
, (19)

1 Taken, for simplicity, to be axially symmetric.
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Fig. 1. Contours of cluster mass in 1015 M� units (red curves) and red-
shift (blue curves) projected onto the observational plane defined by the
filter output K5θ500 and angular scale θ500 = c500θm. A cluster of fixed
mass M500 follows a red contour according to Eq. (16) as it moves out in
redshift. Each mass contour follows the same pattern, simply displaced
in amplitude. This figure shows how each point in the observational
plane maps to a point in the cluster plane of (M500, z).

for the variance of the mass estimator, where σ2
K5θ500

is the vari-
ance of our filter output, calculated using Eqs. (15) and (17). This
is the uncertainty on the mass measurement of a single cluster,
with contributions from instrumental noise and the CMB fluctu-
ations themselves. We will see below that the kSZ adds an ad-
ditional source of noise, as well as a bias term; fortunately, they
are small in practice.

Figure 1 illustrates the relation between the observation
plane (K5θ500, θ500) and physical cluster quantities. Each point
in this plane maps directly to a point in the cluster (M500, z)
plane, as shown by the contours of iso-mass (in red) and iso-
redshift (blue). At fixed mass, Eq. (16) specifies the evolution
of K5θ500 as a function of redshift, which when coupled with
θ500 ∝ M1/3

500/Dclus(z) describes an iso-mass curve. As the clus-
ter moves out in redshift, its angular size decreases; at the same
time, the prefactor in Eq. (16) determines the decrease and final
upturn in the integrated convergence. The rapid decrease from
low redshift outwards may seem surprising, but is due to the
fact that we integrate over angular extent. Integrated over physi-
cal extent, the convergence increases at first with redshift as the
lensing kernel becomes more efficient, but the angular extent de-
creases and drives down the value of K5θ500. Each mass follows
the same general curve, simply displaced in absolute scale.

A given experiment will trace a sensitivity curve in the
observation plane. In Fig. 2 we show predictions for the fil-
ter sensitivity, expressed by the standard deviation of the fil-
ter variance, as a function of filter angular scale for a num-
ber of different experiments. The top three curves (traced
in red) all refer to space-based experiments, while the three
lower curves (in blue) represent ground-based experiments
similar to the three generations of SPT (Story et al. 2013;
Austermann et al. 2012; Benson & Benson 2013), ACT (Das
et al. 2014) and ACT-Pol (Niemack et al. 2010). The space mis-
sions are Planck (Planck Collaboration I 2014) and two mis-
sions proposed to the European Space Agency, COrE (The COrE
Collaboration et al. 2011) and PRISM (PRISM Collaboration
et al. 2014). The former has similar resolution to Planck,
but more detectors and lower noise, while the latter envisions
a larger telescope with both lower noise and higher angular
resolution.

Fig. 2. Standard deviation, or filter noise, of the matched filter output
(Eq. (16)) versus filter scale θ500 = c500θm for the different experimen-
tal setups, as labeled. The red curves give results for the Planck satel-
lite and two future missions proposed to ESA, COrE and PRISM. The
first has similar angular resolution to Planck (∼5 arcmin FWHM), but
lower noise, while PRISM has both lower noise and higher resolution
at ∼2.6 arcmin. The blue curves show the noise levels for SPT/ACT,
SPT-Pol and SPT-3G/ACT-Pol. All curves assume the filter is perfectly
matched to the clusters. The experimental characteristics are summa-
rized in Table 1.

We summarize the adopted characteristics of each experi-
ment in Table 1 in terms of angular resolution and white noise in
the reconstructed CMB map2. We emphasize, however, that the
experiments have very different frequency coverage. Although
not accounted for in this present discussion, we show later that
extensive frequency coverage is crucial for proper CMB recon-
struction and, especially, removal of the tSZ signal.

All sensitivity curves start on small angular scales with a
flat response and then break to a rise toward larger filter scales.
The break occurs on smaller scales for the higher resolution
ground-based experiments. COrE and Planck have the same res-
olution and break on the same scale, but with its lower noise
level, COrE’s plateau lies below that of Planck. PRISM has a
noise level comparable to SPT-3G, but slightly lower angular
resolution. We see that it breaks at an intermediate filter scale
and on a higher plateau than SPT-3G. This demonstrates the in-
terplay of angular resolution and noise: At a given noise level
in µK-arcmin, an experiment with higher angular resolution ac-
cesses more modes k to reconstruct a given potential mode K
(Eq. (10)), thereby reducing the filter noise.

In Fig. 3 we give the standard deviation of the mass measure-
ment, M500(z) = σ(z) (square root of Eq. (19)), as a function of
redshift for each experimental setup. The results provide a use-
ful metric for each experiment’s ability to measure cluster mass:
The uncertainty on the mean mass for a sample of N clusters at
redshift z will be M500(z)/N1/2. Note, however, that a cluster of
nM500(z) will have a significance smaller than nσ. This is be-
cause as the mass increases from the limiting value, the cluster’s
angular size also increases, driving the filter noise higher (unless
we are on the small-scale plateau of the curves in Fig. 2).

We see that COrE and SPT/ACT can only be expected to
measure mass for the most massive systems in the universe,
while Planck cannot be expected to measure any individual
cluster mass. The sensitivity of these experiments, however, is

2 In each case, the reconstructed CMB map was assigned the charac-
teristics of the experimental band closest to 143 GHz.
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Table 1. Characteristics of representative surveys: Planck (Planck Collaboration I 2014), COrE (The COrE Collaboration et al. 2011), PRISM
(PRISM Collaboration et al. 2014), ACT (Das et al. 2014), ACT-Pol (Niemack et al. 2010), SPT (Story et al. 2013), SPT-Pol (Austermann et al.
2012), SPT-3G (Benson & Benson 2013).

Name Location Map resolution (FWHM) Map noise
[arcmin] [µK-arcmin]

Planck . . . . . . . . . . . . . . . . . . . . . . . . . Space 5.0 45.0
COrE . . . . . . . . . . . . . . . . . . . . . . . . . . Space 5.0 2.6
PRISM . . . . . . . . . . . . . . . . . . . . . . . . . Space 2.5 2.6
Generation: SPT/ACT . . . . . . . . . . . Ground 1.0 18.0
Generation: SPT-Pol . . . . . . . . . . . . . Ground 1.0 5.0
Generation: SPT-3G/ACT-Pol deep Ground 1.0 2.0

Fig. 3. Standard deviation of mass measurements, M500(z), with the
matched filter (square root of Eq. (19)) as a function of cluster red-
shift for the same experimental setups plotted in Fig. 2. This compari-
son does not take into account the ability of each experiment to elimi-
nate contaminating signals, such as the tSZ, which depends on spectral
coverage. In this context, the space-based missions benefit from wider
spectral coverage (see text).

sufficient to obtain mean mass as a function of other cluster ob-
servables by binning measurements; in other words, to establish
mean observable-mass scaling relations. Herein lies the value of
our matched filter approach, by providing a means of combin-
ing many low signal-to-noise measurements to statistically de-
termine cluster mass. The sensitivity of SPT-Pol, SPT-3G/ACT-
Pol and the PRISM mission, on the other hand, is sufficient to
enable individual cluster mass measurements as well as statisti-
cal studies.

3. Astrophysical contaminants
The above discussion supposes that we have a clean map of
CMB anisotropies from which to extract the lensing signal. To
produce this map, we must first separate the CMB component
from other astrophysical emission. In this work, we focus on
the potentially most troublesome signals, those produced by the
cluster itself at CMB-dominant frequencies, namely the tSZ and
kSZ effects.

Generally, we employ the Internal Linear Combination (ILC)
methodology to separate the CMB from other signals. Because
we will find that the standard ILC does not sufficiently remove
the tSZ signal, causing an important bias in our mass estima-
tion, we present two techniques based on the ILC that seek in
addition to actively remove the tSZ signal: template fitting and
subtraction of the tSZ, and an ILC constrained to cancel the tSZ.
Both prove satisfactory.

The kSZ cannot be eliminated in this fashion, however, hav-
ing the same spectral signature as the CMB. It could be removed
by template fitting for experiments with sufficient resolution, but
as will be seen, it does not produce any significant bias in our
mass estimations. Keeping this in mind, we restrict ourselves to
an examination of the nature of the kSZ contamination on the re-
constructed lensing potential. This will guide our interpretation
of the simulation results.

We test our methodology using the simulations described in
Sect. 4, presenting the results in Sect. 5. We will see the impor-
tance of actively removing the tSZ, and that any effect from the
kSZ remains manageable. Our simulations do not include diffuse
Galactic or extragalactic emission not related to the clusters. At
this point of our study, having employed an ILC at the heart of
our component separation techniques, we assume that these are
adequately controlled; the issue will be studied in more detail in
future work.

3.1. The thermal SZ signal
We develop two approaches to removing the tSZ signal: mul-
tifrequency matched filters (MMF) to estimate the amplitude of
the tSZ effect and then remove it from the survey frequency maps
prior to a standard ILC, and an ILC constrained to eliminate the
tSZ signal while extracting the CMB map. We compare the per-
formance of the two approaches in Sect. 5. The goal is to produce
the CMB map, Ŝ , used as input in the lensing reconstruction of
Eq. (10).

3.1.1. Multifrequency matched filters (MMF)
With this approach we apply the MMF of Melin et al. (2006)
using the pressure profile Tt(x/θt) to obtain an estimate of the
central Compton y parameter:

ŷo =

∫
d2x Ψθt

t(x) · m(x), (20)

where

Ψθt (k) = σ2
θt

P−1(k) · t t(k), (21)

with

σθt ≡

[∫
d2k t t

t(k) · P−1 · t t(k)
]−1/2

, (22)

P(k) being the interband power spectrum matrix with contribu-
tions from (non-tSZ) sky signal and instrumental noise. It is the
effective noise matrix for the MMF and can be estimated directly
on the data, since the tSZ is small compared to other astrophysi-
cal signals in the sky patch centered on the cluster.
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We assume that the tSZ is accurately described by our model
and seek only to normalize the tSZ template to each cluster. This
is the case for our simulations, because we are using the same
profile for the simulated tSZ and the filter template. In reality,
possible mismatch between the true cluster profile and the filter
template would be a source of uncertainty.

Once we have normalized the template, we remove the
tSZ signal from each of the N individual frequency maps,

m̂(x) = m(x) − ŷo t t(x), (23)

and apply a standard ILC to reconstruct the clean CMB map:

Ŝ (k) =
[
btP−1b

]−1
btP−1m̂(k), (24)

where b is the beam vector of dimension N. Finally, we convolve
the resulting map with a fiducial beam, bfid (5 arcmin in the case
of Planck), to obtain the Ŝ (k) used in Eq. (10). The power spec-
trum associated with this map is

PŜ = |bfid|
2
[
btP−1b

]−1
. (25)

3.1.2. Constrained Internal Linear Combination (CILC)
In the second approach, we directly construct the clean
CMB map with a constrained ILC designed to nullify the tSZ ef-
fect, making use of its well-defined spectral signature, jν. The
formalism is described in detail by Remazeilles et al. (2011).
The reconstructed clean CMB map can be written

Ŝ (k) = ∆−1
[(

jνtP−1 jν
)

btP−1 −
(
btP−1 jν

)
jνtP−1

]
m(k), (26)

∆ =
(
btP−1b

) (
jνtP−1 jν

)
−

(
btP−1 jν

)2
, (27)

with ( jν)i ≡ jν(νi)bi. The noise matrix, P, is constructed as
before.

We again convolve the resulting map with the fiducial beam,
bfid, to obtain the CMB map, Ŝ (k), used in Eq. (10). The power
spectrum for this fiducial map is

PŜ =
|bfid|

2

∆2

[(
jνtP−1 jν

)2 (
btP−1b

)
−

(
jνtP−1 jν

) (
btP−1 jν

)2
]
.

(28)

The strength of the CILC removal, compared to the MMF ap-
proach, is its insensitivity to cluster modeling uncertainties (e.g.,
SZ profile). On the other hand, the variance of the noise in the
reconstructed CMB map is higher, slightly increasing the error
on the final mass estimate, as we show in Sect. 5. We also present
the impact of tSZ modeling uncertainties on the MMF approach
in the same section.

3.2. The kinetic SZ signal

After the tSZ, the kSZ is the dominant cluster signal at CMB fre-
quencies. It has the same spectrum as the primary CMB and can-
not be removed by spectral separation methods.

We can appreciate the effect of the kSZ by returning to
the lensing potential reconstruction of Eq. (10). Even in the
best possible case, the reconstructed CMB map, Ŝ , contains
kSZ in addition to the lensed CMB and noise: Ŝ (x) = S (x) +
βTk(x/θk) + n(x). The lensing map reconstruction therefore has

four contributions:

φ̂′(K) = φ̂(K) + 2R

βA(K)
∑

k

S (k)T ∗k (k′θk)F(k, k′)
 (29)

+2R

βA(K)
∑

k

n(k)T ∗k (k′θk)F(k, k′)
 (30)

+β2A(K)
∑

k

Tk(kθk)T ∗k (k′θk)F(k, k′) (31)

≡ φ̂(K) + β
[
φ̂ks(K) + φ̂kn(K)

]
+ β2φ̂kk(K) (32)

where φ̂ contains just the CMB and noise terms, as considered
in Sect. 2. The kSZ adds cross terms of the kSZ with both CMB,
φ̂ks, and noise, φ̂kn, and a term quadratic in the kSZ signal, φ̂kk.

Averaged over the CMB and noise ensembles, the two mid-
dle terms vanish, independent of the value of β, because 〈s(k)〉 =
〈n(k)〉 = 0. They act as an additional noise contribution to the
potential reconstruction for a given cluster. This behaviour dif-
fers from that of the kSZ when directly using the temperature
anisotropy induced by cluster lensing, rather than reconstruction
of the lensing potential as done here. For a given β, the kSZ is
guaranteed to contribute to the temperature anisotropy at a level
comparable to the lensing signal (Seljak & Zaldarriaga 2000;
Lewis & Challinor 2006); in our case, however, the contribution
could be small, depending only on the chance alignment of CMB
and kSZ modes. In either case, additional averaging over a set of
clusters will further reduce the effect of these terms linear in β
because the objects will have random peculiar velocities.

The last term, quadratic in β, is a bias. Its presence is in-
dependent of the CMB and noise ensembles, and it cannot be
beaten down by averaging over a cluster ensemble. With proper
modeling of the kSZ signal, the bias could be eliminated, if
needed, through subtraction, cluster by cluster, to leave a zero-
mean residual as a noise contribution. This will not prove neces-
sary in our subsequent study, where we will find that the bias is
unimportant for realistic cluster velocities.

4. Simulations

We illustrate our mass estimation technique through recov-
ery of the mass scale for a sample of clusters with simu-
lated Planck-like observations. We proceed by first simulating
a sample of identical clusters, and then consider a mock of
the ESZ-XMM, a subsample of 62 clusters from the Planck
Early Sunyaev-Zeldovich list (ESZ, Planck Collaboration VIII
2011) with good X-ray observations, including X-ray deter-
mined masses, MX

500, spanning the range [2−20] × 1014 M�
(ESZ-XMM, Planck Collaboration XI 2011). In a companion
paper, we report an estimation of the mass scale of the actual
ESZ-XMM sample using the Planck dataset.

Our first simulation consists of 62 observations of a mock of
A2163, assigning mass and tSZ profiles following our adopted
templates. With an X-ray deduced mass of MX

500 = 1.9×1015 M�
(z = 0.203), this system is one of the most massive clusters
known, falling near the 1σ curve for Planck shown in Fig. 3,
and the most massive member of the ESZ-XMM.

We generate 62 independent realizations of primary
CMB anisotropies and of white noise in tangential map projec-
tions of 10 × 10 deg2 across the six highest frequency chan-
nels (100−857 GHz) of Planck. The mock of A2163 is cen-
tered in each channel map, the lensing is applied to the primary
CMB anisotropies and the tSZ signal added. We then smooth
each channel map by its corresponding beam and add the white
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Fig. 4. Recovered mass for the 62 Planck simulations of A2163, ex-
pressed as the ratio of the CMB-measured mass to the input mass from
the X-ray model, M̂500/MX

500. The tSZ was removed in this example us-
ing the CILC. Each diamond is the result of a single analysis chain
(simulation, CILC, lensing extraction and matched filtering) accompa-
nied by its 1σ uncertainty of 1.06. The solid blue line shows the sample
average (1.01) and its 1σ range (±1.06/

√
62 = ±0.13).

noise, taking the noise and beam characteristics as published in
Planck Collaboration I (2014). A simulated cluster observation
thus comprises six channel maps, and there are 62 such simu-
lated observations.

For each of these mock observations, we first remove the
tSZ signal and produce a clean CMB map as described above.
We then reconstruct the lensing potential map and apply the
matched filter to extract our mass estimate, M̂500. Note that the
filter is perfectly matched to the cluster in that the filter tem-
plate and actual cluster projected potential are identical. We re-
fer to the complete processing of a single cluster observation as
an analysis chain.

For each chain, we compare the mass measurement to the
input (X-ray deduced) mass of A2163 by forming the ra-
tio M̂500/MX

500, and then take the sample mean, 〈M̂500/MX
500〉,

over the 62 observations. An unbiased recovery of the sample
mass scale corresponds to 〈M̂500/MX

500〉 = 1.
We run two sets of 62 chains without kSZ to compare the

results from the two different component separation methods
presented in Sect. 3. We also ran additional simulation chains
adding the kSZ effect with constant (systematic) peculiar veloc-
ities of 300 km s−1 and 900 km s−1 to each of the 62 clusters.

5. Results

Figure 4 shows the recovered mass ratio M̂500/MX
500 for the

62 simulated cluster observations without kSZ when using the
constrained ILC to remove the tSZ. The individual measure-
ment uncertainty on this quantity is large at 1.06 (the same
for all chains, because the cluster and the statistical CMB and
noise properties are the same for the 62 realizations). The points
clearly disperse preferentially above zero, and taking the sample
average we find 〈M̂500/MX

500〉 = 1.01 ± 0.13.
We have an unbiased recovery of the sample mass scale with

13% uncertainty. The result is identical when using the MMF
component separation procedure3. The basic result of this study,

3 The individual measurement uncertainty is slightly lower in this case
(1.04 against 1.06), but the sample mean and its uncertainty are the same
to the given precision.

therefore, is that we detect the mass scale of the sample at greater
than 7σ.

If we model the SZ emission with the cool-core profile given
in Table C.2. of Arnaud et al. (2010) but extract it with the MMF
based on the universal profile, the sample average increases from
1.01 ± 0.13 to 1.19 ± 0.13. Adopting instead the morpholog-
ically disturbed profile, the value shifts to 1.09 ± 0.13. The
mis-modeling of the SZ profile in the MMF component sepa-
ration procedure may thus introduce a bias of order ∼1σ on the
average.

We have also tested the sensitivity of our conclusions to the
extension of the mass profile by truncating the integration at Rvir
instead of 5R500. The individual measurement uncertainty in-
creases to 1.23, which in turn slightly increases the uncertainty
on the sample average to 0.16. This results in a modest decrease
in the global significance of the detection from 7σ to between 6
and 7σ.

Accurate removal of the tSZ signal is essential, something
which can be gauged from the results when applying a standard
ILC to extract the CMB without any constraint to nullify the tSZ.
In this case, we find a sample mean of 〈M̂500/MX

500〉 = 1.93 ±
0.13, highly biased by the residual tSZ signal.

The standard ILC is incapable of removing the tSZ signal to
a sufficiently high level. We expect that this is in large part due
to the fact that the tSZ is only a weak component in the map and
hence not accounted for by the standard ILC weights. Our com-
ponent separation techniques manage to adequately remove the
tSZ by direct subtraction (MMF) or cancelation (CILC), both re-
lying on the known spectral dependence of the signal. It is clear
that multi-band CMB observations for accurate removal of the
tSZ are an important consideration in designing experimental
campaigns.

Turning to the kSZ effect, we find a sample mean of
〈M̂500/MX

500〉 = 1.00 ± 0.13 for the case of 300 km s−1 constant
peculiar velocity, and 〈M̂500/MX

500〉 = 0.86 ± 0.13 for the case
of 900 km s−1. This is for the CILC, but the results are essen-
tially the same for the MMF. Note that the uncertainties on the
sample means are unchanged, because they are calculated from
the sample size and the individual measurement error, the latter
determined by the unchanged CMB and noise properties.

There is no evidence of bias in the sample mean at the
lower peculiar velocity of 300 km s−1, while a bias of 14%
appears at the higher value of 900 km s−1. In the standard
ΛCDM model, we expect individual cluster peculiar velocities
to follow a Gaussian distribution of zero mean and variance
〈β2〉 ≈

(
300 km s−1

)2
. Our result for the mean of a set of clus-

ters with this constant velocity is therefore representative of the
bias expected of the quadratic term in β. The bias term is clearly
present, but only important at atypically large peculiar velocities.

The linear term is also present, causing an increase in the ob-
served dispersion of the individual measurements. By comparing
the dispersion before and after addition of the kSZ effect, we de-
duce that it contributes 0.14 and 0.31, respectively, for the lower
and higher peculiar velocities. The former value is the more real-
istic and should be compared to the CMB and noise contribution
to the dispersion (individual uncertainties) of 1.06.

The overall conclusion is the same for the simulated ESZ-
XMM, as shown in Fig. 5. We obtain an unbiased estimate of
the sample mass scale: 〈M̂500/MX

500〉 = 0.99 ± 0.28. The sig-
nificance is lower than before because the ESZ-XMM contains a
range of cluster masses, all of them smaller than A2163, its most
massive member. Nevertheless, we find that the mass scale can
be recovered at the 3σ level. In this case, truncating the profile
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Fig. 5. Recovered mass for the Planck ESZ-XMM simulation, ex-
pressed as in Fig. 4 by the ratio of the CMB-measured mass to the input
mass from the X-ray model, M̂500/MX

500. The tSZ was removed using
the CILC, and the blue solid and dashed lines show the sample mean
and its 1σ range: 〈M̂500/MX

500〉 = 0.99 ± 0.28. This simulation includes
a random kSZ effect with Gaussian standard deviation of 300 km s−1.
The CMB and noise realizations are the same as in Fig. 4, resulting in a
similar pattern in the distribution of points, but individual uncertainties
are larger (note the change in scale).

at Rvir increases the uncertainty from 0.28 to 0.33, leaving the
conclusion unchanged. This simulation also included a kSZ ef-
fect from random peculiar velocities with a Gaussian standard
deviation of 300 km s−1. We see no evidence for its impact on
the recovered sample mean.

6. Discussion

Our results show that the proposed method can be a practical
tool for estimating cluster masses, even with current CMB tem-
perature data. It offers a new way to constrain cluster scaling
relations between total mass and observables such as X-ray lu-
minosity, SZ signal strength or richness. These relations are cen-
tral to cosmological and large-scale structure analyses of cluster
catalogues.

The method complements others for measuring cluster mass.
Like gravitational shear, it directly probes total mass without as-
sumptions about the state of any particular cluster component;
this is strictly true for the CILC method, although we note that
there does remain some modeling uncertainty when applying the
MMF component separation, as discussed above. The method’s
particular strengths are that it can be used to much higher red-
shifts, using the CMB as a source plane, and that it is sensi-
tive to the convergence field, rather than its gradient like the
shear. Noting this latter difference, several authors have recently
pointed out the value of combined CMB and shear analyses in
the more general context (Hand et al. 2013; Das et al. 2013).

A critical capability of the proposed procedure is to pro-
vide accurate measurements and their uncertainties in the low
signal-to-noise regime. This enables statistical analyses that per-
mit practical application to existing CMB temperature datasets.

We achieve it through the lensing reconstruction that fur-
nishes well-defined noise properties for use by the filter. The
noise arises not just from the instrument, but also from the CMB
itself, because the lensing signature is a correlation between
CMB anisotropy modes behind the cluster, modes that we do
not a priori know. Instead, we rely on the power spectrum of
the primary CMB (and its Gaussianity) to tell us what they are

on average and the dispersion about that average. In many ways,
this is simpler than trying to determine the CMB gradient around
each individual cluster, as needed when working directly with
the secondary temperature anisotropy generated by lensing.

Figure 3 summarizes the ideal statistical power of various
experiments to measure cluster mass, showing the standard de-
viation of filter mass determinations as a function of cluster red-
shift. It is ideal because it only accounts for noise from the CMB
and the instrument. The curves are extremely flat in redshift, a
reflection of the broad lensing kernel to the source plane of the
CMB.

Comparing the space experiments (the red curves), we see
that Planck is dominated by instrumental noise, since it has the
same angular resolution as COrE, which performs much better
with its lower noise level, while PRISM gains further by incor-
porating more modes in reaching to smaller scales. Even at their
higher angular resolution, the ground-based experiments are not
dominated by the CMB, as can be seen from the fact that the
mass filter noise continues to decrease with decreasing instru-
mental noise.

We examined the impact of the tSZ and kSZ signals us-
ing simulations of Planck-like observations of massive clusters.
Our main result is that the tSZ must be accurately removed to
avoid biasing the mass estimations. A standard ILC is not suffi-
cient. We applied two methods, both of which proved satisfac-
tory. Based on the ILC, their key additional characteristic is that
they actively subtract or nullify the tSZ. The success of the CILC
is encouraging, because it does not rely on any adopted profile
for the tSZ. Our result emphasizes the importance of broad fre-
quency coverage in experimental design to enable adequate com-
ponent separation.

The kSZ cannot be removed through such spectral separation
methods and it remains in the CMB maps used to reconstruct the
lensing potential. It impacts the final result by adding a source of
measurement noise (term linear in β) and a bias (term in β2). In
our simulations, we found evidence for both terms. Fortunately,
their influence is small for the expected distribution of cluster
peculiar velocity.

These latter conclusions only apply in the context of our sim-
ulations of Planck-like CMB observations of massive clusters.
Understanding these details in other experimental setups, e.g.,
ground-based instruments, would require dedicated simulations.
The same applies to study of Planck-like observations of large
cluster samples including lower mass systems.

Additional limitations of the simulations presented here in-
clude lack of other foreground sources, such as diffuse Galactic
emission and extragalactic sources. Since we are using compo-
nent separation techniques based on the ILC, we assume for
this preliminary study that they adequately remove these fore-
grounds. Our clusters are also simulated in isolation and mod-
eled by the same spherically symmetric profiles used in our fil-
ters (tSZ and mass filters)4. More realistic simulations would
employ variations in model profiles and numerical simulations
of clusters in their cosmological context to evaluate the effects
of local structure around the clusters, as well as that of uncorre-
lated large-scale structure along the line-of-sight that contribute
to the noise term.

Despite these limitations, our simulations are sufficient to
demonstrate the potential of the Planck 2013 dataset to detect
the mass scale of the ESZ-XMM. Our simulation of this obser-
vation of 62 clusters is summarized in Fig. 5. The conclusion is

4 Recall the above statement that the CILC does not, however, rely on
an adopted template.
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that we should be able to detect the mass scale of this catalog to
slightly more than 3σ. A separate paper presents our analysis on
the real Planck dataset.

7. Conclusion

We propose a method to measure galaxy cluster masses using
CMB lensing and demonstrate that it can be practically applied
to existing datasets (e.g., ACT, Planck, SPT) in statistical analy-
ses of cluster samples. The strength of the approach draws from
its ability to provide viable mass estimates and uncertainties
even in low signal-to-noise regimes, thereby enabling straight-
forward statistical analyses of systems well below individual
detection.

Accurate removal of the tSZ is important and achievable, as
we demonstrate by application of component separation meth-
ods that actively subtract or nullify it. The implication is that
experimental design must allow for sufficient spectral coverage
to enable effective separation methods.

Using a simulation of the Planck ESZ-XMM sample, we
conclude that it would be possible to determine the mass scale of
this set of 62 clusters to 3σ significance (CMB and instrumental
noise only). In a companion paper, we present a first application
of our method to the Planck data on the actual ESZ-XMM.

The method presented here uses only temperature data in the
lensing reconstruction. Future work will extend it to CMB polar-
ization data. Our preliminary study here opens the way to numer-
ous research avenues targeting additional issues related to fore-
grounds and large-scale structure, and calls for detailed studies
dedicated to specific experimental campaigns.

Lensing of the CMB opens a new and independent avenue
for studying cluster masses, an important complement to other
techniques, such as weak gravitational lensing of background
galaxies. In fact, CMB lensing offers the possibility of calibrat-
ing large cluster samples now while we await large area galaxy
lensing surveys, such as the Dark Energy Survey, the Large
Synoptic Survey Telescope, and the Euclid and WFIRST space
missions. And it will remain the more efficient way to measure
cluster masses at high redshifts, where the source galaxy popu-
lation rapidly declines in imaging surveys.
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