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1. Introduction

The cusp anomalous dimension is an ubiquitous quantity irggdheories. It governs the
dependence of the cusped Wilson loop on the ultraviolebfftt] and appears in many physical
guantities, e.g. it controls the infrared asymptotics @twring amplitudes and form factors in-
volving massive particles [2, 3]. The two-loop result foisttundamental quantity has been known
for more than 25 years [4]. Here we report on a calculatioteht-dependent contribution to the
cusp anomalous dimension in QCD at three loops.

2. Overview of resultsin .4 =4 SYM and QCD

Recent years have seen a lot of progress in understandirmusipeanomalous dimension in
A = 4 supersymmetric Yang-Mills (SYM), where perturbativeules are available to three and
four loops, including part of the non-planar correctionsiahitfirst appear at four loops [3].The
cusp anomalous dimension takes a particularly simple farm'i=4 SYM and it can be organized
according to the transcendental weight of contributingcfioms. In this section, we review these
results in order to compare them to the QCD answer.

The most natural Wilson loop operator to considerfih= 4 SYM has an additional coupling
to scalars [6] depending on a unit vectdrin the internalS® space,(n')? = 1, and an auxiliary
parameteo

Wy = (0[tr [Pexp(i fcdx-A(x) + aj({:d|x| n qq(x)) ] 0). 2.1)

For o = 1, the Wilson loopN,—1 locally preserves supersymmetry whereasdet O it coincides
with the conventional Wilson loop with only coupling to gheas in QCIF. We will refer to the
o =1 ando = 0 cases as the supersymmetric and bosonic Wilson loop,atdsge.

To compute the cusp anomalous dimension, we consider agratien contoulC formed by
two segments along space-like directiofisandvh (with v2 = v3 = 1), with cusp angle cag=v; - v,
(cf. Fig. 1). In addition, we take the vecton§ andn,, to be constant along the segments except
the cusp point where they form an additional internal angigfc= njn,. The cusp anomalous
dimension depends on the cusp angdeend 6. It turns out to be convenient to introduce complex
variables

x=¢€?, & = (cosB — cosp) /(ising) (2.2)

The dependence of the cusp anomalous dimensidnisipolynomial. For simplicity of notation,
let us se = 11/2 from now on, i.e& = (1+x?)/(1—x?).

10bviously, the perturbative regime is most relevant forabmparison with QCD. However, we would also like to
mention that results are available at strong coupling [B],tke AdS/CFT correspondence. Moreover, exact results are
known in the small angle regime [7], and there is an approaskd on integrability, cf. [8] and references therein. The
cusp anomalous dimension can also be obtained from the Riegigef certain massive scattering amplitudes [9].

2|t is not known at present whether integrability extendshts tase.



On the QCD cusp anomalous dimension Johannes M. Henn

Vi V2

Figure 1: Sample Feynman diagram producingrardependent contribution to the three-loop cusp anoma-
lous dimension in QCD. Thick lines denote two semi-infiniggments forming a cusp of angie Wavy
lines stand for gauge fields and the thin circle for a quarkloo

The two-loop results for the Wilson loop operatis_1 andW,_g in .4 =4 SYM aré

raom" - =aAb(g) +a2A? (g), 2.3)
reseW—a |A¥(g) - AV (0)] + a2 [A?(g) - AP (0)+BP(¢) ~B?(0)] ,  (24)

wherea = g?N/(877) is the 't Hooft coupling and

AD (@) =— & logx,
B®)(g) =20 +log?x— & [{> +log?x+ 2Li1 (%) logx— Li>(x?)] (2.5)

AP (@) = & |2¢,logx+ % Iog3x} &2 {zg + Zologx+ % log®x+ Li(x?)logx — Liz(x?)

Eq. (2.3) is due to the last ref. in [4], while to the best of knpwledge eq. (2.4) is new. Note
that although each of the functions (2.5) has uniform welghtand 3, respectively, they produce
a ‘weight drop’ contribution when evaluated at zero angié)(0) = 1, B®(0) = —2+ 25, and
AP)(0) =1-20,.

Interestingly, the cusp anomalous dimension for the basVilson loop in.4 =4 SYM
differs only slightly from the supersymmetric one. Morepvihe functionB? is related to a
derivative ofA(?), if one consider€ andx as independent variables,

1 0
2 _ = A(z)

Using relations (2.5), we can rewrite the known two-loopulefor the QCD cusp anomalous

3The supersymmetric results quoted here are valid in the DEE2me, while formulas in QCD will be given in
theMS scheme. See Appendix A of ref. [10] for a discussion of tfese conversion up to two loops.
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dimension in a new way, in terms of the simple functions entened in.4¥" =4 SYM,
Moep = Cr [A(l) () — A(l)(O)} , 2.7)

1
Gto= 5CrCa|A%(9) ~ A% (0)+ B (9) - BZ(0)|

67 5
+ <3_6CFCA— §CFTfnf> [A(l)(fp) —A(l)(o)} ; (2.8)

where the expansion parameterdig/ 11, Ce andCa are quadratic Casimirs of t8U(N) gauge
group in the fundamental and adjoint representation, rtisdy, ns is the number of quark flavours
andTy =1/2.

3. Uniform weight functions and computation of the master integrals

Why should uniform weight functions play such an importasierfor the cusp anomalous
dimension? In fact, the perturbative expansion of a cuspisbWloop (2.1) gives rise to distinct
Feynman integrals which are already very close to the defindf iterated integrals [11]. In the
third reference of [5], this observation was used to givelgardhm for computing any Wilson line
integral with an arbitrary number of propagator exchanges rfo internal vertices).For the full
computation we require a larger class of integrals thatiohes graphs with interaction vertices. A
method which exposes the weight properties of such integvak proposed in [13], and we used
it for our computation.

Since the three-loop cusp anomalous dimension does nat@auenplanar corrections, it can
be expressed in terms of planar integrals only. We choosertorm the calculation in momentum
space, using the heavy quark effective theory frameworKTBg integrals can all be parametrized
as (withD = 4 — 2¢)

dPk; dPk,dPks _ _ _
Ga.....a1 :e3£yE/W(—2k1-V1+l) A(_2ky-vy+1) % (—2kz-vy+ 1)
X (=2 Vo + 1) (= 2Ky - Vo + 1) % (—2kg - Vo + 1)~ (—kZ) ¥
X (— (K1 — k2)?)~%(— (ko — ka)?) 7 (— (k1 — ka)?) ~0(—kg) M (—k5) ™2, (3.1)

for certain choices of positive/negative integarsApplying the integral reduction algorithms [14],
we found that 71 master integrals are required in totale then used the method proposed in ref.
[13] to choose a convenient basis for the latter, denoteﬂ(bys). A distinguished feature of this
basis is that the (x, £) satisfy the differential equations of the forid & 4 — 2¢)

. a b c |-
oxf(x,e)=¢ §+m+r1 f(x€), (3.2)
with constant X— and e—independent) matricea b,c. We see that eq. (3.2) has four regular
singular points, 0L, —1,c. Due to thex <> 1/x symmetry of the definition 2cag= x+ 1/x, only
the first three are independent. They correspond, in turthetdight-like limit (infinite angle), to

the zero angle limit, and to the threshold limit. See ref.fgB]further discussion of these limits.

4A different computation of some of these integrals is disedsin [12].
5A subset of these integrals that reduce to a one-loop teanith e-dependent indices was computed in ref. [16].
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Figure 2: Diagrammatical representation of the basis intedsaldiscussed in the main text. Thin lines
denote scalar propagators. One of the propagators is dbyarid a normalization factor is not shown in the
figure.

Solving (3.2) we use boundary conditions fBQx,e) atx=1. All F(l,s) except one can
be easily obtained from consistency conditions, i.e. atmserf unphysical singularities, and the
remaining constant can be found by comparing to refs. [I7dllbws immediately from (3.2) that
the solution forf in the from ofe—expansion can be written in terms of harmonic polylogarithm
[18]. In this way, we obtained an analytic answer in terms mifarm weight functions for all
integrals required. As an example, we consider one of theemamsegrals

1—x? 1 2
faq = €° G101010112010 = £*| — 6 Hoo(X) — 3 1°H1,0(X) — 4Ho,-10,0(X)
17t 5
+2Hoﬁo7_1’0(X) + 2H0’170’0(X) — 4H1’070’0(X) + 4Z3H0(X) — %] + ﬁ(s ) . (33)

We performed numerical checks on all integrals using FIEEI®, and analytically reproduced
results for three-loop integrals known from the = 4 SYM computation [5]. More details will be
discussed elsewhere.

4. Three-loop cusp anomalous dimension in QCD

To compute the cusp anomalous dimension, we started wittiefigition of the bosonic Wil-
son loop (2.1) in QCD, and generated all Feynman diagramsilsoting toW,—_o up to three loops,
in an arbitrary covariant gauge. This was done with the hitpeocomputer programs QGRAF and
FORM [15]. Then;—dependent contribution only comes from diagrams with geipriopagating
inside the loops. They can be evaluated within dimensicewllarization using standard methods,
details will be given elsewhere.

The cusp anomalous dimensibrcan be extracted from the divergent part of the one-particle
irreducible vertex function/(¢) of the heavy-to-heavy current [3] (e.g., the diagram in Hig.
without the external leg propagators),

r— dlogz
~ dlogu’

logV (@) — logV (0) = logZ + &(£°), (4.1)
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In the MS scheme, the renormalizati@h-factor has the following structure
1 /as as\2 [ Bo 1
00Z = — — (=\r@D Zs O r@_—r@
o9 25(7'[) +<7T) 16¢2 4e

as 3 Bgr(l) Bl + 4B, @ @
+(n) [_ 963 | 92 6e |’

(4.2)

where theu—dependence only enters through the renormalised coupimgiant [20],% (j’—fT) =
-2 (f—fT) —2B(as). As a non-trivial check of our calculation we verified that é42) indeed re-
produces the pole structure of @) at three loops.

At three loops, the cusp anomalous dimension has the fallpfarm by virtue of non-Abelian

exponentiation,

FS)CD = C1C|:C£+ ¢ Ce (Tf nf)2 + Cgchf Nt +C4CeCaTsNs . (4.3)

For thens dependent terms, we obtained the following results,

2= 5 [AV(@) - AVO)] .
ca= <Z3 - i—Z) AV (@) AV ()] . (4.4)
= - 5 [A2(0) - A%(0) + 8% (9) - BE0)] - ¢ (7 T ) [AV(0) - AV(0)].

with the functionsAY), A® andB(? given in eq. (2.5).

The following comments are in order. The Iead'm@erm in (4.3) is in agreement with the
known result [21]. The expressions for the coefficieedsndc, in the subleadingis terms are
new (c3 can be obtained by generalizing the method of the last rdB]nf

As yet another check of our result, we can take the lightdiikét of (4.3), where one expects
[22] the behavior lim_,o — K(as)log(1/x), with K at three loops computed in refs. [23]. Again,
we observed a perfect agreement for thelependent terms.

It is remarkable that despite the relative complexity of Beynman integrals (3.1), the final
expressions (4.4) are surprisingly simple! Moreover, teyexpressed in terms of the same func-
tions that appear in they” = 4 SYM answer. It will be interesting to see whether this iDdlse
case for theC=C2 term. This calculation is work in progress.

5. Discussion

The simplicity of egs. (4.4) suggests that there should benplsr way of arriving at these
results. Ignoring technical details such as the intrinsitormalization of the Lagrangian and the
associated3 function, morally speaking there should be a way of orgagizhe calculation in
terms of manifestly finite integrals in four dimensions,raseif. [24]. This would very likely require
only a (simpler) subset of functions as compared to the &lon inD = 4 — 2¢ dimensions.

A related comment is that when computing integrals via défféial equations, usually one
proceeds in a “bottom-up” approach: one starts with thegials with few propagators, e.g. a
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tadpole integral, when proceeds with bubbles, and so onus&iow imagine a scenario where,
through some means, one knows the answerfoe= 4 SYM. The integrals required for/” = 4
SYM are typically the ones with maximal number of propagstdhanks to its good ultraviolet
properties. In the traditional approach, one arrives antbaly at the very end, and therefore they
obviously contain a lot of information. Given this, it is @mesting to ask whether one can use this
information in a “top-down” approach, and how many of the raastegrals required for QCD are
determined by it.
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