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1Unité Mixte de Recherche 3681 du CNRS.

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2016)212

mailto:Gregory.Korchemsky@cea.fr
http://arxiv.org/abs/1512.05362
http://dx.doi.org/10.1007/JHEP03(2016)212


J
H
E
P
0
3
(
2
0
1
6
)
2
1
2

Contents

1 Introduction 1

2 Resummed scaling dimensions 2

3 Resummed OPE coefficients 4

4 Examples of level-crossing 7

4.1 Level-crossing in N = 4 SYM 7

4.2 Level-crossing in three-dimensional CFT 10

4.3 Level-crossing in QCD 13

5 Concluding remarks 16

1 Introduction

Let us consider a unitary conformal field theory (CFT) and examine the spectrum of scaling

dimensions of conformal primary operators. The scaling dimensions ∆i depend on various

parameters of CFT such as coupling constants, Casimirs of internal symmetry group etc.

In a close analogy with gauge theories, we assume that CFT depends on a small parameter

1/N and the scaling dimensions admit an expansion in powers of 1/N2, e.g.

∆i = ∆
(0)
i +

1

N2
∆

(1)
i +

1

N4
∆

(2)
i + · · · . (1.1)

Here the leading term ∆
(0)
i is an eigenvalue of the dilatation operator in the planar limit, the

subleading terms can be obtained by diagonalizing the dilatation operator perturbatively

in powers of 1/N .

In this note we ask the question what happens when the scaling dimensions of two

operators collide in the planar limit for some value of the coupling constant, ∆
(0)
1 = ∆

(0)
2 .

This occurs in particular in maximally supersymmetric N = 4 super Yang-Mills theory

(SYM) for Konishi and double-trace operators (defined in (4.1) below). The scaling di-

mension of the double-trace operator is protected from corrections in the planar limit,

whereas the scaling dimension of the Konishi operator is an increasing function of ’t Hooft

coupling constant that starts at 2+O(λ) at weak coupling and increases as 2λ1/4 at strong

coupling [1]. As a consequence, the two levels cross each other at finite λ. We shall return

to this example below.

It is well-known that, in the radial quantization, the dilatation operator in D−dimen-

sional Euclidean CFT coincides with the Hamiltonian generating time translations on the

cylinder R×SD−1. In a unitary CFT, it is a hermitian operator with respect to the scalar
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product given by two-point correlation function of Oi(x) on the cylinder and, therefore, its

eigenvalues ∆i have to satisfy von Neumann-Wigner non-crossing rule [2] stating that the

levels of the dilatation operator with the same symmetry cannot cross.

How can we reconcile the non-crossing rule with the fact that the functions ∆
(0)
i pro-

viding the leading (planar) correction to (1.1) can cross each other? The situation here

is very similar to that in quantum mechanics — the perturbative expansion (1.1) is well-

defined if the energy level separation ∆1−∆2 is much larger compared to their ‘interaction

energy’ defined by the leading nonplanar O(1/N) correction to the dilatation operator. In

the opposite limit, for

ǫ ≡ ∆1 −∆2 = O(1/N) , (1.2)

the perturbative expansion (1.1) becomes singular due to small denominators and needs to

be resummed to all orders in 1/N . As we show below, the resummed expressions for ∆i

indeed respect the non-crossing rule.

2 Resummed scaling dimensions

Let us consider a pair of conformal operators O1 and O2 whose scaling dimensions depend

on the coupling constant g and admit the 1/N expansion (1.1). For the sake of simplicity

we take Oi(x) to be scalar operators normalized as

〈Oi(x)Oj(0)〉 =
δij

(x2)∆i
. (2.1)

We assume that for N → ∞ their scaling dimensions intersect at some value of the coupling

constant, ∆
(0)
1 (g) = ∆

(0)
2 (g) for g = g⋆, and remain separated from the rest of the spectrum

of ∆i’s by a gap that remains finite for N → ∞.

We tacitly assume throughout this section that the scaling dimensions of the operators

O1 and O2 satisfy (1.2). This translates into the following condition for the coupling con-

stant |g− g⋆|= O(1/N). We show below that for N large but finite, the scaling dimensions

∆1 and ∆2 do not intersect as one varies the coupling constant in the vicinity of g = g⋆,

the minimal distance between the two curves scales as O(1/N).1

Let O1 and O2 be the eigenstates of the dilatation operator in the planar limit, so that

Oi(x) = Oi(x) + O(1/N). The conformal symmetry implies that away from the crossing

point, for ∆
(0)
1 6= ∆

(0)
2 , the two-point correlation function 〈O1(x)O2(0)〉 should vanish for

N → ∞. This does not mean however that 〈O1(x)O2(0)〉 can not be different from zero.

For N large but finite it can receive corrections suppressed by powers of 1/N

〈O1(x)O2(0)〉 =
1

N
ϕ(x2) + . . . , (2.2)

where dots denote subleading corrections. In the similar manner, the leading nonplanar

corrections to the diagonal correlation functions 〈Oi(x)Oi(0)〉 scale as O(1/N2).

The function ϕ(x2) depends on the coupling constant and describes the mixing be-

tween the operators O1 and O2. If the scaling dimensions of the operators O1 and O2

1A similar result was independently obtained by Fernando Alday (private communication).
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satisfy (1.2) and are separated from the rest of the spectrum by a finite gap, we expect

that the conformal operators are given by their linear combinations

O+ = O1 + c2O2 , O− = O2 + c1O1 . (2.3)

Requiring 〈O+(x)O−(0)〉 = 0 we find with a help of (2.3), (2.1) and (2.2) that, in the

vicinity of the crossing point, the conformal symmetry restricts the possible form of the

function ϕ(x2)

1

N
ϕ
(
x2

)
(1 + c1c2) = −c1

(
x2

)−∆1 − c2
(
x2

)−∆2

= −
(
x2

)−∆1
[
c1 + c2 + c2 ǫ lnx

2
]
. (2.4)

Here in the second relation we took into account (1.2) and neglected terms proportional

to ǫ2 ∼ 1/N2. Then, going to N → ∞ limit on the both sides of (2.4) and taking into

account that ǫ = O(1/N), we find c2 = −c1 +O(1/N) together with

ϕ
(
x2

)
=

γ lnx2

(x2)∆1
, (2.5)

where γ does not depend on N and satisfies

c21 + c1
ǫN

γ
− 1 = 0 . (2.6)

We can use this equation to express the coefficients c1 and c2 in terms of γ and obtain

from (2.3) the conformal operators O± that take into account the leading nonplanar cor-

rection.2

To determine the scaling dimensions of the operators (2.3), we examine their two-point

correlation functions

〈O−(x)O−(0)〉 =
1

(x2)∆2
+

c21
(x2)∆1

+
2c1/N

(x2)∆1
γ lnx2

=
1 + c21
(x2)∆2

[
1 +

c1(2γ/N − c1 ǫ)

1 + c21
lnx2

]
(2.7)

and similar for 〈O+(x)O+(0)〉. Matching this relation into (2.1) we obtain the leading

O(1/N) correction to the scaling dimension of the operator O−

∆− = ∆2 −
c1(2γ/N − c1 ǫ)

1 + c21
= ∆2 −

γ

N
c1 , (2.8)

where in the last relation we applied (2.6). Going through similar calculation of ∆+ we find

∆± =
∆1 +∆2

2
±
√

ǫ2

4
+

γ2

N2
, (2.9)

with ǫ = ∆1−∆2. We recall that this relation holds up to corrections suppressed by powers

of 1/N .

2The two solutions to (2.6) give rise to the same operators O± (up to an overall normalization factor).
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The following comments are in order.

An attentive reader will likely notice that ∆± coincide with energies of a two-level

system with a Hamiltonian

H =

[
∆1 γ/N

γ/N ∆2

]
. (2.10)

Indeed, we can use (2.1), (2.2) and (2.5) to verify that this matrix defines the action of

the dilatation operator on the operators O1 and O2, that is i[D, Oi(0)] = Hij Oj(0). Then,

the construction of the conformal operators (2.3) follows the usual consideration of the

operator mixing in gauge theory at one loop with the only difference that 1/N plays the

role of ’t Hooft coupling constant.3

It is instructive to compare (2.9) with the general expression (1.1). Expanding ∆± in

powers of 1/N we find from (2.9)

∆+ = ∆1 +
γ2/ǫ

N2
− γ4/ǫ3

N4
+ · · · ,

∆− = ∆2 −
γ2/ǫ

N2
+

γ4/ǫ3

N4
+ · · · . (2.11)

Comparison with (1.1) shows that ∆
(p)
± ∼ γ2p/ǫ2p−1 and, therefore, the expansion (1.1)

becomes singular for ǫ = O(1/N), in agreement with our expectations. The relation (2.9)

takes into account an infinite class of the leading corrections O
(
1/(ǫ2p−1N2p)

)
to all orders

in 1/N and it remains finite for ǫ → 0. At the crossing point, for ǫ = 0, we find from (2.9)

that ∆± = ∆1 ± γ/N , so that the leading nonplanar correction to the resummed scaling

dimensions scales as O(1/N) (and not O(1/N2) as one would expect from (1.1)).4

Let us assume that the scaling dimensions ∆1 and ∆2 are continuous functions of the

coupling constant g, intersecting in the planar limit at g = 0. Then, the relation (2.9) de-

fines two functions ∆±(g) that satisfy the non-crossing rule. Namely, the two levels ∆+(g)

and ∆−(g) approach each other for g = 0 but remain separated by a finite gap (see figure 1)

|∆+ −∆−| ≥
2γ

N
. (2.12)

We recall that the parameter γ defines the leading nonplanar correction to the two-point

correlation function (2.2) and (2.5). As can be seen from figure 1, the level crossing leads

to a change of behavior of the scaling dimensions in the vicinity of the crossing point.

Away from the crossing point, the resummed scaling dimensions approach their values in

the planar limit, e.g. ∆+ ≈ ∆1 at large negative g goes into ∆+ ≈ ∆2 at large positive g.

3 Resummed OPE coefficients

In the previous section, we defined the conformal primary operators O± in the transition

region (1.2) and determined their scaling dimensions (2.9). Let us examine the properties

3I would like to thank Sergey Frolov for suggesting this interpretation.
4Analogous phenomenon has been previously observed for critical dimensions of composite operators in

the nonlinear O(N) sigma-model [3]. At large N their expansion runs in powers of 1/N but the leading

nonplanar correction scales as O(1/
√
N) due to the level crossing.

– 4 –



J
H
E
P
0
3
(
2
0
1
6
)
2
1
2

Figure 1. The scaling dimensions ∆± (left panel) and the OPE coefficients (CφφO±
/CφφO1

)2 (right

panel) in the transition region (1.2) as a function of the coupling constant g for γ/N = 0.1. The

dashed lines represent the same quantities in the planar limit, ∆i(g) = αig +O(g2).

of the OPE coefficients CφφO±
defining the correlation function 〈φφO±〉 involving scalar

conformal operator φ with the scaling dimension ∆φ separated from ∆± by a finite gap,

|∆φ −∆±|= O(N0).

Let us consider a four-point function of the operators φ and decompose it over the

conformal blocks describing the contribution of different conformal multiplets

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

(
x212x

2
34

)∆φ


FO+

(u, v) + FO−
(u, v) +

∑

φi

Fφi(u, v)


 , (3.1)

where xij = xi − xj , u = x212x
2
34/(x

2
13x

2
24) and v = x223x

2
14/(x

2
13x

2
24). For x12 → 0, or

equivalently u → 0 and v → 1, the contribution of the operators O± to (3.1) takes the form

FO±
(u, v) = C2

φφO±
u∆±/2 + . . . , (3.2)

where dots denote terms suppressed by powers of u and 1− v.

The OPE coefficients in (3.2) are given by C2
φφO±

∼ 〈φφO±〉〈O±φφ〉/〈O±O±〉. Replac-
ing O± with their explicit expressions (2.3), we find using (2.6)

C2
φφO+

=
(CφφO1

− c1CφφO2
)2

1 + c21
,

C2
φφO−

=
(CφφO2

+ c1CφφO1
)2

1 + c21
, (3.3)

where CφφOi are the OPE coefficients for the operators Oi in the planar limit and

c1 = −Nǫ

2γ
+

√
N2ǫ2

4γ2
+ 1 =

γ

Nǫ
−
( γ

Nǫ

)3
+ . . . , (3.4)

for ǫ > 0. The relation (3.3) defines two smooth functions of ǫ that cross each other for

ǫ 6= 0 and take the values C2
φφO±

= (CφφO1
± CφφO2

)2/2 at the crossing point ǫ = 0.

The four-point correlation function (3.1) is a well-defined function of the parameters of

the underlying CFT. In particular, at large N it admits an expansion that runs in powers
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of 1/N2. It is natural to require that each term of this expansion should be finite for ǫ → 0.

As we will see in the moment, this requirement leads to nontrivial consequences for the

OPE coefficients CφφOi .

The conformal blocks entering the right-hand side of (3.1) depend on the scaling di-

mensions of the operators φi. Since ∆φi are well-separated from each other in the transition

region (1.2), the corresponding conformal blocks Fφi automatically satisfy the regularity

condition mentioned above. This is not the case however for the conformal blocks FO±
.

According to (2.11) and (3.4), the large N expansion of ∆± and c1 is singular in the re-

gion (1.2) and, as a consequence, the coefficients of the expansion of (3.2) in powers of

1/N contain poles in ǫ. They cancel however in the sum FO+
+ FO−

that remains finite

for ǫ → 0. Namely,

FO+
+ FO−

=
(
C2
φφO1

uǫ/4 + C2
φφO2

u−ǫ/4
)
− 2γCφφO1

CφφO2

uǫ/4 − u−ǫ/4

Nǫ
+O

(
1/N2

)
.

(3.5)

Notice that the second term on the right-hand side is finite for ǫ → 0 but it scales

as O(1/N).

It is straightforward to verify that the subleading corrections to (3.5) involve both even

and odd powers of 1/N . This seems to be in contradiction with the requirement that large

N expansion of the correlation function (3.1) should run in even powers of 1/N . We can

eliminate all terms with odd powers of 1/N by imposing the additional condition on the

OPE coefficients5
CφφO2

CφφO1

= O(1/N) . (3.6)

This relation implies that if the scaling dimensions of two operators O1 and O2 approach

each other and satisfy (1.2), their OPE coefficients in the planar limit have to differ by a

large factor of N .

Combining together (3.6) and (3.3), we obtain the following expression for the re-

summed OPE coefficients

C2
φφO±

=
1

2
C2
φφO1

[
1± ǫ√

ǫ2 + 4γ2/N2

]
, (3.7)

where ǫ = ∆1−∆2 and CφφO1
are the OPE coefficients in the planar limit. Let us examine

the expansion of (3.7) at large N and ǫ > 0

CφφO+
/CφφO1

= 1− γ2

2N2ǫ2
+O

(
1/N4

)
,

CφφO−
/CφφO1

=
γ

Nǫ

(
1− 3γ2

2N2ǫ2
+O

(
1/N4

))
. (3.8)

Notice that the leading correction to CφφO−
contains a pole at ǫ = 0. Its appearance is an

arfifact of the large N expansion. As follows from (3.7), the resummed expression for CφφO−

is finite and it takes the value CφφO1
/
√
2 for ǫ = 0. Away from the crossing point, for |ǫN |≫

1, the structure constants CφφO±
coincide with those in the planar limit, CφφO1

and CφφO2
.

The dependence of the OPE coefficients (CφφO±
/CφφO1

)2 on the coupling constant in

the vicinity of the crossing point is shown in figure 1. We demonstrate in the next section

5There is obviously another possibility CφφO1
/CφφO2

= O(1/N) but it leads to the same result for C2
φφO±

.
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that the relations (3.7) and (3.8) are in a good agreement with the known properties of

three- and four-dimensional CFT’s.

We recall that the relation (3.7) was obtained from the requirement for the four-point

correlation function (3.1) to have a regular 1/N2 expansion as ǫ → 0. We substitute (3.7)

into (3.5) and verify that this condition is indeed verified

FO+
+ FO−

∼ u∆1/2+ǫ/4

{
1 +

γ2

8N2

[
(lnu)2 − ǫ

6
(lnu)3 +O

(
ǫ2
)]

+O
(
1/N4

)}
. (3.9)

A distinguished feature of this relation as compared with the analogous asymptotic be-

haviour of the conformal blocks is the appearance of terms enhanced by powers of lnu. For

ǫ = 0 the 1/N−expansion on the right-hand side of (3.9) can be resummed leading to

FO+
+ FO−

∼ 1

2
u(∆1+γ/N)/2 +

1

2
u(∆1−γ/N)/2 . (3.10)

We recognize the two terms on the right-hand side as describing the leading u → 0 asymp-

totics of conformal blocks corresponding to two conformal primary operators with the

scaling dimensions ∆1 ± γ/N .

4 Examples of level-crossing

In this section, we review the known examples of the level-crossing phenomenon in three-

and four-dimensional CFT’s and make a comparison with the results obtained in the pre-

vious sections.

4.1 Level-crossing in N = 4 SYM

Our first example concerns the mixing of the Konishi and double-trace operators in four-

dimensional N = 4 SYM theory. As was mentioned in the Introduction, the scaling

dimensions of these operators collide in the planar limit at finite value of the coupling

constant.

In planar N = 4 SYM, the Konishi and double-trace operators take the form

OK =
1

N
tr
[
ΦIΦI

]
,

OD =
1

NJ
tr
[
Φ(I1 . . .ΦIJ )

]
tr
[
Φ(I1 . . .ΦIJ )

]
, (4.1)

where ΦI (with I = 1, . . . , 6) are real scalar fields and tr[Φ(I1 . . .ΦIJ )] is a symmetric

traceless SO(6) tensor. The normalization factors on the right-hand side of (4.1) were

introduced for the two-point correlation functions of the operators to scale as O(N0) at

large N .

At Born level, for zero coupling constant, the scaling dimensions of the operators (4.1)

are ∆K = 2 and ∆D = 2J , respectively. At strong coupling, the scaling dimensions can be

computed using the AdS/CFT correspondence, see e.g. [4, 5]

∆D = 2J − 2(J − 1)J(J + 2)

N2
+ . . . ,

∆K = 2λ1/4 − 2 +
2

λ1/4
+ . . . , (4.2)

– 7 –
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where dots denote terms suppressed by powers of 1/N2 and λ−1/2. We observe that, at

strong coupling, for J ≈ λ1/4 the two levels cross each other.

To establish the connection with the results of the previous sections, we examine three-

point correlation functions of the operators (4.1) and half-BPS operators

OJ(x, Y ) =
1

NJ/2
YI1 . . . YIJ tr

[
Φ(I1 . . .ΦIJ )

]
, (4.3)

where YI is an auxiliary six-dimensional null vector, Y 2
I = 0. This operator carries the

R−charge J and it scaling dimension is protected from quantum corrections, ∆OJ
= J .

The form of the three-point functions is fixed by conformal symmetry

〈OJ(1)OJ(2)OK(0)〉 = (Y1Y2)
J CJJK

x∆K
1 x∆K

2 x2J−∆K
12

,

〈OJ(1)OJ(2)OD(0)〉 = (Y1Y2)
J CJJD

x∆D
1 x∆D

2 x2J−∆D
12

. (4.4)

where OJ(i) ≡ OJ(xi, Yi). The correlation function in the second line of (4.4) factors

out in the planar limit into the product of two-point correlation functions of half-BPS

operators (4.3) leading to

CJJD = 1 +O
(
1/N2

)
. (4.5)

The OPE coefficient CJJK was computed at strong coupling in ref. [6]. It was found that

CJJK develops a pole at J = ∆K/2 ≈ λ1/4,6

CJJK =
J3/2

√
M

2N(J − λ1/4)
, (4.6)

whereM = (J+1)(J+2)2(J+3)/12 ≈ J4/12 is the dimension of the J−symmetric traceless

representation of the SO(6). As was argued in [6], the appearance of a pole in (4.6) leads

to the mixing of the Konishi operator OK and the double-trace operator OD.

Let us compare the relations (4.5) and (4.6) with the general expression (3.8). Upon

identification of the operators, φi = OJ , O+ = OD and O− = OK , we find a perfect

agreement with the leading term in (3.8) for

ǫ = ∆D −∆K ≈ 2
(
J − λ1/4

)
, γ = λ3/8

√
M ≈ J7/2

2
√
3
. (4.7)

Substituting these expression into (3.8), we can determine the subleading terms in (4.5)

and (4.6). Moreover, we can apply (2.9) and (3.7) to obtain the resummed expressions for

the scaling dimensions and the OPE coefficients in the transition region |J−λ1/4|= O(1/N)

∆± = J + λ1/4 ±
√
(J − λ1/4)2 +

J7

12N2
,

C2
JJO±

=
1

2

[
1± J − λ1/4

√
(J − λ1/4)2 + J7/(12N2)

]
, (4.8)

6The three-point correlation functions in which the dimension of one operator equal to the sum of the

other two are known as extremal correlators. The appearance of poles is a generic feature of the extremal

correlators in the AdS/CFT correspondence [7–9].
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where the subscripts +/− correspond to the double-trace and Konishi operators, respec-

tively. At the crossing point, for J ≈ λ1/4, the level splitting is

|∆+ −∆−|=
J7/2

N
√
3
. (4.9)

This expression is in agreement with the one given in ref. [6] (see the latest version). The

structure constants (4.8) are finite in the transition region and do not require the additional

renormalization of operators advocated in [6].

The dependence of ∆± on the coupling constant in the vicinity of λ1/4 ≈ J follows

the same pattern as shown in figure 1. In particular, examining ∆− as a function of the

coupling constant, we find that it grows for λ1/4 ≪ J as the scaling dimension of the Konishi

operator ∆K and, then, approaches the scaling dimension of the double-trace operator ∆D

for λ1/4 ≫ J .7 As a consequence, it satisfies the relation ∆− < ∆D < 2J , so that the

correlation function 〈OJ(1)OJ(2)O−(0)〉 can not be extremal for finite N (see footnote 6).8

As the second example, we consider the mixing of leading-twist operators carrying a

nonzero Lorentz spin S. The scaling dimension of twist-two operators grows at large spin

as ∆2 = 2 + S + γS , where γS = 2Γcusp(λ) ln S̄ + O(S0) with Γcusp(λ) being the cusp

anomalous dimension and S̄ = S eγE (with γE being the Euler constant) [12]. For twist-

four operators, the lowest scaling dimension scales at large spin as ∆4 = 4 + S − c(N)/S2

with positive c(N) [13–15]. Comparing ∆2(S) and ∆4(S) we find that the two functions

cross each other at γS = 2 + O(1/S2), or equivalently Γcusp(λ) ∼ 1/ln S̄. The important

difference with the previous example is that the crossing point is located at weak coupling

and, therefore, it can be analyzed using perturbation theory.

The three-point correlation function of two half-BPS operators (4.3) with charge J = 2

and twist-two operator with large spin S has been computed at weak coupling in ref. [16]

leading to the following result for the corresponding OPE coefficient

C2(S)/C
(0)
2 (S) =

1

N
Γ

(
1− 1

2
γS(λ)

)
e−

1

2
γS(λ)[γE+α(λ)]+β(λ), (4.10)

where C
(0)
2 (S) = [2Γ2(S + γS/2 + 1)/Γ(2S + γS + 1)]1/2 and functions α(λ) and β(λ) are

known explicitly up to two loops. The expression on the right-hand side of (4.10) was

obtained for S ≫ 1 with λ lnS = fixed, it takes into account all corrections of the form

λk(lnS)n (with 1 ≤ n ≤ k). For twist-four operators of the schematic form O2∂
SO2 the

analogous OPE coefficient is

C4(S)/C
(0)
4 (S) = 1 +O

(
1/N2

)
, (4.11)

where C
(0)
4 (S) = [(S + 1)! (S + 2)! /(2S + 1)! ]1/2.

7To the left of the crossing point, for λ1/4 ≪ J , we have O+ = OD and O− = OK , whereas to the right

of the crossing point, for λ1/4 ≫ J , the operators are exchanged O+ = OK and O− = OD. At the crossing

point, for λ1/4 ≈ J , the operators are maximally mixed, O± = OK ±OD.
8The extremal situation can arise however for the correlation functions of protected operators

〈OJ1
(1)OJ2

(2)OJ3
(3)〉 for J3 = J1 + J2. In this case, the level crossing does not occur since the scaling

dimensions and the OPE coefficients are protected by N = 4 superconformal symmetry. The calculation of

such correlators in the AdS/CFT turns out to be a nontrivial task [8–11].

– 9 –



J
H
E
P
0
3
(
2
0
1
6
)
2
1
2

We observe that the twist-two OPE coefficient (4.10) develops a pole at γS(λ) = 2.

Since Γcusp = λ/(4π2) + O(λ2) at weak coupling, the corresponding value of the spin S is

exponentially large, S = exp
(
4π2/λ− γE +O(λ)

)
. Denoting ǫ = ∆4 − ∆2 = 2 − γS , we

find that for ǫ → 0 the relations (4.10) and (4.11) are in a perfect agreement with (3.8)

C2(S)

C4(S)
=

2 e−γE

ǫNS

[
1 +O

(
λ, 1/N2

)]
. (4.12)

The residue at 1/ǫ pole defines the interaction energy γ between twist-two and twist-four

operators

γ =
2 e−γE

S
= 2 e−4π2/λ+O(λ) , (4.13)

which is exponentially small at weak coupling. Applying (2.9) and (3.7), we can obtain

the resummed expressions for the scaling dimensions of these operators and their OPE

coefficients in the transition region |∆4 −∆2|= O(1/N).

4.2 Level-crossing in three-dimensional CFT

Recently an important progress has been achieved in understanding the properties of three-

dimensional unitary CFT’s within the conformal bootstrap approach. It was found that

the constraints of crossing symmetry and unitarity restrict the possible values of the scaling

dimensions of the operators ∆i in a highly nontrivial way [17, 18].

For our purposes we shall examine the extremal solutions to these constraints living

on the boundary of the allowed region of ∆i’s. The spectrum of the corresponding three-

dimensional unitary CFT’s can be uniquely reconstructed and it is parameterized by the

dimension ∆σ of the leading Z2−odd scalar operator σ. As was shown in [18], the resulting

scaling dimensions reveal a dramatic transition at ∆⋆
σ = 0.518154(15). The values of ∆i’s

at the transition point are remarkably close to the expected values of the critical exponents

of three-dimensional Ising model.

Another intriguing feature of the 3d Ising point is that some operators disappear from

the spectrum. As an example, consider the leading spin−2 operators that appears in the

OPE σ × σ. The lowest lying operator is the stress-energy tensor T whose conformal

weight ∆T = 3 is protected and is independent on ∆σ. For the next-to-lowest spin−2

operator T ′, the scaling dimension and the OPE coefficient at the 3d Ising point are given

by ∆⋆
T ′ = 5.500(15) and (C⋆

σσT ′)2 = 2.97(2) × 10−4, respectively. However, slightly above

this point, for ∆σ = 0.5182, the OPE coefficient decreases by the order of magnitude

C2
σσT ′ = 2.21 × 10−5 and the scaling dimension changes to ∆T ′ = 4.334 (see figure 16

in ref. [18]).

A close examination of the spectrum of lowest spin 2 operators (see figure 15 in ref. [18])

shows that in the vicinity of the 3d Ising point the levels approach each other in a pairwise

manner. Moreover, the variation of the scaling dimensions and the OPE coefficients in the

transition region follows the same pattern as the one shown in figure 1. This suggests that

the spectrum in this region can be described by the relations (2.9) and (3.3). Important

difference with the previous case is that the three-dimensional CFT’s under consideration

do not have a natural parameter like 1/N and the arguments leading to (3.6) and (3.7) do

– 10 –
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Figure 2. The scaling dimensions of the three lowest spin−2 operators and their OPE coefficients

(multiplied by 4∆i) as found in ref. [18].

not apply. In what follows we shall apply (2.9) and (3.3) and interpret the parameter γ/N

as ‘interaction energy’ v between levels.

Let us examine the ∆σ−dependence of the scaling dimensions and the OPE coefficients

of three lowest levels shown in figure 2. As was already mentioned, the lowest state with

∆T = 3 (black line) corresponds to the stress-energy tensor. For the next-to-lowest level

(red line), the scaling dimension ∆− and the OPE coefficient Cσσ− vary slowly with ∆σ

to the left from the 3d Ising point, for ∆σ < ∆∗
σ, and approach the following values for

∆σ ≪ ∆∗
σ

∆1 = 5.512 , C2
σσ1 = 2.984× 10−4 . (4.14)

For the next-to-next-to-lowest level (blue line), ∆+ and Cσσ+ vary slowly with ∆σ to the

right from the 3d Ising point, for ∆σ > ∆∗
σ, and approach the same values (4.14) for

∆σ ≫ ∆∗
σ.

To describe the variation of ∆± and Cσσ± in the transition region, for

0.51815 < ∆σ < 0.51820 , (4.15)

we introduce the level splitting function ǫ = ǫ(∆σ) analogous to (1.2)

ǫ = 2∆1 −∆− −∆+ . (4.16)

It is straightforward to verify that away from the transition region ǫ measures the difference

between the scaling dimensions: ǫ = ∆− −∆+ < 0 for ∆σ ≪ ∆∗
σ and ǫ = ∆+ −∆− < 0

for ∆σ ≫ ∆∗
σ. We find that ǫ is a smooth monotonic function of ∆σ in the transition

region (4.15) and it vanishes for ∆σ = 0.51817. Then, we can invert the function ǫ = ǫ(∆σ)

and obtain the dependence of ∆± and Cσσ± on ǫ as shown in figure 3.

Applying (2.9), we expect that the scaling dimensions ∆±(ǫ) in the transition re-

gion (4.15) are given by

∆±(ǫ) = ∆1 −
ǫ

2
±
√

ǫ2

4
+ v2 , (4.17)
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Figure 3. Dependence of the scaling dimensions of the spin−2 operators and their OPE coefficients

Ĉ2
σσ± = C2

σσ±/C
2
σσ1 on the level splitting ǫ. Dots stand for the exact values found in [18], solid

lines are described by (4.17) and (4.18).

where ∆1 is defined in (4.14) and v is the interaction energy. For the OPE coefficients, we

apply (3.3) and (3.4) to get

C2
σσ+(ǫ) =

[Cσσ1 − c1Cσσ2]
2

1 + c21
,

C2
σσ−(ǫ) =

[Cσσ2 + c1Cσσ1]
2

1 + c21
, (4.18)

where c1(ǫ) =
(√

ǫ2 + 4v2 − ǫ
)
/(2v) and Cσσ1 is given by (4.14). To fix v and Cσσ2, we

compare (4.17) and (4.18) with the results of ref. [18] shown by dots in figure 3. We find

a good agreement for

v = 0.126 , Cσσ2/Cσσ1 = 0.057 . (4.19)

These values depend on the number of the crossing-symmetry constraints ncomp = 231 used

in ref. [18] and they are expected to decrease as ncomp → ∞. An immediate consequence

of (4.18) and (4.19) is that the OPE coefficient C2
σσ−(ǫ) decreases by the order of magnitude

in the transition region (4.15). This result is in a quantitative agreement with the expected

properties of the operator T ′ mentioned in the beginning of the subsection.

We observe from figure 3 that the OPE coefficients C2
σσ− given by (4.18) start to deviate

from their exact values for ǫ > 0.5. We recall that the relations (4.18) were obtained under

the assumption that the levels ∆± are separated from the rest of the spectrum of ∆i by

a finite gap, e.g. |∆+ − ∆−|≪ |∆− − ∆T |. Since ∆−(ǫ) decreases linearly with ǫ, this

condition is not fulfilled for ǫ ≫ v and, as a consequence, C2
σσ− receives the additional

corrections due to mixing of the operator O− with the stress-energy tensor.

It is interesting to note that, according to (4.19), the ratio of the OPE coefficients

Cσσ2/Cσσ1 is anomalously small. This makes the properties of three-dimensional CFT’s

in the vicininity of critical 3d Ising model similar to those of four-dimensional N = 4

SYM theory in which case the OPE coefficients satisfy (3.6) at large N . Notice that for the

operators with sufficiently large scaling dimensions in unitary CFT’s, their OPE coefficients
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have to fall off exponentially fast [19]. Yet another surprising feature of 3d Ising point is

that the same asymptotic behaviour also holds for the lowest spin−2 operators.

We would like to emphasize that the above analysis relies on the assumption that the

extremal solutions living on the boundary of the allowed region of ∆i’s admit an interpre-

tation in terms of three-dimensional CFT’s, so that the curves shown in figure 2 can be

interpreted as describing a continuous flow of the conformal data.9 This assumption is non-

trivial and it does not hold e.g. for two-dimensional CFT’s. In the latter case, the spectrum

of the scaling dimensions of the extremal solutions to the left of the two-dimensional Ising

point is inconsistent with Virasoro symmetry making a CFT interpretation impossible [18].

4.3 Level-crossing in QCD

As another example of level-crossing phenomenon, we consider the spectrum of scaling

dimensions of composite operators that appeared in the study of the QCD evolution equa-

tions for three-particle distribution amplitudes [20, 21]. In the simplest case of baryon

distribution amplitude of helicity 1/2, these operators involve covariant derivatives acting

on three quark fields and have the following form

Bn1n2n3
= ǫijkDn1q↑i D

n2q↓j D
n3q↑k , S = n1 + n2 + n3 , (4.20)

where q
↑(↓)
i = 1

2(1 ± γ5)qi are quark fields with definite chirality and with color i = 1, 2, 3

corresponding to the fundamental representation of the SU(3) gauge group.

As was shown in [20], the one-loop dilatation operator acting on the operators Bn1n2n3

can be mapped into a Hamiltonian of a spin chain of length 3

H1/2 = H1 + ǫH2 , (4.21)

where spin operators at each site are identified with the generators of the collinear SL(2)

subgroup of the conformal group10 acting on quark fields in (4.20). Here H1 coincides with

a Hamiltonian of a completely integrable Heisenberg SL(2) spin chain and the operator H2

is given by

H2 = −
(

1

S2
12

+
1

S2
23

)
, (4.22)

where S2
ij stands for the sum of two SL(2) spins at sites i and j. The eigenvalues of (4.21)

define the spectrum of anomalous dimensions of baryonic operators (4.20) at one loop.

The Hamiltonian (4.21) depends on the parameter ǫ. For baryonic operators (4.20),

its value is uniquely fixed ǫ = 1. To understand the properties of (4.21), it is convenient to

treat ǫ as a new coupling constant and examine the dependence of the eigenvalues of (4.21)

on ǫ. For ǫ = 0 the Hamiltonian (4.21) is completely integrable and its exact eigenspectrum

can be found with a help of Bethe ansatz technique. For ǫ 6= 0 the Hamiltonian (4.21) is

neither integrable, nor cyclic symmetric. Nevertheless, its eigenspectum can be determined

for abritrary ǫ using the technique described in [20, 21].

9I would like to thank Slava Rychkov for discussing this point.
10Although the conformal symmetry of QCD is broken at quantum level, the one-loop dilatation operator

respects the conformal symmetry, see e.g. [22].
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Figure 4. The flow of energies of parity-even eigenstates of the Hamiltonian (4.21) for S = 20.

The vertical dotted line indicates the spectrum of H1. The two highest levels are shown by red and

blue lines. The flow of energies close to the crossing point is zoomed in on the right panel.

The Hamiltonian (4.21) is invariant under the exchange of two sites 1 ↔ 3 and its

eigenstates can be classified according to the parity under this transformation. For ǫ = 0

the eigenstates with different parity have the same energy in virtue of integrability, but

the degeneracy is lifted for ǫ 6= 0. The flow with ǫ of energy levels with different parity

is independent from one another and the non-crossing rule is not applicable. At the same

time, the levels with the same parity are not allowed to cross.

As an example, we show on figure 4 the ǫ−dependence of the energies of parity-even

states with the total spin S = 20. We observe that for sufficiently large negative ǫ the energy

levels approach each other. As was shown in [20], in the upper part of the spectrum, the

crossing points correspond to the collision of levels of the Hamiltonians H1 and H2

H1|ψ1〉 = e1|ψ1〉 , H2|ψ2〉 = e2|ψ2〉 , (4.23)

with 〈ψ1|ψ2〉 6= 0 and 〈ψi|ψi〉 = 1. Assuming that the rest of eigenstates is irrelevant in

the vicinity of the crossing point, we can look for the eigenstate of (4.21) on a linear space

spanned by the states |ψ1〉 and |ψ2〉. Then, it is convenient to define the state

|ψ̂1〉 = c(|ψ1〉 − |ψ2〉〈ψ2|ψ1〉) , c =
(
1− |〈ψ1|ψ2〉|2

)−1/2
, (4.24)

such that 〈ψ̂1|ψ2〉 = 0 and 〈ψ̂1|ψ̂1〉 = 1, and evaluate the matrix elements of H1/2 with

respect to |ψ̂1〉 and |ψ2〉. In the standard manner, the diagonal matrix elements define

corrections to the energies of two states

E1(ǫ) = e1 + ǫ〈ψ1|H2|ψ1〉+O
(
〈ψ1|ψ2〉2

)
,

E2(ǫ) = ǫ e2 + 〈ψ2|H1|ψ2〉 . (4.25)

The off-diagonal matrix element defines their interaction energy

v = 〈ψ̂1|H1/2|ψ2〉 = c〈ψ1|ψ2〉 [e1 − 〈ψ2|H1|ψ2〉] . (4.26)
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It is proportional to the overlap of the two eigenstates 〈ψ1|ψ2〉 and does not depend on ǫ.

As follows from (4.25), the levels could cross at E1(ǫ) = E2(ǫ), or equivalently

ǫ⋆ =
e1 − 〈ψ2|H1|ψ2〉
e2 − 〈ψ1|H2|ψ1〉

. (4.27)

The crossing does not happen due to nonzero interaction energy |v|6= 0. The eigenvalues

of H1/2 in the vicinity of (4.27) are given by

E±(ǫ) =
1

2
(E1(ǫ) + E2(ǫ))±

√
1

4
(E1(ǫ)− E2(ǫ))

2 + |v|2 . (4.28)

To make this expression more explicit, we consider the limit of large spin S ≫ 1. In this

limit, E±(ǫ) describe the one-loop anomalous dimensions of baryonic operators (4.20) with

large number of derivatives S.

The Schrödinger equations (4.23) have been thoroughly studied in [20]. For the eigen-

states with large total spin S, their energies can be expanded in powers of 1/S leading to11

e1 = 6 lnS − 3 ln 3− 6ψ(2) +
6

S
(2− ℓ1) +O

(
1/S2

)
,

e2 = − 1

(ℓ2 + 1)(ℓ2 + 2)
+O

(
1/S2

)
, (4.29)

where ψ(x) = (ln Γ(x))′ is Euler’s digamma function and nonnegative integers ℓ1 and ℓ2
enumerate the energy levels. The eigenstates with the maximal |ei| correspond to ℓ1 =

ℓ2 = 0. In the similar manner, for the matrix elements of Hamiltonians with respect to

|ψ1(ℓ1)〉 and |ψ2(ℓ2)〉 we have

〈ψ1|H2|ψ1〉 = O
(
1/S2

)
,

〈ψ2|H1|ψ2〉 = 4 lnS + C(ℓ2) +O(1/S) , (4.30)

where C(ℓ2) = −6ψ(2)+6ψ(ℓ2+2)−4ψ(2ℓ2+4)+2/(ℓ2 + 2)+2/(2ℓ2 + 3). Following [20],

we can also compute the overlap of the eigenstates at large S

|〈ψ1|ψ2〉|= κS ℓ1/2+1/4 e−S/2 , (4.31)

where κ = eℓ2
√
3[6

√
πℓ1! (ℓ2 + 1)(ℓ2 + 2)/(2ℓ1(2ℓ2 + 3))]−1/2.

Substituting the above relations into (4.26) and (4.27) we obtain the following expres-

sions for the interaction energy

|v|= 2κS ℓ1/2+1/4 e−S/2 lnS , (4.32)

and for the location of the crossing point

ǫ⋆ = −(ℓ2 + 1)(ℓ2 + 2)

[
2 ln(S + 1) + c0(ℓ2)−

6ℓ1 + c1(ℓ2)

S

]
+O

(
1/S2

)
, (4.33)

11Expression for e1 in this relation only holds in the upper part of the spectrum close to the maximal

energy level, the general expression for e1 can be found in [20].
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where c0 = −3 ln 3−6ψ(2)−C(ℓ2) and c1 is independent on ℓ1. We recall that the integers

ℓ1 and ℓ2 enumerate the colliding levels.

We are now ready to compare the relations (4.28), (4.32) and (4.33) with the exact

energy spectrum of the Hamiltonian (4.21) shown in figure 4 for S = 20. We remind

that for ǫ = 0 we have H1/2 = H1 and the energy levels are given by e1, eq. (4.29), for

ℓ1 = 0, 1, . . . starting from the maximal one. For ǫ 6= 0 away from the crossing point,

we find from (4.25) and (4.30) that E1(ǫ) = e1 + O(1/S2), so that the variation of the

energy with ǫ is very slow at large S. We observe from figure 4 that at large negative ǫ

the maximal energy grows linearly with (−ǫ). According to (4.25), (4.29) and (4.30), it is

given by

E2(ǫ) = − ǫ

(ℓ2 + 1)(ℓ2 + 2)
+ 4 lnS + C(ℓ2) +O(1/S) , (4.34)

for ℓ2 = 0. Going to smaller (−ǫ) we find that this level crosses subsequently the levels

E1(ℓ1) for ℓ1 = 0, 1, 2, . . . . According to (4.33), the position of the crossing point scales as

ǫ⋆(ℓ1) = −4 lnS +12ℓ1/S + . . . , so that the distance between two subsequent points scales

as ǫ⋆(ℓ1 + 1) − ǫ⋆(ℓ1) = 12/S. The interaction energy (4.32) defines the minimal distance

between the colliding levels, E+(ǫ⋆)− E−(ǫ⋆) = 2|v|. As follows from (4.32), this distance

is exponentially small at large spin S and increases as Sℓ1 with the level number.

These results are in a good agreement with properties of the exact spectrum shown in

figure 4. As an example, we consider the flow of two highest levels shown by red and blue

lines in figure 4. The energies of these levels follow (4.28). They approach each other for

ǫ⋆ = −7.215 and the level splitting is 2|v|= 4.46 × 10−4. Applying (4.32) and (4.33) for

ℓ1 = ℓ2 = 0 and S = 20, we find ǫ⋆ = −7.229 and 2|v|= 4.32× 10−4 which are close to the

exact values.

Notice that the flow of energy levels in the lower part of the spectrum in figure 4

is more complicated and it deviates from (4.28). We recall that the relation (4.28) was

derived under the assumption that the two levels E1 and E2 mix weakly with the rest of

the spectrum. As was shown in [20], this assumption is not justified in the lower part of

the spectrum due to a strong interaction between the energy levels. Although the lowest

levels can be discussed avoiding the admixture of the higher ones, finding their energies

amounts to diagonalization of the mixing matrix whose size grows for large spin as lnS.

The relation (4.28) does not apply in this case and more refined analysis is needed. The

problem was solved in [20, 21] where it was shown that the effect of strong mixing is that

the lowest state becomes separated from the rest by a finite gap.

5 Concluding remarks

In this note, we examined the properties of conformal operators whose scaling dimensions

approach each other for some values of the parameters of a unitary CFT and satisfy von

Neumann-Wigner non-crossing rule. We argued that the scaling dimensions of such op-

erators and their OPE coefficients have a universal scaling behavior in the vicinity of the

crossing point. We demonstrate that the obtained relations are in a good agreement with

the known examples of the level-crossing phenomenon in maximally supersymmetric N = 4

Yang-Mills theory, three-dimensional conformal field theories and QCD.
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In gauge theories, the scaling dimensions do not verify the non-crossing rule in the

planar limit, but the level crossing leads to breakdown of 1/N expansion. Namely, the

nonplanar corrections develop singularities close to the crossing point that have to be

resummed to all orders in 1/N . We argued that their resummation is very similar to

resolving the mixing of operators in gauge theories at weak coupling with 1/N playing the

role of the coupling constant. The resulting expressions for the scaling dimensions and the

OPE coefficients, eqs. (2.9) and (3.7), respectively, remain finite in the transition region

and obey the non-crossing rule. Away from this region their values coincide with those in

the planar limit.

The scaling dimensions of twist-two operators are known to be increasing functions of

the Lorentz spin S. For sufficiently large values of the coupling constant and/or the spin,

they cross the scaling dimensions of the leading twist-four double-trace operators. For

small (large) spin S, the crossing happens at strong (weak) coupling. We used the known

results for Konishi operators (S = 0) and for twist-two operators with large spin (S ≫ 1)

to show that, due to the level crossing, the scaling dimensions and the OPE coefficients of

twist-two and twist-four operators get swapped at the crossing point leading to a dramatic

change of their asymptotic behaviour.12

This effect is believed to play an important role in verifying the conjectured S−duality

in N = 4 SYM [23, 24]. In particular, for finite N , the spectrum of the scaling dimensions

should be invariant under the weak/strong coupling duality transformation h → 1/h with

h = g2/(4π). In the special case of Konishi operator, the S−duality implies the existence

of a nonperturbative operator K ′ whose scaling dimension at weak coupling is related to

that of the Konishi operator as ∆K′(h) = ∆K(1/h) [25]. Let us examine the flow of the

scaling dimensions ∆K′(h) and ∆K(h) and ignore, for the sake of simplicity, the mixing

with other operators. Obviously, the functions ∆K′(h) and ∆K(h) could cross each other

at h = 1. As before, this can not happen due to a mixing between the operators K and K ′.

Replacing ∆1 = ∆K(h) and ∆2 = ∆K(1/h) in (2.9), we obtain the expressions for ∆±(h)

which verify the non-crossing rule and are invariant under the S−duality transformation,

∆±(h) = ∆±(1/h). Adding more operators does not change this result but makes the

corresponding picture of levels flow more complicated due to appearance of the additional

crossing points.13 It would be interesting to test this mechanism using a lattice formulation

of N = 4 SYM [26].
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