
HAL Id: cea-01296569
https://cea.hal.science/cea-01296569

Submitted on 5 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximate Computing with Runtime Code
Generation on Resource-Constrained Embedded Devices

Damien Couroussé, Caroline Quéva, Henri-Pierre Charles

To cite this version:
Damien Couroussé, Caroline Quéva, Henri-Pierre Charles. Approximate Computing with Runtime
Code Generation on Resource-Constrained Embedded Devices. 2nd Workshop On Approximate Com-
puting (WAPCO 2016), Jan 2016, Vienna, Austria. �cea-01296569�

https://cea.hal.science/cea-01296569
https://hal.archives-ouvertes.fr


Approximate Computing
with Runtime Code Generation

on Resource-Constrained Embedded Devices
Damien Couroussé, Caroline Quéva, Henri-Pierre Charles

Univ. Grenoble Alpes, F-38000 Grenoble, France
CEA, LIST, MINATEC Campus

F-38054 Grenoble, France
Email: firstname.lastname@cea.fr

Abstract—Approximate computing systems aim at slightly
reducing the output quality of service, or precision, of a program
in order to save computing operations, reduce the execution
time and the energy consumption of the system. However, to
the best of our knowledge, in all the approximate computing
systems presented in the research literature, the implementation
of the components that support the approximation is left to the
developer.

In this paper, we describe the implementation of a precision-
aware computing library that saves the developer from the imple-
mentation of approximated functions. Efficient implementations
of the approximated functions are achieved with runtime code
generation. Our implementation of runtime code generation is
fast and memory-lightweight, and its overhead can is amortised
in a few executions of the generated code. We illustrate the
performance and the lightness of our implementation on the
WisMote, a MSP430-based platform with only 16 kB of RAM and
256 kB of flash memory. When the generated code is specialised
on one of the input arguments of the approximated function, we
achieve a speedup above 7×.

Index Terms—approximate; runtime code generation; com-
pilation; code specialization; precision; floating-point; Wireless
Sensor Nework

I. INTRODUCTION

Approximate Computing is a powerful emerging concept,
currently bringing a lot of interest in research works. As far as
we understand it, it covers two issues that share some ideas [1]:
(1) how a system can be resilient in the presence of (hardware)
errors but still provide correct results, for example when the
hardware runs below its lowest supported operating voltage;
(2) how to balance the output precision or Quality of Service
of a program in acceptable terms in order to improve its energy
and performance efficiency.

In this paper, we address this second issue: we strive for
ways to adapt the output precision of a program in acceptable
limits in order to improve program performance or energy
consumption. The research literature presents a fair amount of
papers on this topic. Some works propose tools to analyse the
quality output of a program under approximation. ASAC [2]
performs a sensitivity analysis of a program in order to
identify the parts of the program that are the most sensitive
to approximation. Green [3] is a framework that computes

statistical QoS (Quality of Service) guarantees of a program;
the program is annotated with approximation annotations by
the developer. Chan et al. [4] perform statistical analysis to
determine how the errors propagate in a circuit composed of
accurate and approximato modules.

Another approach is to provide to the developer program-
ming paradigms that support approximate computing. Vas-
siliadis et al. [5] propose a task-based programming model
where the developer describes the significance of program
parts and their contribution to the global quality result. The
annotations are exploited by the runtime, mainly in loop
perforation, to increase program performance w.r.t. result
approximation. EnerJ [6] provides specific type annotations to
the developer, in order to distinguish between approximate and
precise computations. The developer can provide approximate
implementations of a program component, but the system also
supports approximate-aware hardware.

We hence distinguish between the works than aim to deter-
mine the behaviour of a program w.r.t approximation, and the
works that provide software developers with tools operating at
various levels (compilation, runtime, programming languages)
to implement approximate-aware systems. There exists an
overlap between these two approximate (pun intended) cate-
gories of works, and some works can be classified in these
two research domains. However, we observe that in all of
these works, the implementation of the component in charge
of the approximation is always left to the developer, or to
the availability of approximate-aware hardware. In our point
of view, this remains a lacking corner-stone in order to build
approximate systems.

In this paper, we describe a precision-aware computing
library for approximate systems. Our library is lightweight
enough to be executed on resource constrained embedded
systems. Furthermore, precision awareness is achieved by
using runtime code generation in order to reduce the runtime
overhead to an acceptable bound. To illustrate our words, we
provide performance figures of our precision-aware library on
an small computing node typical of the platforms found in
Wireless Sensor Networks, fitted with only 16 kB of RAM.



II. RUNTIME CODE SPECIALISATION FOR APPROXIMATE
COMPUTING

We present in this section a general description of our
approach. Our aim is to provide a precision-aware imple-
mentation of the function f , an n-ary function that takes as
inputs the n arguments x1, . . . , xn, and computes the output
y (Equation 1).

y = f(x1, . . . , xn) (1)

The precision-aware implementation of f is described in
Equation 2, where p denotes the precision criterion of the
function (e.g. number of bits considered in the mantissa of
floating-point numbers). In this equation, the notation under-
lines the fact that the system generates a new implementation
of f (fp) each time a new value of p is set. We could provide
an implementation of f that is generic over all the acceptable
values of p, but this solution would come at the price of a
performance overhead. Instead, our system uses runtime code
generation to specialise the implementation of f : the machine
code of fp is generated on the fly, at runtime, according to the
value of p. The relation with the code generator is described
in equation 3, where genf is a runtime code generator of f .

y = fp(x1, . . . , xn) (2)

fp = genf (p) (3)

We can go one step further by exploiting runtime code
generation to specialise the implementation of f on part or
all of its input arguments. It indeed happens often that some
program variables (for example configuration values) keep the
same constant value during an important part of the execution
time. If the function f is specialised on its n − 1 input
parameters, the code generation is expressed as in equation 4,
and the new output value y is computed as in equation 5.
We emphasise on the fact that, because of the specialisation,
f has a reduced number of arguments (in this case only
1). One intuitively understands that this specialised version
is more efficient in terms of execution time and/or energy
consumption.

fp,x1,. . . ,xn−1
= genf (p, x1, . . . , xn−1) (4)

y = fp,x1,. . . ,xn−1
(xn) (5)

III. AN APPROXIMATE LIBRARY FOR ARITHMETIC
COMPUTING WITH RUNTIME CODE GENERATION

A. Overview

We describe in this section the working principles of our
precision-aware library. The library performs the code spe-
cialisation of several target functions thanks to runtime code
generation, in order to adapt their implementation (in machine
code) according to a precision setting, and to the known values
of one or several of the input arguments of the functions. The

f

cache lookup

generate code

update cache execute code

runtime library

yes

no

p

Fig. 1. Overview of the code generation system embedded in the runtime
library

library supports the specialisation of as many approximated
functions as required, but we describe the library for the
approximated implementation of a function f .

We consider the case where the functions supporting ap-
proximation are identified a priori, either by the developer
or by one of the tools described in the introduction of this
paper. The function code generators are added to the library
at design time. The code generation system is described below,
in section III-B.

Figure 1 illustrates the working principle of our library. Our
main concern is to reduce the runtime overhead incurred by
code generation: to do so, the specialised functions are stored
in a software-managed code cache in order to pay off the cost
of runtime code generation. If the specialised code for function
f is found in the code cache, it is executed immediately,
avoiding the cost of a new runtime code generation. If the
specialised code for function f is not found in the code cache,
a new code is generated, stored in the code cache, and then
executed.

B. deGoal: runtime code generation for embedded devices

Runtime code generation is achieved with deGoal, a tool
for embedding runtime code generators, called compilettes,
in applications [7]. Compilettes can be understood as ad hoc
runtime code generators specialised to generate the binary
(machine) code of a software component. The implementation
of the target component is known before runtime, and as a
consequence, runtime code generation is fast and code gen-
erators present a limited memory footprint. At runtime, when
target data for code specialisation are known, the compilette
is executed and creates a specialised binary code using the
knowledge of the data. The produced binary code is then used
the same way as any other function.

IV. PERFORMANCE EVALUATION

A. Experimental setup

We use the WisMote platform from Arago Systems [8],
which is representative of a low power system with limited
memory resources and limited power computation, often used
as a node in a Wireless Sensor Network. The WisMote uses the



16-bit MSP430F5437 micro-controller from Texas Instrument,
fitted with 256 kB of flash and 16 kB of RAM. We use
the open source operating system Contiki version 2.7, and
the code is compiled with the gcc toolchain in version 4.7
provided for TinyOS [9]. The clock frequency of the CPU is
set to 2.45 MHz, and to measure execution time, we configure
an internal timer of the CPU at its maximum frequency
(2.45 MHz/4). Hence our execution time measurements have
a precision of 4 CPU cycles.

All the performance evaluations consider the floating-point
multiplication routine. Our reference is the implementation
provided in the libfp library that comes with the platform
gcc toolchain. The implementation of the specialised version
generated in our library is optimised using a polynomial root
approximation method known as Horner scheme [10]. This
method allows for a variable number of precision bits used
in the mantissa of the floating-point numbers, and for the
specialisation of one of the multiplication operands.

B. Performance metrics

We use two performance metrics representative of the
execution cost of our implementation: the speedup, and the
overhead recovery. These metrics are based on three perfor-
mance measurements: tref, tgen, tspec that respectively denote
the execution times of the reference implementation, of the
runtime code generator, and of the specialised function.

The speedup represents the acceleration factor of our im-
plementation as compared to the reference implementation. It
is the ratio between execution cost of the generic application
and the specialised application (Equation 6):

speedup =
tref

tspec
(6)

The overhead recovery, denoted N , represents the number
of executions of the specialised code that are necessary to
amortise the cost of code generation (Equation 7).

N =
tgen

tref − tspec
(7)

C. Performance figures

The multiplication routine is generated with a variable
precision p that denotes the number of bits of the mantissa
of the floating-point numbers taken into account. For 32-bit
floating-point values, the mantissa is represented on 24 bits
(with one implicit bit). Hence, we vary the precision p in the
range [1; 24].

The evaluation uses, for each value of p, of 4000 floating-
point multiplications of two sets of randomly-picked operands.
Three special values are always included in our sets of input
values: 2.0, which has an empty mantissa; 3.3333333, which
has an half-set floating-point mantissa; and 3.9999998, which
has a full-set mantissa. In the case where we perform code
specialisation on the value of the first multiplication operand,
these values will respectively correspond to the shortest,
average and longest code generation time because the code

generation time is proportional to the number of bits set to 1
in the mantissa.

1) Variable precision, no value specialisation: We first
describe the performance figures obtained where the multi-
plication routine is specialised over the precision p only (Fig-
ure 2). The performance improvement is modest as compared
to the reference implementation. With an equivalent precision
(p = 24), the speedup is close to 1. This explains why
the corresponding values of the overhead recovery are high:
considering the minor performance improvements, it requires a
high number of executions of the specialised code to amortise
the cost of code generation. However, with a lower precision,
our specialised version executes faster, up to more than 2×
when p < 6; the overhead recovery is also acceptable, smaller
than 10 for p < 13.

2) Variable precision, value specialisation on one of the
operands: In this case the runtime library also specialises the
multiplication function over one of the operands. Hence, the
multiplication function y = f(a, b) is specialised as follows.
The code generator specialises the function f over the value
of a: fa = gen(a). The result of the multiplication is then
obtained from the execution of y = fa(b). The performance
achieved is illustrated in Figure 3.

As compared to the previous case, the value specialisation
on one of the operands brings a considerable performance im-
provement. With the precision as our reference implementation
in the libfp (p = 24), our implementation is 7× faster in
average, up to 11× for particular specialisation values. Even
in the worst case, the speedup is still above 6× faster than the
reference implementation. When the precision is lowered, the
speedup is even better. The median speedup is around 8× for
p < 17.

The overhead recovery is variable, depending on the preci-
sion setting. This is explained by the fact that the multiplica-
tion of the mantissa is unrolled according to the contents of the
mantissa of the specialisation value. For p = 24, the overhead
recovery is always below 5, which means that the cost of
runtime code generation is paid-off as soon as the specialised
code is executed 5 times. With a lower precision setting, the
overhead recovery is even better: the code specialisation is
amortised in 3 executions only when p < 10.

V. CONCLUSION

We have presented a precision-aware library for arithmetic
computing, suitable even for constrained embedded devices
with low computing power and memory resources. The per-
formance figures presented in this paper illustrate that our
implementation presents a low runtime overhead, and that
it can bring interesting performance improvements as soon
as some data are known to keep the same values for a few
iterations of the computation. Future works will establish a
bridge with higher-level tools that tackle approximation at the
semantic level of a program.

ACKNOWLEDGMENTS

This work has been partly funded by the Artemis AR-
ROWHEAD project under grant agreement number 332987



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
precision

1.0

1.5

2.0

2.5

3.0

3.5
sp

ee
du

p 
fa

ct
or

(a) Speedup

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
precision

100

101

102

103

ov
er

he
ad

 re
co

ve
ry

(b) Overhead recovery

Fig. 2. Performance results of our implementation of the floating-point multiplication, specialised over the values of the bit precision only.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
precision

6

7

8

9

10

11

12

13

sp
ee

du
p 

fa
ct

or

(a) Speedup

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
precision

0

1

2

3

4

5
ov

er
he

ad
 re

co
ve

ry

(b) Overhead recovery

Fig. 3. Performance results of our implementation of the floating-point multiplication, using value specialisation on the first multiplication operand.

(ARTEMIS/ECSEL Joint Undertaking, supported by the Eu-
ropean Commission and French Public Authorities).

REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in ETS, 2013, pp. 1–6.

[2] P. Roy, R. Ray, C. Wang, and W. F. Wong, “Asac: Automatic sensitivity
analysis for approximate computing,” SIGPLAN Not., vol. 49, no. 5, pp.
95–104, Jun. 2014.

[3] W. Baek and T. M. Chilimbi, “Green: A framework for supporting
energy-conscious programming using controlled approximation,” in Pro-
ceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2010, pp. 198–209.

[4] W.-T. Chan, A. Kahng, S. Kang, R. Kumar, and J. Sartori, “Statistical
analysis and modeling for error composition in approximate computation
circuits,” in ICCD, 2013, pp. 47–53.

[5] V. Vassiliadis, K. Parasyris, C. Chalios, C. D. Antonopoulos, S. Lalis,
N. Bellas, H. Vandierendonck, and D. S. Nikolopoulos, “A program-
ming model and runtime system for significance-aware energy-efficient
computing,” Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2015.

[6] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general low-
power computation,” SIGPLAN Not., vol. 46, no. 6, pp. 164–174, 2011.

[7] H.-P. Charles, D. Couroussé, V. Lomüller, F. Endo, and R. Gauguey,
“deGoal a Tool to Embed Dynamic Code Generators into Applications,”
in Compiler Construction. Springer, 2014, vol. 8409, pp. 107–112.

[8] Arago-Systems, “Wismote platform,” last visited 2015-11-20, http://
www.aragosystems.com/en/wisnet-item/wisnet-wismote-item.html.

[9] “Tinyos (tinyprod) Debian Development Repository,” last visited 2015-
11-20, http://tinyprod.net/repos/debian.

[10] C. Aracil and D. Couroussé, “Software acceleration of floating-point
multiplication using runtime code generation,” ICEAC, pp. 18–23, 2013.

http://www.aragosystems.com/en/wisnet-item/wisnet-wismote-item.html
http://www.aragosystems.com/en/wisnet-item/wisnet-wismote-item.html
http://tinyprod.net/repos/debian

	Introduction
	Runtime Code Specialisation for Approximate Computing
	An Approximate Library for Arithmetic Computing with Runtime Code Generation
	Overview
	deGoal: runtime code generation for embedded devices

	Performance evaluation
	Experimental setup
	Performance metrics
	Performance figures
	Variable precision, no value specialisation
	Variable precision, value specialisation on one of the operands


	Conclusion
	References

