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Abstract: A high energy jet that propagates in a dense medium generates a cascade of

partons that can be described as a classical branching process. A simple generating functional

for the probabilities to observe a given number of gluons at a given time is derived. This

is used to obtain an evolution equation for the inclusive one-gluon distribution, that takes

into account the dependence upon the energy and the transverse momentum of the observed

gluon. A study of the explicit transverse momentum dependence of the splitting kernel leads

us to identify large corrections to the jet quenching parameter q̂.
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1 Introduction

The recent experimental results from heavy ion experiments at RHIC and LHC provide a

strong motivation for improving and extending current theories of jet propagation in a dense

QCD medium such as a quark-gluon plasma. Most noteworthy are those data that reveal

the jet inner structure [1–5], and in particular show that much of the energy lost in the

medium is in the form of low energy quanta emitted at large angles with respect to the jet

axis. Such data call for the development of new theoretical tools allowing us to explore jet

quenching phenomena beyond the energy loss from the leading particle, a subject that has

been thoroughly studied within the BDMPSZ framework during the last twenty years or so

[6–10]. Further related developments are presented in [11–13].

In order to understand how the QCD shower gets modified as the jet traverses a dense

medium, one needs to study how color coherence, and interference between subsequent emis-

sions, are affected by the medium. These two effects play a major role in determining jet-

structure in vacuum. Recent studies [14–19] have shown how, in certain regimes, color co-

herence can be destroyed by the presence of a dense medium, and how this may lead to
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the suppression of angular ordering (a characteristic feature of the vacuum QCD cascade),

and the enhancement of large angle emissions. In a previous paper [20] we showed explicitly

that the loss of color coherence occurs on a time scale comparable to that of the branching

process, so that gluons that emerge from a splitting propagate independently of each other.

The branching time, which is proportional to the square root of the energy of the emitted

gluons, can be short for soft enough gluons, and multiple branching play an important role

if the size of the medium is large enough: these multiple branching constitute the in-medium

QCD cascade.

The goal of this paper is to complete the description of this cascade. It is organized

as follows. In the next section we briefly recall the main results of Ref. [20] concerning the

properties of the medium induced gluon splitting and of transverse momentum broadening

within the BDMPSZ framework. Then, in Section 3, we construct a generating functional

for the probabilities to observe n gluons in the cascade, at any given time. This is then used

to derive the evolution equation for the inclusive one-gluon spectrum. This equation general-

izes that studied in Ref. [21] in that it takes into account the dependence of the distribution

function on the transverse momentum of the produced gluon, as generated via collisions in

the medium. (The equation studied in [21] concerns only the energy distribution, that is,

the integral of the one-gluon spectrum over the transverse momentum.) The kernel of this

equation, however, is completely integrated over the transverse momenta and contains in-

formation on these transverse momenta only in an average way: this follows from the fact

that the transverse momentum broadening acquired during the branching processes can be

neglected as compared to that accumulated via collisions in the medium in between successive

branchings. Thus, to the accuracy of interest, the splittings can be effectively treated as be-

ing collinear. By trying to improve the description and take into account more explicitly the

transverse momentum dependence of the splitting kernel, we were led to identify large radia-

tive corrections, which are formally infrared divergent, and are best interpreted as corrections

to the transport coefficient q̂, which is a measure of the transverse momentum square acquired

by the jet parton in the medium, per unit length. This will be discussed in Section 4. In

particular, we recover the double logarithmic correction to transverse momentum broadening

that has been calculated recently [22]. Technical material is gathered in three Appendices.

The first one complements results obtained in [20], and gives an explicit expression for the

splitting kernel in the harmonic approximation, with full dependence on transverse momenta.

The contribution of the single scattering is emphasized. The second appendix is devoted

to the calculation of the double logarithmic contribution to q̂. The third appendix presents

an alternative form of the generating functional that may be more suitable for Monte-Carlo

calculations.

2 Basic elements

A large part of the material of this section is borrowed from Ref. [20] to which we refer for

more details. We consider energetic partons traversing a medium with which they exchange
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color and transverse momentum. This medium is modeled as a random color field, with the

only non-trivial correlator (in light-cone gauge A+ = 0)1 given by〈
A−a (q, t)A∗−b (q′, t′)

〉
= δabn(t)δ(t− t′)(2π)2δ(2)(q − q′) γ(q) , (2.1)

with n the color charge density (which may depend on the light-cone time t), and we have

assumed translational invariance in the transverse plane. Here, γ(q) ' g2/q4, with q a vector

in the transverse plane, is a correlator that accounts for the elastic collisions of the energetic

patrons with the medium particles. The infrared behavior of γ(q) is controlled by the Debye

screening mass mD, which is the typical momentum exchanged in a collision with medium

particles.

Consider now the process in which a gluon is created inside the medium with momentum

~p0 ≡ (p+
0 ,p0) at time t0. In practice, we shall eventually chose p0 = 0, that is, we shall

use the direction of motion of the leading particle to define the longitudinal direction with

respect to which one measures polar angles and transverse momenta2. For t > t0, the gluon

propagates through the medium and interacts with the latter. In leading order, that is, in

the absence of splitting, all what happens to it is that it receives transverse momentum kicks

in colliding with the medium constituents. When it emerges from the medium, at time tL
3,

its momentum is ~k = (k+,k). Let us denote by P1(~k; tL, t0)dΩk the probability to observe

the gluon at time tL with its momentum in the phase-space element dΩk, given that, at time

t0 its momentum is in the phase-space element dΩp0 . Here, dΩk ≡ (2π)−3d2k dk+/2k+ is the

invariant phase-space element. The probability P1 contains, quite generally, a delta function

that expresses the conservation of the + component of the momentum (that follows from the

fact that the medium is assumed homogeneous in x−), and it is convenient to write it as

P1(~k; tL, t0) = 2p+
0 2πδ(k+ − p+

0 )P1(k; tL, t0). (2.2)

In leading order, P1(k; tL, t0) can be identified with the probability for the gluon to acquire a

transverse momentum k − p0 from the medium during its propagation from time t0 to time

tL, a quantity that we shall denote simply by P(k − p0; tL, t0) throughout the paper4. This

probability P is well known, and it can be written as

P(k − p0; tL, t0) =

∫
d2r exp

[
−i(k − p0) · r − Nc

2

∫ tL

t0

dt n(t)σ(r)

]
, (2.3)

with σ(r) the ‘dipole cross section’

σ(r) = 2g2

∫
d2q

(2π)2

(
1− eiq·r

)
γ(q). (2.4)

1To simplify the notation, the light-cone time variable x+ = (x0+x3)/
√

2 is labeled t throughout the paper,

and is referred to simply as ‘time’ rather than light-cone time.
2However, in many formulae below we shall keep p0 explicit, for more clarity, in particular in cases where

one needs to emphasize differences between transverse momenta. The same remark applies to the initial time

t0 which can be chosen to be t0 = 0.
3Note that tL =

√
2L, with L the length of the medium

4Remark on the notation: in P1 the dependence on p0 is kept implicit, while we leave p0 explicit in P.

This is because we shall need P also for differences of transverse momenta that do not necessarily involve p0.
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Figure 1. Diagrammatic representation of the evolution of the broadening probability (2.7).

Note that σ(r → 0)→ 0, a property commonly referred to as color transparency; this ensures

in particular that the probability P is properly normalized:
∫
k P(k − p0; t, t0) = 1. The

Fourier transform of the dipole cross section reads

σ(l) =

∫
dr e−il·rσ(r) = −2g2

[
γ(l)− (2π)2δ(l)

∫
q
γ(q)

]
, (2.5)

and it obeys the properties (to be used later)∫
l
σ(l) = 0 =

∫
l
l σ(l). (2.6)

In the equations above, we introduced a shorthand notation for the transverse momentum

integrations:
∫
q ≡

∫
d2q/(2π)2. This will be used throughout the paper.

By taking the derivative of Eq. (2.3) with respect to tL (and setting tL = t), one easily

obtains

∂

∂t
P(k − p0; t, t0) =

∫
l
C(l, t)P(k − p0 − l; t, t0) , (2.7)

with

C(l, t) ≡ 4παsNcn(t)

[
γ(l)− (2π)2δ(2)(l)

∫
q
γ(q)

]
= −1

2
Ncn(t)σ(l). (2.8)

This equation can be simplified by taking into account the fact that the typical momentum

transferred in one collision is |l| ∼ mD and is much smaller than the transverse momentum

|k| ∼ Qs ≡
√
q̂L acquired by the gluon during its propagation over a distance comparable

to L, the size of the medium. Under such circumstances, Eq. (2.7) can be reduced to the

following Fokker-Planck equation:

∂

∂t
P(k − p0; t, t0) =

1

4

∂2

∂k2

[
q̂(t,k2)P(k − p0; t, t0)

]
, (2.9)

with the jet quenching parameter q̂(t,k2), playing the role of a diffusion coefficient, given by

q̂(t,k2) = −Ncn(t)

∫
l
l2σ(l) = g2Ncn(t)

∫
l
l2γ(l) ≈ 4πα2

sNcn(t) ln
k2

m2
D

. (2.10)

The above integral, which determines the value of q̂, is logarithmically divergent. It is nat-

urally cut-off at its lower end by the Debye mass, and at its upper end by the momentum
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scale k at which P is evaluated. Note that in deriving Eq. (2.9) attention has been paid to

this momentum dependence of q̂. It can be verified in particular that, as written, the right

hand side of the equation vanishes upon integration over k, as it should.

An alternative interpretation of q̂ is obtained by expanding the dipole cross section (2.4)

to quadratic order in the dipole size. This yields

Ncn(t)σ(r) ' 1

2
q̂(t, 1/r2) r2, (2.11)

where the inverse of the dipole size r plays the role of ultraviolet cut-off. This expression,

when used with a constant q̂ (i.e., ignoring the dependence of q̂ on the dipole size), is referred

to as the ‘harmonic approximation’. Within this approximation, the diffusion equation (2.9)

is easily solved. Assuming n, and hence q̂, to be independent of t for simplicity, one gets

P(k − p0; t, t0) =
4π

q̂(t− t0)
e
− (k−p0)

2

q̂(t−t0) . (2.12)

The diffusion picture is valid in the regime dominated by multiple scattering, in which a

large transverse momentum is achieved by the addition of many small momentum transfers

over the propagation time ∆t = t − t0. This regime holds for k2 . q̂∆t. Larger transverse

momenta can be achieved, over comparable time scales, through a single hard scattering. The

corresponding expression for P is not given by the diffusion equation, but rather by using

the first iteration of Eq. (2.7) or, equivalently, by expanding the exponential in Eq. (2.3) to

linear order in σ. Either way, one finds that in the regime where k2 � q̂(tL − t0):

P(k; tL, t0) ' 16π2 α2
s Nc

k4

∫ tL

t0

dt n(t) . (2.13)

Let us now turn to the process of in-medium gluon branching which was studied in detail

in [20]. A major assumption in that calculation is that the branching time τ
br
'
√
ω0/q̂0 is

much shorter than the time tL− t0 spent by the partons in the medium, or equivalently ω0 .
ωc = q̂0t

2
L, where ωc is the maximum energy that can be taken away by an offspring gluon,

i.e., τ
br

(ωc) = tL− t0. (We have set ω0 ≡ z(1− z)p+
0 , and q̂0 ≡ q̂f(z) with f(z) = 1− z(1− z)

; see also Appendix A and Eq. (2.16) below.)

Let P2(~ka,~kb; tL, t0)dΩkadΩkb be the probability to observe two gluons at time tL in the

phase space elements dΩka and dΩkb , respectively, given that one gluon was present in the

phase-space element dΩp0 at time t0. Similarly to what we did for P1 in Eq. (2.2), we separate

the delta function that expresses the conservation of the + momentum and write

P2(~ka,~kb; tL, t0) = 2p+
0 2πδ(k+

a + k+
b − p+

0 )P2(ka,kb, z; tL, t0). (2.14)

In Appendix A, it is recalled that when one drops all possible terms that are suppressed by

at least one power of τbr/L, one ends up with a simple formula for P2:

P2(ka,kb, z; tL, t0) = 2g2z(1− z)
∫ tL

t0

dtK(z, p+
0 ; t)

×
∫
q
P(ka − zq; tL, t)P(kb − (1− z)q; tL, t)P(q − p0; t, t0), (2.15)
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where K(z, p+
0 ; t) is given by

K(z, p+
0 ; t) =

Pgg(z)

2π

√
q̂f(z)

z(1− z)p+
0

=
Pgg(z)

2π

√
q̂0

ω0
, f(z) = 1− z + z2, (2.16)

with

Pgg(z) = Nc
[1− z(1− z)]2

z(1− z) = Nc
[f(z)]2

z(1− z) (2.17)

the leading–order Altarelli–Parisi gluon splitting function [23]. We may interpret the inte-

grand of Eq. (2.15) as a product of probabilities: the probability P(q−p0; t, t0) for the initial

gluon to acquire transverse momentum q− p0 in time t− t0, the probability K(z, p+
0 ; t)dt for

the gluon to split between times t and t+dt, into two gluons with energy fractions z and 1−z,
and the probabilities for the offspring gluons to evolve to momenta ka and kb, respectively

P(ka − p; tL, t) and P(kb − q + p; tL, t).

Note that the splitting described by Eq. (2.15) is collinear : just after the splitting, the

daughter gluons carries equal fractions, z and respectively 1 − z, of both the longitudinal

momentum p+
0 and the transverse momentum q of their parent gluon. This is a consequence

of the leading order approximation in which we ignore, in the factors P, the small contri-

bution to momentum broadening that may occur during the branching process (such small

contributions are taken into account in an average way in the kernel). As a result, in the

leading order approximation, transverse momentum is gained only in between the splittings,

through momentum space diffusion.

Eq. (2.15) will be at the basis of the classical branching process to be constructed in the

next section. However, in the last section of this paper we shall examine a more complete

version of the splitting kernel, which keeps track of the transverse momentum that is acquired

during the branching process. This is obtained by relaxing some of the approximations leading

to Eq. (2.15), and involves corrections, a priori small since of order τ
br
/L, but which happen to

be amplified by logarithmic divergences. As we shall see, these corrections are best interpreted

as corrections to q̂, or equivalently as corrections to the interaction between the partons of

the cascade and the medium particles.

3 Generating functional and inclusive one-gluon distribution

In this section, we introduce the generating functional that describes the in-medium gluon

cascade, under the assumption that successive branchings can be treated as independent, in

line with the results of Ref. [20]. The generating functional follows simply from iterating

the elementary 1→ 2 splitting process whose properties are recalled in the previous section.

From the generating functional, we derive the equation for the inclusive one-gluon distribution

function and we analyze some of its properties.
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3.1 Generalities

We consider an in-medium parton shower initiated at (light-cone) time t0 by a ‘leading parton’

with 3–momentum ~p0 ≡ (p+
0 ,p0). The generating functional Zp0 [t, t0|u], with t0 ≤ t ≤ tL, is

defined as

Zp0 [t, t0|u] =
∞∑
n=1

1

n!

∫ ( n∏
i=1

dΩi

)
Pn(~k1, · · · ,~kn; t, t0)u(~k1) · · ·u(~kn) (3.1)

where u ≡ u(~k) is a generic function of ~k and Pn(~k1, · · · ,~kn; t, t0) is the probability density

to find at time t exactly n gluons with momenta ~k1, · · · ,~kn such that k+
1 + · · · + k+

n = p+
0

(recall that the + component of the momentum is conserved during the branchings). The

function Pn(~k1, · · · ,~kn; t, t0) is totally symmetric under the permutations of the n variables
~k1, · · · ,~kn. Leading order expressions for the probabilities P1 and P2 have been given in the

previous section. Note that, Zp0 [t, t0|u = 1] = 1, which reflects the normalization of the

probabilities, while obviously Zp0 [t, t0|u = 0] = 0.

By taking the nth functional derivative of Zp0 [t, t0|u] evaluated at u = 0, one recovers

Pn(~k1, · · · ,~kn; t, t0):

Pn(~k1, · · · ,~kn; t, t0) =

[
n∏
i=1

(2π)3 2k+
i

δ

δu(~ki)

]
Zp0 [t, t0|u]

∣∣∣∣∣
u=0

, (3.2)

with the usual definition

δu(~k)

δu(~q)
= δ(3)(~k − ~q) ≡ δ(k+ − q+) δ(2)(k − q) . (3.3)

We shall be mostly concerned with inclusive probabilities, that is by the probabilities to

observe at time t, n gluons with specified momenta, irrespective of whether other gluons are

produced or not. Such probabilities are obtained by taking the n-th functional derivative of

Zp0 [t, t0|u] and then letting u = 1.

3.2 Evolution equations for the generating functional

Two formulations can be considered for the evolution of the generating functional. We con-

sider in this section the ‘forward’, formulation, where an additional splitting is allowed to

occur at the latest time t of the cascade development. In Appendix C, another formulation

is presented, where one focuses instead on a splitting taking place at the beginning of the

cascade. Both formulations are equivalent but lead to different equations (see e.g. Ref. [24]

for a general discussion).

Let us then consider the initial state of the cascade, where a single gluon is present at

time t = t0. For t = t0, all probabilities vanish except P1(~k; t0, t0) = 2k+(2π)3δ(~k − ~p0), so

that the generating functional reduces to

Zp0 [t0, t0|u] = u(~p0) . (3.4)
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During the infinitesimal time step t0 → t0 + dt, two physical effects can occur: momentum

broadening and splitting. Only the variations with time of P1 and P2 contribute: P2 changes

because a splitting can occur during the time dt; P1 changes for two reasons: first the collisions

change the transverse momentum, second, probability conservation forces P1 to decrease as

P2 increases. Thus, at time t0 + dt, the generating functional reads

Zp0 [t0 + dt, t0|u] =

∫
dΩk P1(~k; t0 + dt, t0)u(~k)

+
1

2

∫
dΩk1dΩk2 P2(~k1,~k2; ~p ; t0 + dt, t0)u(~k1)u(~k2), (3.5)

where P1 contains, besides the leading order contribution, a contribution of order αs, for the

reason just mentioned.

The leading order variation of P1, which corresponds to momentum broadening, is easily

deduced from Eq. (2.7). The order αs correction will be inferred from the conservation of

probability. For P2 we use the definition (2.14) to write

1

2

∫
dΩ1dΩ2 P2(~k1,~k2; t, t0)u(~k1)u(~k2)

=
1

4π

∫ 1

0

dz

2z(1− z)

∫
k1,k2

P2(k1,k2, z; t, t0) u(zp+
0 ,k1)u((1− z)p+

0 ,k2), (3.6)

where we have used

k+
1 = zp+

0 , k+
2 = (1− z)p+

0 , dΩ1dΩ2 =
1

(2π)2

dzdp+
0

4z(1− z)p+
0

. (3.7)

Next, by taking a derivative w.r.t. tL on (2.15), and relabeling tL → t, ka → k1, and kb → k2,

one deduces

∂tP2(k1,k2, z; t, t0) =2g2z(1− z)K(z, p+
0 ; t)

×
∫
q
(2π)4δ(2)(k1 − zq)δ(2)(k2 − (1− z)q)P(q − p0; t, t0), (3.8)

and hence [recall that P(q − p0; t0, t0) = (2π)2δ(2)(q − p0)]

P2(ka,kb, z; t0 + dt, t0) = 2g2z(1− z)K(z, p+
0 ; t0)dt (2π)4δ(2)(k1 − zp0)δ(2)(k2 − (1− z)p0).

(3.9)

Combining these results, on can rewrite Zp0 [t0 + dt, t0|u] as follows

∂

∂t
Zp0 [t, t0|u]

∣∣∣∣
t=t0

=

∫
l
C(l, t0)u(p+

0 ,p0 + l)

+ αs

∫ 1

0
dzK(z, p+

0 ; t)
[
u(zp+

0 , zp0)u((1− z)p+
0 , (1− z)p0)− u(~p0)

]
.

(3.10)

– 8 –



Note that the last term, proportional to u(~p0) is here to ensure that the probability is con-

served during the evolution5: if one sets u = 1, then all terms in the right-hand-side of

Eq. (3.10) vanish (recall that
∫
l C(l) = 0).

Equation (3.10) is easily extended to a full evolution equation for the generating functional

This evolution equation for Z reads

∂

∂tL
Zp0 [tL, t0|u]−

∫
dq+

2π

∫
q

∫
l
u(q+, q + l) C(l, tL)

δ

δu(~q)
Zp0 [tL, t0|u]

= αs

∫ 1

0
dz

∫
dq+

2π

∫
q
K(z, q+; t)

[
u(zq+, zq)u((1− z)q+, (1− z)q)− u(~q)

] δ

δu(~q)
Zp0 [tL|u] .

(3.11)

This formula has a simple interpretation. The effect of the functional derivative δ/δu(~q) is to

select a gluon with momentum ~q from the gluon cascade at time tL. Then one calculates the

evolution of this particular gluon by repeating the infinitesimal time step discussed before.

The second term in the first line accounts for the collision of the gluon with the medium

which, at time tL, turns its momentum q into q + l. The second line contains the probability

for this gluon to split (via a collinear splitting), or not, in the time step tL → tL + dtL.

In Appendix C, an equivalent equation is provided (cf. Eq. (C.2)), in which the generating

functional is differentiated with respect to t0.

At this point, it is worth recalling that the equations above are somewhat formal since

the integrals over the spliting fraction z develop endpoint singularities at z = 0 and z = 1. To

see that more precisely, let us consider the evolution equation for the probability P1(k; tL, t0).

By using the definition (3.2) together with the evolution equation (3.11), one easily finds

∂

∂tL
P1(k; tL, t0)−

∫
l
C(l, tL)P1(k − l; tL, t0) = −αs

∫ 1

0
dzK(z, p+

0 ; tL)P1(k; tL, t0) ,

(3.12)

where the r.h.s. originates from the ‘loss’ term in Eq. (3.11) and describes the reduction of

the one-gluon probability due to branching. This equation is easily solved by writing

P1(k; tL, t0) = ∆(p+
0 ; tL, t0)P(k − p0; tL, t0). (3.13)

One then easily finds

∆(p+
0 ; tL, t0) = exp

[
−αs

∫ tL
t0

dt
∫ 1

0 dzK(z, p+
0 ; t)

]
. (3.14)

The physical meaning of Eq. (3.13) is transparent: P1(k; tL, t0) appears as the product of the

probability P(k − p0; tL, t0) for the initial gluon (with momentum ~p0) to acquire transverse

momentum k − p0 via collision with the medium, multiplied by the ‘survival probability’

∆(p+
0 ; tL, t0) (aka the ‘Sudakov factor’), that is the probability for this gluon not to branch

between t0 and tL. As it stands, this survival probability vanishes because of the endpoint

5This term proportional to u(~p0) stands for the order αs corrections to P1 that we mentioned above.
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singularities of the kernel K(z, p+
0 ; t) at z = 0 and z = 1. A cut-off needs to be introduced,

which defines the ‘resolution’, i.e., the energy below which gluons cannot be resolved any-

more. The following identities (ε → 0), that result from the symmetry of the kernel in the

substitution z → 1− z,∫ 1−ε

ε
dzK(z) = 2

∫ 1−ε

0
dz zK(z) = 2

∫ 1

ε
dz (1− z)K(z) , (3.15)

allow us to concentrate on one of the two endpoint singularities, say that at z = 0. One then

easily estimates (with ∆t = tL − t0)

∆(εp+
0 ; ∆t) ' exp

[
−2ᾱ∆t

√
q̂

εp+
0

]
, (3.16)

where ᾱ ≡ αsNc/π. It follows in particular that the typical time between two successive

branchings (the value of ∆t for which the exponent becomes of order one) is given by

∆trad(εp+) ' 1

2ᾱ

√
εp+

q̂
∼ 1

ᾱ
τ
br

(εp+) , (3.17)

for a gluon within the cascade with generic energy p+. In order for successive branchings

to proceed independently from each other, we need ∆trad to be significantly larger than the

duration τ
br

(p+) of the branching giving birth to the p+ gluon, which implies6 ε > ᾱ2. Such a

cut–off must be included to give a meaning to the generating functional. Note however that

physical (inclusive) distributions remain finite in the limit ε → 0, as we shall shortly verify,

hence they are only weakly sensitive to the precise value of this cutoff, so long as it is small

enough.

3.3 Evolution equation for the one-gluon distribution

We turn now to a specific study of the inclusive one-gluon distribution. To simplify the

notation, we shall omit the explicit dependence on the initial momentum ~p0 ≡ (p+
0 ,0), as well

as on t0, and denote the gluon distribution simply by D(x,k, t), with x = k+/p+
0 . We shall

also assume from now on that the density n is independent of time, and therefore so is K.

The inclusive one-gluon distribution is given by

D(x,k, t) = k+ dN

dk+d2k
≡ k+

〈 ∞∑
n=1

n∑
j=1

δ(3)(~kj − ~k)

〉

=
1

2(2π)3

{
P1(~k; t, t0) +

∞∑
n=2

1

n!

∫ n−1∏
i=1

dΩi nPn(~k,~k1, · · · ,~kn−1; t, t0)

}

= k+ δZp0 [t, t0|u]

δu(~k)

∣∣∣∣∣
u=1

. (3.18)

6Note that this is not a very restrictive condition for the medium–induced cascade. Indeed, as demonstrated

in Ref. [21], the branchings of the soft gluons are mostly ‘democratic’ as soon as p+ . ᾱ2ωc.
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Figure 2. Diagrammatic representation of the forward evolution for the inclusive gluon distribution.

According to this formula, the evolution equation obeyed by D(x,k, t) can be obtained

by taking a functional derivative δ/δu(~k) of Eq. (3.11), and then setting u = 1 (note that

only the explicit factors of u in Eq. (3.11) contribute in this operation). We thus find

∂

∂t
D(x,k, t) =

∫
l
C(l, t)D (x,k − l, t)

+ αs

∫ 1

0
dz

[
2

z2
K
(
z,
x

z
p+

0 ; t
)
D

(
x

z
,
k

z
, t

)
−K

(
z, xp+

0 ; t
)
D (x,k, t)

]
.

(3.19)

This equation, which represents an important result of this paper, is illustrated in Fig. 2.

The first term in its r.h.s. describes transverse momentum broadening via medium rescatter-

ing in between successive branchings, and leads to diffusion in momentum space. The two

terms within the square brackets in the second line of Eq. (3.19) can be viewed respectively

as a ‘gain term’ and a ‘loss term’ associated with one branching. The ‘gain term’ describes

the production of a new gluon with energy fraction x and transverse momentum k via the

decay of an ancestor gluon having energy fraction x′ = x/z > x and transverse momentum

k/z. (Note that the condition x < x′ < 1 implies 1 > z > x for the respective integral over

z.) The ‘loss term’ describes the disappearance of a gluon with energy fraction x via the

decay (x,k) → (zx, zk) ((1 − z)x, (1 − z)k), with 0 < z < 1. Equation (3.19) thus describes

the interplay between collinear splittings (cf. Eq. (2.15)) and diffusion in momentum space

in the development of the in-medium cascade.

3.4 Energy distribution

By integrating Eq. (3.19) over the transverse momentum k, one finds a simplified equation

describing the evolution of the energy distribution alone:

∂

∂t
D(x, t) = αs

∫ 1

0
dz
[
2K
(
z,
x

z
p+

0 , t
)
D
(x
z
, t
)
−K

(
z, xp+

0 , t
)
D (x, t)

]
, (3.20)

where we have set D(x, t) ≡
∫
kD(x,k, t). Since the kernel is independent of time, the gluon

distribution depends upon t and t0 only via their difference t − t0 and it is convenient to

rescale the time variable and the emission kernel in such a way as to construct dimensionless
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quantities. Namely, we define

τ ≡ αsNc

π

√
q̂

p+
0

(t− t0) , K̂(z) ≡ 2π

Nc

√
p+

0

q̂
K(z, p+

0 ) =
[1− z(1− z)]5/2

[z(1− z)]3/2 . (3.21)

Using also the property (cf. Eq. (2.16))

K
(
z,
x

z
p+

0

)
=

√
z

x
K(z, p+

0 ), (3.22)

as well as the identities Eq. (3.15), one can put the evolution equation (3.20) in the form

∂

∂τ
D(x, τ) =

∫
dz K̂(z)

[√
z

x
D
(x
z
, τ
)
− z√

x
D(x, τ)

]
, (3.23)

which is the equation7 that has been studied in Ref. [21].

Note that the singularities of the kernel K̂(z) at z = 0 and z = 1 are here harmless, since

they exactly cancel: the integral over z in the ‘gain’ term is restricted to z > x, while that

in the ‘loss’ term involves an additional factor of z, which ensures convergence as z → 0.

When z → 1, the ‘gain’ and ‘loss’ terms would separately be singular, yet the respective

divergences cancel in their sum, provided the spectrum D(x, τ) is a regular function of x for

x < 1. Accordingly, Eq. (3.23) is well defined as written, and the same applies to Eq. (3.19).

4 Radiative corrections to q̂

As recalled in the Appendix A, several approximations are involved in the derivation of the

splitting kernel. Among those are approximations in which one ignores small momenta in the

propagators P, thereby allowing us to integrate the kernel over those particular momenta.

Such approximations are in line with the leading order of our approximation scheme. However,

in integrating the kernel over the various transverse momenta on which it may depend, one

eliminates potentially interesting physics: we have seen in particular that in the leading

order of our approximation scheme, the gluon splitting is strictly collinear, with all transverse

momenta arising from collisions with medium constituents in between the splittings. Clearly,

one may wish to go beyond this simplified picture. In fact, the detailed calculations reported

in Appendix A allow us to to go beyond the leading order approximation and explore the

consequences of keeping some of these momenta in the factors P attached to a gluon splitting.

Since these momenta are small, their effects can be well captured by a Taylor expansion, so

that the entire corrections to the leading calculation presented so far appear as integral

moments of the kernel, which may become large (in fact they are logarithmically divergent)

for splittings that involve very soft gluons. As we shall see, these corrections are in fact

better interpreted as corrections to the transport coefficient q̂, or equivalently as corrections

7Eq. (3.23) has been heuristically proposed in Refs. [25, 26] and later implemented in the MARTINI event

generator [27]. Recently [21], a complete analytical study of this equation has been achieved showing its

relevance in explaining the energy flow at large angles, via soft particles, responsible for dijet asymmetry [2].
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to the interaction between the partons of the cascade and the medium particles. Clearly, with

the present discussion we cannot claim of having a systematic control of these corrections.

However, we shall be able to identify the main correction to q̂, in line with a recent study of

transverse momentum broadening [22].

It is recalled in Appendix A that the most general expression for the splitting probability

that is compatible with the minimal set of approximations [referred to 1) and 2) in the

Appendix] is given by

P2(ka,kb, z; tL, t0) = 2g2z(1− z)
∫ tL

t0

dt

∫
q,Q,l

K(Q, l, z, p+
0 ; t)

× P(ka − p; tL, t)P(kb − (q + l− p); tL, t)P(q; t, t0), (4.1)

where Q = p − z(q + l), with q the momentum of the gluon before splitting, p that of the

offspring that carries zq+, and l is the transverse momentum acquired during the branching

process. The complete expression of the splitting kernel K(Q, l, z, p+
0 ; t) is given in Ap-

t0 tL

ka

kb

p0 q

p

q − p + l

l

t

z

1 − z

Figure 3. Graphical illustration of the equation (4.2). The thick wavy lines represent the probability

P for transverse momentum broadening, the black dot is the splitting kernel K.

pendix A, in terms of an integral representation obtained in the harmonic approximation

(see Eq. (A.15)). Note that, in contrast to the fully integrated kernel in Eq. (2.16), the non

integrated one is not positive definite anymore. (This is already obvious on the partially inte-

grated one, Eq. (A.17), although we may argue that this particular kernel becomes negative

only in a momentum region where it is dwarfed by the exponential.) Yet, even though strictly

speaking one loses their probabilistic interpretation, the manipulations of the previous section

can be formally repeated in order to obtain the evolution equation for the inclusive one-gluon

distribution corresponding to a more general splitting kernel. This equation reads

∂

∂t
D(x,k, t) =

∫
l
C(l, t)D (x,k − l, t)

+ αs

∫ 1

0
dz

∫
q,l

[
2K
(
Q, l, z,

x

z
p+

0

)
D
(x
z
, q, t

)
−K

(
q, l, z, xp+

0

)
D (x,k − l, t)

]
, (4.2)
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where Q ≡ k − z(q + l). In the following, we shall use the fact that Q and l are generically

small compared to k in order to simplify this equation. The fact that l is small is obvious

from its interpretation as the momentum broadening acquired during the branching process.

That Q is also small may be inferred from the explicit expression (A.17) of the splitting kernel

after integration over l: this expression shows that the kernel which enters the ‘gain’ term in

Eq. (4.2) is peaked around |Q|2 ∼ k2
br
≡ √ω0q̂0, with ω0 = (1 − z)xp+

0 . The strategy that

we shall follow then is the same as that we used in order to reduce Eq. (2.7) to the diffusion

equation (2.9), which involves essentially an expansion around the large momentum k of the

followed gluon.

4.1 The double logarithmic correction to q̂

In order to perform this expansion in powers of the small momenta Q and l, it is convenient

to change variables in the r.h.s. of Eq. (4.2), in such a way that these momenta become the

independent integration variables:

∂

∂tL
D(x,k, tL) = αs

∫ 1

0
dz

∫
Q,l

[
2

z2
K
(
Q, l, z,

x

z
p+

0

)
D
(x
z
, (k −Q− zl)/z, tL

)
−K

(
Q, l, z, xp+

0

)
D (x,k − l, tL)

]
−
∫
l
C(l)D (x,k − l, tL) . (4.3)

We can now expand the gluon distributions around k. One gets, for the first term of Eq. (4.3),

D

(
x

z
,
k − Q̃

z

)
= D

(
x

z
,
k

z

)
− Q̃ · ∂

∂k
D

(
x

z
,
k

z

)
+

1

2!
Q̃iQ̃j

∂

∂ki

∂

∂kj
D

(
x

z
,
k

z

)
+ · · ·(4.4)

where we have set Q̃ ≡ Q + zl. One expands similarly D (x,k − l). It is easy to see that the

leading terms will reproduce Eq. (3.19). The linear terms will vanish upon angular integration.

Remain the quadratic terms, whose contribution can be cast in the form of the diffusion term,

thereby exhibiting a correction δq̂ to the jet quenching parameter. For consistency, we shall

also simplify the collision term by using the diffusion approximation.

The evolution equation obtained after this expansion to quadratic order reads

∂

∂tL
D(x,k, tL) = αs

∫ 1

0
dz

[
2

z2
K
(
z,
x

z
p+

0

)
D

(
x

z
,
k

z
, tL

)
−K

(
z, xp+

0

)
D (x,k, tL)

]
+

1

4

(
∂

∂k

)2 [
q̂(k2)D (x,k, tL)

]
+

1

4

(
∂

∂k

)2 ∫ 1

x
dz

dδq̂(z, xp+
0 ,k

2)

dz
D

(
x

z
,
k

z
, tL

)
, (4.5)

where the first two lines are recognized as the leading–order transport equation, Eq. (3.19),
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and in the last term we have set

dδq̂(z, xp+
0 ,k

2)

dz
≡ 2αs

z2

∫
Q,l

(Q + zl)2K
(
Q, l, z,

x

z
p+

0

)
− αsδ(1− z)

∫ 1

0
dz′
∫
Q,l

l2K(Q, l, z′, xp+
0 ) . (4.6)

The k2–dependence in Eq. (4.6) comes via the upper cutoff ∼ k in the integrals over Q and

l, which is kept implicit (see the discussion after Eq. (2.10), and Eq. (4.9) below).

The evaluation of the correction δq̂ from Eq. (4.6) meets with logarithmic divergences.

These arise from the region z . 1. To the leading-logarithmic accuracy, we can set z = 1

everywhere, except in the dominant singularity. Thus the dominant contribution to δq̂ can

be then written as∫ 1

x
dz

dδq̂(z, xp+
0 ,k

2)

dz
D

(
x

z
,
k

z
, tL

)
' δq̂(x,k2)D (x,k, tL) , (4.7)

with

δq̂(x,k2) ≡
∫ 1

x
dz

dδq̂(z, xp+
0 ,k

2)

dz
= 2αs

∫ 1

x
dz

∫
Q,l

[
(Q + l)2 − l2

]
K
(
Q, l, z, xp+

0

)
,

(4.8)

where the lower limit x in the integral over z, which was a priori present only in the ‘gain’

term, has also been inserted in the ‘loss’ term, while at the same time multiplying the latter

by a factor of 2, to account for its original singularities at both z = 0 and z = 1 (which is

legitimate since, to the accuracy of interest, the integral is controlled by values z ' 1 � x).

The particular combination of momenta,
[
(Q + l)2 − l2

]
, that emerges then in Eq. (4.8) can

be given the following interpretation: when z ' 1, Q ≡ k − z(q + l) is the same as (minus)

the transverse momentum q + l−k of the unmeasured daughter gluon. Hence Q+ l ' k− q

is the change in transverse momentum at the emission vertex, with two obvious components:

the momentum l acquired via medium rescattering during the branching process and the

momentum Q taken away by the unmeasured daughter gluon. The above applies to the

‘gain’ term. For the ‘loss’ term, there is no real emission, so the only source of momentum

broadening is the momentum l transferred from the medium. The difference (Q + l)2 − l2

represents therefore the net change in the transverse momentum squared, and the average of

this quantity over the (momentum dependent) splitting kernel yields the correction δq̂.

The complete calculation of the integral (4.8) is presented in Appendix B, where it is

shown that the result is dominated by the contribution of the single scattering to the splitting

kernel. One gets

δq̂(k2) =
αsNc

2π
q̂0 ln2 k2

q̂τmin
, (4.9)

where τmin is the inverse of the maximum energy that can be extracted from the medium in

a single scattering (e.g. τmin = 1/T for a weakly coupled plasma with temperature T ). This

result agrees with that obtained in Ref. [22] using a different approach.
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The net result of incorporating this large radiative correction is a transport equation

similar to that obtained at leading order, Eq. (3.19), but with an enhanced jet quenching

coefficient, which includes the correction in Eq. (4.9) :

∂

∂tL
D(x,k, tL) = αs

∫ 1

0
dz

[
2

z2
K
(
z,
x

z
p+

0

)
D

(
x

z
,
k

z
, tL

)
−K

(
z, xp+

0

)
D (x,k, tL)

]
+

1

4

(
∂

∂k

)2 [(
q̂(k2) + δq̂(k2)

)
D (x,k, tL)

]
. (4.10)

Note that the scale k2 which controls the size of the double logarithm is the transverse

momentum accumulated by the gluon throughout the medium, that is k2 ∼ Q2
s = q̂L. Hence

the argument of the logarithm is large, ∼ L/τmin, which makes this radiative corrections

particularly significant.

4.2 A logarithmic correction to q̂

The correction that we have exhibited in the previous subsection appears to be the leading

correction to the transport coefficient. There are also subleading (logarithmic, instead of

double logarithmic) corrections. These have been estimated in Ref. [22], and could in principle

be extracted as well from our calculation. In this section, we shall just focus on one particular

logarithmic correction that is easy to obtain because it is the correction that naturally emerges

when one uses the kernel integrated over l but not over Q, namely the expression (A.17).

The starting point is now the equation

∂

∂t
D(x,k, t) =

∫
l
C(l, t)D (x,k − l, t)

+ αs

∫ 1

0
dz

∫
q

[
2K
(
Q, z,

x

z
p+

0

)
D
(x
z
, q, t

)
−K

(
q, z, xp+

0

)
D (x,k, t)

]
,

(4.11)

where Q ≡ k − zq.

Expanding the distribution around the momentum k as in the previous subsection, one

gets

∂

∂t
D(x,k, t)− 1

4

(
∂

∂k

)2 [
q̂(k2)D (x,k, t)

]
= αs

∫ 1

0
dz

[
2

z2
K
(
z,
x

z
p+

0

)
D

(
x

z
,
k

z
, t

)
−K

(
z, xp+

0

)
D (x,k, t)

]
+αs

∫ 1

0
dz

∫
Q

2

z2
K
(
Q, z,

x

z
p+

0

) 1

4
Q2 ∂

2

∂k2
D(x,k) (4.12)
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The second–order term in the expansion (which carries the divergence near z = 1) yields a

correction to q̂, which we call δq̂′. We get (below, we use approximations valid for z ' 1)

δq̂′ = 2αs

∫ 1

x
dz

∫
Q

Q2K
(
Q, z, xp+

0

)
∝ αs

∫ 1

x
dz k4

br
(z, xp+

0 )
P (z)

(1− z)xp+
0

∼ αsq̂

∫ 1

x

dz

1− z , (4.13)

where to obtain the estimate in the second line we have used the fact that the splitting kernel is

peaked at k2
br

(z, xp+
0 ) =

√
(1− z)xp+

0 q̂, cf. Eq. (A.17). As anticipated, there is a logarithmic

divergence at z = 1, corresponding to ω0 → 0. This must be cut at the lowest energy scale at

which the BDMPSZ mechanism is applicable, which is the Bethe–Heitler energy ωBH ≡ q̂0λmfp
,

i.e. the energy for which the branching time τ
br

(ω0) becomes of the order of the mean free

path λ
mfp

. In practice this means that the integral over z in Eq. (4.13) must be restricted to

1− z ≤ ωBH/ω, with ω = xp+
0 the energy of the measured gluon. Note that single scattering

does not contribute to this logarithmic correction (as it can be checked using Eq. (A.21)),

in contrast to the double logarithmic one discussed in the previous subsection. Let us also

emphasize that Eq. (4.13) is only one among the several logarithmic corrections to q̂ that

have been analyzed in Ref. [22].

5 Conclusions

In this paper, we have extended our previous studies of the in-medium QCD cascade, based on

the approximation that successive gluon branchings can be treated as independent from each

other. This approximation is indeed justified for the typical partons within the cascade, whose

formation times are much smaller than the medium size. We have constructed a generating

functional for the various relevant probabilities and deduced from it the evolution equation for

the inclusive one-gluon distribution function, that keeps track of the transverse momentum

of the measured gluon. In this equation, however, the transverse momenta entering the

splitting kernel are treated in an average way and the splittings are effectively collinear.

This is justified since the transverse momentum broadening during the comparatively short

(in our approximation, quasi–instantaneous) branching processes is much smaller than that

accumulated via collisions in the medium all the way along the parton trajectories. By relaxing

some of our approximations, in particular those which allow us to integrate the kernel over

transverse momenta, we were able to identify large corrections to the jet quenching parameter,

and in particular to recover the double logarithmic contribution that has been calculated

recently in a general study of transverse momentum broadening.
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Figure 4. The momenta of the intermediate states in Eq. (A.3). The amplitude is drawn above

the complex conjugate amplitude (see Ref. [20]), with the gluon splitting occurring at time t1 in the

amplitude, and at time t2 in the complex conjugate amplitude. At any given time, the sum of momenta

in the amplitude equals that of momenta in the complex conjugate amplitude.

A The splitting kernel

It was shown in Ref. [20] that the cross section for observing at time tL two gluons with

momenta ~ka, ~kb, given that a single gluon was present with momentum ~p0 at time t0, is given,

in leading order perturbation theory, by

d2σ

dΩkadΩkb

=

∫
dΩp0 P2(~ka,~kb; tL, t0)

dσhard
dΩp0

, (A.1)

where dσhard/dΩp0 is the hard cross section for the production of the initial gluon, and

dΩk ≡ (2π)−3d2k dk+/2k+ is the invariant phase–space element, and the vector notation ~k

stands for (p+,p), as in the main text of this paper. The probability P2(~ka,~kb; tL, t0) can be

written as (cf. Eq. (2.14))

P2(~ka,~kb; tL, t0) = 2π 2p+
0 δ(k

+
a + k+

b − p+
0 )P2(ka,kb, z; tL, t0), (A.2)
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with z = k+
a /p

+
0 , and P2(ka,kb, z; tL, t0) given by

P2(ka,kb, z; tL, t0) =
g2Pgg(z)

z(1− z)(p+
0 )2

2<e
∫ tL

t0

dt2

∫ t2

t0

dt1

∫
p1q1q̄2p2q2

(P̂1 · Q̂2)

× (kakb;kakb|S̃(4)(tL, t2)|q2, q̄2 − q2;p2, q̄2 − p2)(q2, q̄2 − q2; q̄2|S̃(3)(t2, t1)|p1, q1 − p1; q1)

×(q1; q1|S̃(2)(t1, t0)|p0;p0), (A.3)

where P̂1 ≡ p1−zq1, Q̂2 ≡ p2−zq̄2 denote the ‘natural’ momentum variables8 at the vertices

in the amplitude and the complex conjugate amplitude, respectively. The explicit flow of

momenta that label intermediate states is illustrated in Fig. 4. The dependence of P2 (and

P2) on the initial momentum ~p0 is left implicit to simplify the notation. The real part takes

into account the time ordering t1 > t2 not explicitly included in (A.3). The formula above

has been obtained after performing the average over the field fluctuations using Eq. (2.1),

and summing over polarizations. Azymuthal angles of the momenta at the vertices have also

been averaged.

At this point no approximation has been made, except for the obvious restriction to

leading order in perturbation theory (in the background field), that is, a single splitting

occurs between t0 and tL. One may now introduce several approximations that are valid in

the regime where the branching occurs on a time scale that is small compared to the length

of the medium, i.e, in the regime τ
br
� tL − t0 (or equivalently for infinite medium length).

We shall first consider the following two approximations:

1) Ignore the non factorizable piece of S̃(4), that is, set

(kakb;kakb|S̃(4)
fac (tL, t2)|q2, q̄2 − q2;p2, q̄2 − p2)

= (2π)2δ(2)(p2 − q2)P(ka − q2, tL, t2)P(kb − q̄2 + q2, tL, t2). (A.4)

It was shown in [20] that the non factorizable piece of the 4-point function dies away over

a time scale of order τ
br

, and it is down by a least one power of τ
br
/L as compared to the

factorized part.

2) Use as time integration variables t1 and t2− t1 ≡ τ , i.e., set t2 = t1 + τ , and neglect τ

in the P factors that enter the 4-point function (A.4), that is e.g.

P(ka − q2, tL, t1 − τ)→ P(ka − q2, tL, t1), (A.5)

and similarly for the other P. This allows us to integrate freely the 3-point function over

τ from 0 to ∞ (as we shall soon recall, the 3-point function is strongly damped as soon as

τ & τ
br

).

8The momentum P̂1 = p1−zq1 is the relative momentum of the non relativistic motion of the two offspring

gluons in the transverse plane. Alternatively, |P̂1|/p+1 ' θz is the polar angle of the gluon carrying zq+1 . Since

|P̂1| ' kbr, θz ∼ kbr/zq+1 .
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With these two approximations, Eq. (A.3) simplifies to

P2(ka,kb, z; tL, t0) = 2g2z(1− z)
∫ tL

t0

dt1

∫
q1,Q̂2,l

P(ka − q2, tL, t1)P(kb − q1 − l + q2, tL, t1)

×Pgg(z)
ω2

0

<e
[∫

P̂1

∫ ∞
0

dτ (P̂1 · Q̂2) (q2, q̄2 − q2; q̄2|S̃(3)(t2, t1)|p1, q1 − p1; q1)

]
× P(q1 − p0, t1 − t0), (A.6)

where we have set ω0 ≡ z(1 − z)p+
0 and we have used as independent variables q1, P̂1 =

p1 − zq1, Q̂2 = p2 − zq̄2 = q2 − zq̄2, l = q̄2 − q1 in place of q1,p1, q̄2, q2. At this point we set

(with a slight abuse of notation)

S̃(3)(P̂1, Q̂2, l, z, τ, t1) = (q2, q̄2 − q2; q̄2|S̃(3)(t2, t1)|p1, q1 − p1; q1) (A.7)

which makes explicit the relevant momentum variables on which the 3-point function depends,

and we define the splitting kernel

K(Q̂, l, z, t1) ≡ Pgg(z)

ω2
0

Re

∫ ∞
0

dτ

∫
P̂

(P̂ · Q̂) S̃(3)(P̂ , Q̂, l, z, τ, t1). (A.8)

With this new notation, Eq. (A.6) reads

P2(ka,kb, z; tL, t0) = 2g2z(1− z)
∫ tL

t0

dt1

∫
q1,Q̂2,l

P(ka − Q̂2 − z(q1 + l), tL, t1)

×P(kb + Q̂2 − (1− z)(q1 + l), tL, t1) K(Q̂2, l, z, t1)P(q1 − p0, t1, t0). (A.9)

At this point further approximations are legitimate. For instance, as we did in [20], we

can neglect the momentum l in the P factors: indeed l represents the typical momentum

acquired during the branching process, l2 ' q̂τ
br

, and it is small compared to ka or kb which

are both of order Qs ∼ q̂(tL − t0). If one neglects l in the P factors, then one can integrate

the splitting kernel over l and get the simpler formula

P2(ka,kb, z; tL, t0) = 2g2z(1− z)
∫ tL

t0

dt1

∫
q1,Q̂2

P(ka − Q̂2 − zq1, tL, t1)

×P(kb + Q̂2 − (1− z)q1, tL, t1) K(Q̂2, z)P(q1 − p0, t1, t0). (A.10)

with K(Q̂, z, t) ≡
∫
lK(Q̂, l, z, t). This is the approximation that was explicitly considered in

Ref. [20].

We may also observe that the variable Q̂ that stands as argument of K is also small, of

order k
br
� Qs, and can also be neglected in a leading order approximation. Doing so, one

ends up with an even simpler formula

P2(ka,kb, z; tL, t0) = 2g2z(1− z)
∫ tL

t0

dt1K(z, t1)

∫
q1

P(ka − zq1, tL, t1)

×P(kb − (1− z)q1, tL, t1) P(q1 − p0, t1, t0). (A.11)
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with K(z, t) ≡
∫
Q̂K(Q̂, z, t) =

∫
QlK(Q̂, l, z, t) is the fully integrated splitting kernel. This is

the kernel used to construct the generating functional of the in-medium cascade in Sect. 3.

As was shown in [20], the 3-point function can be written as the following path integral

S̃(3)(P ,Q, l, z, p+
0 ; t2, t1) =

∫
du1du2dv eiu1·P−iu2·Q−iv·l

×
∫ u2

u1

Du exp

{
iω0

2

∫ t2

t1

dt u̇2 − Nc

4

∫ t2

t1

dt n(t) [σ(u) + σ(v − zu) +σ(v + (1− z)u)]

}
.

(A.12)

This can be explicitly evaluated within the ‘harmonic approximation’, which assumes σ(r) ∝
q̂r2 (cf. Eq. (2.11)). By expanding all the σ’s to quadratic order, and performing the resulting

gaussian path integrals, one gets [20]9

S̃(3)(P ,Q, l, z, p+
0 ; t2, t1) =

16πf(z)

3q̂∆t
exp

{
−4f(z)

[
l + (1− 2z)(P −Q)/2f(z)

]2
3q̂∆t

}

× 2πi

Ωω0 sinh(Ω∆t)
exp

{
−i (P + Q)2

4ω0Ω coth(Ω∆t/2)
− i (P −Q)2

4ω0Ω tanh(Ω∆t/2)

}
. (A.13)

where ∆t ≡ t2 − t1, f(z) ≡ 1− z(1− z), and

Ω ≡ 1 + i

2τ
br

(z, p+
0 )
, (A.14)

with τ
br

(z, p+
0 ) ≡

√
ω0/q̂0 and q̂0 ≡ q̂f(z).

By inserting the result (A.13) for S̃(3) into Eq. (A.8), one finds the following integral

representation for the splitting kernel (in the harmonic approximation):

K(Q, l, z, p+
0 ; t) = 16π

f(z)Pgg(z)

ω2
0

<e
∫ ∞

0

d∆t

3q̂∆t

×
∫
P

(Q · P ) exp

{
−4f(z)

[
l + (1− 2z)(P −Q)/2f(z)

]2
3q̂∆t

}

× 2πi

Ωω0 sinh(Ω∆t)
exp

{
−i (P + Q)2

4ω0Ω coth(Ω∆t/2)
− i (P −Q)2

4ω0Ω tanh(Ω∆t/2)

}
. (A.15)

This kernel obeys the symmetry property:

K(Q, l, z, p+
0 ; t) = K(−Q, l, 1− z, p+

0 ; t) , (A.16)

which expresses the symmetry of the splitting under the exchange of the two daughter gluons.

9Note that a mistake was made in evaluating the Gaussian path-integral in [20]: in going from Eq. (B.24)

to Eq. (B.25) in Appendix B of Ref. [20], one has ignored the shift in the endpoints of the trajectory u(t).

This was of no consequence in [20] since the splitting kernel was there integrated over l. However this affects

the l dependence of the kernel, which is here given correctly.
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By performing the integration over l one recovers the splitting kernel obtained in [20]:

K(Q, z, p+
0 ; t) ≡

∫
l
K(Q, l, z, p+

0 ; t) =
2

p+
0

Pgg(z)

z(1− z) sin

[
Q2

2k2
br

]
exp

[
− Q2

2k2
br

]
, (A.17)

In this expression, k2
br

= q̂0τbr(z, p
+
0 ) =

√
ω0q̂0 is the typical transverse momentum squared

transferred via medium rescattering during the splitting. Note that the branching time,

and hence the splitting kernel, depend upon both p+
0 (the energy of the parent gluon) and

upon the splitting fraction z. The expression (A.17) illustrates an important property of the

branching that is induced by soft multiple collisions: it is strongly peaked at |Q| ∼ k
br

(z, p+
0 ).

For smaller momenta |Q| � k
br

, gluon splitting is suppressed by Q2/k2
br

, which reflects the

interferences of the LPM effect. At larger momenta |Q| & k
br

, it is rapidly damped, as it is

unlikely to acquire more transverse momentum than k
br

via multiple scattering.

The kernel in Eq. (A.17) contains information about the geometry of the medium–induced

splitting: the polar angles made by the two offspring gluons with respect to their parent parton

are θz ' |Q|/zp+
0 and respectively θ1−z ' |Q|/(1 − z)p+

0 . Since |Q| ∼ k
br
� Qs =

√
q̂L,

it is clear that these angles are negligible compared to the angular spreading acquired via

collisions in between successive branchings. By integrating the kernel (A.17) over Q, this

information about the emission angles is averaged out, and one obtains the fully integrated

kernel K(z, p+
0 ; t) given explicitly in Eq. (2.16).

Finally, we shall write the expression of the splitting kernel in the limit where a single

scattering occurs during the branching process. We limit ourselves to the case where z . 1,

the case of relevance for discussing the double logarithmic correction to q̂. The three-point

function in the one-scattering approximation, obtained by expanding (A.12) to leading order

in σ, takes the form

S̃(3)(P ,Q, l) ≈ −Nc

4

∫ t2

t1

dt n(t)G0(Q, t2 − t)G0(P , t− t1)

×
[
(2π)2δ(l)σ(Q− P ) + (2π)2δ(Q− P + l)σ(l) + (2π)2δ(Q− P )σ(l)

]
,

(A.18)

where G0(Q, t2 − t1) is the free propagator

G0(Q, t2 − t1) = e
−i Q

2

2ω0
(t2−t1)

. (A.19)

When needed (see below) a small negative imaginary part may be added to Q2 to account

for the retarded condition. If we assume that n is independent of time, we can perform the

time integration, and obtain (τ ≡ t2 − t1)

S̃(3)(P ,Q, l) ≈ −Ncnω0

2i

e
−i P

2

2ω0
τ − e

−i Q
2

2ω0
τ

Q2 − P 2

×
[
(2π)2δ(l)σ(Q− P ) + (2π)2δ(Q− P + l)σ(l) + (2π)2δ(Q− P )σ(l)

]
.

(A.20)
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At this point, the kernel reads

K(Q, l, z) ≡ C2
An

1− z Re

∫
P

P ·Q
Q2P 2

×
[
(2π)2δ(l)σ(Q− P ) + (2π)2δ(Q− P + l)σ(l) + (2π)2δ(Q− P )σ(l)

]
.

(A.21)

where we have used the time integral (recall that P 2 → P 2 − iε)
∫ ∞

0
dτ

e
−i P

2

2ω0
τ − e

−i Q
2

2ω0
τ

Q2 − P 2
= − 2iω0

Q2P 2
. (A.22)

This expression will be used in the next Appendix. Note that the last two terms in the r.h.s

of Eq. (A.21) vanish upon integration over l, because of the identities (2.6). These terms play

an essential role in the evaluation of δq̂, as shown in the next Appendix.

B Estimating the double logarithmic correction to q̂

Our starting point is the integral representation for the kernel given, in the harmonic approxi-

mation, by Eq. (A.15), where we keep only the singular part at z → 1 from the Altarelli–Parisi

splitting function Pgg(z) (see Eq. (2.17)), and we set z = 1 in the rest of the expression. After

inserting Eq. (A.15) into the r.h.s. of Eq. (4.8), we are facing four integrations: an inte-

gration over the duration τ of the branching process and three Gaussian integrations over

the momentum variables l, Q and P . Performing first the integral over l, one obtains (with

τ ≡ ∆t)

δq̂(k2) ' 2αs<e
∫ 1

x

dz

1− z
CA
ω2

0

∫ ∞
0

dτ

∫
Q,P

(Q · P )2

× 2πi

ω0Ω sinh(Ωτ)
exp

{
−i (P + Q)2

4ω0Ω coth(Ωτ/2)
− i (P −Q)2

4ω0Ω tanh(Ωτ/2)

}
, (B.1)

where ω0 ≡ (1 − z)zq+ ' (1 − z)xp+
0 and ω0Ω2 = iq̂0/2 (cf. Eq. (A.14)). Note that for z

close to one, the quantity ω0 is essentially the energy (1− z)q+ of the unresolved gluon and

q̂0 ' q̂. It is now straightforward to perform the remaining momentum integrations, yielding

δq̂(k2) = 2<e
∫ 1

x

dz

1− z
αsCA
ω2

0

∫ ∞
0

dτ
i(ω0Ω)3

π

1

sinh(Ωτ)

[
1 +

4

sinh2(Ωτ)

]
. (B.2)

Anticipating on the fact that the dominant (divergent) contribution will come from the small

τ region, we carefully expand the integrand for |Ω|τ � 1 and get

Ω3

sinh Ωτ

(
1 +

4

sinh2 Ωτ

)
≈ 4

τ3
− Ω2

τ
. (B.3)

The Ω–independent piece is real, so it does not contribute to the real part of the integral in

Eq. (B.2) (because of the explicit factor i in Eq. (B.2)). The second term in the r.h.s. Eq. (B.3)
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is purely imaginary and is linear in q̂0, suggesting that it describes the contribution of a single

scattering (see below). When inserted into Eq. (B.2), this term generates an integral which

is logarithmically divergent as τ → 0. One then gets, after changing the integration variable

from z to ω0 = (1− z)xp+
0 ,

δq̂(k2) ≈ αsNc

π
q̂

∫
dω0

ω0

∫
dτ

τ
. (B.4)

We can verify that the dominant contribution to K is coming from a single scattering

with the medium by using the expression obtained in Appendix A, Eq. (A.21), in order to

perform the calculation. We get (with ω0 = (1− z)p+)

ω0
dδq̂

dω0
= 2αs

∫
Q,l

q · (Q + 2l)K(Q, l, z)

= 4αsN
2
c nRe

∫
Q,P

(Q · P )2

Q2P 2
σ(Q− P ) (B.5)

where, in order to perform the l integration we have used the identities (2.6). By using

Eq. (2.5), we get∫
Q,Q

(Q · P )2

Q2P 2
σ(Q− P ) = 2g2

∫
q,l

γ(l)
Q2l2 − (l ·Q)2

Q2(Q− l)2

≈ g2

∫
Q

1

Q2

∫
l
l2γ(l), (B.6)

where, in the last line, we have made approximations valid in the region l� Q. We therefore

get from (B.5)

ω0
dδq̂

dω0
= 2αsN

2
c n

∫
Q

1

Q2

∫
l
l2V (l)

=
αNc

π
q̂

∫
dQ2

Q2
, (B.7)

which is recognized as Eq. (B.4) after recalling that the formation time and the virtuality of

the soft emitted gluon are related by τ ' ω0/Q
2.

Returning to Eq. (B.4), we shall now discuss the boundaries of the double integral there.

Consider the time integral first. At larger times |Ω|τ & 1, this integral is cutoff by the

exponential decay of [sinh Ωτ ]−1 ; this is the effect of multiple scattering during the emission

process, which limits the branching times to values τ . τ
br

(ω0) =
√
ω0/q̂. On the other hand

the time τ cannot be smaller that the inverse of the maximum energy that can be taken away

from the medium through a single scattering [22]. We call this limiting time τmin. This lower

bound may not always be reached however. If ω0 is not too small, then τ will be limited by

the formation time of the unobserved gluon, τ ' ω0/Q
2
⊥. But in reality such values cannot

exceed the transverse momentum k⊥ of the measured gluon, which in turn implies a lower

limit ∼ ω0/k
2
⊥ in the integral over τ . Thus the lower bound on τ is max

(
τmin, ω0/k

2
⊥
)
.
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Turning now to ω0, we note that the lower limit at z = x in the original integral over z

implies an upper limit ωmax
0 = (1− x)xp+

0 ' xp+
0 = ω (the energy of the measured gluon) in

the integral over ω0. For the ensuing integral to have a non–trivial support when τ = τmin,

one also needs τ
br

(ω0) ≡
√
ω0/q̂ & τmin, that is, ω0 & q̂τ2

min.

In view of the above, we need to split the integral over ω0 into two regions:

q̂1(k2) ≈ αsNc

π
q̂

{∫ τmink
2

q̂τ2min

dω0

ω0

∫ √ω0/q̂

τmin

dτ

τ
+

∫ ω

τmink2

dω0

ω0

∫ √ω0/q̂

ω0/k2

dτ

τ

}
. (B.8)

≈ αsNc

2π
q̂

{
ln2 k2

q̂τmin
− 1

2
ln2 k4

q̂ω

}
. (B.9)

Dropping the last term (negligible if ω � τmink
2), one finds the result (4.9).

C Equivalence between forward and backward evolutions

As mentioned earlier, one may write two types of evolution equations, depending on whether

one differentiates the generating functional with respect to the initial of the final times.

These two evolutions are referred to as backward and forward Kolmogorov evolutions (see

Ref. ([24]) for a general discussion). In section 3, we have discussed the forward case. We

discuss here the backward case that is often preferred for Monte-Carlo implementations. The

two formulations are in principle equivalent, although the forms of the resulting equations

may look rather different. At the end of this Appendix, we shall prove the equivalence in the

case of the inclusive one gluon distribution.

In order to derive the backward evolution equation for the generating functional, which

we denote now Z[p+,p; tL, t0|u]10, we first note the analog of Eq. (3.8) for the time derivative

of P2, with now the derivative acting on t0:

−∂t0P2(ka,kb, z; tL, t0)

= 2g2z(1− z)K(z, p+
0 ; t0)P(ka − zp0; tL, t0)P(kb − (1− z)p0; tL, t0). (C.1)

This provides the essential ingredient for the construction of the evolution equation, which

reads:

− ∂

∂t0
Z[~p; tL, t0|u] = αs

∫ 1

0
dzK(z, p+; t0)

{
Z[z~p; tL, t0|u]Z[(1− z)~p; tL, t0|u]−Z[~p; tL, t0|u]

}
+

∫
l
C(l, t0)Z[p+,p− l; tL, t0|u] . (C.2)

The term quadratic in Z within the braces in the r.h.s. describes the splitting of the initial

parton into two partons, whereas the term linear in Z is necessary to ensure probability

conservation. As usual, the collision term which involves C accounts for transverse momentum

broadening.

10In contrast to what happens in the forward evolution, in the present case the variable p+ changes in the

evolution.
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Z
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P u(!p′) P

Z

Z

t0 tL t0 tL

(1 − z)p′

t0 tLt

Figure 5. Diagrammatic representation of the master equation (C.3)

This differential equation can easily be transformed into an integral equation, which reads

Z[~p; tL, t0|u] =

∫
p′

∆(p+; tL − t0)P(p′ − p; tL, t0)u(p+,p′)

+αs

∫ tL

t0

dt

∫
p′

∆(p+; t− t0)P(p′ − p; tL, t0)

×
∫ 1

0
dzK(z, p+, t)Z

[
zp+, zp′; tL, t|u

]
Z
[
(1− z)p+, (1− z)p′; tL, t|u

]
,

(C.3)

where ∆(p+; tL − t0) is the Sudakov factor defined in Eq. (3.14). This equation, which is

graphically illustrated in Fig. 5, recursively generates the ensemble of the cascade by ‘inserting

one additional splitting at the beginning of the cascade’.

As an illustration of the equivalence between the two different versions for the evolution

equations, we show explicitly the connection between them for the specific case of the one-

gluon energy distribution.

The evolution equation for the one-gluon energy distribution, as derived from the gener-

ating functional, reads

− ∂

∂τ0
D(x, τ − τ0) =

∫ 1

0
dz K̂(z)D

(
x

z
,
τ − τ0√

z

)
− 1

2

∫ 1

0
dz K̂(z)D (x, τ − τ0) . (C.4)

It is understood, here and in the following equation that D(x > 1) = 0, so that the lower

bound on the first z-integration is actually z = x. To write down this equation we have as-

sumed that the energy of the initial parton is p+
0 . It is convenient, for the foregoing derivation,

to consider an arbitrary initial p+, so that we shift p+
0 to x′p+

0 . Under such a shift τ → τ/
√
x′

(recall Eq. (3.21)). We can then rewrite Eq. (C.4) as

− ∂

∂τ0
D

(
x

x′
,
τ − τ0√

x′

)
=

1√
x′

∫ 1

0
dz K̂(z)D

(
x

zx′
,
τ − τ0√
zx′

)
− 1

2
√
x′

∫ 1

0
dz K̂(z)D

(
x

x′
,
τ − τ0√

x′

)
.

(C.5)
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Now let us introduce the following identity (which results from the Chapman-Kolmogorov

law of composition of probabilities)

D(x, τ − τ0) =

∫ 1

x

dx′

x′
D

(
x

x′
,
τ − τ ′√
x′

)
D(x′, τ ′ − τ0). (C.6)

This equality holds for any τ ′. In particular, it is obviously true for τ ′ = τ0 where D(x′, 0) =

δ(x′− 1), and for τ ′ = τ where D(x/x′, 0) = xδ(x−x′). More generally, taking the derivative

of Eq. (C.6) with respect to τ ′ one gets

−
∫ 1

x

dx′

x′
∂

∂τ ′
D

(
x

x′
,
τ − τ ′√
x′

)
D(x′, τ ′ − τ0) =

∫ 1

x

dx′

x′
D

(
x

x′
,
τ − τ ′√
x′

)
∂

∂τ ′
D(x′, τ ′ − τ0).

(C.7)

By combining this equation with Eq. (C.5) (in which we replace τ0 by τ ′) we get∫ 1

x

dx′

x′
D

(
x

x′
,
τ − τ ′√
x′

)
∂

∂τ ′
D(x′, τ ′ − τ0) =

∫ 1

x

dx′

x′
1√
x′

∫ 1

0
dzK̂(z)D

(
x

zx′
,
τ − τ ′√
zx′

)
D(x′, τ ′ − τ0)

−
∫ 1

x

dx′

x′
1

2
√
x′

∫ 1

0
dzK̂(z)D

(
x

x′
,
τ − τ ′√
x′

)
D(x′, τ ′ − τ0) .

(C.8)

At this point we set τ ′ = τ , which allows us to perform the x′ integrations (thanks to the

properties recalled after Eq. (C.6)). We end up with

∂

∂τ
D(x, τ − τ0) =

∫ 1

x
dz K̂(z)

√
z

x
D
(x
z
, τ − τ0

)
− 1

2
√
x

∫ 1

0
dz K̂(z)D(x, τ − τ0). (C.9)

Since K̂(z) is symmetric under the transformation z → 1− z, we have∫ 1

0
dz zK̂(z) =

∫ 1

0
dz (1− z)K̂(z) =

1

2

∫ 1

0
dz K̂(z) , (C.10)

which allows us to write Eq. (C.9) as

∂

∂τ
D(x, τ) =

∫ 1

x
dz K̂(z)

√
z

x
D
(x
z
, τ
)
−
∫ 1

0
dz

z√
x
K̂(z)D(x, τ),

(C.11)

which is the evolution equation (3.23).
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