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We study the entanglement entropy between the two outgoing particles in an elastic scattering process. It 
is formulated within an S-matrix formalism using the partial wave expansion of two-body states, which 
plays a significant role in our computation. As a result, we obtain a novel formula that expresses the 
entanglement entropy in a high energy scattering by the use of physical observables, namely the elastic 
and total cross sections and a physical bound on the impact parameter range, related to the elastic 
differential cross-section.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Entanglement is a significant concept which appears in vari-
ous subjects of quantum physics. The quantum entanglement has 
been attracting much attention of theoretical physicists, since re-
markable progress in the entanglement between the systems on 
two regions was made in quantum field theories [1] and holog-
raphy [2], and the intriguing conjecture called ER = EPR [3] was 
suggested. In the context of the ER = EPR conjecture, the entan-
glements between two particles, which are, for example, a pair 
of accelerating quark and anti-quark [4] and a pair of scattering 
gluons [5], have been studied. Then it naturally induces the fol-
lowing primitive question: How does the entanglement entropy of 
a pair of particles change from an initial state to a final one in an 
elastic channel of scattering process? It is qualitatively expected 
that the elastic collision of two initial particles, e.g., in a high en-
ergy collider, generates some amount of entanglement between the 
particles in the final state. We are interested in quantifying the en-
tanglement entropy generated by collision.

By just neglecting inelastic channels in weak coupling pertur-
bation [6], Ref. [7] analyzed such entanglement entropy in a field 
theory by the use of an S-matrix.1 In this article we exploit the 
S-matrix formalism further in order for a non-perturbative under-
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1 We quote for completion Ref. [8], where the entanglement entropy is discussed 

in a low energy decay process using different concept and method.
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standing of the entanglement entropy in a scattering process with 
also an inelastic channel to be taken into account. This is especially 
required in the case of strong interaction scattering at high energy 
where inelastic multi-particle scattering contributes to a large part 
of the total cross-section, while elastic scattering is still important. 
The basic S-matrix formalism of strong interaction, as developed 
long time ago, e.g., in Refs. [9,10], allows us to find an approach to 
scattering processes without referring explicitly to an underlying 
quantum field theory.

Following Refs. [9,10], we consider a scattering process of two 
incident particles, A and B, whose masses are mA and mB respec-
tively, in 1 + 3 dimensions. This process is divided [9] into the 
following two channels:

“Elastic” channel: A + B → A + B

“Inelastic” channel: A + B → X

where X stands for any possible states except for the two-particle 
state, A +B. We postpone the study extended to a matrix including 
more varieties of two-particle channels [10] to a further publica-
tion.

The full Hilbert space of states is not usually factorized as 
Hfull = HA ⊗ HB ⊗ HX in an interacting system. However the 
Hilbert space of both the initial and final states is factorizable 
in the S-matrix formalism, because one considers only asymptotic 
initial and final states long before and after the interaction. We 
introduce the S-matrix, S , for the overall set of initial and final 
states. Once we fix an initial state |ini〉, the final state |fin〉 is 
determined by the S-matrix. In this article we are interested in 
the entanglement between two outgoing particles, A + B, in a final 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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state of elastic scattering in the presence of a non-negligible frac-
tion of open inelastic final states. Therefore we additionally intro-
duce a projection operator Q onto the two-particle Hilbert space 
HA ⊗ HB from Hfull . Then the final elastic state, in other words, 
the state of two outgoing particles, is described as |fin〉 = Q S|ini〉.

We employ the two-particle Fock space {|�p 〉A} ⊗ {|�q 〉B} as the 
Hilbert space HA ⊗ HB . The two-particle state which consists of 
particle A with momentum �p and B with �q is denoted by |�p, �q 〉 =
|�p 〉A ⊗ |�q 〉B . We define an inner product of the two-particle 
states in a conventional manner by 〈�p, �q |�k, �l 〉 = 2E A�pδ(3)(�p −
�k) 2E B�qδ(3)(�q −�l ), where E I �p =

√
p2 + m2

I (I = A, B) and p = |�p|.
We shall study the entanglement between the two outgo-

ing particles, A and B. When the density matrix of the final 
state on HA ⊗ HB is denoted by ρ , we define a reduced den-
sity matrix as ρA = trB ρ . Then the entanglement entropy is 
given by SEE = − trA ρA lnρA . The other way to calculate the en-
tanglement entropy is to use the Rényi entropy, SRE(n) = (1 −
n)−1 ln trA(ρA)n . It leads to the entanglement entropy described as 
SEE = limn→1 SRE(n) = − limn→1

∂
∂n trA(ρA)n .

2. Partial wave expansion

The partial wave expansion is often useful to analyze a scatter-
ing process. Before starting to study the entanglement entropy, let 
us recall what Refs. [9,10] studied.

We adopt a center-of-mass frame. The state of the two par-
ticles, A + B, which have momenta �p and −�p, is denoted by 
|�p 〉 〉 := |�p, −�p 〉, while the many-particle state of X is denoted 
by |X〉. Since the complete set of states is given by the orthogo-
nal basis, {|�p 〉 〉, |X〉}, one can describe the identity matrix as

1 =
∫

d3 �p
2E A�p2E B �pδ(3)(0)

|�p 〉〉〈〈�p| +
∫

dX |X〉〈X | . (2.1)

We notice that δ(3)(0) comes from 〈 〈�k|�l 〉 〉 = 2E A�k 2E B�k δ(3)(�k −
�l )δ(3)(0), due to our definition of the inner product of states.

One can expand the S-matrix elements in term of partial waves. 
Let us consider the S-matrix and T-matrix defined by S = 1 + 2iT . 
The unitarity condition is S†S = 1, which is equivalent to i(T † −
T ) = 2T †T . Extracting the factor of energy–momentum conserva-
tion, we describe the T-matrix elements as

〈〈�p|T |�q 〉〉 = δ(4)(P �p − P�q)〈〈�p|t|�q 〉〉 ,

〈〈�p|T |X〉 = δ(4)(P �p − P X )〈〈�p|t|X〉 . (2.2)

P �p and P X are the total energy-momenta of |�p 〉 〉 and |X〉 respec-
tively, which say P �p = (E A�p + E B �p, 0, 0, 0).

One introduces the overlap matrix F �p �k(k, cos θ),

F �p �k = 2πk

E A�k + E B�k

∫
dX〈〈�p|t†|X〉δ(4)(P X − P�k)〈X |t|�k〉〉 , (2.3)

where k and θ are defined by �p ·�k = pk cos θ and k = p. This matrix 
implies the contribution of the inelastic channel at the middle of 
the scattering process. The T-matrix element in the elastic channel 
and the overlap matrix are decomposed in terms of partial waves,

πk

E A�k + E B�k
〈〈�p|t|�k〉〉 =

∞∑
�=0

(2� + 1)τ�(k)P�(cos θ) , (2.4)

F �p �k(k, cos θ) =
∞∑

�=0

(2� + 1) f�(k)P�(cos θ) , (2.5)

where P�(cos θ) are the Legendre polynomials. Then one can 
rewrite the unitarity condition as
Imτ� = |τ�|2 + f�
2

. (2.6)

Using s� := 1 + 2iτ� , which comes from the partial wave expansion 
of the S-matrix element,

πk

E A�k + E B�k
〈〈�p|s|�k〉〉 =

∞∑
�=0

(2� + 1)s� P�(cos θ) , (2.7)

the unitarity condition is equivalent to s∗
� s� = 1 − 2 f� . If there is 

not an inelastic channel, i.e. f� = 0, then the unitarity condition 
is reduced to s∗

� s� = 1. A comment in order [9,10] is that we can 
define a pseudo-unitary two-body S-matrix with partial wave com-
ponents, ω∗

�ω� = 1, by rescaling s� as ω� := s�/
√

1 − 2 f� .
The partial wave expansion allows us to depict the integrated 

elastic cross section, the integrated inelastic cross section and the 
total cross section as

σel = 4π

k2

∞∑
�=0

(2� + 1)|τ�|2 , σinel = 2π

k2

∞∑
�=0

(2� + 1) f� ,

σtot = 4π

k2

∞∑
�=0

(2� + 1) Imτ� . (2.8)

The differential elastic cross section is

dσel

dt
= π

k4

∑
�,�′

(2� + 1)(2�′ + 1)τ�τ
∗
�′ P�(cos θ)P�′(cos θ)

= |A|2
64π sk2

, (2.9)

where A(s, t) is the scattering amplitude, s and t are the Mandel-
stam variables, and the scattering angle cos θ = 1 + t/(2k2).

3. Entanglement entropy of two particles

We consider two unentangled particles, A and B, with momenta 
�k and �l as incident particles. That is to say, we choose a single state 
as an initial state;

|ini〉 = |�k,�l 〉 = |�k〉A ⊗ |�l 〉B . (3.1)

Here we have not taken the center-of-mass frame yet. Of course 
the entanglement entropy of the initial state vanishes. In terms 
of the S-matrix, the final state of two particles, |fin〉 = Q S|ini〉, is 
described as

|fin〉 =
(∫

d3 �p
2E A�p

d3�q
2E B�q

|�p , �q 〉〈�p , �q |
)
S|�k,�l 〉 . (3.2)

Then we can define the total density matrix of the final state by 
ρ :=N−1|fin〉〈fin|. The normalization factor N will be determined 
later so that ρ satisfies trA trB ρ = 1. Tracing out ρ with respect 
to the Hilbert space of particle B, we obtain the reduced density 
matrix, ρA := trB ρ , namely,

ρA = 1

N

∫
d3 �p

2E A�p
d3�q

2E B�q
d3 �p′

2E A�p′

× (〈�p , �q |S|�k,�l 〉〈�k,�l |S†|�p′, �q 〉)|�p 〉A A〈�p′| . (3.3)

Now let us adopt the center-of-mass frame, which leads to 
�k +�l = 0. Then the initial state is |ini〉 = |�k〉 〉, and the reduced den-
sity matrix becomes

ρA = 1

N

∫
d3 �p

2E

δ(0)δ(p − k)

4k(E + E )

∣∣〈〈�p |s|�k〉〉∣∣2|�p 〉A A〈�p | , (3.4)

A�p A�k B�k
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where s = 1 +2it, and δ(0) stems from the modulus equality of the 
initial and final particles’ momenta. By substituting (2.7) into (3.4), 
the normalization condition, trA ρA = 1, fixes N as N = δ(4)(0) N ′
with

N ′ = E A�k + E B�k
πk

∞∑
�=0

(2� + 1)|s�|2 . (3.5)

Since trA(ρA)n straightforwardly provides us the Rényi and entan-
glement entropy, we calculate

trA(ρA)n =
1∫

−1

dζ P(ζ )Gn−1(ζ ) , (ζ := cos θ) (3.6)

P(ζ ) = 1

2

∣∣∑
�(2� + 1)s� P�(ζ )

∣∣2

∑
�(2� + 1)|s�|2 ,

G(ζ ) =
∣∣∑

�(2� + 1)s� P�(ζ )
∣∣2

∑
�(2� + 1) · ∑�(2� + 1)|s�|2 , (3.7)

where we used the three-dimensional Dirac delta function in 
spherical coordinates with azimuthal symmetry, δ(3)(�p − �k) =
(4πk2)−1δ(p − k) 

∑
�(2� + 1)P�(cos θ), and the partial wave ex-

pansion of a delta function, 2δ(1 − cos θ) = ∑
�(2� + 1)P�(cos θ). 

Due to s� = 1 + 2iτ� and the unitarity condition (2.6), one can 
rewrite P(ζ ) in Eqs. (3.7) as

P(ζ ) = δ(1 − ζ )
V − 4

∑
�(2� + 1) Imτ�

V − 2
∑

�(2� + 1) f�

+ 2|∑�(2� + 1)τ� P�(ζ )|2
V − 2

∑
�(2� + 1) f�

, (3.8)

where V := ∑
�(2� + 1). Here 

∑
�(2� + 1) Imτ� , 

∑
�(2� + 1) f� and 

| ∑�(2� + 1)τ� P�(ζ )|2 correspond to physical observables and thus 
are necessarily finite, while the infinite sum V diverges. Therefore 
Eq. (3.8) leads to P(ζ ) = δ(1 − ζ ). Then one can easily proceed the 
integration in (3.6) and gets finally

trA(ρA)n = K n−1 , (3.9)

K := G(1) =
∣∣∑

�(2� + 1)s�

∣∣2

∑
�(2� + 1) · ∑�(2� + 1)|s�|2 . (3.10)

Obviously Eq. (3.9) for n = 1 correctly reproduces the normaliza-
tion condition, trA ρA = 1.

From Eq. (3.9) the Rényi entropy is SRE = − ln K and equals the 
entanglement entropy,

SEE = − lim
n→1

∂

∂n
trA(ρA)n = − ln K . (3.11)

Using a Cauchy–Schwarz inequality applied to (3.10), K satisfies 
0 ≤ K ≤ 1, that is to say, the entanglement entropy SEE is equal to 
zero or positive.

When there is no interaction, s� is equal to one for all � and 
K becomes one, that is to say, the entanglement entropy SEE van-
ishes. This is natural, because the final state is same as the initial 
state without interaction and the initial state (3.1) is not entangled. 
On the other hand, if the system has interaction, the entanglement 
entropy is expected to increase in scattering processes.

We have a comment on the elastic case without the inelastic 
channel, i.e., f� = 0 for all �. In this case, one has s� = exp(2iδ�), 
where δ� are the phase shifts. Hence one obtains the expression 
of Eq. (3.10) in terms of the phase shifts, K = V −2(| ∑�(2� +
1) cos 2δ�|2 + | ∑�(2� + 1) sin 2δ�|2).
Let us rewrite Eq. (3.10) in terms of τ� and f� as

K = 1 − 4
∑

�(2� + 1)|τ�|2 − 4
V |∑�(2� + 1)τ�|2

V − 2
∑

�(2� + 1) f�
. (3.12)

Formally the full Hilbert space extends over all partial waves, and 
thus one has V = ∑∞

�=0(2� + 1) = ∞. It causes K = 1, in other 
words, the entanglement entropy vanishes. However, in physi-
cal elastic processes, the Hilbert space is essentially limited by 
energy–momentum conservation, so that the physical Hilbert space 
provides a meaningful entanglement entropy as we shall see fur-
ther.

Since the partial wave expansions of the integrated elastic cross 
section, the integrated inelastic cross section, the total cross sec-
tion and the differential cross section are shown in Eqs. (2.8) and 
(2.9), K can be described in terms of these physical observables as

K = 1 − σel − 4k2

V
dσel
dt

∣∣
t=0

π V
k2 − σinel

. (3.13)

By a power expansion of SEE with respect to V −1 � 1, we obtain 
SEE = (k2/π)σel V −1 + O(V −2). The leading term is proportional 
to the elastic cross section, and this is consistent with the result in 
Ref. [7], which calculated the entanglement entropy of two outgo-
ing particles in the field theories in weak coupling perturbation.

4. Physical Hilbert space

In an actual scattering process at a given momentum k, too high 
angular momentum modes are strongly depleted and negligible in 
the elastic scattering amplitude. In a semi-classical picture using 
the impact parameter b = �/k representation, the limitation can 
be depicted as a maximal sizable value b/2 ≤ R , where R is in-
terpreted as the mean of incident particle effective radii. In this 
context the largest relevant angular momentum �max is

�max ∼ 2kR . (4.1)

In practice, we shall consider (4.1) as the maximal value of the 
angular momentum beyond which the summation over partial 
wave amplitudes τ� can be neglected. We thus approximate by 
truncation the sum over � of the Hilbert space states. Note that 
reasonable values of R may be obtained from experimental de-
termination of the impact-parameter profile of the scattering am-
plitude, which can be inferred [11] from the elastic differential 
cross-section dσel/dt .

At high energy, i.e., large momentum k with maximal impact 
parameter 2R , �max is large. Although the key point in the deriva-
tion of Eqs. (3.9) and (3.10) is that P(ζ ) is identified with the delta 
function coming from 

∑∞
�=0(2� + 1)P�(ζ ), it keeps approximately 

valid for large �max. Therefore under this approximation one can 
conclude the entropy is SRE = SEE = − ln K in replacing 

∑∞
�=0 with ∑�max

�=0 . The Hilbert space volume becomes V = ∑�max
�=0 (2� + 1) =

(1 + �max)
2 ∼ �2

max 
 1. Then Eq. (3.13) remains a good approxi-
mation with the parameter V /k2 ∼ 4R2. Finally K is obtained as

K ∼ 1 − σel − 1
R2

dσel
dt

∣∣
t=0

4π R2 − σinel
, (4.2)

so that one gets a finite value for the Rényi and entanglement en-
tropy. In this expression the explicit V dependence disappears. 
Note that 4π R2 can be considered as the classical “geometric” 
cross section of the scattering. Formula (4.2) implies that, if we 
measure the cross sections and get an evaluation of the impact 
parameter profile in a collider experiment, one can give a reli-
able approximate estimate of the entanglement entropy of the final 
elastic state of the two outgoing particles.
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It is instructive to examine the limiting values of (4.2) in 
0 ≤ K ≤ 1. The value K = 1, corresponding to zero entangle-
ment entropy, can be met when R2 reaches its minimal value 
(dσel/dt)|t=0/σel, which is nothing else than the average size of 
the elastic diffraction peak. The limit K → 0 (i.e., SEE → ∞) 
may be reached only at a zero of the expression 4π R2 − σtot +
(dσel/dt)|t=0/R2, whose only solution is Re A(s, 0) = 0 and σtot =
8π R2, that is twice the geometric cross section. An exception is 
when both numerator and denominator in (4.2) tend simultane-
ously to zero, namely σel = σinel = σtot/2 = 4π(dσel/dt)|t=0/σel =
4π R2. Interestingly enough it corresponds to the so-called “black 
disk” limit, which happens to be phenomenologically relevant for 
the high energy asymptotics [12].

5. Conclusion and comments

We have studied the entanglement entropy between two out-
going particles, A and B, in an elastic scattering at high energy, 
where many inelastic channels are also opened. In the derivation 
of the entanglement entropy, we used the unitarity condition on 
the S-matrix (2.6). As a result, we obtained the formula for the 
entanglement entropy (3.11), SEE = − ln K , with Eq. (3.10).

The Rényi entropy is same as the entanglement entropy, i.e., 
SRE = − ln K . This implies that the outgoing particles are maxi-
mally entangled. This is caused by the fact that the reduced den-
sity matrix (3.4) is diagonal due to the momentum conservation of 
two scattering particles in the center-of-mass frame.

Eq. (3.11) is reminiscent of Boltzmann’s entropy formula with 
the Boltzmann constant kB = 1. In this sense, one can regard 1/K
as a kind of micro-canonical ensemble of final states. Indeed it can 
be recast in the following form derived from (3.6):

SEE = ln
V

2
−

1∫
−1

dζ P(ζ ) lnP(ζ ) , (5.1)

due to P(ζ ) = V
2 G(ζ ). P(ζ ) is positive and of norm one in 

both cases of the full and physical Hilbert spaces, because∫ 1
−1 dζ P(ζ ) = 1 thanks to the orthogonality of Legendre polynomi-

als. Hence one can identify P(ζ ) with a well-defined probability 
measure over the interval ζ ∈ [−1, +1]. We also see that P(ζ )

originates from the probability |〈 〈�p|s|�k 〉 〉|2 in Eq. (3.4). Since V
can be interpreted as the total number of final two-body quantum 
states (2� +1 at level �), the second term in Eq. (5.1) can be under-
stood as the correction to the total entropy due to entanglement.

The result for K is described as Eqs. (3.12) and (3.13). The sub-
space volume of elastic states is small in size with respect to the 
volume of the overall Hilbert space, K is almost equal to one. In 
other words, the entanglement entropy is negligibly small.
For scattering at high energy, conveniently called “soft scatter-
ing”, we can employ the physical truncation of the Hilbert space 
given by Eq. (4.1). We take the limit of large momentum k with 
a fixed maximal impact parameter 2R . Then K becomes Eq. (4.2). 
This implies that the entanglement entropy is described in terms 
of the cross sections and the maximal impact parameter. Since 
it is possible to measure these parameters in experiments, e.g., 
a proton–proton scattering in a collider, the entanglement entropy 
can be evaluated using (4.2). It would be interesting, in order to 
confirm the validity of our formula, to confront this result ob-
tained within the S-matrix framework of strong interactions, to 
a microscopic derivation of the entanglement entropy in a gauge 
field theory at strong coupling using, e.g., the AdS/CFT correspon-
dence. It would require the holographic study of a QCD-like the-
ory.
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