
HAL Id: cea-01296572
https://cea.hal.science/cea-01296572v1

Submitted on 5 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compilation of a Countermeasure Against
Instruction-Skip Fault Attacks

Thierno Barry, Damien Couroussé, Bruno Robisson

To cite this version:
Thierno Barry, Damien Couroussé, Bruno Robisson. Compilation of a Countermeasure Against
Instruction-Skip Fault Attacks. Workshop on Cryptography and Security in Computing Systems,
Jan 2016, vienna, Austria. �10.1145/2858930.2858931�. �cea-01296572�

https://cea.hal.science/cea-01296572v1
https://hal.archives-ouvertes.fr


Compilation of a Countermeasure Against Instruction-Skip
Fault Attacks

Thierno Barry†∗ Damien Couroussé† Bruno Robisson*

† Univ. Grenoble Alpes, F-38000 Grenoble, France
CEA, LIST, MINATEC Campus, F-38054 Grenoble, France

* CEA/EMSE, Secure Architectures and Systems Laboratory
CMP, 880 Route de Mimet, 13541 Gardanne, France

fistname.lastname@cea.fr

ABSTRACT
Physical attacks especially fault attacks represent one the
major threats against embedded systems. In the state of the
art, software countermeasures against fault attacks are ei-
ther applied at the source code level where it will very likely
be removed at compilation time, or at assembly level where
several transformations need to be performed on the assem-
bly code and lead to significant overheads both in terms
of code size and execution time. This paper presents the
use of compiler techniques to efficiently automate the appli-
cation of software countermeasures against instruction-skip
fault attacks. We propose a modified LLVM compiler that
considers our security objectives throughout the compila-
tion process. Experimental results illustrate the effective-
ness of this approach on AES implementations running on
an ARM-based microcontroller in terms of security overhead
compared to existing solutions.

Categories and Subject Descriptors
C.3 [Special-Purpose And Application-Based Systems]:
Microprocessor/microcomputer applications; K.6.5 [Security
and Protection]: Physical security; D.3.4 [Processors]:
Compilers—LLVM

Keywords
Fault Attacks, Countermeasures, Compiler, LLVM, AES

1. INTRODUCTION
In the last decade, embedded systems have increasingly

become a critical part of our daily life, they represent the
largest consumer electronics market segment. Despite the
crisis affecting the global economy, this sector still contin-
ues to grow and generating profits. Only in 2014 there have
been more than 8 billion of smart cards sold worldwide [7].
Most of these systems such as payment cards, access cards,

ACM ISBN X-XXXXX-XX-X/XX/XX.

DOI: http://dx.doi.org/10.1145/0000000.0000000

SIM cards, smartphones, store and manipulate data of dif-
ferent kind: personal, confidential and sometimes critical.
Hence, the security of these systems reveals itself as a major
concern both for Industrial companies and also for states
organizations. Physical attacks represent one of the most
fearsome threats against embedded systems. Unlike classi-
cal cryptanalysis which basically rely on the mathemeatical
robustness of cryptosystems, these attacks in turn exploit
weaknesses of their implementations. Among them, Fault
Attacks introduced by Boneh et al. [6] aims to analyze the
effect of a deliberate disturbance of a circuit during its oper-
ation. The disruption can be induced through several ways,
the most common techniques are: Variation of the supply
voltage, variations in the clock signal, extreme variation of
the temperature, focused white light, electromagnetic injec-
tion, X-rays and ion beams [3]. Since an electronic device is
composed of several levels of hardware and software abstrac-
tions, talking about fault attack requires precising which
abstraction layer we are dealing with and what kind of ef-
fects are expected, known as Fault Model. Verbauwhede et
al. [12] present a pyramidal classification of different fault
models, from algorithm level to logic level.

In this paper we consider the fault model presented by
Moro et al. in [10], which assumes that the effect of the in-
jected fault on a 32-bit microcontroller leads to an instruc-
tion skip. Moro et al. [11] and Barenghi et al. [4] have
proposed implementations of the Instruction Redundancy
technique as a countermeasure against this fault model, and
formally proven by Moro et al. [11]. However the gen-
eral approach of their propositions consists of duplicating
instructions at the assembly code level. The downside of
this approach is that most of assembly instruction cannot
be duplicated trivially, as an example: the ARM assembly
instruction add r0, r0, r1 which performs an addition of
r1 and r0 and then stores the result in r0 cannot be exe-
cuted more than once due to the fact that r0 is both a source
and destination register. Therefore several transformations
need to be performed on assembly instructions in order to
adapt them to the instruction redundancy countermeasure,
and lead to significant overhead.

To date, existing solutions are often ad hoc [5, 4, 11] and
manually inserted by experts in the field. As a consequence,
the application of such countermeasures is still challenging
and costly task in the industry area. To reduce design cost
and increase the confidence in security designs (because the
manual insertion of protections is error prone), industries
are strongly in demand of automatized tools.

http://dx.doi.org/10.1145/0000000.0000000


To address these concerns, we propose an LLVM-based
compiler to efficiently automate the application the instruc-
tion redundancy countermeasure during the compilation. To
achieve this goal, some existing passes of the original com-
piler are modified and new ones are introduced. Our com-
piler take as input the source code to protect and produces
a protected binary code ready to run. To the best of our
knowledge this work presents the first use of compiler tech-
niques to implement a countermeasure against instruction-
skip fault model. Experimental results show the effective-
ness of our solution in terms of overhead mitigation com-
pared to existing approaches.

This paper is organized as follows: The section 2 dis-
cusses about limitations of the existing countermeasure ap-
proaches. Then we describe our proposed compilation ap-
proach in section 3. The section 4 is dedicated to experimen-
tal results and evaluations, followed by concluding remarks
in section 5.

2. EXISTING APPROACHES
Since the emergence of fault attacks in 1997 [6], several

hardware and software countermeasures have already been
proposed, and essentially aim to avoid, detect and/or correct
occured faults. The advantage of software countermeasures
is that no hardware modifications are needed, and in the case
where a new generation of attacks appear, they are easy to
update.
Lalande et al. in [9] propose a methodology to detect harm-
ful intra-procedural jump attacks by inserting routine at
source code level that checks and increments a counter before
each instruction. The downside of applying countermeasures
at source code level is that at least all the compiler code op-
timizers have to be disabled at compilation time. Otherwise
we have no guarantee that the countermeasure will remain
intact inside the binary code. This phenomenon is known as
WYSINWYX (What You See Is Not What You eXecute) [2],
which refers to the mismatch between what the source code
description seems to indicate and what actually will be ex-
ecuted by the processor.
Barenghi et al. in [5] proposed an implementation of in-
struction duplication and instruction triplication at assem-
bly level. However their solution only covers a small number
of assembly instructions and designed to fit their AES im-
plemention. Moro et al. in [11] proposed a similar solution
in a lager scale with the advantage of covering almost all the
considered instruction set (ARM Thumb2).

2.1 Limitations
An instruction is Idempotent when it can be executed

more than once with always the same result. The duplica-
tion of such instructions is straightforward. For example: In

1 add r0, r1, r2

(a) Original code

1 add r0, r1, r2
2 add r0, r1, r2

(b) Duplicated Code

Figure 1: Duplication of idempotent instructions

figure 1, the instruction add r0, r1, r2 performs an addi-
tion of r1 and r2 and stores the result in r0. The content
of r0 will remain the same even after several executions.

This is because in this case registers are allocated in such a
way that the result of the operation is stored in a different
register r0. Actually the default behavior of compilers is to
consume as least as possible physical registers, by reusing as
much as possible each register if possible, instead of allocat-
ing a new one each time. Most of the time this instruction
looks like add r0, r0, r1, where one of the source regis-
ters is also the destination register, and consequently the
instruction is no longer idempotent. To duplicate such an
instruction, Moro et al. [11] propose a method to transform
the instruction into an idempotent form, illustrated in fig-
ure 2. It consists of finding a free register, here denoted:
rx, copy the content of r0 in rx and then replace the source
register r0 by rx.

1 add r0, r0, r1

(a) Original code

1 mov rx, r0
2 mov rx, r0
3 add r0, rx, r1
4 add r0, rx, r1

(b) Duplicated Code

Figure 2: Transformation and duplication of a non idempo-
tent instruction

The first problem of this approach is how to find free reg-
isters at the assembly code level? Authors suggest to use the
r12 register which is considered as a scratch register in the
ARM Application Binary Interface (ABI) [1]. But what if
several instructions need to be transformed? In [5] authors
propose an ad-hoc solution, they assume that their AES im-
plementation uses only 9 registers and therefore, there still
4 available registers on their ARM-based Microcontroller,
which prevents their solution to work on other implementa-
tions.

The second problem of this approach is the overhead in-
troduced by these transformations. In the previous example
to protect one single instruction we need to replace it by
four instructions. [11] showed that to protect the instruc-
tion: umlal rlo, rhi, rn, rm we need 14 instructions. It
severely impacts both the execution performance and the
code size.

This approach suffers from the fact that most of assembly
instructions need to be transformed before duplication, be-
cause the compiler generates assembly code regardless of our
requirements. Our approach consists of modifying the com-
piler in order to consider security objectives throughout the
code generation process, so that instructions like umlal will
no longer be generated, they will automatically be replaced
by suitable ones. The register allocator and other compo-
nents of the compiler are modified to maximise idempotent
instructions.

3. COMPILATION APPROACH

3.1 Overview
In this section, we describe how we modify the LLVM

compiler in order to apply the countermeasure formally ver-
ified by Moro et al. [11]. The countermeasure is activated by
a specific compilation flag so that the developer can select
the source files that will be protected against fault attacks.
Future works will allow the developer to select the program



section to protect with source code annotations (using prag-
mas) in order to target specific functions or even code sec-
tions. This practical issue does however not reduce the gen-
eral interest or effectiveness of our approach.

Our protection scheme [11] consists in (1) transforming all
the machine instructions into a semantically equivalent se-
quence of idempotent instructions, and then (2) duplicating
all the idempotent instructions. An idempotent instruction
is an instruction that can been freely re-executed without
changing the resulting state of the program. Hence, even
if one of the duplicated instructions is faulted, resulting in
an instruction skip according to the fault model, the other
instruction is still executed so that the program execution
produces a correct result.

In fact, an instruction is idempotent when its inputs are
not modified during its execution. Input values of an in-
struction are modified in two cases:

1. When the characteristic of the instruction is that it
implictely updates one of its source registers, for ex-
ample: push {r0} which writes the value of r0 at the
address contained in the sp register and then decre-
ments sp by 4, that makes sp as an implicit modified
source register.

2. When registers are allocated in such away that one of
the source registers of the instruction is also a desti-
nation register, for example: add r0, r0, r1 which
accumulates the result of r0+r1 in r0.

Hence, the proposed scheme consists of (1) modifying the
Register Allocator pass (section 3.4) in order to guarantee
that input and output values will never share the same regis-
ters; (2) transforming the instructions into idempotent ones
(sections 3.3 and 3.5). Once all the instructions have been
transformed into a semantically equivalent idempotent form,
they can be safely duplicated (section 3.5.5).

3.2 Instruction Duplication
In the LLVM compiler, a program goes through several

representations before arriving to the target-dependent rep-
resentation. Performing the duplication inside the compiler
raises the question of which representation is the most suit-
able for instruction duplication. Ideally one would like it to
be on the intermediate representation, because in this case
the countermeasure could be generalized for all languages
and architectures supported by the compiler. But actually
it depends on the countermeasure model, it may requires
to be more or less close to the hardware. In our case, the
instruction duplication cannot be carried out at the IR rep-
resentation due to the so called SSA (Static Single Assign-
ment) form, which prevents affecting a virtual register more
than once inside a delimited code region (Basic Block).
Figure 3 illustrates the limitations caused by the SSA form.
The sub-figure 3b is the representation in LLVM byte-code
of 3a, names of virtual registers are preceded by: %. The
sub-figure 3c represents an attempt to duplicate instruction
at the IR, where we can notice that duplicated instructions
are no longer identical to original ones. Actually virtual
registers of duplicated instructions have been renamed to
comply with the SSA form (only one assignment for each
virtual register). And since these renamed virtual registers
are never used elsewhere, they are considered as dead, and
corresponding instructions will trivially be removed by the

DCE (Dead Code Elimination) pass. This is the reason why
the instruction duplication must happen only after the SSA
form (after the physical registers are allocated). And be-
cause the idempotence is the necessary and sufficient condi-
tion to duplicate an instruction, we have modified two LLVM
passes to maximize the number of idempotent instructions,
and implemented six new passes to transform the rest of in-
structions into idempotent forms. The internal structure of
our modified compiler is illustrated by figure 4, where grey
boxes represent modified LLVM passes and black boxes de-
pict the new passes we have implemented.

1 int foo(int a, int b, int c){
2 return a ∗ b ∗ c;
3 }

(a) Source Code

1 %mul1 = mul %a, %b
2 %mul2 = mul %mul1, %c
3 ret %mul2

(b) LLVM Byte-Code

1 %mul1 = mul %a, %b
2 %mul11 = mul %a, %b
3 %mul2 = mul %mul1, %c
4 %mul22 = mul %mul1, %c
5 ret %mul2
6 ret %mul2

(c) Attempted duplication

Figure 3: Illustration of instruction duplication on the IR

3.3 Modification of the Instruction Selector (IS)
The Instruction Selection pass is composed of a set of

LLVM passes responsible for transforming the program from
a tree-based representation into a low-level representation
very close to the target language, and interfacing with the
target ABI (Application Binary Interface) in order to se-
lect appropriated target instructions for each operation de-
scribed by the program developer. For example, in the case
of a multiplication by a power of two values, this pass has to
find whether it is profitable for the target hardware in terms
of execution speed to select a mul or shift instruction. We
have modified this pass to take into account both the ABI
specifications and also the needs of the implemented counter-
measure, so that idempotent instructions are the ones priv-
ileged during the selection. For example: the figure 5 shows
the tree-based representation of this operation: (a ∗ b) + c.
When transforming this tree into the target architecture rep-

+

∗

a b

c

Figure 5: Tree-based representation

resentation (ARM microcontroller in our case), the Multi-
ply an Accumulate (mla) instruction is matched by default,



Source 
Code

Fr
o

n
t-

en
d

In
st

ru
ct

io
n

 
Se

le
ct

io
n

R
eg

is
te

r 
A

llo
ca

ti
o

n

St
o

re
 

Sa
n

it
iz

er

B
L 

El
im

in
at

io
n

IT
 

El
im

in
at

io
n

Pr
e 

In
st

ru
ct

io
n

 
D

u
p

lic
at

io
n

In
st

ru
ct

io
n

 
D

u
p

lic
at

io
n

In
st

ru
ct

io
n

 
Sc

h
ed

u
lin

g

C
o

d
e 

Em
is

si
o

n

Pu
sh

/P
o

p
 

El
im

in
at

io
n

Binary 
Code

IR
 O

p
ti

m
iz

er
s

IR IR

Figure 4: Internal structure of the modified compiler
Grey boxes represent modified passes and black boxes depict implemented passes

which is a non-idempotent instruction. Instead, we force
the selection of a mul followed by an add, and they are both
idempotent. However, this first step of modification con-
cerns only the selection of the suitable instruction opcode,
not the number of operands they will take. In fact, if the
underlying architecture supports 16-bit instructions encod-
ing, this pass attempts to reduce the number of operands
to two if possible. In the case of the add instruction: add

reg1, reg2 is equivalent to add reg1, reg1, reg2 mean-
ing reg1 = reg1+reg2. The first one is definitely non idem-
potent and the second one can be idempotent if registers are
allocated in this way: add reg0, reg1, reg2. This is the
core motivation of modifications introduced in the Register
Allocator (presented below).

3.4 Modification of the Register Allocator (RA)
The role the register allocator is to map the endless num-

ber of SSA virtual registers to a limited number of physical
registers. Thereby the RA attempts to reuse as much as
possible each register in order to avoid assigning variables
into memory locations (spill slots). For that, the RA imple-
ments an analysis pass called liveness analysis. This pass
computes for each variable an interval in which the variable
is considered alive. The liveness interval is a pair of pro-
gram points, start and end, which starts when the value of
the variable is defined and ends at the last point where the
value is used (read). Thus, if two variables have disjoint
liveness intervals, it means they can be assigned to the same
physical register.
Let’s see how the following C-like instruction is transformed:
x3 = x2 + x1;
Juste before the RA, the instruction looks like: add x3, x2,

x1. The RA computes the liveness interval for each virtual
variable. Let Lx3 , Lx2 and Lx1 respectively be the liveness
interval of x3, x2 and x1. The result of the liveness analysis
is as follows:

(1) Lx1 ∩ Lx2 6= ∅
because both x1 and x2 are needed by the Arithmetic
Logic Unit (ALU) of the processor to compute the ad-
dition operation, therefore they are alive at the same
time.

(2) Lx1 ∩ Lx3 = ∅ and Lx2 ∩ Lx3 = ∅
x3 is the destination variable, it’s where the result of
the addition will be stored. So the liveness of x3 starts
once the result of the operation is available at the out-
put of the ALU, while the liveness of x1 and x2 if not
used elsewhere ends at the moment their values are
taken into account at the input of the ALU

Because of the relation (1) x1 and x2 will be assigned to dif-
ferent physical registers. An thanks to the relation (2), the

RA decides to assign x3 and x2, or x3 and x1 to the same
physical register. Finally, the resulting instruction will looks
like: add r0, r0, r1 and is not idempotent.
Our modification occurs at this level. And it concerns all
instruction of this form: opcode dst, src1, [src2] where
opcode can be an opcode of any instruction that stores its
result in a register, such as arithmetic, bitwise or load in-
structions. dst is the destination register, src1 is a source
register and [src2] is an optional source register. We have
modified this pass in such a way that the physical regis-
ter to allocate for the destination register is always dif-
ferent to source registers even if the relation (2) is true:
(dst 6= src1) · (dst 6= src2).
Thus in the previous example, instead of generating add r0,

r0, r1 we generate add r2, r0, r1 which in turn is idem-
potent.

3.5 Transformations Passes
The modified LLVM passes presented above, allow to in-

crease the number of idempotent instructions, but there
are some instructions that need special treatments. For
these special instructions, we have implemented the follow-
ing LLVM passes (black boxes in figure 4) to process each
of them.

3.5.1 Store Sanitizer Pass
The ARM thumb2 instruction set provides different vari-

ants the of the store instruction [1]. Some of them are idem-
potent, such as: str r0, [r1, #4], that stores the value of
r0 at the address in r1 added of 4.
But for instance this other variant of store: str r0, [r1], #4

does a slightly different operation, it stores the value of r0

at the address in r1 and increments r1 of 4. This variant
is not idempotant because the source register r1 is modified
during the operation.
The role of this pass is to transform store instructions into
a one of its idempotent variant, illustrated in figure 6.

1 str r0, [r1], #4

(a) Before

1 str r0, [r1]
2 add rx, r1, #4
3 mov r1, rx

(b) After

Figure 6: Store Sanitization

3.5.2 Push/Pop Elimination Pass
push and pop are two pseudo instructions that respec-

tively write and read a value from memory, decrements and
increments the stack pointer (SP) register [1], and both are



Opt. level
Unprotected Protected Overhead Moro et al [11]
cycles size cycles size cycles size cycles size

Moro et al.’s AES

-O0 19698 11808 33627 13808 ×1.70 ×1.16

×2.14 ×3.02
-O1 14688 11552 24859 13248 ×1.69 ×1.14
-O2 6800 12528 12907 15264 ×1.90 ×1.22
-O3 5168 12688 10825 15824 ×2.09 ×1.25

MiBench AES

-O0 1908 66924 3355 79260 ×1.76 ×1.18

×2.86 ×2.90
-O1 1142 64604 2188 68988 ×1.92 ×1.08
-O2 1142 60092 2188 69452 ×1.92 ×1.16
-O3 1140 59628 2185 68956 ×1.92 ×1.16

Table 1: Overhead in terms of code size (in bytes) and execution speed (in clock cycles) for each AES implementation.
The last two columns report corresponding results presented by Moro et al. [11] with the same AES implementations

non-idempotent. This pass transforms the push into stmdb

instruction for Store Multiple and Decrement Before and the
pop into lmdia for Load Multiple and Increment After. The
core idea of this transformation (illustrated in figure 7) is
typically to separate the memory access operation and the
incrementation/decrementation of the stack pointer [11].

1 push {r5, lr}

(a) Before

1 stmdb sp, {r5, lr}
2 sub rx, sp, #8
3 mov sp, rx

(b) After

Figure 7: Push/Pop Elimination

3.5.3 BL Elimination Pass
bl for Branch with Link is a subroutine call instruction,

that performs a jump to the specified subroutine address
and stores the return address into the link register (LR).
This pass transforms bl instruction into two idempotent op-
erations (figure 8): explicit writing the return address into
the LR register and performing an unconditional branch to
corresponding subroutine address.

1 bl func
2 bx lr

(a) Before

1 adr rx, retBB
2 add lr, rx, #1
3 b func
4 retBB:
5 bx lr

(b) After

Figure 8: BL Elimination

3.5.4 IT Elimination Pass
The Thumb2 instruction set provides conditional execu-

tion by the use of If-Then (IT) blocks, which means up to
4 instructions can be executed conditonally. Conditions can
be all the same, or some of them can be the logical inverse
of the others [1]. Neither the it instruction nor conditional
instructions are idempotent. An it block is a compact form
of classical If-Then-Else blocks. The role of this pass as il-
lustrated in figure 9 is to transform the it block into the
corresponding If-The-Else block, regardless to whether in-
structions inside the blocks are idempotent or not.

1 it ne
2 addne r3, r2, r1
3 pop lr

(a) Before

1 beq elseBB
2 add r3, r2, r1
3 b elseBB
4 elseBB:
5 pop lr

(b) After

Figure 9: IT Elimination

3.5.5 Instruction Duplication Pass
The role of this pass is to duplicate all the instructions.

But right before, the Pre-Instruction Duplication Pass is run
to ensure the idempotence of all instructions. In fact several
other LLVM passes that are not represented in figure 4 (for
the sake of brevity) perform multiple transformations beside
ours, and may remove or introduce new instructions. This
pass actually checks whether newly introduced instructions
(if there are ones) are idempotent or if one of our transfor-
mation passes need to run again.

3.6 Instruction Scheduling
The role of the scheduler (illustrated in figure 10) is to

rearrange the execution order of instructions in order to im-
prove the execution time while preserving the original be-
havior of the program. The rearrangement is based on data
dependencies, instruction latencies [1] and instruction-level
parallelism of the target architecture. The instruction du-
plication can be performed before or after the scheduling
according to the user choices. The advantage of duplicat-
ing instructions before the scheduling is that duplicated in-
structions will be scheduled together with original ones. The
code represented in figure 10b runs faster than the one in fig-
ure 10a due to the better exploitation of processor pipeline,
illustrated by the number of clock cycles required to execute
each code block.

4. EXPERIMENTAL RESULTS
We have experimented our approach with two different

AES implementations, the same versions as the ones used
by Moro et al. in [11] including the MiBench [8]. Com-
piled with our modified LLVM compiler (based on the sta-
ble version 3.6) to generate binary codes where the entire
instructions are duplicated. Our experimental platform is
an ARM-based microcontroller embedding a cortex M3 core
and supporting the thumb2 instruction set. Table 1 reports



 

add 

add 

ldr 

ldr 

0 1 2 3 4 5 6 7 8 
Clock cycle 

(a) Before scheduling

 

add 

ldr 

0 1 2 3 4 5 6 7 8 
Clock cycle 

ldr 

add 

(b) After scheduling

Figure 10: Impact of scheduling duplicated instructions

for each AES implementation the size of its binary code, the
number of clock cycles it takes to execute and the corre-
sponding overhead introduced by the countermeasure. The
last two columns highlight the results reported by Moro et
al [11] on the same implementations. We can notice the over-
head mitigation of our approach compared to the assembly
one.
Intuitively one might expect that the instructions duplica-
tion at least doubles the execution speed and the code size.
And yet, with -O0 optimization level we obtained ×1.76 and
×1.18 of overheads respectively for the execution speed and
code size, while Moro et al. for the same implementation
have ×2.86 and ×2.90. The reduced overhead regarding the
execution speed is due to the fact that more than 95% of
generated instructions are idempotent (only less than 5% of
them need to be transformed) and also because duplicated
instructions are efficiently scheduled by the compiler (the
role of the scheduler is presented in 3.6). And the reduced
overhead in the code size is due to the fact that our pro-
cessor supports both 16-bit (thumb 1) and 32-bit (thumb2)
instruction set, and for the same operation the selected in-
struction may be different depending on whether the coun-
termeasure is being applied or not. To sum up, applying
the countermeasure during compilation allows the compiler
to take better decisions based on our security objectives.

5. CONCLUDING REMARKS
We presented the use of compilation techniques to effi-

ciently automate the application of a software countermea-
sure against fault injection attacks based on the instruc-
tion skip model. We have shown that existing solutions are
penalized by the fact that several transformations on the
assembly code need to be performed before applying the
countermeasure. We have presented different modifications
introduced inside our compiler to generate idempotent in-
structions, and new passes to duplicate instructions before
scheduling. Experimental results showed the efficiency of
our approach, leading to a strongly reduced overhead in code
size and execution speed compared to existing solutions.

Acknowledgements
This work was partially funded by the French National Re-
search Agency (ANR) as part of the project COGITO funded
by the program Digital Engineering and Security (INS-2013)
under grant agreement ANR-13-INSE-0006-01, and as part
of the project PROSECCO funded by the program AAP-
2015 under grant agreement ANR-15-CE39.
Great thanks to Nicola Moro for his valuable assistance.

References
[1] ARM. Cortex-M3 Technical Reference Manual.

[2] G. Balakrishnan, T. Reps, D. Melski, and T. Teitel-
baum. Wysinwyx: What you see is not what you exe-
cute. In Verified software.

[3] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and
C. Whelan. The sorcerer’s apprentice guide to fault
attacks. Proceedings of the IEEE.

[4] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache.
Fault injection attacks on cryptographic devices: The-
ory, practice, and countermeasures. IEEE.

[5] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and
F. Regazzoni. Countermeasures against fault attacks
on software implemented AES: effectiveness and cost.
In Proceedings of CHES 2003.

[6] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the im-
portance of checking cryptographic protocols for faults.
In EUROCRYPT’97. Springer.

[7] Eurosmart. Figures. http://www.eurosmart.com/
facts-figures.html.

[8] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin,
T. Mudge, and R. Brown. Mibench: A free, com-
mercially representative embedded benchmark suite. In
WWC-4. 2001.

[9] J.-F. Lalande, K. Heydemann, and P. Berthomé. Soft-
ware countermeasures for control flow integrity of smart
card c codes. In ESORICS 2014.

[10] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson,
and E. Encrenaz. Electromagnetic fault injection: To-
wards a fault model on a 32-bit microcontroller. In
FDTC 2013.

[11] N. Moro, K. Heydemann, E. Encrenaz, and B. Robis-
son. Formal verification of a software countermeasure
against instruction skip attacks. JCE.

[12] I. Verbauwhede, D. Karaklajic, and J. Schmidt. The
fault attack jungle-a classification model to guide you.
In FDTC 2011.

http://www.nicolasmoro.net
http://www.eurosmart.com/facts-figures.html
http://www.eurosmart.com/facts-figures.html

	1 Introduction
	2 Existing Approaches
	2.1 Limitations

	3 Compilation Approach
	3.1 Overview
	3.2 Instruction Duplication
	3.3 Modification of the Instruction Selector (IS)
	3.4 Modification of the Register Allocator (RA)
	3.5 Transformations Passes
	3.5.1 Store Sanitizer Pass
	3.5.2 Push/Pop Elimination Pass
	3.5.3 BL Elimination Pass
	3.5.4 IT Elimination Pass
	3.5.5 Instruction Duplication Pass

	3.6 Instruction Scheduling

	4 Experimental Results
	5 Concluding Remarks

