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Abstract: We study the gluon cascade generated via successive medium-induced branchings by an

energetic parton propagating through a dense QCD medium. We focus on the high-energy regime

where the energy E of the leading particle is much larger than the characteristic medium scale ωc =

q̂L2/2, with q̂ the jet quenching parameter and L the distance travelled through the medium. In this

regime the leading particle loses only a small fraction ∼ αs(ωc/E) of its energy and can be treated as

a steady source of radiation for gluons with energies ω ≤ ωc. For this effective problem with a source,

we obtain exact analytic solutions for the gluon spectrum and the energy flux. These solutions exhibit

wave turbulence: the basic physical process is a continuing fragmentation which is ‘quasi-democratic’

(i.e. quasi-local in energy) and which provides an energy transfer from the source to the medium at a

rate (the energy flux F) which is quasi-independent of ω. The locality of the branching process implies

a spectrum of the Kolmogorov-Obukhov type, i.e. a power-law spectrum which is a fixed point of the

branching process and whose strength is proportional to the energy flux: D(ω) ∼ F/√ω for ω � ωc.

Via this turbulent flow, the gluon cascade loses towards the medium an energy ∆E ∼ α2
sωc, which

is independent of the initial energy E of the leading particle and of the details of the thermalization

mechanism at the low-energy end of the cascade. This energy is carried away by very soft gluons,

which propagate at very large angles with respect to the jet axis. Our predictions for the value of ∆E

and for its angular distribution appear to agree quite well, qualitatively and even semi-quantitatively,

with the phenomenology of di-jet asymmetry in nucleus-nucleus collisions at the LHC.
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1 Introduction

The experimental observation of the phenomenon known as ‘di–jet asymmetry’ in Pb+Pb collisions

at the LHC [1–8] has triggered intense theoretical efforts [9–21] aiming at understanding the evolution

of an energetic jet propagating through a dense QCD medium, such as a quark–gluon plasma. The

crucial observation is that the part of the jet fragmentation which is triggered by interactions inside the

medium is controlled by relatively soft gluon emissions, with energies ω well below the characteristic

medium scale ωc = q̂L2/2 and a formation time tbr(ω) much smaller than L. (Here, q̂ is the jet

quenching parameter, L is the distance travelled by the ‘leading particle’ — the energetic parton

which has initiated the jet — through the medium, and the ‘formation time’ tbr(ω) ∼
√
ω/q̂ is the

typical duration of the branching process.) This observation has far reaching consequences:

The soft gluons can be easily deviated towards large angles by rescattering in the medium, so

their abundant production via jet fragmentation may explain the significant transport of energy at

large angles with respect to the jet axis — the hallmark of di–jet asymmetry. Also, the subsequent

emissions of soft gluons can be viewed as independent from each other and hence described as a

classical, probabilistic, branching process. Indeed, the quantum coherence effects and the associated

interference phenomena are efficiently washed out by rescattering in the medium [9–11]: the loss of

color coherence occurs on a time scale comparable to that of the branching process, so that gluons

that emerge from a splitting propagate independently of each other [14].

Based on such considerations, one has been able to derive a classical effective theory for the gluon

cascade generated via successive medium–induced gluon branchings [16, 17] (see also Refs. [22, 23] for
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earlier, related, studies). This is a stochastic theory for a Markovien process in which the branching

rate is given by the BDMPSZ spectrum [24–28] for a single, medium–induced, gluon emission. The

branching probability corresponding to a distance L is parametrically of order ᾱ[L/tbr(ω)], with ᾱ ≡
αsNc/π. This probability becomes of order one (meaning that the branching dynamics becomes non–

perturbative) when ω . ωs ≡ ᾱ2ωc. As we shall see, this ‘soft’ scale ωs is truly semi–hard (in the

ballpark of a few GeV), meaning that there is a significant region in phase–space where perturbation

theory breaks down. The effective theory put forward in Refs. [16, 17] allows one to deal with such

non–perturbative aspects, by resuming soft multiple branchings to all orders.

The original analysis in [16] demonstrated that the non–perturbative dynamics associated with

multiple branchings has a remarkable consequence: it leads to wave turbulence [29, 30]. The leading

particle, whose initial energy E is typically much larger than the non–perturbative scale ωs, promptly

and abundantly radiates soft gluons with energies ω . ωs and thus loses an amount of energy of

order ∆E ∼ ωs event by event (that is, with probability of order one). After being emitted, these soft

primary gluons keep on branching into even softer gluons, and their subsequent branchings are quasi–

democratic : the two daughter gluons produced by a typical splitting have comparable energies1. The

locality of the branchings in ω is the key ingredient for turbulence. It leads to a power–law spectrum

D(ω) ∝ 1/
√
ω, which emerges as the Kolmogorov–Zakharov (KZ) fixed point [29, 30] of the branching

process (this KZ spectrum is formally similar to the BDMPSZ spectrum), and to an energy flux which

is independent of ω — the turbulent flow. An energy flux which is uniform in ω means that the energy

flows from the high–energy end to the low–energy end of the cascade, without accumulating at any

intermediate value of ω. For an ideal cascade, where the branching law remains unchanged down to

arbitrary small values of ω, the energy carried by the flow accumulates into a condensate at ω = 0. In

practice, we expect the branching process to be modified when the gluon energies become comparable

to the medium ‘temperature’ T (the typical energy of the medium constituents): the soft gluons with

ω ∼ T ‘thermalize’, meaning that they transfer their energy towards the medium. Assuming the

medium to act as a perfect sink at ω ' T , we conclude that the rate for energy loss is fixed by the

turbulent flow and thus independent of the details of the thermalization mechanism (‘universality’).

An essential property of the turbulent flow is the fact that it allows for the transfer of a significant

fraction of the total energy towards arbitrarily soft quanta. To better appreciate how non–trivial this

situation is, let us compare it with a more traditional parton cascade in perturbative QCD: the

DGLAP cascade, as driven by bremsstrahlung in the vacuum. In that case, the typical splittings are

very asymmetric, due to the ‘infrared’ (ω → 0) singularity of bremsstrahlung, and lead to a rapid

rise in the number of gluons with small values of the energy fraction x ≡ ω/E. Yet, the total energy

carried by these ‘wee’ gluons with x� 1 is very small: the energy fraction contained in the region of

the spectrum at x < x0 vanishes as a power of x0 when x0 → 0. Most of the original energy remains in

the few partons with larger values of x. This is due to the fact that, after a very asymmetric splitting,

the parent parton preserves most of its original energy.

By contrast, for the medium–induced cascade, the energy contained in the bins of the spectrum

at x < x0 is only a part of the total energy associated with modes softer than x0. The other part is

the energy carried by the turbulent flow, which ends up at arbitrarily low values of x (at least, for an

1It is interesting to notice that a similar branching process occurs in a different physical context, namely the thermal-

ization of the quark–gluon plasma produced in the intermediate stages of a ultrarelativistic heavy ion collision: during

the late stages of the ‘bottom–up’ scenario [22], the hard particles lose energy towards the surrounding thermal bath via

soft radiation giving rise to quasi–democratic cascades [31].
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ideal cascade) and hence is independent of x0. Depending upon the size L of the medium, this flow

energy can be as large as the original energy E of the leading particle (see the discussion in Sect. 2).

In the presence of a thermalization mechanism at ω ∼ T , the above argument remains valid so long as

x0 ≥ xth, with xth ≡ T/E. In practice, this ‘thermal’ value xth ∼ 10−2 is quite small, so most of the

energy lost by the gluon cascade towards the medium is associated with the turbulent flow, and not

with the (BDMPSZ–like) gluon spectrum2. Without this flow, there would be no significant energy

transfer towards very small x ∼ xth.

Soft gluons propagate at large angles θ with respect to the jet axis: θ ∼ k⊥/ω, where k⊥ is the

typical transverse momentum acquired by the gluon via rescattering in the medium, and is at most

weakly dependent upon ω. So, the ability of the medium–induced cascade to abundantly produce

soft gluons provides a natural explanation for the main feature of di–jet asymmetry: the fact that the

energy difference between the trigger jet and the away jet is carried by many soft (pT . 2 GeV) hadrons

propagating at large angles (θ & 0.8) with respect to the axis of the away jet [2]. This qualitative

explanation has been originally proposed in [16] and further developed in Refs. [17–20]. However, these

previous studies were not fully conclusive, as they did not explicitly consider the kinematical regime

which is pertinent for di–jet asymmetry. Namely, they focused on the ‘low–energy’ regime where the

energy E of the leading particle (LP) is smaller than the medium scale ωc. Albeit the value of ωc is

not precisely known from first principles, its current phenomenological estimates are well below the

energy E & 100 GeV of the trigger jet in the experimental measurements of di–jet asymmetry (see

the discussion in Sect. 2). It is our main objective in this paper to provide a thorough analysis of the

high–energy regime at E � ωc, including its implications for the phenomenology.

In order to describe our results below, it is useful to recall the physical meaning of the medium

scale ωc = q̂L2/2: this is the highest possible energy of a medium–induced emission by a parton with

energy E > ωc which crosses the medium over a distance L. The emission of a gluon with energy

ωc has a formation time tbr(ωc) = L and hence a small probability ᾱ[L/tbr(ωc)] ∼ ᾱ: this is a rare

event. Still, such rare but hard emissions dominate the average energy loss by the LP, estimated

as 〈∆E〉 ∼ ᾱωc [24–27]. Hence, a very energetic particle with E � ωc loses only a small fraction

ᾱ(ωc/E)� 1 of its original energy and thus emerges from the medium with an energy E′ ∼ E, which

is much larger than the maximal energy ωc of its radiation. Accordingly, the spectrum shows a gap

between a peak at ω ∼ E, which represents the LP, and a continuum at ω ≤ ωc, which describes

the radiation. The detailed structure of the peak is irrelevant for studies of the di–jet asymmetry:

the energy carried by the LP is very closely collimated around the jet axis, within a small angle3

θLP ∼ QL/E � 1, which is much smaller than the angular opening of the experimental ‘jet’. This

is in agreement with the experimental observation [1, 2] that the azimuthal distribution of di–jets in

Pb+Pb collisions is as narrowly peaked at ∆φ = π as the corresponding distribution in p+p collisions.

In view of the above, our subsequent analysis will focus on the radiation part of the spectrum

at x ≤ xc, where x = ω/E and xc = ωc/E � 1. This part includes the essential physics of multiple

branching leading to energy loss via many soft particles propagating at large angles. For the purposes

of this analysis, the LP can be treated as a steady source of radiation for gluons with energy fractions

2Incidentally, this explains why earlier studies of the energy distribution based on the BDMPSZ spectrum alone,

which have not included the effects of multiple branchings, concluded that there should be very little energy in the gluon

cascade at small x and large angles [32], and thus failed to predict the phenomenon of di–jet asymmetry.
3Here, Q2

L ≡ q̂L is the transverse momentum broadening acquired by the LP while crossing the medium over a

distance L. Some typical values are QL = 2 GeV, E = 100 GeV, and hence θLP ∼ 0.02.
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Figure 1. A typical gluon cascade as generated via medium–induced gluon branchings. The small angle

θc ' QL/ωc is the propagation angle for a relatively hard gluon with energy ω ∼ ωc. Such a hard emission is

a rare event and hence is not included in our typical event. All the shown gluons (besides the LP) have soft

energies ω . ωs = ᾱ2ωc, hence their emissions occur with probability of O(1). The primary gluons are emitted

(by the LP) at a typical angle θs = θc/ᾱ
2 and subsequently disappear via branching into even softer gluons.

The opaque lines refer to gluons which exist at intermediate stages of the cascade, while the black lines refer to

the ‘final’ gluons, which thermalize and propagate at even larger angles, θ ∼ θth � θs (see Sect. 5 for details).

x ≤ xc. For this effective problem with a source, we will be able to construct exact solutions for the

gluon spectrum D(x, t) at any time t ≤ L, and also for the energy flux F(x, t) (the rate for energy

transfer through the cascade; see Sect. 3 for a precise definition). This energy flux, and more precisely

its ‘flow’ limit Fflow(t) ≡ F(x = 0, t), is the most interesting quantity in the present context, since it

controls the energy transfer by the gluon cascade to the medium.

A non–zero ‘flow’ component in the energy flux is the main signature of turbulence [29, 30]

(e.g., there is no such a component for the DGLAP cascade). An important property of turbulence,

which follows from the locality of the branchings, is the fact that, within the ‘inertial range’ deeply

between the ‘source’ and the ‘sink’, the spectrum is fully determined by the energy flux together with

the KZ scaling law. For the standard turbulence in 3+1 dimensions, this relation is known as the

‘Kolmogorov–Obukhov spectrum’. For our present problem in 1+1 dimensions (energy and time),

the ‘source’ is the leading particle, the ‘sink’ is the thermal bath, and the ‘inertial range’ correspond

to xth � x � 1. A priori, our problem differs from the familiar turbulence set–up via its explicit

time–dependence: the source acts only up to a finite time tmax = L, which moreover is quite small, in

the sense that q̂L2 � E. Notwithstanding, we shall demonstrate that a time–dependent generalization

of the Kolmogorov–Obukhov relation holds for the problem at hand: the gluon spectrum at x � xc
is fully determined by the flow component of the energy flux, together with the characteristic scaling

behavior of the BDMPSZ spectrum (the KZ scaling for the present problem). Namely, we shall find

D(x, t) ∝ Fflow(t)/
√
x, where the proportionality constant is under control.

The energy transferred by the gluon cascade to the medium can be identified with the energy

∆Eflow carried away by the flow, i.e. the time integral of Fflow(t) between t = 0 and t = L. For

the high–energy regime under consideration, this quantity turns out to be independent of the original
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energy E of the LP and to have a transparent physical interpretation4: ∆Eflow ' υ ωs, where ωs = ᾱ2ωc
and υ ' 4.96 is a pure number which can be interpreted as the average number of soft primary emissions

with energies ω ∼ ωs. Such soft gluons are radiated by the LP with probability of order one and they

subsequently transfer their energy towards the medium via successive, quasi–democratic, branchings.

A typical gluon cascade is illustrated in Fig. 1. Using phenomenologically motivated values for q̂ and

L, we find ∆Eflow ' 10 ÷ 20 GeV (see Sect. 5). Since carried by very soft gluons, with energies

ω ∼ T � ωs, this energy propagates at very large angles with respect to the jet axis, at least as large

as θs ≡ QL/ωs ∼ 0.5. (θs is the typical propagation angle of the soft primary gluons, and its above

estimate will be discussed in Sect. 5.) By progressively increasing the jet opening angle θ0 within a

rather wide range, say from θ0 ∼ θs up to θ0 ∼ 1, we can recover part of the missing energy, but only

very slowly : most of this energy lies at even larger angles, θ ∼ θth � θs (see Fig. 1 and Sect. 5 for

details). The above predictions — the numerical estimate for the energy loss at large angles ∆Eflow and

its extremely weak dependence upon the jet opening angle θ0 — are in good agreement, qualitative

and even semi–quantitative, with the phenomenology of di–jet asymmetry at the LHC [2, 4, 5, 8].

Vice versa, we believe that these particular LHC data could not be understood in a scenario which

neglects multiple branchings, nor in one which uses a vacuum–like model for the in–medium gluon

fragmentation, that is, a model which ignores the quasi–democratic nature of the soft branchings and

the associated turbulent flow.

Our paper is organized as follows. In Sect. 2 we shall introduce, via qualitative considerations and

parametric estimates, the main physical scales which control the medium–induced gluon branching

and allow one to separate between various physical regimes. In Sect. 3, we shall consider the low–

energy regime at E . ωc as a warm–up. Besides a succinct review of the main results obtained in

Ref. [16], this section will also contain some new material, like the explicit calculation of the energy

flux and a first discussion of the Kolmogorov–Obukhov relation. Sects. 4 and 5 will be devoted to the

main new problem of interest for us here: the high–energy regime at E � ωc. Sect. 4 will present

the main theoretical developments: the justification of the effective problem with a source, the exact,

analytic and numerical, solutions for the radiation spectrum at ω ≤ ωc and for the turbulent flow,

the democratic nature of the branchings and its physical implications, and the proof of the (time–

dependent version of the) Kolmogorov–Obukhov relation for the branching dynamics at hand. Finally,

in Sect. 5 we shall discuss some phenomenological consequences of this dynamics for the energy lost

by the jet via soft gluons propagating at large angles.

2 Typical scales and physical regimes

We would like to study the gluon cascade generated via successive medium–induced gluon branchings

by an original gluon — the ‘leading particle’ (LP) — with energy E which propagates through a

dense QCD medium along a distance L. For the present purposes, the medium is solely characterized

by a transport coefficient q̂, known as the ‘jet quenching parameter’, which measures the dispersion

in transverse momentum acquired by a parton propagating through this medium per unit length (or

time). Depending upon its energy, the leading particle can either escape the medium, or disappear

inside it (in the sense of not being distinguishable from its products of fragmentation). The actual

scenario depends upon the ratio between E and a characteristic medium scale ωc ≡ q̂L2/2, which is

the maximal energy of a gluon whose emission can be triggered by multiple scattering in the medium:

4This estimate for ∆Eflow holds to leading order in ᾱ ; see Eq. (5.4) and the plots in Sect. 5 for more accurate results.
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gluons with an energy ω ∼ ωc have a formation time of order L and an emission probability of order

ᾱ ≡ αsNc/π. Another energy scale that will play an important role in what follows is the soft scale

ωs ≡ ᾱ2ωc : gluons with ω ∼ ωs have a relatively short formation time tbr(ω) ∼ ᾱL and an emission

probability of order 1. This scale is ‘soft’ since ωs � ωc at weak coupling and since one generally has

E � ωs in the applications to phenomenology (see below).

More generally, the elementary probability ∆P for a gluon with energy ω to be radiated (via the

BDMPSZ mechanism) during a time interval ∆t can be parametrically estimated as

∆P ∼ ᾱ
∆t

tbr(ω)
∼ ᾱ

√
q̂

2ω
∆t , (2.1)

where tbr(ω) '
√

2ω/q̂ is the ‘gluon formation time’ — more precisely, the typical duration of a

branching process in which the softest of the two daughter gluons has an energy ω � ωc. Eq. (2.1) holds

so long as ∆P � 1. When ∆P ∼ O(1), the multiple branchings become important and the evolution

of the gluon cascade becomes non–perturbative (in the sense that the effects of multiple branchings

must be resumed to all orders). As clear from Eq. (2.1), for any ∆t < L, there exists a sufficiently soft

sector where the branching dynamics is non–perturbative: this occurs at ω . ωs(∆t) ≡ ᾱ2q̂∆t2/2. In

particular, for ∆t = L, this yields back the ‘soft’ scale aforementioned: ωs(L) = ωs.

The above discussion in particular implies that the quantity ωs sets the scale for the energy lost

by the LP in a typical event : with a probability of O(1), the LP particle emits primary gluons with

energies of O(ωs), and thus loses an energy ∆E ∼ ωs. Accordingly, the typical energy loss, as measured

event–by–event, is sensitive to multiple branchings. On the other hand, the average energy loss 〈∆E〉
is dominated by rare but hard emissions, with energies ω � ωs, for which the effects of multiple

branchings are negligible. One finds indeed

〈∆E〉 '
∫ ωmax

dω ω
dN

dω
' ᾱ

∫ ωmax

dω

√
ωc
ω
∼ ᾱ
√
ωc ωmax , (2.2)

where the gluon spectrum ω(dN/dω) is essentially the elementary probability for a single branching,

Eq. (2.1), evaluated for ∆t = L and the upper limit ωmax ≡ min(ωc, E) is typically much larger than

ωs. The integral in Eq. (2.2) is dominated by its upper limit, i.e. by energies ω ∼ ωmax � ωs.

The global features of the medium–induced gluon cascade depend upon the relative values of these

three scales E, ωc, and ωs. Namely, for a given medium scale ωc, one can distinguish between three

interesting physical regimes, depending upon the energy E of the leading particle : (i) high energy

E � ωc, (ii) intermediate energy ωc & E � ωs, and (iii) low energy E . ωs. Recalling that

ωc = q̂L2/2, we see that the ‘high energy’ regime can also be viewed as the limit where the in–medium

path L is relatively small, whereas the ‘low energy’ case corresponds to relatively large values of L.

In case (i), both the average energy loss 〈∆E〉 ∼ ᾱωc and its typical value ∆E ∼ ωs are much

smaller than E, and the probability to find the LP outside the (already narrow) energy interval

(E − ωc, E) is negligibly small. Accordingly, in this case there is a gap in the spectrum between a

‘peak’ at ω ' E representing the leading particle and a ‘continuum’ at ω . ωc representing the

radiated gluons.

In case (ii), the typical energy loss is still much smaller than E, so the leading particle survives

in most of the events, yet there is a sizable fraction of the events, of O(ᾱ) or larger, where both

fragmentation products carry similar energies. Accordingly, the LP peak is visible in the spectrum,
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but there is no gap anymore. The average energy loss 〈∆E〉 ∼ ᾱ√ωcE is still smaller than the original

energy E, but it represents a relatively large fraction of it, of order & ᾱ.

In case (iii), both the typical and the average energy loss are of order E, meaning that the LP

undergoes strong fragmentation and ‘disappears’ in most, if not all, of the events. Of course, this

should be also the faith of the very soft (ω . ωs) gluons produced via radiation in cases (i) and (ii).

So, in this third case, the spectrum contains no peak or other structure suggestive of the LP.

To summarize, the first two cases have in common the fact that the LP survives after crossing the

medium, but they differ in the actual shape of the spectrum (with or without a gap). The last two

cases are both characterized by the absence of a gap, but they differ in the fact that the LP peak is

still visible in case (ii), whereas it is totally washed out in case (iii).

To make contact with the phenomenology, we chose q̂ = 1 GeV2/fm (a reasonable estimate for a

weakly coupled quark–gluon plasma [24] which moreover appears to be consistent with recent analyses

of data [33]), ᾱ = 0.3, and let L vary from 2 to 6 fm. For the three particular values L = (2, 4, 6) fm,

we deduce ωc ' (10, 40, 90) GeV and ωs ' (1, 4, 9) GeV. Hence, when one is interested in the

phenomenology of high–energy jets with E ≥ 100 GeV, as in the studies of di–jet asymmetry at the

LHC, one should mainly consider the case (i) above. On the other hand, for studies of the nuclear

modification factor RAA, where the energies of the measured hadrons vary from 1 GeV to about

20 GeV, one is mostly in the situations covered by cases (ii) and (iii). These last two cases have

been thoroughly discussed in the recent literature, in particular in relation with the disappearance of

the leading particle and the energy transport at large angles [16–20], but to our knowledge the first

case has not been studied in detail so far. From the previous discussion, is should be clear that this

is the most relevant case for a study of di–jet asymmetry in Pb+Pb collisions at the LHC. This is the

main problem that we would like to address in what follows.

3 The low–energy regime

In preparation for the discussion of the high–energy regime at E � ωc, it is useful to first review some

known results concerning the low and intermediate regimes at E . ωc [16, 17] (see also Refs. [22, 23, 34]

for earlier, related, studies). These two regimes can be simultaneously discussed, as they refer to

different limits of a same theoretical description.

3.1 The rate equation

Throughout this paper we shall focus on the gluon spectrum integrated over transverse momenta, i.e.

D(ω, t) ≡ ω
dN

dω
=

∫
d2k ω

dN

dωd2k
, (3.1)

where ω ≤ E and k denote the energy and respectively transverse momentum of a gluon in the

cascade, N is the number of gluons, and it is understood that the evolution time obeys 0 ≤ t ≤ L.

The function D(ω, t) describes the energy distribution within the cascade and its evolution with time.

For sufficiently soft gluons at least, namely so long as ω � ωc, and to leading order5 in αs, this

5A class of particularly large radiative corrections, which are enhanced by the double–logarithm ln2(LT ), can be

effectively resummed into the effective dynamics by replacing the ‘bare’ value of the jet quenching parameter q̂ by its

renormalized value, as recently computed in Refs. [35–39].
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evolution can be described as a classical stochastic branching process [14, 16, 17], with the elementary

splitting rate determined by the BDMPSZ spectrum [24–28]. Specifically, the differential probability

per unit time and per unit z for a gluon with energy ω to split into two gluons with energy fractions

respectively z and 1− z is

d2Pbr

dz dt
=

αs
2π

Pg→g(z)

tbr(z, ω)
, (3.2)

where Pg→g(z) = Nc[1− z(1− z)]2/z(1− z), with 0 < z < 1, is the leading order gluon–gluon splitting

function, Nc is the number of colors, and tbr(z, ω) is the typical duration of the branching process:

tbr(z, ω) ≡
√
z(1− z)ω
q̂eff(z)

, q̂eff(z) ≡ q̂ [1− z(1− z)] . (3.3)

Note that this branching time depends upon both the energy ω of the parent gluon and the splitting

fraction z, and that it is much smaller than L whenever at least one of the two daughter particles,

with energies zω and respectively (1− z)ω, is soft compared to ωc.

The elementary splitting rate (3.2) together with the requirement of probability conservation

completely specifies the structure of the stochastic branching process and, in particular, the evolution

equation obeyed by the gluon spectrum. So long as E < ωc, this equation reads

∂D(x, τ)

∂τ
= ᾱ

∫
dzK(z)

[√
z

x
D
(x
z
, τ
)
− z√

x
D
(
x, τ
)]
, (3.4)

in convenient notations where D(x, τ) ≡ D(ω, t), x ≡ ω/E ≤ 1 is the energy fraction with respect to

the leading particle, and

τ ≡
√
q̂

E
t =
√

2xc
t

L
, xc ≡

ωc
E
, (3.5)

is the reduced time (the evolution time in dimensionless units). Notice that xc > 1 for the physical

problems discussed in this section. The splitting kernel K(z) is defined as

K(z) ≡ f(z)

[z(1− z)]3/2 = K(1− z) , f(z) ≡
[
1− z(1− z)

]5/2
. (3.6)

It depends only upon the splitting fraction z since the corresponding dependence upon the energy

(fraction) x of the leading particle, cf. Eq. (3.2), has been explicitly factored out in writing Eq. (3.4).

We shall refer to the r.h.s. of Eq. (3.4) as the ‘branching term’ and denote it as ᾱI[D]. This is

the sum of two terms, which can be recognized as the familiar ‘gain’ and ‘loss’ terms characteristic of

a branching process. The first term, which is positive and nonlocal in x, is the gain term : it describes

the rise in the number of gluons at x due to emissions from gluons at larger x′ = x/z. The respective

integral over z is restricted to x < z < 1 by the support of D(x/z, τ). The second, negative, term,

which is local in x, represents the loss term and describes the reduction in the number of gluons at

x due to their decay into gluons with smaller x′ = zx. Taken separately, the gain term and the loss

term in Eq. (3.4) have endpoint singularities at z = 1, but these singularities exactly cancel between

the two terms and the overall equation is well defined.

As anticipated, Eq. (3.4) encompasses the two regimes at ‘low’ and ‘intermediate’ energies intro-

duced in Sect. 2. In fact, there is no fundamental difference between the dynamics in these two regimes,
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rather they differ only in the maximal value for the reduced time τ which is allowed in practice. This

maximal value, namely τL ≡
√

2xc =
√
q̂/E L, increases with the medium size L, but decreases with

the energy E of the leading particle. In the ‘intermediate energy’ regime, the evolution is limited to

relatively small times, 1 . τL � 1/ᾱ, whereas in the ‘low energy’ one, it can extend up to much

larger values: τL & 1/ᾱ. This explains the qualitative differences between the two regimes that were

anticipated in Sect. 2 and will be now demonstrated via explicit solutions to Eq. (3.4).

3.2 The spectrum and the flow energy

To study the effects of multiple branchings, one needs a non–perturbative solution to Eq. (3.4).

Whereas it is straightforward to solve this equation via numerical methods, for the purpose of demon-

strating subtle physical phenomena, it is much more convenient to dispose of an analytic solution.

Such a solution has been obtained in Ref. [16], but for the simplified kernel K0(z) ≡ 1/[z(1− z)]3/2,

which is obtained from Eq. (3.6) after replacing the slowly varying factor f(z) in the numerator by 1.

This simplified kernel has the same singularities at z = 0 and z = 1 as the original kernel K(z), hence

it is expected to have similar physical implications, at least qualitatively. (This will also be checked

via numerical simulations later on; see e.g. Fig. 4.)

For the simplified kernel K0(z) and the initial condition D(x, τ = 0) = δ(x− 1), corresponding to

a single gluon (the ‘leading particle’ ) carrying all the energy at τ = 0, the exact solution reads [16]

D(x, τ) =
ᾱτ√

x(1− x)3/2
exp

{
−πᾱ

2τ2

1− x

}
. (3.7)

This is recognized as the product between the BDMPSZ spectrum [24–28] (which is the same as the

result of the first iteration of Eq. (3.4)),

D0(x, τ) =
ᾱτ√

x(1− x)3/2
, (3.8)

and a Gaussian factor describing, at early times, the broadening of the peak associated with the LP

[40] and, at late times, the suppression of the spectrum as whole.

To be more specific, consider increasing the time from τ = 0 up to the maximal value τL =
√

2xc,

where we recall that xc > 1. When τ → 0, the r.h.s. of Eq. (3.7) approaches δ(x − 1), as it

should. So long as τ is small enough for πᾱ2τ2 � 1, the spectrum exhibits a pronounced peak in

the vicinity of x = 1, which describes the leading particle: the maximum of this peak lies at xp with

1 − xp ' (2π/3)ᾱ2τ2 and its width ∆x around xp is of order πᾱ2τ2. The fact that the peak gets

displaced below 1 is a consequence of the Gaussian factor in Eq. (3.7), which strongly suppresses the

spectrum for x close to 1, within a window

1− x . πᾱ2τ2 � 1 . (3.9)

The physical origin of this suppression should be clear in view of the discussion in Sect. 2: for x close

to 1, the quantity ε ≡ (1−x)E is the energy lost by the leading particle via radiation. Eq. (3.9) shows

that the typical value of this energy is ε(t) ' 2πωs(t), with ωs(t) = ᾱ2q̂t2/2 the non–perturbative

scale for the onset of multiple branching, as introduced in Sect. 2. That is, the LP copiously radiates

very soft gluons, for which the emission probability is of O(1), and thus loses an energy of order ωs(t).

Interestingly, this energy loss is enhanced by the relatively large numerical factor 2π, which can be
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interpreted as the average number of gluons with energy ω ∼ ωs(t) that are emitted by the LP during

a time interval t. This interpretation will be supported by other findings below.

Let us now increase τ towards larger values πᾱ2τ2 & 1. This is of course possible only in the ‘low

energy’ regime where τL & 1/ᾱ. Then the Gaussian suppression extends to all values of x, the LP

peak gets washed out — it broadens, it moves towards smaller values of x, and its height is decreasing

— and eventually disappears from the spectrum. One can say that a LP with energy E . ᾱ2ωc has a

finite ‘lifetime’ inside the medium, of order ∆τ ∼ 1/ᾱ or, in physical units (cf. Eq. (3.5)),

∆t ∼ 1

ᾱ

√
E

q̂
. (3.10)

More precisely, this means that the LP has fragmented into gluons which carry a sizable fraction of its

original energy E. Via successive branchings, the energy gets degraded to lower and lower values of x,

and it is interesting to understand this evolution in more detail. A priori, one might expect this energy

to accumulate in the small–x part of the spectrum, and notably at x . xs(τ) ≡ ᾱ2τ2 (corresponding

to ω . ωs(t)), but Eq. (3.7) shows that this is actually not the case: for x� 1, Eq. (3.7) reduces to

D(x, τ) ' ᾱτ√
x

e−πᾱ
2τ2

, (3.11)

which has exactly the same shape in x as the small–x limit of the BDMPSZ spectrum, Eq. (3.8). In

fact, Eq. (3.11) formally looks like the BDMPSZ spectrum produced via a single emission by the LP,

times a Gaussian factor describing the decay of the LP with increasing time. This interpretation seems

to imply that multiple branchings are not important at small x, but from the discussion in Sect. 2

we know that this cannot be true: after a time t, the single–branching probability becomes of order

one (meaning that multiple branching becomes important) for all the soft modes obeying x < xs(τ).

This last condition can also be inferred from Eq. (3.8): when x ∼ xs(τ)� 1, the BDMPSZ spectrum

becomes of O(1).

We are thus facing an apparent paradox — in spite of the importance of multiple branching, the

energy does not get accumulated in the bins of the spectrum at small x — which finds its solution

in the phenomenon of wave turbulence [16]. The BDMPSZ spectrum at small x is not modified by

the fragmentation because this represents a fixed point of the rate equation (3.4) at small x � 1:

the branching term vanishes (meaning that the ‘gain’ and ‘loss’ terms compensate each other) when

evaluated with the ‘scaling’ spectrum Dsc(x) ≡ 1/
√
x. This can be recognized as the Kolmogorov–

Zakharov (KZ) spectrum [29, 30] for the branching process at hand. In turn, the existence of this

fixed point implies that, via successive branchings, the energy gets transmitted from large x to small

x, without accumulating at any intermediate value of x : it rather flows throughout the spectrum and

accumulates into a condensate at x = 0.

This is illustrated in Fig. 2, where the exact solution (3.7) is represented as a function of x for

several values of τ , up to relatively large values, such that πᾱ2τ2 & 1. The early–time set of curves,

at τ . 1, where the LP peak is still visible, is representative for the ‘intermediate energy’ regime,

where the late–time curves, from which the LP has disappeared and where the spectrum is seen to be

suppressed as a whole, correspond to the ‘low energy’ case.

The energy flow can also be studied analytically, on the basis of Eq. (3.7). To that aim, consider

the energy balance between spectrum and flow. The energy fraction contained in the spectrum after
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Figure 2. Plot (in log-log scale) of
√
xD(x, τ), with D(x, τ) given by Eq. (3.7), as a function of x for various

values of τ : solid (black): τ = 0.3; dashed (purple): τ = 0.6; dashed–dotted (blue): τ = 1.3; dashed–triple

dotted (red): τ = 2.5; long–dashed (brown): τ = 3.5; triple dashed–dotted (green): τ = 4.5. We use ᾱ = 0.3.

a time τ is computed as [16]

E(τ) =

∫ 1

0
dxD(x, τ) = e−πᾱ

2τ2
, (3.12)

and decreases with time. The difference

Eflow(τ) ≡ 1− E(τ) = 1− e−πᾱ
2τ2

, (3.13)

is the energy fraction carried by the flow, i.e. by the multiple branchings, and which formally ends

up in a condensate at x = 0. For sufficiently large times ᾱτ & 1 (corresponding to the low–energy

regime), this can be as large as the total initial energy of the LP.

It is also interesting to consider the small time limit of Eq. (3.13), that is

Eflow(τ) ' πᾱ2τ2 = 2πxs(τ) for πᾱ2τ2 � 1 . (3.14)

This result can be interpreted as follows: υ0 ≡ 2π is the average number of primary gluons with

energies of the order of ωs(t) = ᾱ2q̂t2/2 that are emitted by the leading particle during a time t. This

number is independent of t or ᾱ, since such gluon emissions occur with probability of order one. Stated

differently, the typical time interval between two successive such emissions is of order t. [This interval

can be estimated from the condition that ∆P ∼ O(1), with ∆P given by Eq. (2.1) with ω ∼ ωs(t) ;

this implies ∆t ∼ (1/ᾱ)tbr(ωs(t)) ' t.] After being emitted, these soft primary gluons rapidly cascade

into even softer gluons and thus eventually transmit (after a time ∆t ∼ t estimated as above) their

whole energy to the arbitrarily soft quanta which compose the flow. This argument also shows that

the gluons with energies ω ∼ ωs(t) not only are emitted with a probability of O(1) during an interval

of order t, but also have a ‘lifetime’ ∆t ∼ t before they branch again with probability of O(1).
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3.3 Energy flux, turbulence, and thermalization

The physical interpretation of Eq. (3.13) in terms of multiple branchings and, in particular, its relation

to turbulent flow become more transparent if one studies a more differential quantity, the energy flux

F(x0, τ). This is defined as the rate for energy transfer from the region x > x0 to the region x < x0.

Since the energy in the region x > x0 is decreasing with time, via branchings, it is natural to define

the flux as the following, positive, quantity

F(x0, τ) ≡ −∂E
>(x0, τ)

∂τ
=

∂E <(x0, τ)

∂τ
, (3.15)

where E >(x0, τ) is the energy fraction contained in the bins of the spectrum with x > x0, that is,

E >(x0, τ) =

∫ 1

x0

dxD(x, τ) , (3.16)

whereas the complementary quantity E <(x0, τ) is the energy fraction carried by the modes with

x < x0. In turn, E <(x0, τ) is the sum of two contributions : the flow energy (3.13) and the energy

contained in the bins of the spectrum at x < x0 ; that is,

E <(x0, τ) = 1− E >(x0, τ) = Eflow(τ) +

∫ x0

0
dxD(x, τ) . (3.17)

Using the above definitions together with Eq. (3.7) for D(x, τ), it is straightforward to numerically

compute the energy flux F(x0, τ), with the results displayed in Fig. 3. For a physical discussion, it is

convenient to focus on the behavior at small x0 � 1. In that region, one can use Eq. (3.17) together

with the small–x approximation to the spectrum, Eq. (3.11), to deduce the analytic estimate

F(x0, τ) '
[
2πᾱ2τ + 2ᾱ

√
x0

(
1− 2πᾱ2τ2

)]
e−πᾱ

2τ2
. (3.18)

The first term within the square brackets, which is independent of x0, is the flow contribution,

Fflow(τ) ≡ ∂Eflow(τ)

∂τ
= 2πᾱ2τ e−πᾱ

2τ2
, (3.19)

while the second term, proportional to
√
x0, is the rate at which the energy changes in the region of

the spectrum at x ≤ x0. Clearly, the flow component in Eq. (3.19) dominates over the non–flow one

at sufficiently small values of x0, such that x0 . xs(τ) = ᾱ2τ2. This is also visible in Fig. 3, where

the various curves become indeed flat at sufficiently small x0.

We thus see that the small–x behavior of the flux, and unlike the corresponding behavior of the

spectrum, does reveal the non–perturbative nature of the multiple branchings and of the associated

scale xs : in the soft region at x0 . xs(τ), the flux F(x0, τ) is controlled by its ‘flow’ component and

is quasi–independent of x0. A uniform energy flux is the distinguished signature of (wave) turbulence

[29, 30]. It physically means that the energy flows through the spectrum without accumulating at

intermediate values of x. To see this, let us compute the rate of change for E(x1, x2, τ) — the energy

fraction contained within the interval x1 < x < x2 :

E(x1, x2, τ) =

∫ x2

x1

dxD(x, τ) =⇒ ∂E(x1, x2, τ)

∂τ
= F(x2, τ)−F(x1, τ) . (3.20)
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Figure 3. Plot (in log-log scale) of the energy flux F(x0, τ), cf. Eq. (3.15), as a function of x0 for various values

of τ . We use the same conventions as in Fig. 2. The thin curves, which are drawn for x0 ≤ 0.05, represent the

approximation in Eq. (3.18), which is valid at small x0.

This rate vanishes if the flux is independent of x. In our case, the flux is not strictly uniform, not

even at very small values of x (see Eq. (3.18)). Yet, the energy flux which crosses a bin at x . xs(τ)

is much larger than the rate for energy change in that bin: the energy flows through the bin, without

accumulating there.

It is intuitively clear that a quasi–uniform flux requires the branchings to be quasi–local in x

(or ‘quasi–democratic’). Since, if the typical branchings were strongly asymmetric, then after each

branching most of the energy would remain in the parent gluon and the energy would accumulate in

the bins at large x. It is also quite clear, in view of the general arguments in Sect. 2, that in the

non–perturbative region at x . xs(τ) the branchings are indeed quasi–local: a gluon with energy

x ∼ xs(τ) splits with probability of O(1) during a time interval τ irrespective of the value z of the

splitting fraction. Hence, there is no reason why special values like z � 1 or 1 − z � 1 should be

favored. A more elaborate argument in favor of democratic branchings will be presented in Sect. 4.4.

The locality of the interactions is a fundamental property of turbulence [29, 30]. In the traditional

turbulence problem, where the energy is injected by a time–independent source which is localized in

energy and produces a steady spectrum, this property ensures that the energy spectrum in the ‘inertial

range’ (i.e. sufficiently far away from the source) can be expressed in terms of the (steady) flux F
and a special power–like spectrum, the ‘Kolmogorov–Zakharov spectrum’, which is a fixed–point of

the ‘collision term’. In the case of hydrodynamic turbulence in 3+1 dimensions, this relation between

the energy spectrum and the flux is known as the ‘Kolmogorov–Obukhov spectrum’.

For the problem at hand, where the ‘source’ is the leading particle originally localized at x = 1,

the ‘inertial region’ corresponds to x� 1, the ‘collision term’ term is the branching term ᾱI[D], and

the fixed–point solution is the scaling spectrum Dsc(x) = 1/
√
x. But unlike for the more conventional
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set–up, our current problem is clearly not stationary: the ‘source’ (the LP) loses energy and can even

disappear at large times, so both the spectrum and the energy flux have non–trivial time dependencies.

Notwithstanding, it turns out that the fundamental relation alluded to above, between the energy

spectrum and the flux, also holds for the time–dependent physical problem at hand. Namely, by

inspection of Eqs. (3.11) and (3.19), it is clear than one can write

D(x, τ) ' 1

2πᾱ

Fflow(τ)√
x

for x � 1 . (3.21)

This relation can be recognized as a version of the celebrated Kolmogorov–Obukhov scaling adapted

to the current problem and generalized to a time–dependent situation. Note that Eq. (3.21) involves

only the flow contribution to the flux, albeit this relation holds for any x � 1 and not only in the

‘non–perturbative’ sector at x . xs(τ). At this level, the relation (3.21) might look fortuitous, but in

Sect. 4.4 we shall present a general argument showing that it has a deep physical motivation.

So far, we have implicitly assumed that the branching dynamics as described by Eq. (3.4) extends

all the way down to x = 0, that is, it includes arbitrarily soft gluons. In reality, the dynamics should

change at sufficiently low energies, for various reasons. First, when the gluons in the cascade become as

soft as the medium constituents — that is, their energies become comparable to the temperature T —

they rapidly thermalize via collisions in the medium and thus ‘disappear’ from the cascade. Second, the

BDMPSZ branching law (3.2) assumes the dominance of multiple soft scattering and hence it ceases to

be valid when the branching time tbr(z, ω) becomes as low as the mean free path ` between successive

collisions in the medium. This condition restricts the gluon energies to values ω & ωBH ≡ q̂`2/2. For a

weakly coupled quark–gluon plasma, the ‘Beithe–Heitler’ scale ωBH is comparable to the temperature

T . (Indeed, in this case, one has q̂ ∼ ᾱ2T 3 and ` ∼ (ᾱT )−1 to parametric accuracy.) With this

example in mind, we shall not distinguish between these two scales anymore, but simply assume that

the dynamics described by Eq. (3.4) applies for all the energies ω & T , i.e., for all x & xth ≡ T/E. In

all the interesting problems, the thermal scale xth is small enough to allow for multiple branchings:

xth � xs = ᾱ2xc. For instance, in the case of a weakly coupled plasma, the above condition is

tantamount to L � `/ᾱ ∼ (ᾱ2T )−1, which is indeed satisfied since the interesting values for L are

much larger than the typical relaxation time λrel ∼ (ᾱ2T )−1 of the plasma.

Notice that we implicitly assume here that the thermalization mechanism acts as a ‘perfect sink’

at x ∼ xth. (A similar assumption was made e.g. in the ‘bottom–up’ scenario for thermalization [22].)

That is, the surrounding medium absorbs the energy from the cascade at a rate equal to the relevant

flux F(xth, τ), without modifying the branching dynamics at higher values x� xth. This is a rather

standard assumption in the context of turbulence and is well motivated for the problem at hand, as

we argue now. To that aim, one should compare the relaxation time λrel ∼ (ᾱ2T )−1 aforementioned,

which represents the characteristic thermalization time at weak coupling, with the lifetime ∆t(ω) of a

gluon generation (the time interval between two successive branchings) for gluons with energy ω ∼ T ,

which is the characteristic time scale for the turbulent flow. This ∆t(ω) can be estimated as explained

at the end of Sect. 3.2, and reads (to parametric accuracy)

∆t(ω) ∼ 1

ᾱ
tbr(ω) ∼ 1

ᾱ

√
ω

q̂
. (3.22)

Using ω ∼ T and the perturbative estimate q̂ ∼ ᾱ2T 3, one deduces ∆t(T ) ∼ (ᾱ2T )−1 ∼ λrel. We thus

conclude that the physics of thermalization is as efficient in dissipating the energy as the turbulent

flow. This implies that there should be no energy pile–up towards the low–energy end of the cascade.
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Under these assumptions, it is interesting to compute the total energy lost by the cascade towards

the medium, i.e. ‘the energy which thermalizes’. This is the same as the energy which has the crossed

the bin xth during the overall time τL, namely (cf. Eq. (3.17))

Eth ≡ E <(xth, τL) ' 1− e−πᾱ
2τ2

L + 2ᾱτL
√
xth e−πᾱ

2τ2
L , (3.23)

where the approximate equality holds since xth � 1. Eq. (3.23) is recognized as the sum of the

flow energy, Eq. (3.13), and of the energy that would be contained in the spectrum at x ≤ xth, cf.

Eq. (3.11). Using τL =
√

2xc and xth � xs = ᾱ2xc, it is easy to check that the flow component

dominates over the spectrum piece, and hence Eth ' Eflow(τL). This implies that the energy lost by

the gluon cascade towards the medium is independent of the details of the thermalization process, like

the precise value of xth. This universality too is a well known feature of a turbulent process [29, 30].

4 The high–energy regime

With this section, we begin the study of the main physical problem of interest for us in this paper,

namely the gluon cascade produced in the medium by a very energetic leading particle, with original

energy E � ωc. The main new ingredient as compared to the previous discussion is a kinematical

restriction on the primary gluon emissions that can be triggered by interactions in the medium: the

energy ω of the gluons emitted by the LP cannot exceed a value ωc in order for the respective formation

times to remain smaller than L. When xc ≡ ωc/E � 1, this restriction has important consequences:

it implies that the LP loses only a small fraction of its total energy, of order ᾱxc � 1. Our main

focus in what follows will not be on this average energy lost by the LP (this is well understood within

the original BDMPSZ formalism, including multiple soft emissions of primary gluons [40]), but rather

on the further evolution of this radiation via multiple branchings and the associated flow of energy

towards small values of x and large angles.

4.1 The coupled rate equations

Since the radiation is restricted to relatively low energies ω ≤ ωc � E, or x ≤ xc � 1, it is clear that

the part of the spectrum at higher energies xc < x < 1 has to be associated with the LP. This makes

it natural to decompose the overall spectrum as

D(x, τ) =
[
Θ(x− xc) + Θ(xc − x)

]
D(x, τ) ≡ DLP(x, τ) + Drad(x, τ) . (4.1)

In reality, the LP piece DLP(x, τ) is a rather narrow peak located in the vicinity of x = 1 (see below),

so there is a large gap between the two components of the spectrum.

The evolution of the radiation via successive branchings involves no special constraint, so the

respective rate equation can be obtained simply by replacing D(x, τ) according to Eq. (4.1) in the

r.h.s. of the general equation Eq. (3.4) (restricted to x < xc, of course). This yields

∂Drad(x, τ)

∂τ
= S(x, τ) + ᾱ

∫
dzK(z)

{√
z

x
Drad

(
x

z
, τ

)
− z√

x
Drad

(
x, τ
)}
, (4.2)

where the source S(x, τ) is the energy per unit time and per unit x radiated by the LP:

S(x, τ) ≡ ᾱ
∫

dzK(z)

√
z

x
DLP

(
x

z
, τ

)
. (4.3)
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It is here implicitly understood that this source has support at x ≤ xc and that it acts over a limited

interval in time, at 0 ≤ τ ≤ τL ≡
√

2xc, which is moreover small, τL � 1, in the high–energy regime

of interest. The integral over z in the gain term of Eq. (4.2) is restricted to x/xc < z < 1, where the

lower limit is introduced by the support of the function Drad(x/z, τ).

In the rate equation for the leading particle, one needs to enforce the condition that the radiated

gluons have energy fractions smaller than xc. The ensuing equation reads (with x > xc)

∂DLP(x, τ)

∂τ
= ᾱ

∫
dzK(z)

{
Θ

(
z − x

x+ xc

)√
z

x
DLP

(
x

z
, τ

)
− z√

x
DLP

(
x, τ
)[

Θ

(
z − 1 +

xc
x

)
+ Θ

(
xc
x
− z
)]}

(4.4)

where the various Θ–functions enforce the kinematical constraint: In the gain term, one requires that

the unmeasured gluon emitted (with splitting fraction 1 − z) by the LP (with initial energy fraction

x/z) be softer than xc : (1− z)(x/z) < xc =⇒ z > x/(x+ xc). In the loss term, one requires that one

of the daughter gluons be soft: either zx < xc, or (1− z)x < xc.

As it should be clear from the previous discussion, the functions DLP(x, τ) and Drad(x, τ) at any

time τ < τL also depend upon xc, hence upon the overall size L of the medium, via the kinematical

constraints on the gluon emissions. This shows that the dynamics in this high energy regime is non–

local in time ; e.g., the branching rate in Eq. (4.4) ‘knows’ about the maximal time τL via the various

Θ–functions, which involve xc. This property reflects a true non–locality of the underlying quantum

dynamics: it takes some time to emit a gluon and this time cannot be larger than L. Accordingly, at

any τ < τL, one should only initiate emissions whose energies are smaller than ωc : gluon fluctuations

with higher energies would have no time to become on–shell. The kinematical constraint ω ≤ ωc
reflects only in a crude way the actual non–locality of the quantum emissions. The classical description

at hand, as based on rate equations, is truly appropriate only for the sufficiently soft emissions with

small formation times tbr(ω)� L. Fortunately, these are the most important emissions for the physics

problems that we shall here address.

In the zeroth order approximation, which is strictly valid as τ → 0, one can use DLP(x, τ) =

δ(1− x), and then the source in Eq. (4.3) reduces to the BDMPSZ spectrum, as expected:

S0(x) ≡ ᾱxK(x) ' ᾱ√
x
. (4.5)

In writing the second, approximate, equality we have used the fact that x is small, x ≤ xc � 1, to

simplify the expression of the splitting kernel (cf. Eq. (3.6)): K(x) ' x−3/2 for x� 1.

We shall now argue that the expression (4.5), which is time–independent, remains a good approx-

imation for all the times τ of interest. Of course, the spectrum DLP(x, τ) of the LP changes quite

fast with increasing τ , notably due to the prompt radiation of very soft quanta with energy fractions

x . xs(τ) = ᾱ2τ2. This leads to a broadening of the LP peak on the scale ∆x ∼ ᾱ2τ2 . ᾱ2xc � 1,

similar to that exhibited by Eq. (3.7) at small times. Yet, the probability to emit a relatively hard

gluon with x ∼ xc is very small, of O(ᾱ). Accordingly, the support of the function DLP(x, τ) remains

limited to a narrow band at 1 − xc . x < 1, which is well separated from the radiation spectrum at

x < xc. Hence, the integration over z in Eq. (4.3) is effectively restricted to a narrow range close to

x, namely x < z < x/(1− xc), and the integral can be approximated as

S(x, τ) ' ᾱxK(x)

∫
dx′DLP(x′, τ) ' ᾱ√

x

[
1 +O(x, ᾱxc)

]
. (4.6)
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Figure 4. The full spectrum D(x, τ) = DLP(x, τ) + Drad(x, τ) obtained by numerically solving the coupled

equations (4.2) and (4.4), versus the radiation spectrum predicted by Eq. (4.8) with a source. We use both

versions of the kernel, K and K0, together with xc = 0.2 and τ =
√

2xc ' 0.63. (i) Simplified kernel K0: black

curve: Eqs. (4.2)–(4.4); purple, dashed: Eq. (4.8). (ii) Full kernel K: blue, dashed–dotted: Eqs. (4.2)–(4.4);

red, dashed–triple dotted: Eq. (4.8). In the insert: the same plots (for the radiation part only) in log–log scale.

Here we have used the fact that the overall strength of the function DLP(x, τ), i.e. the energy fraction

carried by the LP after a time τ , can be estimated as

ELP(τ) ≡
∫

dxDLP(x, τ) ' 1− 2ᾱτ
√
xc , (4.7)

that is, the initial energy minus the energy lost via radiation of soft gluons with x ≤ xc, cf. Eq. (4.5).

To summarize, after an evolution time τL, the energetic LP loses only a small fraction ᾱ
√
xcτL ∼

ᾱxc � 1 of its total energy and its spectral density remains peaked near x = 1. Accordingly, it can

be effectively treated as a steady source S0(x) for the soft radiation at x � 1. This is verified in

the plots in Fig. 4, where we perform two types of comparisons: (i) between the evolution with the

exact kernel K in Eq. (3.6) and that with the simplified kernel K0, and (ii) between the solution to

the coupled system of equations (4.2) and (4.4) and that to the effective equation with a source, i.e.

Eq. (4.2) with S(x, τ)→ S0(x). As one can see in this plot, the two choices for the kernel lead indeed

to results which are qualitatively similar and numerically very close to each other. Furthermore, the

radiation spectrum at x ≤ xc produced by the ‘model’ equation with a source is indeed close to the

respective prediction of the coupled rate equations. (In fact, for the exact kernel K, this similarity

looks even more striking — the respective curves almost overlap with each other at sufficiently small

– 17 –



x — but in our opinion this is merely a coincidence.) In the next subsection, we shall construct an

exact analytic solution for the equation with the source, for the case of the simplified kernel K0.

4.2 The radiation spectrum

In the remaining part of this section, we shall concentrate on the solution to the following equation

∂Drad(x, τ)

∂τ
=

ᾱ√
x

+ ᾱ

∫
dzK(z)

{√
z

x
Drad

(
x

z
, τ

)
− z√

x
Drad

(
x, τ
)}

≡ S0(x) + ᾱI[Drad](x, τ) , (4.8)

which, as above argued, offers a good approximation for the dynamics of the medium–induced radiation

by a leading particle with high energy E � ωc. This is an inhomogeneous equation with vanishing

initial condition and can be solved with the help of the respective Green’s function:

Drad(x, τ) =

∫ xc

x
dx1

∫ τ

0
dτ1G(x, x1, τ − τ1)S0(x1) . (4.9)

The Green’s function G(x, x1, τ) obeys the homogeneous version of Eq. (4.8) with initial condition

G(x, x1, τ) = δ(x− x1).

From now on, we shall again restrict ourselves to the case of the simplified splitting kernel K0(z),

which we recall is obtained by replacing f(z) → 1 in Eq. (3.6). For this case, the Green’s function

G(x, x1, τ) can be exactly computed, since it is closely related to the function D(x, τ) in Eq. (4.10):

both functions obey Eq. (3.4), but with slightly different initial conditions. It is easy to check that

the corresponding solutions are related via an appropriate rescaling of the variables:

G(x, x1, τ) =
1

x1
D

(
x

x1
,
τ√
x1

)
=

√
x1

x

ᾱτ

(x1 − x)3/2
exp

{
− πᾱ

2τ2

x1 − x

}
. (4.10)

Since the source S0(x1) in Eq. (4.9) is independent of time, the integral over τ1 involves only the

Green’s function and can be readily computed:∫ τ

0
dτ1G(x, x1, τ − τ1) =

1

2πᾱ

√
x1

x(x1 − x)

[
1− exp

{
− πᾱ

2τ2

x1 − x

}]
. (4.11)

To also compute the integral over x1, it is convenient to change the integration variable according to

u ≡ πᾱ2τ2/(x1 − x). One thus easily finds

Drad(x, τ) =
ᾱτ√
x

1

2
√
π

∫ ∞
ζ

du

u3/2

[
1− e−u

]
=

ᾱτ√
x

{
1√
π

Γ
(1

2
, ζ
)

+
1− e−ζ√

πζ

}
, (4.12)

where

ζ ≡ ζ(xc − x, τ) ≡ πᾱ2τ2

xc − x
, (4.13)

and

Γ
(1

2
, ζ
)
≡
∫ ∞
ζ

dz√
z

e−z =
√
π −

∫ ζ

0

dz√
z

e−z =
√
π − γ

(1

2
, ζ
)
, (4.14)
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Figure 5. Plot (in log-log scale) of Drad(x, τ), cf. Eq. (4.12), as a function of x for xc = 0.2 and various values

of τ . The thick curves show the function
√
xDrad(x, τ) for τ = 0.2 (black, solid), τ = 0.4 (purple, dashed),

τ = 0.63 (blue, dashed–dotted), and τ = 1.0 (red, dashed–triple dotted). Note that the maximal value for τ

which is physically allowed is τL =
√

0.4 ' 0.63. The thin curves, shown for τ ≤ τL, represent the corresponding

approximations at small ζ(xc − x, τ), as obtained by keeping only the first 2 terms in the Taylor expansion in

Eq. (4.20). The enveloping curve (brown, long–dashed) is the limiting curve at large ζ, cf. Eq. (4.21).

is the upper incomplete Gamma function (whereas γ(1/2, ζ) is the respective lower function). Note

that Drad(x, τ) is also a function of the limiting energy fraction xc, but in our notations this dependence

is left implicit. A similar observation applies to all formulæ that appear in this section.

For what follows, it is also useful to single out the piece of the spectrum that would be produced

by the source term alone, in the absence of branchings. Specifically, using Eq. (4.14), we can write

Drad(x, τ) =
ᾱτ√
x
− δDbr(x, τ) ,

δDbr(x, τ) ≡ ᾱτ√
x

{
1√
π
γ
(1

2
, ζ
)
− 1− e−ζ√

πζ

}
≡ ᾱτ√

x
h(ζ) , (4.15)

where the quantity δDbr(x, τ) is the change in the spectrum due to multiple branchings and it is

positive semi–definite, as one can easily check — meaning that the effect of branchings is a depletion

in the spectrum, at any x ≤ xc. This depletion reflects the flow of energy from one parton generation

to the next one, via parton branching — a phenomenon to which we shall return in the next subsection.

But before doing that, let us discuss the radiation spectrum (4.12) in more detail.

This spectrum is depicted in Fig. 5 as a function of x for various values of τ . The different limiting

behaviors can be also understood in analytic terms. To that aim, it is useful to notice a few properties

of the function h(ζ). This function is monotonously increasing and interpolates between h = 0 at

ζ = 0 and h→ 1 as ζ →∞. Furthermore, the ratio h(ζ)/
√
ζ is an analytic function of ζ with infinite
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radius of convergence and a rapidly converging Taylor expansion:√
π

ζ
h(ζ) =

∫ 1

0
duu−1/2 e−ζu − 1− e−ζ

ζ
= 1− 1

6
ζ +

1

30
ζ2 + O(ζ3) . (4.16)

Finally, for large ζ, one finds the asymptotic behavior

1− h(ζ) =
1√
πζ

+ · · · , (4.17)

where the dots stand for terms which are exponentially suppressed.

Returning to the spectrum in Eq. (4.15), we first observe that at small x� xc this reduces to the

scaling spectrum Dsc(x) = 1/
√
x — the expected fixed point of the branching dynamics at small x.

Indeed, when x� xc, one can approximate ζ(xc − x, τ) ' ζ(xc, τ) and therefore

Drad(x, τ) ' ᾱτ√
x

[
1− h(ζ0)

]
, ζ0 ≡ ζ(xc, τ) =

πᾱ2τ2

xc
. (4.18)

Interestingly, at the end of the evolution, i.e. for τ = τL =
√

2xc, Eq. (4.18) reduces to the BDMPSZ

spectrum times a function of the QCD coupling ᾱ, which is strictly smaller than 1 and which expresses

the reduction in the spectrum due to multiple branchings:

Drad(x, τL) ' ᾱ

√
2xc
x

[
1− h

(
2πᾱ2

)]
for x� xc . (4.19)

Consider now larger values of x, where the deviations from the scaling spectrum start to be

important. So long as x is not too close to xc, such that ζ . 1, the spectrum can be expanded in

powers of ζ, with the help of Eq. (4.16). One thus finds

Drad(x, τ) =
ᾱτ√
x

{
1 − ᾱτ√

xc − x
+
π

6

(
ᾱτ√
xc − x

)3

+ · · ·
}

when ζ(xc − x, τ) . 1 , (4.20)

where the dots stand for terms of O(ζ5/2) and higher. This expansion is rapidly converging for any

ζ . 1. Given that ζ(xc, τL) = 2πᾱ2 is a relatively small number (2πᾱ2 ' 0.6 for ᾱ = 0.3), we expect a

limited expansion like Eq. (4.20) to be quite accurate for any τ . τL and for x values in the bulk. And

indeed, the curves obtained by keeping just the first 2 terms in this expansion provide an excellent

approximation to the full curves in Fig. 5 for any τ ≤ τL, except of course for x very close to xc.

Notice that the inclusion of the first correction in Eq. (4.20), which expresses the dominant effect

of the multiple branchings at small ᾱτ , is truly essential in order to obtain such a good agreement.

Indeed, for τ ∼ τL and x values in the bulk, that correction is numerically important, of relative order

ᾱτL/
√
xc =

√
2ᾱ ' 0.4.

The expansion in Eq. (4.20) breaks down when the first correction becomes of O(1) or larger,

namely for xc − x . ᾱ2τ2. This is in agreement with the fact that the emission of very soft gluons,

with energy fractions x . xs(τ) = ᾱ2τ2, is non–perturbative. To investigate the effect of such emissions

via analytic approximations, let us consider the behavior near the endpoint of the spectrum, at x→ xc.

In that limit, one has ζ � 1, so one can use Eq. (4.17) to deduce

Drad(x, τ) ' 1

π

√
xc − x
x

when ζ(xc − x, τ) � 1 . (4.21)
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This result is time–independent and shows that the spectrum vanishes when x → xc at any time τ .

This demonstrates the efficiency of the soft branchings in depleting the spectrum near its endpoint.

The energy which is transferred in this way towards the bins at x < xc cannot be compensated by a

corresponding flow of energy coming from the bins at x > xc, since the spectrum ends at xc.

The steady spectrum in Eq. (4.21) also represents the limiting curve for the function Drad(x, τ) in

the formal large–time limit at ζ(xc, τ) = πᾱ2τ2/xc � 1. That is, in this limit, the spectrum takes the

form in Eq. (4.21) for any x ≤ xc. This large–time limit is merely formal, since, as already mentioned,

the maximal value for ζ(xc, τ) which is physically allowed is ζ(xc, τL) = 2πᾱ2, which is not that large.

Still, this limit is conceptually interesting, in that it corresponds to the more familiar turbulence set–

up: a steady situation in which the whole energy injected by the source flows through the spectrum

into the ‘sink’ at x = 0 (see the discussion in the next subsection).

It is finally interesting to clarify the suitability of perturbation theory (by which we mean the

iterative solution to Eq. (4.8) in which the branching term ᾱI[Drad] is treated as a small perturbation)

for the problem at hand. Via successive iterations, one can construct a perturbative solution for

Drad(x, τ) in the form of a series in powers of ᾱτ and is interesting to compare this series to the small–

ζ expansion of the exact solution in Eq. (4.20). Clearly, we do not expect this perturbative approach

to be reliable near the endpoint of the spectrum at xc, but one may hope that it becomes meaningful

for x well below xc and for small times ᾱτ � 1 — that is, in the region where the expansion (4.20)

can be viewed too as a series in powers of ᾱτ . But even this last expectation is naive, as shown by

following argument: a perturbative solution via iterations would generate both odd and even powers

of ᾱτ , whereas the corresponding expansion in Eq. (4.20) contains only odd powers.

To further clarify this mismatch, we shall construct in Appendix A the perturbative solution to

low orders: Drad = D
(0)
rad +D

(1)
rad +D

(2)
rad + · · · . The zeroth order result is, clearly, D

(0)
rad = ᾱτ/

√
x, while

the first iteration, as obtained by evaluating the branching term ᾱI[Drad] with the zeroth order result,

yields precisely the correction of O(ᾱτ) shown in Eq. (4.20), that is,

D
(1)
rad(x, τ) = − ᾱ2τ2√

x(xc − x)
. (4.22)

But a subtle issue shows up starting with the second iteration: the first–order correction D
(1)
rad turns

out to be an exact fixed point of the branching kernel: I[D
(1)
rad] = 0. Accordingly, the second–order

correction is exactly zero, D
(2)
rad = 0 (still in agreement with Eq. (4.20)), but then the same is true

for all the subsequent iterations: D
(n)
rad = 0 for any n ≥ 2. That is, the perturbative expansion, as

computed without any approximation, terminates after just one non–trivial iteration and predicts

Drad = D
(0)
rad +D

(1)
rad. This prediction is certainly incorrect (except as an approximation at small times

and small x): it differs from the actual expansion Eq. (4.20) of the exact result and, in particular, it

becomes negative and divergent when x→ xc.

The mathematical origin of this failure will be clarified in Appendix A. But its physical origin

should be quite clear: we have already noticed the non–perturbative nature of the dynamics associated

with the emission of very soft quanta, with energy fractions x . xs = ᾱ2τ2. For such emissions, the

effects of multiple branchings must be resumed to all orders and cannot be accurately studied via

iterations. This non–perturbative dynamics is responsible for the rapid broadening of the LP peak

and also for the fact that the radiation spectrum in Eq. (4.12) exactly vanishes as x → xc for any τ .

Similar, non–perturbative aspects affect the spectrum at any value of x, including the intermediate
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bins at xs � x � xc, since the occupation of any such a bin can change via the emission of very

soft gluons. Hence, not surprisingly, the spectrum D(x, τ) cannot be faithfully computed within

perturbation theory for generic values (x, τ), albeit interesting information can be obtained via this

method in special cases, as we shall see.

4.3 The energy flux

As in Sect. 3, the dissipative properties of the cascade, in particular, the rate for energy loss towards

the medium, can be best studied by computing the energy flux associated with branchings. Let

E(x0, xc, τ) denote the energy which at time τ is contained in the modes in the spectrum within the

interval x0 < x < xc :

E(x0, xc, τ) =

∫ xc

x0

dxDrad(x, τ) . (4.23)

When increasing τ , this energy can change via two mechanisms: (i) it increases due to additional

radiation by the source, at a rate
∫ xc
x0

dxS0(x), and (ii) it decreases due to the energy transfer towards

the modes at x < x0 via gluon branching, at a rate which is by definition the energy flux F(x0, τ)

through the bin x0. Hence, we can write

∂E(x0, xc, τ)

∂τ
=

∫ xc

x0

dxS0(x) − F(x0, τ) , (4.24)

which immediately implies

F(x0, τ) =

∫ xc

x0

dx
∂

∂τ
δDbr(x, τ) = −ᾱ

∫ xc

x0

dx I[Drad](x, τ) , (4.25)

where the first equality follows after recalling the definition (4.15) of δDbr(x, τ), and the second one

after also using the rate equation (4.8). Each of the two integral representations for F(x0, τ) in the

equation above has its own virtues. When combined with the explicit result for δDbr(x, τ) shown

in Eq. (4.15), the first representation allows for efficient numerical calculations, with results that we

shall shortly describe. On the other hand, this formula is not well suited for analytic studies, as we

shall see. The second integral representation, which involves the branching term I[Drad], is more

directly connected to the dynamics of branchings and admits a transparent physical interpretation,

to be discussed in Sect. 4.4. A priori, this representation seems to be mathematically more involved,

in that it involves a double convolution over the spectrum. Yet, as we shall see, this representation

allows for more accurate analytic studies. In particular, it will permit us to deduce an exact analytic

result in the important limit x0 → 0.

Using the first equality in Eq. (4.25) together with the expression (4.15) for δDbr(x, τ), one finds,

after simple manipulations,

F(x0, τ) =
ᾱ√
π

∫ xc

x0

dx√
x
γ
(1

2
, ζ
)
, (4.26)

with ζ ≡ ζ(xc − x, τ) as defined in Eq. (4.13). We are mostly interested in the limit x0 → 0 of this

result, which represents the energy flux carried by the turbulent flow :

Fflow(τ) =
ᾱ√
π

∫ xc

0

dx√
x
γ
(1

2
, ζ
)
. (4.27)
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Figure 6. The rate of flow Fflow(τ) as a function of τ for various physical regimes. The brown, long–dashed

curve represents the function in Eq. (3.19), which corresponds to xc > 1 and englobes both the ‘low energy’

regime, and the ‘intermediate energy’ one, depending upon the value of the upper limit τL =
√

2xc on τ . The

other curves correspond to different values xc < 1 (i.e. to various ‘high–energy’ regimes) and are obtained

according to Eq. (4.27): xc = 0.4 (black, solid), xc = 0.2 (purple, dashed), and xc = 0.1 (blue, dashed-dotted).

The thick lines represent the respective curves within their physical range of validity (τ < τL), whereas the thin

curves are their extrapolations at larger times τ > τL. The vertical lines denote the upper time limit τL =
√

2xc.

As explained in Sect. 3, this is the rate at which the energy leaks out of the spectrum and accumulates

into a condensate at x = 0. It is straightforward to numerically compute the integral in Eq. (4.27)

and thus study the flow as a function of τ for various values xc � 1. The results are shown in Fig. 6,

together with the respective prediction of the ‘low–energy’ case xc > 1, that is, the function Fflow(τ)

in Eq. (3.19). In principle, one should consider these curves only for τ values within the physically

allowed range, i.e. for τ ≤ τL =
√

2xc. But in Fig. 6 we also show them for larger values τ > τL ; this

is interesting too, but for a different physical problem (see below).

By comparing curves which refer to different values of xc, one can better appreciate the role of

the kinematical constraint x ≤ xc � 1 in slowing down the branching process and thus reducing the

energy flow. The plots in Fig. 6 make clear that, when lowering xc, one reduces not only the total

duration τL of the branching process, but also the rate for energy loss at any given time τ < τL. This

trend is natural on physical grounds: by decreasing xc, one limits the phase–space for medium–induced

radiation to emissions which carry lower and lower fractions of the total energy of the leading particle.

Fig. 6 also shows that the deviation between curves corresponding to different values of xc increases

with time; for τ ∼ τL, this deviation is seen to be sizable including for the smallest values of xc under

consideration.

It would be interesting to understand the systematics of these plots via analytic studies. To

that aim, one may attempt a small–τ expansion of the flow in Eq. (4.27) based on the corresponding
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expansion of δDbr(x, τ) in Eq. (4.20). (This is tantamount to performing the small–ζ expansion of

the function γ(1/2, ζ) in Eq. (4.27).) At leading order, one should use the dominant contribution to

δDbr(x, τ), that is, (minus) the function D
(1)
rad(x, τ) in Eq. (4.22). One thus finds

Fflow(τ) ' −
∫ xc

0
dx

∂

∂τ
D

(1)
rad(x, τ) = 2ᾱ2τ

∫ xc

0

dx√
x(xc − x)

= 2πᾱ2τ . (4.28)

This estimate, which is independent of xc, holds only for sufficiently small times, such that ζ(xc, τ) =

πᾱ2τ2/xc � 1, where it describes indeed the common behavior of all the curves exhibited in Fig. 8.

But this approximation is unable to capture the lift in degeneracy with increasing τ . One may expect

to be able to compute corrections to Eq. (4.28) by using the higher order terms in the expansion (4.20)

of Drad, but this turns out not to be possible: for all the terms in this expansion beyond D
(1)
rad, the

integral over x in Eq. (4.27) develops a non–integrable singularity at its upper endpoint xc.

In the next subsection, we shall exploit the second equality in Eq. (4.25) to deduce an exact,

analytic, result for Fflow(τ) (see Eq. (4.39)). But for the purposes of the present discussion, it suffices

to consider just one more term in the small–τ expansion of Fflow(τ). This can be obtained by expanding

the exact result in Eq. (4.39) and reads

Fflow(τ) ' 2πᾱ2τ

(
1− ᾱτ√

xc

)
. (4.29)

As expected, the corrective term above lifts the degeneracy between different values of xc. The relative

importance of this term increases with time and becomes independent of xc when τ ∼ τL (since τL
itself scales like

√
xc): ᾱτL/

√
xc =

√
2ᾱ. Hence, this correction would be negligible in the formal

weak coupling limit, but it is numerically important for realistic values of ᾱ : e.g.
√

2ᾱ ' 0.4 for

ᾱ = 0.3. And indeed, the inclusion of this correction greatly improves the accuracy of the small–time

expansion, as it will be shown later, in Fig. 8 : the limited expansion in Eq. (4.29) provides an excellent

approximation to the exact result for any τ ≤ τL.

Consider now the behavior of the flow for relatively large times τ � τL, that is, outside of the

physical range for jet evolution. This corresponds to a different physical problem, which is closer to

the familiar turbulence set–up — a steady source acts for arbitrarily large time and eventually builds

up a time–independent energy spectrum —, except that our source has a rather unusual spectrum:

rather than being localized near xc (e.g. S(x) = δ(x−xc)), the function S0(x) = ᾱ/
√
x has a long tail

at small x ≤ xc, as expected for radiation. The associated steady flow at large times can be obtained

as follows: from Sect. 4.2 we recall that, when πᾱ2τ2/xc � 1, the spectrum reaches the steady shape

in Eq. (4.21) (see also Fig. 5). From that moment on, the energy contained in the spectrum cannot

increase anymore. For this to be possible, the energy flux associated with branchings must precisely

equilibrate the rate for energy injection by the source; that is, the r.h.s. of Eq. (4.24) must vanish:

F(x0, τ) '
∫ xc

x0

dxS0(x) = 2ᾱ
(√
xc −

√
x0

)
. (4.30)

As expected, this result is independent of time and fixed by the source. For x0 = 0, it yields

Fflow(τ) ' 2ᾱ
√
xc when πᾱ2τ2/xc � 1 , (4.31)

which is indeed consistent with both the numerical results in Fig. 8 and the large–time asymptotics

of Eq. (4.27), as one can easily check6.

6At large times, one has ζ � 1 for any x, hence one can approximate γ(1/2, ζ) '
√
π within Eq. (4.27).
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Figure 7. Plot (in log-log scale) of the energy flux F(x0, τ), cf. Eq. (4.26), as a function of x0 for ᾱ = 0.3,

xc = 0.2, and various values of τ : τ = 0.2 (solid, black), τ = 0.4 (purple, dashed), τ = 0.63 (blue, dashed–

dotted), τ = 1 (red, dashed–triple–dotted). The thin curves, shown for τ ≤ τL = 0.63 and x0 ≤ 0.005, represent

the approximation (4.34) valid at small τ and small x0. The enveloping curve (brown, long–dashed) is the

limiting curve at large τ , cf. Eq. (4.30).

For comparison, let us also notice the spectrum and flux that would be generated by a localized

source S(x) = Aδ(x−xc) which acts for τ ≥ 0. (This problem has been already considered in Ref. [16].)

For generic τ , the corresponding spectrum coincides (up to a factor of A) with the r.h.s. of Eq. (4.11)

evaluated at x1 = xc. For large times πᾱ2τ2/xc � 1, this reaches the steady shape

Das(x) =
A

2πᾱ

√
xc

x(xc − x)
. (4.32)

In the same limit, the energy flux is both steady and strictly uniform, Fas(x0) = A, as in standard

turbulence. For x� xc, these results are consistent with the Kolmogorov–Obukhov relation (3.21).

It is finally interesting to study the x0–dependence of the energy flux in this high–energy case.

This is expressed by Eq. (4.26) that we have plotted in Fig. 7 as a function of x0 for different values

of τ and for xc = 0.2. Good analytic approximations can also be obtained. For relatively small times

πᾱ2τ2/xc � 1, and for x0 not too close to xc, it is convenient to rewrite Eq. (4.26) as

F(x0, τ) = Fflow(τ) − ᾱ√
π

∫ x0

0

dx√
x
γ
(1

2
, ζ
)
. (4.33)

When ζ � 1, we can use the Taylor expansion of the function γ(1/2, ζ), which is rapidly converging.

To the same accuracy as in Eq. (4.29), i.e. to second order in ᾱτ , it is enough to use γ(1/2, ζ) ' 2
√
ζ,

which yields

F(x0, τ) ' 2πᾱ2τ

{
1− ᾱτ√

xc
− 2

π
arcsin

√
x0

xc

}
. (4.34)
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At larger times πᾱ2τ2/xc � 1, and also for x0 very close to xc and any τ , the flux takes the form in

Eq. (4.30). Both the numerical results in Fig. 7 and the analytic approximations in Eqs. (4.34) and

(4.30) demonstrate that the flux associated with branchings is quasi–uniform (i.e. independent of x0)

for any x0 � xc. As already mentioned, this signals a phenomenon of wave turbulence. Additional

evidence in that sense will emerge from the analysis in the next subsection.

4.4 The energy flux revisited: democratic branchings

In this subsection, we shall present an alternative calculation of the energy flux, which exploits the

second equality in Eq. (4.25), i.e. the x–integral of the branching term I[Drad]. As we shall see, the

main virtue of this alternative method is that it involves the gluon spectrum quasi–locally in x : in order

to compute the flux F(x0, τ) at small x0 � xc, we need the spectrum Drad(x, τ) at small x � xc as

well. This property has important consequences, of both practical and conceptual nature. In practice,

it will allow us to derive an exact analytic expression for the rate of flow Fflow(τ) = F(x0 = 0, τ) and

to establish the analog of the Kolmogorov–Obhukov relation for the problem at hand. At a conceptual

level, the locality of the branching process in energy (or in x) is a fundamental property of a turbulent

process [29, 30]. This property is quite unusual in the context of a gauge theory, where splittings are

generally very asymmetric due to the ‘infrared’ (x→ 0) singularity of bremsstrahlung. Its emergence

in the context of the medium–induced gluon cascade [16, 22, 31] is a non–trivial consequence of

coherence phenomena associated with multiple scattering, which lead to a profound modification in

the splitting rate as compared to bremsstrahlung in the vacuum.

The integral of the branching term occurring in Eq. (4.25) can be decomposed as

−
∫ xc

x0

dx I[Drad](x, τ) =

∫ xc

x0

dxL(x, τ) +

∫ xc

x0

dxG(x, τ) , (4.35)

where the two terms in the r.h.s. are the respective contributions of the ‘loss’ and ‘gain’ term in the

rate equation. The ‘loss’ contribution is easily evaluated as∫ xc

x0

dxL(x, τ) =

∫ 1

0
dz zK(z)

∫ xc

x0

dx
Drad(x, τ)√

x
. (4.36)

In the ‘gain’ contribution, it is useful to change the integration variable as x→ x′ ≡ x/z :∫ xc

x0

dxG(x, τ) = −
∫ xc

x0

dx

∫
dzΘ

(
z − x

xc

)
K(z)

√
z

x
Drad

(x
z
, τ
)

= −
∫

dz zK(z) Θ
(
z − x0

xc

) ∫ xc

x0/z
dx′

Drad(x′, τ)√
x′

, (4.37)

where, in the second line, the upper limit xc on x′ follows from the condition z > x/xc ; also, the last

Θ–function, which enforces z > x0/xc, guarantees that the lower limit x0/z in the integral over x′

remains smaller than the upper limit xc. As usual, the ‘gain’ and ‘loss’ contributions taken separately

develop singularities from the endpoint at z = 1 of the integral over z, but these singularities cancel

in the sum of the two contributions. Hence, the overall result is well defined and reads

F(x0, τ) = ᾱ

∫ 1

x0/xc

dz zK(z)

∫ x0/z

x0

dx
Drad(x, τ)√

x
+ ᾱ

∫ x0/xc

0
dz zK(z)

∫ xc

x0

dx
Drad(x, τ)√

x
.

(4.38)
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To better appreciate the physical interpretation of this result, let us return to the individual, ‘loss’

and ‘gain’, contributions, as shown in Eq. (4.36) and respectively Eq. (4.37).

The interpretation of the ‘loss’ term in Eq. (4.36) is quite clear: this is the energy transferred per

unit time from one parton generation to the next one via the branching of any of the ‘hard’ modes

with x0 < x < xc. (Recall that K(z)/
√
x represents the splitting rate for the parent mode x into

daughter modes zx and (1 − z)x. Also the factor of z within the first integral can be equivalently

replaced by z → [z + (1 − z)]/2 = 1/2, due to the symmetry property K(z) = K(1 − z); hence, this

factor truly accounts for the contribution of both daughter gluons.) However, some of these splittings

do not contribute to the energy flux at x0 : this is the case for the splittings with zx > x0 (a condition

which can be satisfied only for z values which are large enough, namely z > x0/xc), for which the

daughter gluons are still harder than x0. The contributions of these splittings is therefore subtracted

by the ‘gain’ term in Eq. (4.37), which is negative indeed. Accordingly, the net result is the sum of

two types of contributions, represented by the two terms in the r.h.s. of Eq. (4.38) : (i) relatively

hard splittings with x0/xc < z < 1, but such the parent gluon x was close enough to x0 (within the

strip at x0 < x < x0/z), and (ii) relatively soft splittings with z < x0/xc, in which case the parent

gluon can be located anywhere between x0 and xc.

The following observations are useful for what follows. In the limit where x0 � xc, the first term

in the r.h.s of Eq. (4.38) dominates over the second one and controls the rate of flow. This is clear

from the fact that the second term in Eq. (4.38) vanishes when x0 → 0, while the first one preserves

a finite value in that limit, as we shall shortly see. Furthermore, still for x0 � xc, the second term is

controlled by very asymmetric splittings (z < x0/xc � 1), whereas the first one is rather dominated by

quasi–democratic branchings, that is, by generic z values in the bulk, which are not specially close to

either the lower limit z = x0/xc � 1, or the upper limit z = 1, of the z–integral. Indeed, this integral

is rapidly convergent both at small z, because of the factor of z in the integrand, and at z → 1, because

the result of the integral over x linearly vanishes in that limit. As already mentioned, the prominence

of ‘quasi–democratic branchings’ is an essential condition for the emergence of wave turbulence: e.g.

this permits the existence of fixed–point (KZ) solutions, which requires fine cancellations between the

(a priori non–local) ‘gain’ term and the (always local) ‘loss’ term.

This locality allows us to construct an exact solution for the energy flux in the limit x0 → 0 and

for the simplified kernel K0(z) (for which the spectrum is analytically known). When x0 → 0, only the

first term in Eq. (4.38) survives. The fact that the respective integral over z is not specially sensitive

to its lower limit x0/xc means that the relevant values of z do not scale like x0 when x0 → 0. Hence,

the upper limit x0/z of the integral over x vanishes when x0 → 0, so like the corresponding lower limit.

Accordingly, this integral is controlled by very small values of x, which scale like x0 and in particular

are much smaller than xc. It is then justified to evaluate this integral using the dominant behavior of

the spectrum for x� xc, that is, the KZ spectrum in Eq. (4.18). With this scaling behavior ∼ 1/
√
x,

the integral over x is logarithmic and its result is independent of x0. One thus finds

Fflow(τ) = 2πᾱ2τ
[
1− h(ζ0)

]
, ζ0 ≡ ζ(xc, τ) =

πᾱ2τ2

xc
, (4.39)

where the overall factor 2π has been generated as

2π =

∫ 1

0
dz zK0(z) ln

1

z
=

∫ 1

0
dz

1√
z(1− z)3/2

ln
1

z
. (4.40)
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Figure 8. The rate of flow Fflow(τ) as a function of τ in the high–energy regime for various values of xc :

xc = 0.4 (black, solid), xc = 0.2 (purple, dashed), and xc = 0.1 (blue, dashed-dotted). The thick lines represent

the respective curves within their physical range of validity (τ <
√

2xc), as computed by numerical integration in

Eq. (4.26). The thin curves following the thick ones are the predictions of Eq. (4.26) for larger times, outside the

physical range (τ >
√

2xc). The thin curves deviating from the thick ones correspond to the limited expansion

in Eq. (4.29). Finally, the very thick (opaque) curves are the new, fully explicit, analytic result in Eq. (4.39).

The vertical lines denote the physical upper limit on time τL =
√

2xc.

Using the properties of the function h(ζ) discussed in Sect. 4.2, one can easily check both the small–τ

expansion of the flow, as anticipated in Eq. (4.29), and its large–τ asympotics in Eq. (4.31). As a

check of Eq. (4.39), we display this result in Fig. 8 (as a function of τ for several values of xc) versus

the result of the numerical integration in Eq. (4.26). One can also see in this figure that the limited

expansion (4.29) is indeed a very good approximation for any τ in the physical range, as already

noticed in Sect. 4.3. This is understandable since the first correction beyond Eq. (4.29) in the small–τ

expansion of Eq. (4.39) is exactly vanishing, as manifest on Eq. (4.20).

By inspection of Eqs. (4.18) and (4.39), it is obvious that the spectrum at small x is proportional

to the flow, in the sense of Eq. (3.21). The above construction of Eq. (4.39) explains the physical origin

of this proportionality and also suggests that it is quite general: it holds for any splitting kernel with

the singularity structure shown in Eq. (3.6), since any such a kernel leads to democratic branchings

and to a spectrum which at small x has the shape of the scaling spectrum Dsc(x) = 1/
√
x. The time

dependence of the spectrum (again at small x) depends upon the detailed structure of the branching

kernel (it is generally different for the full kernel K(z) and for the simplified one K0(z)), and also upon

the nature of the ‘source’ at large x (it is e.g. different for a source localized at xc, S(x) = Aδ(x−xc),
as opposed to a radiation source S0(x) = θ(xc − x)ᾱ/

√
x). But the rate of flow Fflow(τ) has exactly

the same time–dependence as the spectrum, and the proportionality relation (3.21) universally holds,

– 28 –



with a proportionality factor which is kernel–dependent though:

D(x, τ) ' 1

vᾱ

Fflow(τ)√
x

for x � xc . (4.41)

Here, υ is a pure number, defined by the obvious generalization of Eq. (4.40) :

υ ≡
∫ 1

0
dz zK(z) ln

1

z
=

∫ 1

0
dz

f(z)√
z(1− z)3/2

ln
1

z
' 4.96 . (4.42)

On both Eq. (4.42) or Eq. (4.40), it is obvious that the respective integral over z is dominated by

generic values in the bulk, as expected for quasi–democratic branchings. As discussed after Eq. (3.14),

υ has the physical interpretation of the average number of soft primary gluons with energies ω ∼
ωs(t) = ᾱ2q̂t2/2 that are emitted by the leading particle during a time t.

Eq. (4.41) is particularly useful in a steady situation, where the energy flux is a priori known, since

determined by the external source. (This is the case in the familiar turbulence problem, where the

Kolmogorov–Obhukov relation has been originally identified.) As a simple, yet non–trivial, application

of this type, consider the steady situation reached when the external source S0(x) = θ(xc − x)ᾱ/
√
x

acts for sufficiently large time ᾱ2τ2 � xc. The corresponding flow is given by Eq. (4.31) and then

Eq. (4.41) can be used to deduce the asymptotic spectrum at large times and small x :

D(x, τ →∞) ' 2

v

√
xc
x

for x � xc . (4.43)

This result is interesting in that it represents a non–perturbative prediction associated with the full

kernel, for which exact analytic solutions are not known. (For the simplified kernel, v → 2π and

Eq. (4.43) reduces to Eq. (4.21), as it should.)

Still for the full kernel, Eq. (4.41) can also be used in the reversed way, namely to deduce the flow

from the spectrum in the small–time regime at ᾱ2τ2 � xc. Indeed, in this limit and for x � xc, the

spectrum can be computed in perturbation theory, via iterations (see the discussion in Appendix A).

To second order in ᾱτ , the result turns out to be the same as for the simplified kernel K0(z), namely

(compare to Eq. (4.20))

Drad(x, τ) ' ᾱτ√
x

(
1 − ᾱτ√

xc

)
for ᾱ2τ2 � xc and x � xc . (4.44)

By using this approximation together with Eq. (4.41), we can obtain the generalization of Eq. (4.29)

to the case of the complete kernel:

Fflow(τ) = υᾱ2τ

(
1 − ᾱτ√

xc

)
. (4.45)

This result is quite useful, in particular for phenomenology, in that it offers a rather accurate estimate

for the energy loss via flow for the case of the physical kernel. This will be further discussed in the

next section. In Fig. 9 we show the numerical solution to the rate equation (4.8) with the full splitting

kernel K in Eq. (3.6), together with its analytic approximations valid at small x : Eq. (4.44) at small

τ and Eq. (4.43) at large τ . In particular, we have checked that this special number υ ' 4.96 can be

indeed read off the asymptotic behavior of the numerical solution at large time, in agreement with

Eq. (4.43).
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Figure 9. The numerical solution to the rate equation Eq. (4.8) with the full splitting kernel K from Eq. (3.6),

for xc = 0.2 and various values of τ : τ = 0.2 (solid, black), τ = 0.4 (purple, dashed), τ = 0.63 (blue, dashed–

dotted), τ = 1 (red, dashed–triple–dotted). The thin curves, shown for τ ≤ τL = 0.63 and x ≤ 0.07, represent

the small–τ and small–x approximation in Eq. (4.44). The enveloping curve (brown, long–dashed) is the limiting

curve at large τ , cf. Eq. (4.43).

5 Physical discussion: energy loss at large angles

In this section, we shall summarize the results obtained in the previous sections and use them to

compute one of the most interesting observables for the phenomenology of di–jet asymmetry at the

LHC: the energy lost by the gluon cascade via soft quanta propagating at large angles. Specifically,

we shall successively consider the following quantities:

(i) the flow energy Eflow(τ): this is the energy fraction carried away by the turbulent flow and

which formally ends up in a condensate at x = 0;

(ii) the thermalization energy Eth(τ): this is the energy fraction which is carried by quanta with

x < xth ≡ T/E, which are assumed to thermalize and hence transmit their energy to the medium.

(As in Sect. 3, we assume that the thermalization mechanism acts as a ‘perfect sink’, i.e. it does not

modify the energy flux at x ≥ xth ; cf. the discussion at the end of Sect. 3.3.)

(iii) the energy transported at angles larger than a given value θ0: the definition of this quantity

requires some additional discussion and is postponed after the study of the two previous ones.

The flow energy can be calculated in two alternative ways: as the τ–integral of the respective flux

Fflow(τ), which is explicitly given by Eq. (4.39), or as the x–integral of the change δDbr(x, τ) in the

spectrum due to branchings, as shown in Eq. (4.15):

Eflow(τ) ≡
∫ τ

0
dτ ′Fflow(τ ′) =

∫ xc

0
dx δDbr(x, τ) . (5.1)
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Figure 10. The energy fraction Eflow(τL) carried by the turbulent flow, i.e. Eq. (5.1) with τ = τL ≡
√

2xc,

plotted as a function of xc for two values of the coupling constant: ᾱ = 0.2 (black) and ᾱ = 0.3 (purple). Solid

lines: the exact result obtained by numerical integration in the second equality in Eq. (5.1). Dashed lines: the

weak–coupling expansion in Eq. (5.2), that is, Eflow = 2πᾱ2xc(1 − 2
√

2ᾱ/3). (For ᾱ = 0.2, this approximation

can hardly be distinguished from the exact curve.) For comparison, we also show, with dashed–dotted lines,

the respective predictions of the ‘low–energy case’, i.e. Eq. (3.13) with τ =
√

2xc.

The second representation above relies on the fact that the flow energy is by definition the difference

between the total energy supplied by the source S0(x) and the radiation energy which remains in the

spectrum. Here, we shall use this second representation to numerically compute Eflow, but rely on the

first one for analytic estimates. Indeed, we know that already the limited expansion of the flow shown

in Eq. (4.45) is very accurate for any τ ≤ τL ; this can be easily integrated over time to give

Eflow(τ) ' υ

2
ᾱ2τ2

(
1− 2

3

ᾱτ√
xc

)
. (5.2)

This estimate holds for the full kernel K(z), but the corresponding result for the simplified kernel

K0(z) is simply obtained by replacing υ → 2π in the prefactor.

In Fig. 10 we show the flow energy evaluated at the end of the evolution (τ = τL =
√

2xc) as a

function of xc and for two values of ᾱ. We here compare the respective exact results, cf. Eq. (5.1),

with the limited expansion in Eq. (5.2) (which is seen to be quite accurate) and with the prediction

(3.13) of the ‘low–energy case’ which here is extrapolated to xc � 1, that is, outside its physical

range of validity. The purpose of this extrapolation is to emphasize that, by ignoring the kinematical

constraint x ≤ xc, one would significantly overestimate the energy loss via flow. Remarkably, the plots

in Fig. 10 show that the quantity Eflow(τL) is a linear function of xc. This property is obvious for the

limited expansion in Eq. (5.2), but is in fact exact within the present effective theory, as we now show.
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Namely, by using Eq. (4.15) for δDbr(x, τ), we can write

Eflow(τL) = ᾱτL

∫ xc

0

dx√
x
h

(
πᾱ2τ2

L

xc − x

)
=
√

2ᾱxc

∫ 1

0

du√
u
h

(
2πᾱ2

1− u

)
, (5.3)

where the r.h.s. is indeed linear in xc, as anticipated. This is interesting in that it implies that the

energy which is lost via flow, namely (cf. Eq. (5.2)),

∆Eflow ≡ E Eflow(τL) ' υ ᾱ2ωc

(
1− 2

√
2

3
ᾱ

)
, (5.4)

is independent of the energy E of the leading particle and parametrically of order ᾱ2ωc = ω2
s (the

natural energy scale for multiple branchings). One should however keep in mind that this conclusion

holds only for sufficiently energetic jets, such that xc � 1, or E � ωc. Notice also that the actual

value of the energy loss in Eq. (5.4) is enhanced by the relatively large numerical factor υ
(
1−2
√

2ᾱ/3
)

(' 3.5 for ᾱ = 0.3) as compared to its parametric estimate ᾱ2ωc. This is mostly due to the factor

υ ' 4.96, which we recall is the average number of soft primary emissions with energies ω ∼ ωs.
Given the flow energy in Eq. (5.1), the thermalization energy can immediately be computed as

the sum between Eflow(τ) and the energy contained in the small–x bins of the spectrum:

Eth(τ) = Eflow(τ) +

∫ xth

0
dxDrad(x, τ) . (5.5)

In practice, xth � xc, hence the above integral can be estimated by using the dominant behavior of

the spectrum for x� xc. To the same accuracy as in Eq. (5.2), one finds

Eth(τ) ' υ

2
ᾱ2τ2

(
1− 2

3

ᾱτ√
xc

)
+ 2ᾱτ

√
xth

(
1− ᾱτ√

xc

)
. (5.6)

We emphasize that this result, which holds for the complete kernel (3.6), is fully obtainable from

perturbation theory: it only requires the second iteration to the spectrum in Eq. (4.44). As manifest

in Eq. (5.6), the flow contribution to Eth(τ) is formally of higher order in ᾱτ , yet it dominates over

the ‘spectrum’ contribution as soon as xth is small enough: for τ = τL, the flow dominates provided

xth < xs = ᾱ2xc (or, equivalently, T < ωs), a condition which is well satisfied in practice (see below).

In Fig. 11 we plot Eth(τL) as a function of xth for xc = 0.2 and xc = 0.4, and for the simplified

kernel K0. The exact result as obtained via numerical integration in Eq. (5.5) is compared to the

limited expansion in Eq. (5.6) (where we replace υ → 2π, of course).

We now turn to the third quantity introduced above, namely the energy fraction which after a time

τ has been transported at angles larger than a given value θ0. We denote this quantity as E(θ > θ0, τ).

So far, we have considered only the energy distribution for the gluons in the cascade, but not also

their distribution in transverse momentum k, or in the polar angle θ w.r.t. the jet axis (defined as

sin θ = k⊥/ω). Rather, the k–distribution has been explicitly integrated out, as shown in Eq. (3.1), in

order to obtain simpler versions for the rate equations. Yet, it turns out that for qualitative and even

semi–quantitative estimates, one can restore the θ–distribution via the following, simple, argument. All

the gluons in the cascade which are not too soft (namely, those with energy fractions x & xs = ᾱ2xc)

propagate in the medium along a distance of order L and hence accumulate via multiple scattering

an average transverse momentum squared 〈k2
⊥〉 ' Q2

L ≡ q̂L, which is independent of x. So long as
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Figure 11. The energy fraction which ‘thermalizes’ Eth(τL), plotted as a function of the thermalization scale

xth for two values of xc: xc = 0.4 (black, solid) and xc = 0.2 (purple, dotted). The thick curves are the exact

result obtained via numerical integration in Eq. (5.5). The thin, opaque, curves are the respective predictions

of the limited expansion in Eq. (5.6) with υ → 2π.

this momentum QL is much smaller than the gluon energy ω = xE, one can estimate the propagation

angle according to

θ(x) ' QL
xE

=
xc
x
θc, with θc ≡

QL
ωc

=
2√
q̂L3

. (5.7)

Hence, the interesting quantity E(θ > θ0, τ) can be computed as the energy fraction E <(x0, τ) carried

by the gluons with x < x0, where x0 ' xc(θc/θ0). This is of course the same as the ‘thermalization

energy’ in Eq. (5.5) evaluated for xth = x0. Hence, plotting the following quantity

E <(x0, τ) ≡ Eflow(τ) +

∫ x0

0
dxDrad(x, τ) (5.8)

as a function of xc/x0 is tantamount to representing the quantity E(θ > θ0, τ) as a function of θ0/θc.

This is strictly true so long as the angle θ0 is not too large, namely θ0 . θc/ᾱ
2, in order for the

condition x0 & xs to remain satisfied7. But as we argue now, this is not a serious limitation. Indeed,

we have previously explained that, when x0 < xs, the r.h.s. of Eq. (5.8) is dominated by the first piece,

the flow energy, which is independent of x0 (recall the discussion after Eq. (5.6)). Hence, for θ0 larger

than θs ≡ θ(xs) ' θc/ᾱ
2, the function E(θ > θ0, τ) is quasi–independent of x0 and approximately

equal to Eflow(τ). An intuitive view of the angles θc and θs in the context of a typical gluon cascade

is provided by Fig. 1.

7 The softer gluons with x . xs have a shorter lifetime ∆t(x) < L, as shown in Eq. (3.22). The corresponding

transverse momentum broadening is estimated as 〈k2
⊥〉(x) ∼ q̂∆t(x), and the relation (5.7) between the propagation

angle θ(x) and the reference angle θc gets replaced by (to parametric accuracy) θ(x)/θc ∼
(
1/
√
ᾱ
)
(xc/x)3/4 [18–20].
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As a side remark, we observe that the total energy carried by gluons with energies smaller than

a given scale ω0, with ω0 ≤ ωc, which is computed as (below, x0 ≡ ω0/E ≤ xc)

∆E <(ω0) = E E <(x0, τL) , (5.9)

is independent of the energy E of the LP (within the present approximations), but only depends upon

the medium scale ωc and upon the energy scale ω0 of reference. This follows via manipulations in

Eq. (5.8) which are entirely similar to those in Eq. (5.3).

Returning to Eq. (5.8), we notice that, in practice, it is more convenient to plot the complementary

quantity, namely the energy fraction located at x–values larger than x0,

E >(x0, τ) ≡ 1 − E <(x0, τ) = ELP(τ) + E(x0, xc, τ)

= 1− 2ᾱτ
√
xc +

∫ xc

x0

dxDrad(x, τ)

= 1− 2ᾱτ
√
x0 −

∫ xc

x0

dx δDbr(x, τ) . (5.10)

Indeed, this corresponds better to the quantity which is actually measured in the experiments: the jet

energy EJ(θ0) as a function of the jet opening angle θ0 (i.e. the total energy in the gluon cascade which

propagates along angles θ ≤ θ0). As emphasized in the second equality above, this quantity E >(x0, τ)

is the sum of the energy fractions carried by the leading particle and by the modes at x0 < x < xc.

In Fig. 12, the quantity in Eq. (5.10) is represented as a function of xc/x0 for τ = τL and xc = 0.4.

One also shows there the single–branching (or BDMPSZ) approximation, E >(x0, τL) = 1−2ᾱ
√

2xcx0,

which is obtained by neglecting the integral of δDbr in the third line of Eq. (5.10), as well as the

respective prediction of the low–energy case, Eq. (3.16), which here is extrapolated outside its physical

range. Two features of these curves are worth emphasizing:

First, the ‘offset’ at large xc/x0, i.e. the fact that, for the two curves which include the effects

of multiple branchings, the difference 1− E >(x0) = E <(x0) approaches a finite value as xc/x0 →∞.

This non–zero value is, of course, the energy fraction Eflow taken away by the turbulent flow. As

also visible in Fig. 12 (and obvious on physical grounds), this offset is absent if one neglects multiple

branchings, i.e. if one tries to describe the energy distribution at large angles on the basis of the

BDMPSZ spectrum alone. For applications to the phenomenology, it is important to notice that the

kinematic restriction to x < xc (which applies whenever xc < 1) significantly reduces the value of this

offset. This reduction is visible in both Fig. 12 and Fig. 10.

Second, as also visible in Fig. 12 (and anticipated after Eq. (5.8)), the variation with xc/x0

is extremely slow, especially for the two curves which include the effects of multiple branchings.

Physically, this means that, by increasing the jet opening angle θ0 = (xc/x0)θc, one can recover some

of the energy that has been transported at large angles, but only very slowly. This is so because most

of this energy has been transported, by the turbulent flow, directly at very large angles θ & θth, where

it has been lost towards the medium via thermalization. Here, θth is the propagation angle for the very

soft quanta with x ∼ xth and is significantly larger than θs (since xth is much smaller than xs = ᾱ2xc).

In principle, this angle θth can be estimated within our effective theory — to parametric accuracy one

finds θth/θc ∼
(
1/
√
ᾱ
)
(xc/xth)3/4, cf. footnote 7 —, but this estimate is probably questionable: the

angular distribution of the very soft gluons with x ∼ xth could be influenced by other effects, like the

precise mechanism of thermalization, the Bethe–Heitler limit on the medium–induced radiation, or the
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Figure 12. The energy E >(x0, τL) contained in the bins of the spectrum with x ≥ x0 at the end of the evolution

plotted as a function of xc/x0 for x0 ≤ xc, xc = 0.4, and ᾱ = 0.3. Black, solid, curve: the full result computed

according to Eq. (5.10). Blue, dotted–dashed, curve: the approximation obtained by neglecting the effects of

multiple branchings. Purple, dashed, curve: the respective prediction of the low–energy case, Eq. (3.16), which

is extrapolated to xc = 0.4. As explained in the text, these curves can also be viewed as representing the energy

fraction EJ(θ0) contained within a jet with opening angle θ0 plotted as a function of θ0/θc.

kinematic constraint k⊥ < ω, which are not properly included in the current formalism. Fortunately

though, this theoretical uncertainty is not important for the angular distribution of the energy loss:

the relevant curves in Fig. 12 are essentially flat for xc/x0 & 1/ᾱ2 ' 10, i.e. for angles θ0 & θs.

Let us conclude with a few numerical estimates in view of the phenomenology. Recent theoretical

analyses of the data support an average value for the jet quenching parameter in the ballpark of

q̂ = 1 GeV2/fm [33]. By also choosing an average length L = 4 fm for the in–medium path, one

finds ωc ' 40 GeV and θc ' 0.05. This implies that the characteristic scale for multiple branching is

quite hard, ωs = ᾱ2ωc ' 4 GeV, and in particular significantly harder than the medium ‘temperature’

T . 1 GeV (the average transverse momentum of the medium constituents). In the measurements of

di–jet asymmetry at the LHC, one has E ≥ 100 GeV ; this energy is sufficiently large compared to ωc
for the ‘high–energy’ regime (E � ωc) to apply.

In this regime, the energy ∆Eflow lost by the gluon cascade via flow is independent of the original

energy E (cf. the discussion after Eq. (5.4)). Using Eq. (5.4) with ωc = 40 GeV and ᾱ = 0.3, one finds

∆Eflow ' 0.32ωc ' 13 GeV . (5.11)

It is also interesting to compute the energy transported at angles larger than θs = θc/ᾱ
2 ' 0.5. This

is obtained from Eq. (5.9) with ω0 → ωs and, once again, is independent of the energy E of the LP.

A good estimate is given by Eq. (5.6) with xth → xs = ᾱ2xc, and reads

∆E(θ > θs = 0.5) = E E <(xs, τL) ' ∆Eflow + 2
√

2ᾱ2ωc
(
1−
√

2ᾱ
)
' 19 GeV . (5.12)
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The above numbers compare reasonably well with the corresponding experimental results [2, 8], espe-

cially in view of our crude assumptions concerning the structure of the medium.

Consider finally the variation of the jet energy with increasing the jet opening angle θ0, i.e. the

function EJ(θ0). Our results in Fig. 12 predict that this quantity should be very slowly increasing

with θ0. This seems to significantly differ from a recent analysis of the experimental data in Pb+Pb

collisions at the LHC, which has reported a considerably steeper angular dependence for EJ(θ0) [8].

Note however that a similarly steep dependence has also been found in the corresponding data for

for p+p collisions, and that the difference between these two sets of data looks essentially flat (as a

function of θ0) within the error bars [8]. It looks reasonable to interpret this difference as a measure

of the medium effects in heavy ion collisions. If so, the fact that this difference appears to be slowly

varying with θ0 (in fact, almost flat) is in good agreement with our predictions in Fig. 12.
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A Perturbation theory for the rate equation

In this Appendix, we shall discuss the perturbative solution to the rate equation with a source,

Eq. (4.8), as obtained via successive iterations of the branching term ᾱI[Drad] in the r.h.s. This is

tantamount to an expansion in powers of ᾱτ in which the source term S0(x) = ᾱ/
√
x (including its

factor ᾱ) is treated as a quantity of O(1). The zeroth order result is D
(0)
rad = ᾱτ/

√
x, while the first

iteration, as obtained by evaluating the branching term ᾱI[Drad] with the zeroth order result and

integrating over τ , yields

D
(1)
rad(x, τ) =

ᾱ2τ2

2

∫
dzK(z)

{
Θ
(
z − x

xc

) z
x
− z

x

}
= − ᾱ

2τ2

2x

∫ x/xc

0
dz zK(z) . (A.1)

The net result, which is negative, is due to an excess in the phase–space for the loss term, at z < x/xc.

To simplify the final integral over z, we shall restrict ourselves to the simplified kernel K0(z). In that

case, one can easily compute (say, by changing the integration variable as z ≡ (u− 1)/u)∫ x/xc

0
dz zK0(z) =

∫ x/xc

0

dz√
z(1− z)3/2

= 2

√
x

xc − x
. (A.2)

When inserted into Eq. (A.1), this confirms the result (4.22) for D
(1)
rad.

Note that the small–x limit (in the sense that x/xc � 1) of the result in Eq. (A.2) would be the

same for the full kernel K(z) : indeed, when z < x/xc � 1, one can approximate f(z) ' 1 in Eq. (3.6).

This confirms that the limited expansion shown in Eq. (4.44) holds for the physical kernel.

Returning to the simplified kernel K0(z), in which case Eq. (A.2) holds for any x < xc, let us

also compute the second iteration, by evaluating the branching term with the first order correction in
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Eq. (4.22). One can write

I[D
(1)
rad](x, τ) = − ᾱ

2τ2

x

∫
dz zK(z)

{
Θ
(
z − x

xc

) 1√
xc − x/z

− 1√
xc − x

}
=

2ᾱ2τ2

√
x(xc − x)

− ᾱ2τ2

x

∫ 1

x/xc

dz zK(z)

{
1√

xc − x/z
− 1√

xc − x

}
. (A.3)

Let us denote by J the integral in the second line above. After changing the integration variable

according to z = u/(u+ 1), this becomes

J =

∫ 1

x/xc

dz zK(z)

{
1√

xc − x/z
− 1√

xc − x

}
=

1√
xc − x

∫ ∞
u0

du

{
1√

u− u0
− 1√

u

}
, (A.4)

where we denoted u0 ≡ x/(xc−x). For any finite value of u0, the above integral over u is well defined

and can be evaluated as

J =
2√

xc − x
lim

uM→∞

{√
uM − u0 −

√
uM +

√
u0

}
=

2√
xc − x

lim
uM→∞

{√
u0 −

u0

2
√
uM

}
=

2
√
x

xc − x
, (A.5)

where uM is a sharp upper cutoff on u that has been introduced at intermediate steps in order to

separate the two terms within the braces in the integral in Eq. (A.4). When inserting the final result

from Eq. (A.5) into the second line of Eq. (A.3), one finds that it precisely cancels the other term

there, so that the net result of this second iteration is exactly zero: I[D
(1)
rad] = 0. Accordingly, the

perturbative series becomes trivial (in the sense that all the higher order terms vanish) after the first

iteration, and then the overall result is just the sum of the first two terms: Drad = D
(0)
rad +D

(1)
rad. This

is the result that has been announced towards the end of Sect. 4.2.

Now, the fact that the function D
(1)
rad(x, τ) is an exact fixed point of the branching term is indeed

correct and should not be a surprise: in Sect. 4.3, we have seen that the very same function of x,

namely Das(x) ∝ 1/
√
x(xc − x), emerges as the exact solution to the rate equation for the case of a

source localized at x = xc (cf. Eq. (4.32)). Since the source vanishes at any x < xc, this is tantamount

to saying that Das(x) is an exact fixed point for the branching term: I[Das] = 0. This solution Das(x)

becomes divergent when x→ xc, but this is indeed a real property of that particular problem, because

the respective source S(x) = Aδ(x− xc) diverges at the end of the spectrum.

On the other hand, for the delocalized source S0(x) = ᾱ/
√
x, no such a divergence is expected (as

also confirmed by the exact manipulations in Sect. 4.2), hence the iterative solution Drad = D
(0)
rad+D

(1)
rad

cannot be fully right : it fails when x → xc. The mathematical reason for this failure can be traced

to the subtlety of the limit x → xc in relation with the manipulations in Eqs. (A.4)–(A.5): clearly,

these manipulations become ambiguous when x → xc, or u0 → ∞, since this limit u0 → ∞ does not

commute with the limit uM →∞.
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