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Eu(III)-FULVIC ACID COMPLEXATION: EVIDENCE OF FULVIC ACID 

CONCENTRATION DEPENDENT INTERACTIONS BY TIME-

RESOLVED LUMINESCENCE SPECTROSCOPY. 

Y.Z. KOUHAIL, M.F. BENEDETTI, AND P.E. REILLER 

ABSTRACT: Europium speciation is investigated by time-resolved luminescence spectroscopy (TRLS) in the presence of 

Suwannee River fulvic acid (SRFA). From complexation isotherms built at different total Eu(III) concentrations, pH 

values, ionic strength, and SRFA concentrations, it appears that two luminescence behaviors of Eu(III) are occurring. 

The first part, at the lowest CSRFA values, is showing the typical luminescence evolution of Eu(III) complexed by humic 

substances—i.e. the increase of the asymmetry ratio between the 5D0→7F2 and 5D0→7F1 transitions up to a plateau—, 

and the occurrence of a bi-exponential decay—the first decay being faster than free Eu3+. At higher CSRFA, a second 

luminescence mode is detected as the asymmetry ratio is increasing again after the previous plateau, and could 

correspond to the formation of another type of complex, and/or it can reflect a different spatial organization of 

complexed europium within the SRFA structure. The luminescence decay keeps on evolving but link to hydration 

number is not straightforward due to quenching mechanisms. The Eu(III) chemical environment evolution with CSRFA is 

also ionic strength dependent. These observations suggest that in addition to short range interactions—intra-particulate 

complexation—, there might be interactions at longer range—inter-particulate repulsion—between particles that are 

complexing Eu(III) at high CSRFA. These interactions are not yet accounted by the different complexation models. 

1. INTRODUCTION 

The use of rare earths, and particularly the lanthanides (Ln), is increasing in modern industry.1 

Their importance in the understanding of geochemical processes, the presence of radioisotopes of 

lanthanides in spent nuclear fuels and radioactive wastes, and their analogy with some actinides (An) 

under the +III oxidation state, justify a better understanding of their environmental chemistry in 

waters, soils, and sediments. 

Humic substances (HS), mainly composed of humic (HA) and fulvic (FA) acids are one of the 

main component of aquatic and soil ecosystems and are known to play an important role in the 

binding and transport of trace metals such as Ln(III).2-4 Because of their strong interactions with 

surfaces5 and their colloidal properties,6 HS may affect Ln(III) either by supporting their mobility in 

water, or by limiting their migration in soils and sediments. 
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HS contain a great diversity of binding sites making it difficult to define equilibrium constants for 

each complexation reaction. This has led to a wide variety of models.7 The most advanced models 

that permit to account for heterogeneity of HS, metal loading, pH, and ionic strength effects 

consider HS either as a mixture of discrete groups of sites—with different degree of correlations 

between these groups of sites—, e.g., Model VI-VII,8,9 or as a continuous distribution of groups of 

sites, e.g., NICA-Donnan.10 These kinds of models consider electrostatic phenomena, but the 

descriptions are somewhat different—hard sphere with a Donnan potential at the interface vs. 

permeable Donnan gel, respectively—when the structure of HS in general, and the structure of the 

Ln(III)-HS complexes in particular, remains largely under discussion. 

Some Ln(III) and An(III) show a remarkable luminescence that is linked both to symmetry of their 

chemical environment,11 and to the amount of water molecules in the first hydration sphere.12,13 This 

information can be obtained both from the evolution of the luminescence spectrum and from the 

decay time. This has been the basis of a vast literature on the interaction between Ln-An(III) and 

HS.14-27 Particularly, it has been shown that coordination structure around a metal ion is continuously 

modified by HS complexation when pH is varying.20,28 Time resolution of the luminescence signal, 

through time-resolved luminescence spectroscopy (TRLS), was used to obtain complexation 

constants as well as structural properties. 

The complexation strength of Ln(III) by HS can be considered relatively homogeneous within the 

series,29-31 in agreement with the strong proportion of oxygen containing functionalities of HS.30,32 

Milne et al.33,34 proposed generic complexation data for Ln(III) and An(III) in the framework of the 

NICA-Donnan model, but the great diversity of the reported studies, and the inherent heterogeneity 

of the different HS samples used throughout these studies led to some problems, particularly the 

proposed parameters for An(III), but also between Ln(III). As an example, Milne et al.34 proposed 

different median affinity constants, log10K ͂Mn+,i, for Am(III) and Cm(III), which is relatively surprising 

knowing the strong analogy between these two actinides(III), particularly regarding HS interactions.18 

The correlation between NICA-Donnan parameters—Figure 1 of Milne et al.34—and the first 

hydrolysis constants of the metals, log10*β°1, also exemplify this problem: Am(III) and Cm(III) are 

supposed to have comparable log10*β°1 ≈ -7,35 when Am(III) appears close to UO2
2+—log10*β°1 viz. -

5.8 in Figure 1 of Milne et al.34 and log10*β°1= -5.25 in Guillaumont et al.35. Furthermore, the 

particular interaction of HS with metals vs. pH, CO3
2- and oxalate concentration, etc., led to the 

proposition of the formation of ternary complexes,20,36-40 which are not always necessary to interpret 
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experimental data within the framework of NICA-Donnan23,25,41 or Model VI-VII,42-44 but was 

sometimes proposed nevertheless.39,40 

Cations are able to bridge two different polymer molecules,45 and this supramolecular association 

increases with cation valence.46 Supramolecular associations of HS are also known.47 The effect of 

cations on these supramolecular structures was suggested48 but needs further works.49-52 Nevertheless, 

the effect of Eu(III) on the aggregation of HA was shown,53-55 but the effect of HS concentration 

received little attention. There is therefore still a need for systematic studies of Ln(III)-HS 

complexation at varying pH, HS concentration, and ionic strength with spectroscopic information on 

the chemical environment of the metal. 

Our aim is to propose an as comprehensive as possible study of the speciation of a trivalent 

luminescent lanthanide, Eu(III), in a wide parametric space in term of pH values, ionic strength, and 

HS concentration to better understand Ln(III)-NOM interactions and structures of NOM complexes 

with these trivalent cations. Time-resolved luminescence spectroscopy could be a useful tool to 

evidence the effect of the supramolecular structures on Eu(III)-NOM complexes since it provides 

information on Eu(III) environment. We will use the Suwannee River fulvic acid (SRFA), considered 

as a proxy of natural organic matter reactivity,56 the relatively low UV-Visible absorption properties 

of which permits to use rather high concentration of FA in TRLS experiments compared to other 

HS extracts.24 We will take advantage of the luminescence properties of Eu(III) to characterize the 

Eu(III)-FA complexation and to evaluate its chemical environment using TRLS. 

2. MATERIALS AND METHODS 

2.1. REAGENTS AND CHEMICALS 

Europium(III) stock solution (10-4 mol/L) is obtained from the dissolution of Eu2O3 (Johnson 

Matthey, 99.99%) in HClO4. All solutions are prepared using milli-Q water from a Direct Q3 

Millipore. Suwannee river fulvic acid (2S101F) is purchased from the International Humic 

Substances Society and used as received. The ionic strength is fixed with NaClO4 (Sigma Aldrich, 

>98%) at 0.02 M, 0.1 M and 0.5 M. The pH values are fixed at 4, 6, and 7 by the addition of small 

amounts of freshly prepared 0.1 M NaOH and/or HClO4. Measurements are done using a pH meter 

Seven Easy (Mettler Toledo) with a combined glass electrode Inlab micro, filled with NaClO4 3M to 

avoid KClO4 precipitation in the frit of the electrode with the original KCl filling. The electrode 

signal in mV is calibrated using commercial buffer solutions (pH 4.01, 7.01, and 10.00). 
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2.2. TIME-RESOLVED LUMINESCENCE SPECTROSCOPY 

The experimental set-up and luminescence decay times fitting have already been described 

elsewhere.5,24,26,28 The 600 lines.mm-1 grating of the Acton spectrometer (slit 1 mm) is used. The 

luminescence signal is collected during a gate width (W) of 300 μs, at a gate delay (D) of 10 μs after 

the excitation by the laser flash. To increase the signal to noise ratio, 1,000 to 10,000 accumulations 

are performed for each spectrum, the background noise is subtracted, and the luminescence is 

divided by the average of 100 laser shots energy before and after the acquisition, and by the number 

of acquisitions (accumulations). 

Because of the weak energy received by the system during the experiments, photochemical 

reactions of humic substances57 can be excluded. The excitation wavelength is set at λexc = 393.7 nm, 

with an energy typically less than 2 mJ, which corresponds to the 5L6←
7F0 transition of Eu(III). After 

inner conversion, the observed luminescence corresponds to the transitions from the 5D0 excited 

state to the ground 7Fj manifold.58 We focus our attention on three transitions: the 5D0→
7F0 

transition (λmax = 578.8 nm), forbidden by the selection rules but apparent when Eu(III) chemical 

environment loses its centro-symmetry; the 5D0→
7F1 transition (λmax = 591.1 nm), a magnetic dipole 

transition; and the 5D0→
7F2 electric dipole transition (λmax = 615.1 nm), which is very sensitive to 

europium speciation,59 and known as a hypersensitive transition. The peak area ratio between the 

5D0→
7F2 and the 5D0→

7F1 transitions, hereafter referred as the asymmetry ratio 7F2/
7F1, has often 

been used to estimate complexation constants,60 and structural modifications.5 

2.3. MODELING 

Modeling of Eu-SRFA interactions is performed using ECOSAT software,61 which includes 

speciation with inorganic ligands and humic substances through the NICA- Donnan model.10 It 

merges the Non-Ideal Competitive Adsorption (NICA) model with a continuous distribution of 

sites, and a Donnan potential description to account for electrostatic interactions within the structure 

of HS considered as a water-permeable gel. The model accounts for electrostatic interactions,62 sites 

heterogeneity, non-ideality of the metal-HS complexation, and competition between metals. Milne et 

al. proposed generic data for HA and FA complexation with protons,33 and several metals of interest, 

including Ln(III) and An(III).34 The inorganic side reactions of Eu(III) with OH- are implemented in 

the ECOSAT database.63 
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Site densities of the two distribution of sites of SRFA—Qmax,1, and Qmax,2—, parameters 

representing the intrinsic heterogeneity—widths of the distributions of sites p1 and p2—, and generic 

proton parameters—non-ideality parameter nH+,i, and median affinity constant log10K̃H+,i—for low-

affinity type of sites—so-called carboxylic S1—and high-affinity type of sites—so-called phenolic 

S2—proposed by Milne et al.33,34 are recalled in Table S1 of the Supporting Information (SI). 

3. RESULTS AND DISCUSSION 

3.1. SPECTROSCOPIC DATA 

Eu(III) speciation is first studied at fixed pH values of 4, 6, and 7, fixed ionic strength of 0.1 M, 

and at varying CEu(III)—0.5, 1, and 10 µM—and SRFA concentrations —from 0 to 2,8 gSRFA/L. The 

obtained luminescence spectra shown in Figure S1 of the SI are normalized to the peak area of the 

5D0→
7F1 transition. The complexation of Eu(III) in the system is evidenced by the increase of both 

the forbidden 5D0→
7F0 and the hypersensitive 5D0→

7F2 transitions. The 5D0→
7F0 transition appears 

at pH above 5 in the absence of SRFA, or in the presence of a slight amount of SRFA at whatever 

pH value. This typically indicates a loss of centro-symmetry compared to the aquo-complex 

Eu(H2O)n
3+ and the formation of Eu(OH)n

(3-n)+—minor under these pH conditions—and Eu(III)-

SRFA complexes. 

The 5D0→
7F2 transition relative intensity is increasing with complexation59—here with SRFA 

concentration—and shows a narrowing with metal complexation and a shift toward lower 

wavelengths (see Figure S1 of the SI). The variation of the relative intensity of 5D0→
7F2 area to the 

5D0→
7F1 area with CSRFA, provides information on Eu(III) chemical environment. It is then possible 

to use this evolution as a spectral titration curve.60 

The evolutions of the asymmetry ratio 7F2/
7F1 vs. CSRFA at different pH values, CEu(III) (Figure 1) are 

showing unusual features. Two different Eu(III) luminescence behaviors are evidenced. First, the 

peak area ratio shows an increase with CSRFA values—CSRFA < 100 mgSRFA/L at pH 4, CSRFA < 40 

mgSRFA/L at pH 6, and CSRFA < 20 mgSRFA/L at pH 7—until a plateau seems to be reached. This 

evolution reflects the typical luminescence evolution of Eu(III) complexed by organic 

compounds.5,64-66 Second, after the plateau the asymmetry ratio keeps on increasing with CSRFA. 

Chung et al.21 reported a decrease in the asymmetry ratio after the plateau with increasing CEu(III) in 

the case of a soil FA, but we interpret this evolution as the saturation of their humic extracts and the 

increase of the proportion of free Eu in the system. 
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Figure 1. Evolution of 5D0→
7F2/

5D0→
7F1 area ratios vs. CSRFA at I = 0.1 M, pH 4 (a); pH 6 (b), and 

pH 7 (c) for CEu(III) of 0.5 (blue diamonds), 1 (orange circles), and 10 µM (green squares): λexc = 393.7 

nm, D = 10 µs, W = 300 µs, 600 lines.mm−1 grating. Error bars represent 2σ of the area ratio using 

the trapezoid method. 
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3.2. DECAY TIME EVOLUTIONS 

Eu(III) luminescence decay times were measured with an initial delay D = 10 µs, a gate step of 15 

µs, and a gate width W = 300 µs for CEu(III) of 1 µM and 10 µM at pH 4, 6 and 7 (Figure S2 of the 

SI)—the signal at CEu(III) = 0.5 µM being too weak to obtain a reliable decay time analysis. 

At pH 4 (Figure S2a of the SI), Eu(III) is showing a mono-exponential decay up 2.98 mgSRFA/L. 

The τ values do not differ from the free Eu3+ one, i.e. τ = 110 µs.12,13 For CSRFA higher than 2.98 

mg/L, bi-exponential decays are obtained, which could be attributed to the presence of two radiative 

decay processes linked to two different excited species.26 The first decay τ1 is faster than free Eu3+, 

and does not seem to vary strongly with SRFA concentration.5,28 The relationships that links the 

hydration number cannot be applied, as in the case of benzoic acids.64,66-68 The second decay, τ2, is 

slower than free Eu3+, and is showing two different comportments as a function of CEu(III). From 2.98 

up to ca. 100 mgSRFA/L—i.e., the CSRFA value where all the 7F1/
7F2 evolution are merging in Figure 

1—, the τ2 value is increasing up to ca. 180 µs whatever the CEu(III). This is the typical comportment of 

Eu(III) complexed by HS, which can be interpreted as the substitution of inner-sphere water 

molecules by SRFA functionalities. The τ2 value ca. 175 µs is in agreement with the evolution 

observed for Eu-HS complexes.24 The application of the relationship from Kimura and Choppin13 is 

debatable, but would indicate the  loss of ca. 3.6 ± 0.5 water molecules. At higher CSRFA values, the 

decay time evolutions are more intricate to interpret. If τ2 values keep on increasing for CEu(III) = 1 

µM—i.e., τ2 ca. 235 µs and a loss of ca. 5.2 ± 0.5 water molecules— they also seem to attain a plateau. 

Conversely, τ2 seems to decrease for CEu(III) = 10 µs. The application of the relationship from Kimura 

and Choppin13 has no sense here as it would indicate a “gain” of ca. 1.4 ± 0.5 water molecules 

between 100 and 1000 mgSRFA/L, when the increases in both 5D0→
7F0 area and asymmetry ratio 

(Figure 1) indicate a continuing change in the complexation environment of Eu(III). The 

combination of the apparent plateau for CEu(III) = 1 µM and the decrease at 10 µM, may lead to a 

possible dynamic quenching, the origin of which is not possible to determine and would require 

further investigations. 

At pH 6 (Figure S2b of the SI), only mono-exponential decays can be fitted for CSRFA lower than 

30 mg/L There is only a very slight increase in the τ values from ca. 100 to ca. 140 µs—loss of ca. 2.2 

± 0.5 water molecules. Bi-exponential decays are obtained for CSRFA higher than 30 mgSRFA/L for 

CEu(III) of 1 and 10 µM up to 1 gSRFA/L. One also note the difference between CEu(III), which is 
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reminiscent of the evolution at pH 4 and would also indicate a quenching mechanism. The final 

situation at CEu(III) and CSRFA = 1 gSRFA/L would indicate the loss of ca. 5.8 ± 0.5 water molecules. 

At pH 7 (Figure S2c of the SI), mono-exponential decays are first obtained at lower CSRFA. Bi-

exponential decays are obtained for CSRFA higher than 3 mgSRFA/L for CEu(III) of 1 and 10 µM. The 

obtained decays are showing a slight increase in τ1 and a stronger continuous increase in τ2 up to 285 

µs for CEu(III) = 10 µM—loss of ca. 6.0 ± 0.5 water molecules. Both Eu(III) concentration seem to 

follow the same trend even if the τ2 value for CEu(III) = 10 µM and CSRFA = 1 gSRFA/L is clearly below 

the trend. The possible quenching mechanism seems to be less operant here. 

Nevertheless, the decay time evolutions seem to confirm that different environments are present at 

different CSRFA. The estimation of hydration sphere here is constrained by the relationship from 

Kimura and Choppin13, the validity of which has not been demonstrated up to now in these systems. 

3.3. EFFECT OF IONIC STRENGTH. 

In order to improve the understanding of the second mode in the complexation isotherms, we 

performed experiments at pH 7 and various ionic strengths (I = 0.02, 0.1, and 0.5 M NaClO4), which 

asymmetry ratios’ evolutions are shown in Figure 2. First, before the plateau, i.e., < 10 mgSRFA/L, the 

complexation is decreasing as expected with ionic strength,10,69 whilst a reverse influence is shown at 

higher CSRFA. This second part, where the peak area ratio is still increasing, means that the chemical 

environment of Eu(III) is ionic strength dependent. If one considers that the decrease of the 

asymmetry ratio with ionic strength at low CSRFA indicates a typical weaker binding,18,69,70 then one can 

also consider that the increase in asymmetry ratio at higher CSRFA with ionic strength indicates a 

stronger binding environment. This was never reported in previous studies focusing on metal-

organic matter speciation.24 
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Figure 2. Evolution of 5D0→
7F2/

5D0→
7F1 area ratios vs. CSRFA the ionic strength (I = 0.02 M, red 

diamonds; I = 0.1 M, green circles; I = 0.5 M, blue squares) at CEu(III) of 1 µM and pH 7. Dashed line 

corresponds to the inversion of the ionic strength trend. 
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It is then possible to compare our dataset to the prediction of the NICA-Donnan model. First, the 

asymmetry ratios are used as indicators of the proportion of Eu(III) complexed to SRFA (Figure S4 

of the SI).60 The asymmetry ratio evolves with the metal to SRFA concentration ratio. When SRFA is 

not present in the system, the asymmetry ratio is the one for the Eu(III) aquo-complex. When the 

asymmetry ratio is reaching a plateau at pH 4 (Figure S4 of the SI), this suggests that all of Eu(III) is 

complexed to SRFA. This evolution is used as a spectral titration curve to calculate proportions of 

Eu(III) bound to SRFA (Figure 3a).60 At pH 6, the existence of a plateau is less clear (Figure 1b) but 

seems to occur for CSRFA of 10 mgSRFA/L for CEu(III) of 0.5 µM  and 1 µM, and for CSRFA of 

30 mgSRFA/L for CEu(III) of 10 µM. These values are supported by our previous simulations (vide supra, 

Figure S3 of the SI). At pH 6, Eu(III) is totally bound to the SRFA for concentrations ca. 10 

mgSRFA/L for CEu(III) of 0.5 µM, and 1 µM, and for concentration ca. 30 mgSRFA/L for CEu(III) of 10 µM. 

At pH 7 (Figure 1c), the end of the first complexation mode is set as for pH 6, when Eu(III) is fully 

bound to SRFA in our previous simulations, for concentrations of 2.6 mgSRFA/L for CEu(III) of  0.5 and 

1 µM and 10 mgSRFA/L for CEu(III) of 10 µM. 

For a better fit, NICA-Donnan parameters for Eu(III)-SRFA binding are adjusted. The adjustment 

of Eu(III) binding parameters for S1 sites is done at pH 4 only, because at higher pH values, due the 

presence of hydrolyzed species of Eu(III), the asymmetry ratio at low SFRA concentration could not 

correspond to free Eu3+. Thus, the adjusted parameters for the low proton affinity sites S1 at pH 4 

are used at pH 6 and 7 to adjust the parameters for the high proton affinity sites S2. 

The proportion of Eu(III)-SRFA complex for CEu(III) of 0.5, 1, and 10 µM at pH 4, 6, and 7, and 

the modeling of Eu(III) bound to SRFA are shown in Figure 3. NICA-Donnan parameters for 

proton and Eu(III) binding to SRFA used in the model are presented in Table S1 of the SI. The 

model is slightly underestimating the complexation for CEu(III) = 0.5 µM at pH 4, but it is still in fair 

agreement with experimental data. It is worthy to notice in Table S1 of the SI that compared to 

generic parameters, Eu(III) complexation by SRFA is less important—lower log10K̃Eu3+,1— and the 

distribution is more heterogeneous for S1 sites—lower nEu3+,1—, and that the complexation is 

stronger and less heterogeneous for S2 sites—higher log10K̃Eu3+,2, and higher nEu3+,2. Milne et al.34 

proposed correlation between nMn+,i and nMn+,i×log10K̃Mn+,i vs. log10*β°1. As it can be anticipated from 

the very little difference between the simulations using generic parameters34 and the modeling of our 

data, it can be seen in Table S1 of the SI that nEu3+,1×log10K̃Eu3+,1 are in good agreement. Nevertheless, 
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it seems that nEu3+,2×log10K̃Eu3+,2 is higher in our case leading to a slightly higher complexation than 

anticipated. 

 

Figure 3. Proportion of Eu(III) bound to SRFA for Eu(III) concentrations of 0.5 µM (blue 

diamonds), 1 µM (orange circles) and 10 µM (green squares) at pH 4 (a), 6 (b), and 7 (c). The dashed 

lines are the simulations and the solid lines are the results of our modeling of Eu(III) bound to 

SRFA. Adjusted and generic NICA Donnan parameters are given in Table S1 of the SI. 
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it can reflect a different spatial organization of the complexed europium constrained by a change in 

the SRFA structure. As the UV-Visible absorption of HS decreases rather monotonously with 

wavelength, one may also propose higher auto absorption of the 5D0→
7F1 transition wavelength span 

compared to the 5D0→
7F2 transition one with CSRFA. The fact that the second increase occurs at 

lower CSRFA with pH permits to exclude this hypothesis. 

A possible explanation may rely in the influence of ionic strength on complexation and adsorption. 

Following the Debye-Hückel theory, the decrease in complexation with ionic strength at low CSRFA is 

in line with the evolution of the activity coefficient with the reciprocal of the Debye length ().75 This 

indicates that at low CSRFA the complexation occurs with rather isolated functional groups in the 

SRFA structure. At higher CSRFA one can consider the interaction between SRFA entities as 

supramolecular associations of fulvic acid particles.47,49 The variation of the hydrodynamic radius (RH) 

with ionic strength of the smallest entities of HS, including SRFA, has given contrasted results.76,77 

When d’Orlyé and Reiller77 did not evidence a clear increase in RH with ionic strength at pH 10 in 

Taylor dispersion analysis,  Domingos et al.76 reported a small decrease of diffusion coefficient of 

SRFA—small increase in RH—with ionic strength between pH 2 and 8 in fluorescence correlation 

spectroscopy. This latter result was interpreted as a reduction of both intramolecular and 

intermolecular repulsion. Decreasing intramolecular repulsion will lead to molecular compression, 

while decreasing intermolecular repulsion can increase aggregation. It has also been shown that 

contrary to simple organics—and commonly to polyelectrolytes78,79—, adsorption of humic 

substances onto minerals is increasing with ionic strength.5,80 Even if this effect is much weaker for 

FA compared to HA,81 this means that HS entities in general can approach at shorter distances to 

each other in solution with increasing ionic strength. Following the Gouy-Chapman theory, Eu(III)-

bearing SRFA entities can more easily approach each other with increasing ionic strength. The 

second part of the asymmetry ratio increase could therefore be due to the formation of complexes 

with higher stoichiometry between complexation sites that are not located on the same HS entity or 

“particle”. This suggests that there might be electrostatic driven interactions between fulvic acid sites 

in particles that are typically complexing Eu(III)—intra-particulate complexation mode—, and form 

Eu(III)-bridged complexes in the second part of the asymmetry ratio evolution—inter-particulate 

complexation mode. We can also notice that in complexation isotherms at pH 7 and various ionic 

strengths (Figure 2) the metal to ionized FA sites concentration ratio equals 10 at the boundary 

between the two-luminescence modes. In the second mode, we can assume that Eu(III)-bridged 

complexes are formed because of the decreasing metal to ionized FA sites concentration ratio. 
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The formation of 1:2 stoichiometry complexes was suggested by Bertha and Choppin73 who 

studied interactions of HS (HA and FA) with Eu(III) and Am(III). Their results, using Schubert’s 

method to determine binding constants, suggest the formation of 1:1 and 1:2 Eu-HS complexes 

from slope analyses of the variation of the distribution coefficient with humic acid concentration. At 

pH 4.5 Bertha and Choppin73 proposed that Eu(III) is bound simultaneously by one or two 

carboxylate groups. In our study we could interpret our spectroscopically observed evolutions as the 

successive formation of the 1:1 and 1:2 Eu(III)-SRFA complexes. The ionic strength effect in 

complexation isotherms suggests that complexation sites may not be located on the same fulvic acid 

particle. Such interactions are not yet accounted for in any model describing metal-HS interactions, 

and would require either complete rewriting of the models, or adaptation of the existing models to 

this not yet noticed effect. 

Within the NICA-Donnan model framework, the Donnan volume VD is optimized to build the 

acid-base titration master curves. It decreases with ionic strength following an empirical 

relationship.62 The Donnan potential ψD inside this volume is assumed negative and constant inside, 

and nil outside the particle—or water-permeable Donnan gel. It can be calculated from the ratio of 

the activity of ions inside and outside the Donnan gel, and from the charge density inside the gel, so 

that the decrease in complexation with ionic strength is linked to a decrease in the negative value of 

q/VD and ψD.10 One could then think that the increase of Eu(III) association at high CSRFA with ionic 

strength could be linked to an apparent increase in the negative value q/VD and ψD. The verification 

of this hypothesis implies the determination of the size of Eu(III)-SRFA complexes at varying pH, 

Eu and SRFA concentrations, and ionic strength. It is nevertheless, worthy to recall that, as already 

discussed in Benedetti et al.,62 the Donnan model seems not to be very realistic for FA because the 

changes in Donnan volumes as a function of ionic strength are too large. 

Another possibility is the account of an interfacial potential, as a double layer spreading outside the 

Donnan gel as proposed by Saito et al.,82,83 which should be implemented to be effective at high CSRFA 

and should mostly be ineffective at low CSRFA in order to represent the already successful modeling 

obtained up to now within the framework of NICA-Donnan. 

SUPPORTING INFORMATION. 

The supporting information contains four Figures and one Table. One Figure shows Eu(III)-

SRFA normalized luminescence spectra to the 5D0→
7F1 transition at 0.1 M NaClO4 and CEu(III) = 1 
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µM at pH 4, 6 and 7. One Figure shows luminescence decay times of Eu(III) at pH 4, 6 and 7 

depending on fulvic concentration for Eu(III) concentrations of 1 µM and 10 µM. One Figure shows 

the simulation of Eu bound to SRFA and NICA-Donnan parameters using generic parameters. One 

Figure shows the transformation of asymmetry ration in proportion of Eu(III) bound to the fulvic 

acid. One Table is showing the NICA-Donnan generic parameters for simulation, and the NICA-

Donnan parameters obtained from modeling. This material is available free of charge via the Internet 

at http://pubs.acs.org. 
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