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We study the effective field theory that describes the low-energy physics of self-gravitating media. The
field content consists of four derivatively coupled scalar fields that can be identified with the internal
comoving coordinates of the medium. Imposing SO(3) internal spatial invariance, the theory describes
supersolids. Stronger symmetry requirements lead to superfluids, solids and perfect fluids, at lowest order
in derivatives. In the unitary gauge, massive gravity emerges, being thus the result of a continuous medium
propagating in spacetime. Our results can be used to explore systematically the effects and signatures of
modifying gravity consistently at large distances. The dark sector is then described as a self-gravitating
medium with dynamical and thermodynamic properties dictated by internal symmetries. These results
indicate that the divide between dark energy and modified gravity, at large distance scales, is simply a
gauge choice.

DOI: 10.1103/PhysRevD.94.124023

I. INTRODUCTION AND OUTLINE

The cosmological data show that the Universe is under-
going a phase of accelerated expansion. See [1] for the
first conclusive evidence. Although a simple model of the
Universe based on a Friedmann-Lemaître-Robertson-
Walker (FLRW) metric in general relativity (GR) supple-
mented by a cosmological constant fits well all the
observations [2,3], the actual nature of the driving force
behind the acceleration remains still unclear. Upcoming
probes of the dynamics of the Universe [4] will be crucial to
shed light on this dark energy (DE). A good deal of
theoretical effort has been aimed in the last twenty years to
build consistent and compelling models of DE; see [5] for
reviews.1 What the vast majority of these efforts have in
common is the addition of some new degrees of freedom to
the dynamics of the Universe. On the one hand, these
hypothetical degrees of freedom have often been inter-
preted as extra components of the Universe beyond
baryonic and dark matter, photons and neutrinos. On the
other hand, they have also been commonly regarded as part
of gravity itself, modifying the behavior of GR at large

distances, in a way that is compatible with the current
acceleration of the Universe.
In this work we propose a symmetry-driven approach to

DE. By working with an action of four derivatively coupled
scalar fields, we show that DE can originate from a medium
with concrete mechanical and thermodynamic properties.
These four scalars are interpreted as comoving coordinates
of the medium and, moreover, they are the degrees of
freedom required to describe its low-energy physics. At the
core of this description of DE lie the symmetries of the
medium. They rule the mutual interactions of the four
scalars and determine whether the medium behaves as a
perfect fluid, a superfluid, an elastic solid or a supersolid.
By using this large class of Lagrangians, we will argue

that the distinction that is often made between DE (as
some kind of matter) and modified gravity (as a true
modification of Einsten’s gravity) is purely artificial.
Indeed both interpretations should be understood as
complementary points of view of a unique (hypothetical)
phenomenon. This fact becomes transparent by choosing
the adequate coordinates for each perspective, as we
explain below.
The four scalars can also be viewed as Stückelberg fields

that allow us to restore broken diffeomorphisms in models
of so-called massive gravity [7,8]. Following common
usage, we use the term massive gravity (MG) to refer to
any model of gravity for which nonderivative metric
perturbations appear squared. We recall, however, that
many such models do not contain a massive graviton (of
spin two). The introduction of these fields is the key for
interpreting massive (and general classes of modified)
gravity models as a self-gravitating media. Thanks to
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1However, it is worth stressing that no such model solves the
problem of the smallness of the cosmological constant [6].
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diffeomorphism invariance, an adequate choice of the
spacetime coordinates (called unitary gauge) renders trivial
the dynamics of the Stückelberg fields, allowing us to draw
a direct connection between the theory of self-gravitating
media and MG.2 In particular, we describe in this work the
matching to the general Hamiltonian construction of MG
models that was studied in [11–13].
Most of such MG models are Lorentz breaking in the

sense that, around Minkowski spacetime, the metric per-
turbations are just rotationally invariant in three dimen-
sions. From the point of view of the self-gravitating
medium interpretation of MG that we explore in this work,
Lorentz breaking is simply triggered by the presence of the
medium itself, which generically defines at least one
preferred four-vector.
By construction, the general description of self-

gravitating media in terms of four derivatively coupled
scalars is a well-defined effective field theory (EFT). This
allows a systematic exploration of DE in terms of sym-
metries, with a unified and suggestive interpretation of
modified and MG models. This is the take-home message
of this paper. The use of an EFT framework to describe
modified gravity at large distances and the acceleration of
the Universe, opens the possibility of confronting simulta-
neously a wide variety of models with cosmological
observations in a simple way.3

The outline of the paper is the following. In Sec. II we
start introducing the EFT of self-gravitating media, empha-
sizing the role of diffeomorphism invariance. In Sec. III we
continue the presentation of the EFT by building the
intuition that allows us to interpret the low-energy degrees
of freedom as comoving coordinates. In Sec. IV we write
the lowest-order scalars of the EFT according to the
possible symmetries. In Sec. V we provide a discussion
of the different kinds of media according to their sym-
metries and their field content. In Sec. VI the unitary gauge
is employed to show how the EFTof self-gravitating media
can be put in correspondence with a broad class of MG
models. In Sec. VII we set the basis for a systematic study
of the cosmology of these models by determining, for each
kind of medium, the number of propagating degrees of
freedom in a FLRW background. We present our con-
clusions in Sec. IX. Two appendixes are also included. In
Appendix A we discuss briefly the conserved currents that
appear in the theory. Finally, in Appendix B we give an
alternative, shortcut derivation of the number of propagat-
ing degrees of freedom.

Through the paper we will use the signature convention
ð−;þ;þ;þÞ and units such that ℏ ¼ c ¼ 1.

II. DERIVATIVELY COUPLED SCALAR FIELDS
AND DIFFEOMORPHISM INVARIANCE

Let us consider the action for a set of four scalar fields
under diffeomorphisms ΦAðxμÞ, A ¼ 0, 1, 2, 3, whose
mutual interactions obey shift symmetries,

ΦA → ΦA þ cA; ∂μcA ¼ 0: ð2:1Þ
At lowest order in derivatives, the action for these fields
depends on the kinetic blocks

CAB ¼ gμν∂μΦA∂νΦB; ð2:2Þ
where gμν is the (four-dimensional) spacetime metric.
Including the usual Einstein-Hilbert term the general form
of the action at lowest order in derivatives is then given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½M2
plRþ UðCABÞ þ Lm�; ð2:3Þ

where we define M2
pl ¼ 1=ð16πGÞ, G being Newton’s

constant; U is a smooth master function of the 4 × 4

matrix CAB and Lm is the part of the Lagrangian describing
matter fields (e.g. baryonic matter). The expression (2.3) is
the leading contribution to the action of an EFTwhere shift
symmetries enforce the fields ΦA to be derivatively
coupled.4 The scalars CAB are the only independent ones
that can be built out of the four ΦA at leading order (LO) in
derivatives, i.e. with a single derivative acting on each ΦA.
The next-to-leading order (NLO) in derivatives corresponds
to operators that enter in the action with exactly two
additional derivatives.5 These operators must then appear
suppressed with respect to the LO ones by some energy
scale Λ squared. In principle, one would expect Λ ∼ U1=4,
because this is the only scale of (2.3) other than Mpl (and
any masses coming from Lm).
At LO, we are also allowed to multiply the curvature

scalar R by an arbitrary function of CAB. However, this
function can always be eliminated through a conformal
transformation of the metric,6 see [16]. After such a
transformation, we obtain an action with the same structure
of (2.3) plus some extra terms which can be disregarded at
LO because they are of higher order in derivatives.
Similarly, the Lagrangian Lm can be multiplied by an
arbitrary function of CAB. In fact, denoting by ψm the
matter fields contained in Lm, according to the power2An example of such media is the case of the perfect fluids that

can be described with three Stückelberg fields, for which the
invariance under internal volume preserving diffeomorphisms
forbids a mass term for gravitons [SOð3Þ spatial tensor modes],
see e.g. [9,10].

3See also [14] for an approach with a similar spirit, where only
a single new degree of freedom is considered and nonderivative
couplings are allowed.

4See [9] for a general discussion of this type of EFT with an
arbitrary number of scalar fields.

5See [15,16] for the NLO of a simpler case containing just
three scalar fields.

6We follow here the nomenclature of [17], but the reader must
be aware that this is often called a Weyl transformation.

BALLESTEROS, COMELLI, and PILO PHYSICAL REVIEW D 94, 124023 (2016)

124023-2



counting this part of the action should actually be written as
fðCABÞLm½hðCABÞgμν;ψm�, where f and h denote a set of
arbitrary functions [16]. In this paper we will not study the
effect of these couplings to matter fields, since our
emphasis is on the interactions between the fields ΦA

and the metric gμν. Therefore, in what follows we set Lm to
zero, postponing its study for future work.
Under these assumptions, the LO gravitational energy-

momentum tensor (EMT) associated to the scalar fields ΦA,
defined via the variation

ffiffiffiffiffiffi−gp
Tμνδgμν ¼ −2δ

R
d4x

ffiffiffiffiffiffi−gp
U,

is given by

Tμν ¼ Ugμν − 2
∂U
∂CAB ∂μΦA∂νΦB; ð2:4Þ

where sums over the repeated indices A and B are implicit.
Varying the action (2.3), the equations of motion (EOMs)
of the scalars ΦA read

∇μð∇μΦB∂U=∂CABÞ ¼ 0; ð2:5Þ
where ∇μ is the covariant derivative defined with the
Levi-Civita connection of gμν. Taking the covariant diver-
gence of (2.4), and using that the Levi-Civita connection is
torsionless, we obtain

∇μTμν ¼ ∇νΦA∇μð∇μΦB∂U=∂CABÞ: ð2:6Þ

Therefore, the covariant conservation of the EMT
ð∇μTμν ¼ 0Þ can be inferred from the scalar’s EOMs
(2.5). Clearly, this result would also hold if N, the total
number of scalars ΦA, were different from 4.
Generically, given some model of scalar fields coupled to

gravity, the converse of the previous result is not true: the
conservation of the EMT does not imply the EOMs of the
scalars. However, in our case the two are equivalent under a
specific condition. Let us consider (2.3) with Lm ¼ 0 and
assume (as we will do in most of this paper) that we have
four scalars ΦA. If detð∂μΦAÞ ≠ 0, it is possible to choose a
system of coordinates such that

∂μΦA ¼ δAμ : ð2:7Þ

Then, Eq. (2.6) becomes ∇μTμν ¼ δAν δ
B
μ∇μð∂U=∂CABÞ,

which is nothing but (2.5) and shows that the EOMs of
the scalars now follow from the conservation of the EMT.
Since ∇μTμν ¼ 0 is ultimately due to diffeomorphism
invariance, we can say that the equations of motion are
a consequence of it, provided that detð∂μΦAÞ ≠ 0.7 A more

direct way of proving it uses that (2.6) can be expressed as
the productQ · q, whereQ is a 4 × 4matrix of components
∇νΦA and q is a 4 × 1 matrix. Then, if detQ ≠ 0, the only
solution of Q · q ¼ 0 is q ¼ 0, which is (2.5).
It is well known that diffeomorphism invariance can be

restored for any action of metric perturbations around
some background. In four dimensions this can be done by
introducing four scalars that are called Stückelberg fields.8

By construction, these scalar fields are coupled among
themselves only derivatively. From this point of view, the
action (2.3) with Lm ¼ 0 is a good candidate for an EFT
description of massive (and modified) gravity. The choice
of N ¼ 4 scalar fields ΦA is then motivated by the number
of spacetime dimensions we assume. As the Stückelberg
fields acquire a nontrivial background configuration, such
as e.g. (2.7), diffeomorphism invariance appears to be
broken.
MG models (like the archetypical one of Fierz and Pauli

[20]) are often presented in a way in which general
covariance is explicitly broken (and in some cases
Lorentz invariance too). In this work we exploit the fact
that these models can generically be embedded in a
covariant (and Lorentz invariant) action by the introduction
of four scalar Stückelberg fields. As we have just explained,
the apparent breaking of diffeomorphism invariance is just
a consequence of choosing a background solution of the
equations of motion for these fields. From this perspective,
the action (2.3), together with a background satisfying
(2.7), is an appropriate tool for the description of MG
models, as we will discuss later in more detail.
The structure of (2.3) makes it convenient to assign

dimensions of length to the fieldsΦA. With this convention,
the LO operators are dimensionless and the NLO ones have
dimension of energy squared, which makes explicit the fact
that they must appear suppressed by Λ2. We can always
express the Stückelberg fieldsΦA introducing new fields πA

as follows:

ΦAðxμÞ ¼ xA þ πAðxμÞ: ð2:8Þ

By construction, the fields πA inherit the power counting
defined for the Stückelberg fields ΦA. Inserting (2.8) in
the action (2.3), assuming that we can neglect NLO and
higher-order operators, and imposing that j∂μπ

Aj ≪ 1, we
get an action for the πA that we can expand in powers of ∂μ

or, equivalently, in powers of πA. With the condition
j∂μπ

Aj ≪ 1, the field redefinition (2.8) suggests that the

7An analogous argument can be applied if the number of scalar
fields, N, is smaller than the number of spacetime dimensions,D.
However, if N > D there would not be enough freedom to
eliminate all the scalars from the dynamics through (2.7) and so
the EOMs cannot be equivalent the conservation of the EMT in
that case.

8The term Stückelberg field is commonly used for a field that
allows to make explicit a (spontaneously broken) gauge sym-
metry. These fields and the associated mechanism (or “trick”),
which we will use later on, are named after E.C.G. Stückelberg,
who showed how a (complex) scalar field can make an Abelian
vector field massive while preserving gauge invariance [18]. See
[19] for a review with various applications.
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fields πA parametrize the deviation of the fields ΦA from
their background location xA. Therefore, after the inter-
pretation of ΦA as coordinates in a medium, Eq. (2.8) tells
us that πA may be understood as the degrees of freedom
responsible for carrying sound waves in the medium itself,
i.e. phonons which can be understood as the Goldstone
bosons of broken translations, see e.g. [21,22]. We empha-
size that these fields need not be small; it is only their
derivatives that have to be under control for the validity
of the derivative expansion. The fields πA are the four-
dimensional generalization of the standard displacement
field used in fluid dynamics, elasticity and strain theory. In
the next section we start exploiting this connection, which
we will phrase directly using the Stückelberg fields, using
the language of the EFTs of solids, fluids and super-
fluids; different aspects of which have been studied in
[9,10,15,16,23–33]. As a matter of fact, the basic idea of
using three comoving coordinates to describe fluid dynam-
ics is nothing but the earlier pull-back formalism, which has
already been used to describe the dynamics of continuous
media, see e.g. [34–39].

III. SELF-GRAVITATING MEDIA

We split the scalars ΦA into two distinct sets, fΦ0g and
fΦ1;Φ2;Φ3g, which are characterized as follows. The
elements of fΦ1;Φ2;Φ3g will be referred to as spatial
Stückelberg fields, and we will use small latin letters
a; b;… to index them. We require the 3 × 3 submatrix
of (2.2) whose components are

Bab ≡ Cab ð3:1Þ

to be positive definite, so that its three eigenvalues are
positive. As we will soon see, the reason for this condition
is allowing the inverse of Bab to define an Euclidean metric
in IR3. As anticipated in the previous sections, we can
interpret the fields Φa as the (spatial) comoving coordinates
of an internal space F that describes a continuum medium
whose topology we assume to be IR3. This picture—that
has been known for a long time, see e.g. [35]—allows us to
write an unconstrained variation principle for a fluid. A
pedagogical review of this pull-back formalism is provided
in [36] and various applications specific to cosmology can
be found in [10,16,28,31,40–45]. Here, we will follow [10]
to describe the basics of this construction.
We exploit the fact that, given a slicing and a threading of

the spacetime (Lorentzian) manifold M, we can formally
write M ¼ MT ×MS, where MT and MS are respec-
tively the sets of time, fx0g, and space, fx1; x2; x3g,
coordinates on M. By choice, MS is endowed with a
Riemannian metric. Provided that at any given time x0, the
condition detð∂iΦaÞ ≠ 0 is satisfied, there exists an invert-
ible map ofMS into the mediumF , which we assume to be
smooth: xi → Φaðx0; xjÞ. Conversely, F can be immersed

in MS via the inverse map: Φa → xiðx0;ΦaÞ. While the
first of these maps identifies the fluid (or in general,
medium) element (labeled by Φa) that sits at time x0 at
the point xi; the second map describes the trajectory of the
medium element Φa in spacetime [10]. This is nothing but
the dual description of a continuum in terms of Lagrangian
(Φa) and Eulerian (xi) coordinates.
The spacetime metric gμν induces a three-dimensional

metric on F , which is given by the matrix Bab defined as
follows:

ds2F ¼ gμν
∂xμ
∂Φa

∂xν
∂Φb dΦ

adΦb ≡ BabdΦadΦb: ð3:2Þ

The induced metric Bab is the inverse matrix of Bab defined
in (3.1), i.e. BabBbc ¼ δac . The condition that Bab is positive
definite ensures that the induced spatial metric on the
medium F is Riemannian.
Since the fields Φa can be interpreted as comoving

coordinates, they must remain unchanged along the fluid
flow. This allows to define a (unique) four-velocity uμ,
through the conditions

uμ∂μΦa ¼ 0; uμuνgμν ¼ −1; ð3:3Þ

whose only solution is

uμ ¼ −
ϵμναβ

6b
ffiffiffiffiffiffi−gp ϵabc∂νΦa∂αΦb∂βΦc; ð3:4Þ

where

b≡ ffiffiffiffiffiffiffiffiffiffi
detB

p
; ð3:5Þ

andB denotes the 3 × 3matrix whose components are given
by (3.1). Inwhat follows, wewill always use boldface capital
letters for three-dimensional spatial matrices.
When pulled back into the spacetime manifold M, the

induced metric Bab becomes a projector Hμν on the
embedding of F in M,

Hμν ¼ Bab∂μΦa∂νΦb ≡ gμν þ uμuν; Hμνuν ¼ 0: ð3:6Þ

Only if u½α∇μuν� ¼ 0 (where the brackets indicate full
antisymmetrization of the three indices), Frobenius’s theo-
rem guarantees that uμ is hypersurface orthogonal. In that
case there is a one-parameter family of hypersurfaces that
are orthogonal (everywhere) to the four-velocity uμ, which
thus defines a slicing of the spacetime manifold M.
So far we have only dealt with the spatial Stückelberg

fields, describing the structure that was used, e.g. in [10] to
study (a certain class of) perfect fluids. We will now also
deal with the temporal Stückelberg, Φ0, for which we
impose the condition
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X ≡ C00 < 0: ð3:7Þ

This condition allows to define another four-velocity by
means of the derivative ∂μΦ0, which is thus constrained to
be timelike,

Vμ ¼ −
∂μΦ0ffiffiffiffiffiffiffi
−X

p ; VμVνgμν ¼ −1: ð3:8Þ

This defines a hypersurface at each point that is orthogonal
to Vμ and has an induced metric

pμν ¼ gμν þ VμVν; pμνVν ¼ 0: ð3:9Þ

Since Vμ is the gradient of a scalar, its covariant vorticity

ωμν ¼ pα
μp

β
ν∇αVβ vanishes. In Minkowski and FLRW

spacetimes, the four-vectors uμ and Vμ coincide, up to a
sign. However, if these spaces are slightly distorted, the two
velocities generically differ from each other. Given the four
scalar fields ΦA, the four-vectors Vμ and uμ are the only
independent four-vectors that are invariant under the group
SOð3Þs of internal spatial rotations and under the shift
symmetries (2.1).
The condition (3.7) also allows for an interesting

extension of the maps between MS and F that we
mentioned earlier. In particular we can extend the medium
spaceF , spanned by the three spatial Stückelberg fieldsΦa,
to a space F 4 spanned by the full set fΦ0;Φag. By
construction, and in analogy to (3.2), the matrix CAB,
defined through

CAB ≡ gμν
∂xμ
∂ΦA

∂xν
∂ΦB ; ð3:10Þ

is a Lorentzian metric in the extended medium space F 4,
and is the inverse of the 4 × 4 matrix of kinetic blocks
introduced in (2.2). Hence, the map

M → F 4∶ xμ → ΦAðxμÞ ð3:11Þ

carries the spacetime manifold onto the extended (self-
gravitating) medium space, whereas the inverse

F 4 → M∶ ΦA → xμðΦAÞ ð3:12Þ

gives the location of each element of the extended medium
(labeled by ΦA) on spacetime, as described by the coor-
dinates xμ. In other words, the second of these two maps
describes the world hypervolume of the extended medium
F 4 as it propagates on the spacetime M.
The role of the temporal Stückelberg Φ0 is therefore

twofold. First, it allows us to define an independent
timelike four-vector via (3.8). As we will later see, this
will give us the possibility of defining two-constituent
fluids, as required to describe superfluids (provided that the

appropriate symmetries are satisfied) [26]. And second, as
we have just described, Φ0 can also be naturally interpreted
as a comoving time coordinate in the medium space, which
allows to conceive the self-gravitating media described by
(2.3) as four-dimensional objects propagating in spacetime,
extending the pull-back formalism to include the temporal
dimension as well. Both pictures play important roles in the
novel interpretation of MG and DE as self-gravitating
media that we explore in this work.
In the next section we focus on the operators that can

appear in the action (2.3) at LO in derivatives, and in Sec. V
we will classify the different media that arise combining
them.

IV. SPATIAL SO(3) INVARIANCE AND
ADDITIONAL SYMMETRIES

For simplicity, we will always impose a global internal
spatial SOð3Þ symmetry in the medium space, that we
denote by SOð3Þs, so that all the operators in the action are
invariant under

Φa → RabΦb with R ∈ SOð3Þ; ∂μR ¼ 0: ð4:1Þ

This basic symmetry will also allow us to make direct
contact with the general models of massive gravity clas-
sified in [13], as we will discuss in Sec. VI.
To construct a LO complete set of independent

SOð3Þs-invariant scalars we start with the traces

τn ¼ TrðBnÞ; n ¼ 1; 2; 3: ð4:2Þ

We recall that the SOð3Þs-invariant determinant b ¼ffiffiffiffiffiffiffiffiffiffi
detB

p
, defined already in (3.5), is not independent

of these traces because it can be written as b2 ¼
ðτ31 − 3τ1τ2 þ 2τ3Þ=6.
Introducing the 3 × 3 matrix Z of components

Zab ¼ C0aC0b; ð4:3Þ

we can define the scalars

yn ¼ TrðBn · ZÞ; n ¼ 0; 1; 2; 3; ð4:4Þ

which are also invariant under SOð3Þs. The traces of Z2 and
Z3 (and higher powers) do not need to be considered
once y0 is included because they can be written as powers
of the latter.
In addition, since the four-vectors ∂μΦ0 and uμ are

invariant under SOð3Þs, there are two other scalars at LO
that are invariant under this group. One of them is X ¼ C00,
which we already introduced in (3.7), and the other is

Y ≡ uμ∂μΦ0: ð4:5Þ
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This closes the set of independent LO SOð3Þs-invariant
operators, which is therefore composed of nine elements
and reads

OLO ¼ fX; Y; τ1; τ2; τ3; y0; y1; y2; y3g: ð4:6Þ

We point out that the determinant of the 4 × 4 matrix of
components CAB, defined in (2.2), is also invariant under
SOð3Þs, but it is not independent of this set because it can
be expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðCABÞj

q
¼ Yb: ð4:7Þ

What is interesting of this operator is that is closely related
to the pull back of the medium volume element in
spacetime. Indeed

d4Φ ¼ ffiffiffiffiffiffi
−g

p
bYd4x: ð4:8Þ

This expression allows to pass from Eulerian to Lagrangian
coordinates (and vice versa) in four dimensions, extending
the three-dimensional treatment of these coordinates that
was discussed in [10].

A. Additional symmetries at LO

We can further constrain the form of the action (2.3) by
requiring additional symmetries, leading to different types
of self-gravitating media. Two examples are elastic solids
and perfect fluids, which are derived from symmetries
imposed on the spatial sector of the Stückelberg fields. We
will see in Sec. V that by imposing symmetries that mix the
spatial and temporal Stückelberg fields, new kinds of
materials arise. For reference, we summarize in Table I
the notation for the operators that we use in this paper. Let
us now make a list of the additional symmetries of interest
for us,

(i) Imposing volume-preserving diffeomorphism
invariance of the spatial sector,

VsDiff∶Φa →ΨaðΦbÞ; det

�∂Ψa

∂Φb

�
¼ 1; ð4:9Þ

the scalars τn have to combine in the action into the
determinant operator b and, in addition, the scalars
yn are automatically forbidden. Therefore b, X and Y
are the only operators allowed at LO. This symmetry
was identified in [9] in the context of the EFT
formulation of perfect fluids containing only b.

We will also consider a series of symmetries that were
proposed in [7].

(i) If we impose that the action has to be invariant under
the transformations

Φa → Φa þ faðΦ0Þ; ð4:10Þ

for arbitrary fa, we find that at LO the action will
generically depend only on X and on the matrix of
components

Wab ≡ Bab −
Zab

X
: ð4:11Þ

Then, the invariance under SOð3Þs further enforces
Wab to appear in the action only through the traces

wn ≡ TrðWnÞ; ð4:12Þ

which are nonlinear combinations of the scalars X,
τn and yn,

w1 ¼ τ1 −
y0
X
; w2 ¼ τ2 − 2

y1
X

þ y20
X2

;

w3 ¼ τ3 − 3
y2
X

þ 3
y0y1
X2

−
y30
X3

: ð4:13Þ

Under the transformation (4.10), uμ∂μΦa →
uμ∂μΦa þ Ydfa=dΦ0, because uμ is invariant.
Therefore, the operator Y measures the failure of
Φa to remain comoving along uμ when such a
transformation is applied. Besides, as in the case
of VsDiff, at NLO the same operators with deriv-
atives of uμ are also allowed under (4.10).

(ii) If the action is invariant under

Φ0 → Φ0 þ fðΦaÞ; ð4:14Þ
the only LO operators that are allowed are Y and
the traces τn. Clearly, uμ is invariant under this

TABLE I. Summary of the various LO scalar operators appear-
ing in this paper. Unless it is explicitly indicated otherwise, we
use greek letters for spacetime indices, capital latin letters
(A; B;… ¼ 0, 1, 2, 3) for indices in the internal spacetime of
the medium and small latin letters (a; b;… ¼ 1, 2, 3) for spatial
indices of the medium. Boldface latin capital letters, such as B,
represent 3 × 3 matrices.

Operator Definition

CAB gμν∂μΦA∂νΦB, A; B ¼ 0, 1, 2, 3
Bab gμν∂μΦa∂μΦb, a, b ¼ 1, 2, 3
Zab Ca0Cb0

X C00

Wab Bab − Zab=X
b

ffiffiffiffiffiffiffiffiffiffi
detB

p
Y uμ∂μΦ0

yn TrðBn · ZÞ, n ¼ 0, 1, 2, 3
τn TrðBnÞ, n ¼ 1, 2, 3
wn TrðWnÞ, n ¼ 0, 1, 2, 3
Oαβn ðX=Y2Þαðyn=Y2Þβ, α; β ∈ IR
Oα ðX=Y2Þα, α ∈ IR
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transformation and therefore all the NLO operators
mentioned above constructed from derivatives of uμ

also respect this transformation.
If we combine the symmetries (4.14) and (4.9) the

master function U can only depend on Y and b and
the resulting medium has the EMTof a perfect fluid,
as we will later see.

(iii) Finally, if the action is invariant under

Φ0 → Φ0 þ fðΦ0Þ; ð4:15Þ

it is constrained at LO to be a function of the traces
τn, wn and the scalars

Oαβn ¼
�
X
Y2

�
α
�
yn
Y2

�
β

: ð4:16Þ

The operators Oαβn present some peculiarities with
respect to the ones that we have encountered so far.
From the point of view of the symmetries, α; β ∈ IR,
which implies that there must be an infinite (and
uncountable) amount of these operators. However,
since all yn vanish at zero order for diagonal metric
backgrounds, a well-defined perturbative expansion
seems to require β to be a positive integer. Even then,
there is still an infinite number of these operators at
LO, which means that the master function U cannot
be arbitrary if the action is to be finite. The same

difficulty is also manifest on the associated Noether
currents, see Appendix A 2.
If in addition to (4.15), we impose also (4.9), the

operators (4.16) get restricted to the subset with
β ¼ 0. For later convenience we will denote them as
follows:

Oα ¼
�
X
Y2

�
α

: ð4:17Þ

If instead we combine (4.15) and (4.10), the
operators wn get selected.

In Table II we summarize the different LO scalar
operator content according to the internal symmetries of
the action and the physical interpretation of the resulting
system, which we discuss in the next section. In addition,
media with reduced internal dimensionality are possible as
well; see Table III. For instance, if the spatial Stückelberg
fields Φa are not present in the LO action, the only operator
at that order would be X.

V. LAGRANGIANS FOR
SELF-GRAVITATING MEDIA AT LO

Given the field content, the metric gμν and the scalar
fields ΦA, it is possible to study in a systematic way the
models resulting from imposing certain symmetries in
addition to SOð3Þs and internal shifts. Each class of

TABLE II. Summary of local symmetries in material spacetime and the corresponding invariant scalar operators.
Invariance under SOð3Þs and shift symmetries are assumed by default in all cases.

Four-dimensional media

Symmetries of the action LO scalar operators Type of medium

SOð3Þs & ΦA → ΦA þ fA, ∂μfA ¼ 0 X, Y, τn, yn Supersolids
Φa → Φa þ faðΦ0Þ X, wn

Φ0 → Φ0 þ fðΦaÞ Y, τn
Φ0 → Φ0 þ fðΦ0Þ τn, wn, Oαβn

Φa → Φa þ faðΦ0Þ & Φ0 → Φ0 þ fðΦ0Þ wn

VsDiff: Φa → ΨaðΦbÞ, det j∂Ψa=∂Φbj ¼ 1 b, Y, X Superfluids
Φ0 → Φ0 þ fðΦ0Þ & VsDiff b, Oα

Φ0 → Φ0 þ fðΦaÞ & VsDiff b, Y Perfect fluid

ΦA → ΨAðΦBÞ, det j∂ΨA=∂ΦBj ¼ 1 bY Perfect fluid with ρþ p ¼ 0

TABLE III. Summary of self-gravitating media with reduced dimensionality, i.e. with less than four Stückelberg
fields.

Media with reduced internal dimensionality

Symmetries of the action LO scalar operators Type of medium

SOð3Þs & Φa → Φa þ ca; ∂μca ¼ 0 τn Solid

VsDiff b Perfect fluids
Φ0 → Φ0 þ c0; ∂μc0 ¼ 0 X
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symmetries corresponds to a medium with specific
mechanical and thermodynamic properties, which can be
obtained from the EMT. For all the media we consider we
require spacetime diffeomorphism invariance. Then, the
most general action at LO for a medium described by the
four Stückelberg fields ΦA can be constructed in terms of
the scalar invariants X, Y, τn and yn,

S ¼ Mpl

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d4x

ffiffiffiffiffiffi
−g

p
UðX; Y; τn; ynÞ ð5:1Þ

and the corresponding EMT is given by

Tμν ¼ Ugμν − 2
∂U
∂CAB ∂μΦA∂νΦB ¼ Ugμν − 2

X
k

UOk

∂Ok

∂gμν ;

ð5:2Þ

where Ok are the nine scalar LO operators appearing in
(5.1) and we use the notationUOk

¼ ∂U=∂Ok. Their partial
derivatives with respect to the inverse spacetime metric are

∂Y
∂gμν ¼ −

Y
2
uμuν;

∂X
∂gμν ¼ −XVμVν;

∂τn
∂gμν ¼ n∂μΦ · Bn−1 · ∂νΦ;

∂b
∂gμν ¼

b
2
Hμν;

∂yn
∂gμν ¼

Xn
m¼1

∂μΦ · Bn−m · Z · Bm−1

· ∂νΦ−2
ffiffiffiffiffiffiffi
−X

p
ðC · Bn · ∂ðμΦÞVνÞ; ð5:3Þ

where the indices μ and ν are symmetrized in the second
term of the last expression. We have included in (5.3) the
operator b, that can be written as a combination of the three
τn, for later convenience. The dot (·) represents the standard
three-dimensional matrix product and we have introduced
the notation

Ci ¼ C0i: ð5:4Þ

In the expressions (5.3), C and ∂μΦ have to be understood
as a 1 × 3 matrices of components Ci and ∂μΦi, respec-
tively. It is also useful to note that

∂uα
∂gμν ¼ −

uα

2
uμuν;

∂Vμ

∂gαβ ¼ −
Vμ

2
VαVβ: ð5:5Þ

In what follows we list the media that arise according to
the symmetries that we have discussed and, also, according
to the assumptions on the low-energy field content. We
focus first on the systems that contain only a partial subset
of the Stückelberg fields, which we call temporal or spatial
media. These are the solids UðτnÞ, and two different types
of perfect fluids, UðbÞ and UðXÞ, the first of which is a
special case of the solids. Then we will move on to the

media that at low energy require all the Stückelberg fields.
As discussed below, the properties of the most generic
class of them have been argued to define (nonrelativistic)
supersolids [46]. A subclass of these (with an enhanced
symmetry group: internal three-volume preserving diffeo-
morphisms VsDiff) would then describe superfluids. Other
media, defined by specific additional symmetries, will also
be mentioned, see Table II. The connection with modified
and, especially, massive gravity models will be studied in
Sec. VI. Then, in Sec. VII we will discuss the number of
propagating degrees of freedom in FLRW, which strongly
depends on the symmetries beyond (2.1) and (4.1) that are
imposed.

A. Media with reduced internal dimensionality

We start by describing three special cases for which
some of the four Stückelberg fields are missing from the
LO action, while the shifts symmetries [and eventually
while SOð3Þs] are respected. We refer to these media as
temporal or spatial depending on whether the missing
fields are the spatial or temporal Stückelbergs, respec-
tively. Specifically, we will discuss two kinds of spatial
media (solids and perfect fluids) and the only kind of
temporal medium (an irrotational perfect fluid) that exists
at LO with our symmetry assumptions. A peculiarity of
the spatial and temporal media is that there is no symmetry
that forbids one subset of Stückelberg fields at LO, but
allows them at a higher order in derivatives. This means
that the defining restriction on the low-energy field
content of these models must be taken as an assumption,
which in principle cannot be justified from the point of
view of the symmetries.

1. Uðτ1;τ2;τ3Þ: Solid
Let us first consider the possibility that the only

operators relevant at LO are the traces τn. Then, the action
contains only the three spatial Stückelberg fields Φa. This
necessarily assumes that no other fields are needed to
describe the system at sufficiently low energies. As we just
mentioned, there is no symmetry that forbids Φ0 at LO but
allows it at some higher order in derivatives. Notice that
by looking at Table II, it would seem that combining
Φ0 → Φ0 þ fðΦ0Þ and Φ0 → Φ0 þ fðΦaÞ, the operators τn
are selected. However, it is clear that this cannot be
considered a true symmetry of an action based on UðτnÞ
since Φ0 is not part of τn.
In addition, given that the general action (5.1) lacks

potential terms and it generically mixes all fields in a
democratic way, it is difficult to imagine how Φ0 could be
(on average) frozen at some constant value only at LO, if it
is not neglected also at higher orders. Therefore, it seems
that if Φ0 does not appear at LO, it should be completely
absent from the action and this must be imposed as an
assumption on the physical nature of the system.
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The solid is thus the most general medium that we can
construct at LO with only the three spatial Stückelberg
fields, respecting the basic symmetries that we assumed
(SOð3Þs and shift invariance). The corresponding EMT can
be written as

Tμν ¼ Ugμν − 2Uab∂μΦa∂νΦb;

where Uab ¼ Uτ1δ
ab þ 2Uτ2B

ab þ 3Uτ3B
acBcb. ð5:6Þ

Such a medium can be interpreted as the relativistic
generalization of an elastic material, in the sense that this
kind of media can support compressing pressures; see e.g.
[47]. In standard elasticity theory in a flat space spacetime
[48], the stress state is described by the spatial internal
inverse metric Bab, so that the medium is relaxed (not
stressed) if Bab ¼ δab.
The object Bab is the covariant generalization of the

standard three-dimensional left Cauchy-Green deformation
tensor, and thus ∂Φa=∂xi is the deformation gradient
tensor, see e.g. [49]. This type of medium, which has been
commonly called solid (see e.g. [21]) or elastic solid (to
distinguish it from a perfect fluid) has been applied in
astrophysics and cosmology for the description of the
dynamics of the interior of neutron stars [50], in a proposal
for a dark matter model [51] and also for constructing a
model of primordial inflation [28,40].
Solids posses two features, due to the independent

operators τn, that make them different from perfect fluids—
which we discuss below—and interesting for certain appli-
cations in the context of cosmology. First, they exhibits
anisotropic stress, due to the pressure perturbations being in
general dependent on the spatial direction. And second, the
spatial trace operators τn are the only ones among the nine
LO scalars operators (4.6) that generate a mass for the (spin
two) graviton, as we will see in Sec VI. Clearly, these two
properties are not exclusive of the solids with EMT (5.6)—
see Table II—but these are the simplest systems that
display them.
Although it is not immediate to identify a four-velocity

from the EMT (5.6), the natural choice is uμ, defined in
(3.4), since this is the only SOð3Þs-invariant four-vector
that is available when only the three spatial Stückelberg
fields are present. With this choice of frame, the energy
density and the pressure of the solid, defined as usual
through the projections ρ ¼ Tμνuμuν and 3p ¼ TμνHμν ¼
Tμνðgμν þ uμuνÞ, are given by

ρ ¼ −U; p ¼ U −
2

3

X3
n¼1

nUτnτn: ð5:7Þ

The four-velocity uμ corresponds to the energy frame—
sometimes called rest frame—of the solid, which for an
arbitrary EMT is defined (if it exists) as the four-vectorUμ

ðrÞ
that solves ðgμν þUμ

ðrÞU
ν
ðrÞÞUγ

ðrÞTνγ ¼ 0, see e.g. [10].
Then, the EMT (5.6) can be written as follows:

Tμν ¼ pgμν þ ðρþ pÞuμuν þ πμν; ð5:8Þ

where the nonzero anisotropic stress πμν can be obtained,
for instance, from the difference of (5.8) and (5.6). The
expression (5.8) is what in cosmology is usually referred to
as an imperfect fluid.
The symmetric matrix Bab can be decomposed in terms

of its eigenvectors ζaðnÞ and (real) eigenvalues λn, n ¼ 1, 2, 3

as Bab ¼ P
nλnζ

a
ðnÞζ

b
ðnÞ. Then, we can define the projectors

Pab
ðnÞ ¼ ζaðnÞζ

b
ðnÞ satisfying PðnÞ · PðmÞ ¼ δmnPðnÞ. The

eigenvectors are mutually orthogonal with respect to the
three-dimensional metric δab, i.e. δmn ¼ ζaðmÞζ

b
ðnÞδab. By

inspection, Uab is also diagonalized by ζaðmÞ as follows:

Uab ¼ δacδbd
X3
n¼1

~λnPcd
ðnÞ; ð5:9Þ

where ~λn ¼ Uτ1 þ 2Uτ2λn þ 3Uτ3λ
2
n. Therefore, the EMT

(5.6) can then be cast in the following form:

Tμν ¼ Ugμν − 2
X3
n¼1

~λnλnζ
ðnÞ
μ ζðnÞν ;

ζðnÞμ ¼ λ−1=2n ∂μΦaζbðnÞδab: ð5:10Þ

Notice that uμζðnÞμ ¼ 0 and gμνζðmÞ
μ ζðnÞν ¼ δmn and thus

fuμ; ζðmÞ
ν g form an orthonormal tetrad. The elastic solid

has principal pressures given by

pn ≡ Tαβζ
ðnÞαζðnÞβ ¼ U − 2~λnλn; n ¼ 1; 2; 3. ð5:11Þ

The thermodynamics of solids can be studied following
analogous lines to those given below and in [52] for the
special case of perfect fluids.

2. UðbÞ: Perfect fluid
If the SOð3Þs symmetry of the solid is enlarged to the

invariance under volume preserving spatial diffeomor-
phisms VsDiff, see (4.9), the trace operators τn must
combine into the determinant b2 defined in (3.5), con-
straining further the properties of the medium. Indeed, we
recall that b2 can be expressed as a function of τn using
b2 ¼ ðτ31 − 3τ1τ2 þ 2τ3Þ=6. Then, under the assumption
that only the spatial Stückelberg fields are present and
imposing VsDiff, the master function U that determines the
Lagrangian of the system depends only on b at LO.
However, if the restriction on the field content is relaxed,
allowing also for the presence of the temporal Stückelberg
Φ0, the operators Y and X should be included as well under
at lowest order in derivatives, see Table II. In this section we
will focus on the special case UðbÞ and we will later move
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progressively to the general structure of the media that
respect VsDiff.
In the case UðbÞ the EMT reads

Tμν ¼ pgμν þ ðρþpÞuμuν; ρ¼ −U; p¼ U − bUb;

ð5:12Þ

with uμ being defined in (3.4). In comparison to the general
solid (5.8), the symmetry VsDiff removes the anisotropic
stress πμν, thus restricting the medium to be a perfect fluid.
In addition, it also sets to zero the (spin two) graviton mass.
The application of this type of systems for describing

cosmological perfect fluids (and specifically their pertur-
bations) was studied in [10]. For instance, if the fluid has a
barotropic equation of state of the form p ¼ wρ, with
constant w, the master function is of the form

U ∝ b1þw: ð5:13Þ

Hence, the background dynamics of the ΛCDM universe
can be modeled with

U ∝ ðΩrðb4=3 − 1Þ þΩmðb − 1Þ þ 1Þ; ð5:14Þ

with Ωr ∼ 10−4 and Ωm ∼ 0.26, to satisfy the current
constraints on the radiation and (cold dark) matter
densities [3].
In general, the perturbations of a UðbÞ perfect fluid can

be studied decomposing the spatial phonon fields πi, i ¼ 1,
2, 3—introduced in (2.8) for the general four-dimensional
case—into longitudinal and transverse polarizations,

πi ¼ πiL þ πiT ; ∂iπ
i
T ¼ 0; ϵijk∂jπ

k
L ¼ 0; ð5:15Þ

where the transverse fields πiT couple to vector metric
perturbations and their evolution is dictated by the con-
servation of vorticity [10], which is a consequence of the
symmetry VsDiff. As we discuss in Appendix A, this
can be easily obtained applying Noether’s theorem,
which implies and infinite set of covariantly conserved
currents [9,10].
A peculiar property of the perfect fluids of the kind

UðbÞ is that the transverse modes πiT , which are inter-
preted as vortices, do not propagate in flat space since the
symmetry VsDiff forbids spatial derivatives in their
action. Their time evolution is simply given by the
equation π̈iT ¼ 0. This has lead to the suggestion that
these fluids may be strongly coupled at all scales [23].
However, it has been argued that the issues associated to
the evolution of these modes (e.g. the appearance of
divergences in the scattering of phonons in flat spacetime)
can be resolved with a careful choice of the appropriate
(physical) observables [32].
It can be easily checked, using a field redefinition, that

the inclusion of the NLO operators respecting VsDiff and

containing only the three spatial Stückelberg fields does not
modify the evolution equation of πiT in Minkowski (with
respect to the one at LO) [10]. There are five independent
operators at NLO: ∂μb∂μb, Hμν∇μuα∇νuα, ðuμ∂μbÞ2,
∇μuν∇νuμ and ϵαβμν∇μuα∇νuβ, see [10]. Once these
operators are included, the EMT of the system is no longer
that of a perfect fluid.
The relativistic formulation of self-gravitating media

that we are exploring in this paper allows a straightfor-
ward connection to the thermodynamic theory of con-
tinuous media. This can be done by constructing a
dictionary between two EFT pictures: the action (5.1)
and the fundamental equations of thermodynamics, see
e.g. [24]. A more detailed discussion of this dictionary is
beyond the scope of this work and we provide it, for the
case of perfect fluids, in [52]. For the purpose of
illustration we use here the perfect fluid UðbÞ.
Essentially, we need to match the operator b with an
intensive thermodynamic variable (or a combination of
them). Choosing the particle number density n and the
entropy density s as independent variables, we write
b ¼ bðn; sÞ. Then, the chemical potential μ and the
temperature are obtained from the first principle of
thermodynamics as μ ¼ ∂ρ=∂n and T ¼ ∂ρ=∂s. The
pressure enters through the Euler relation

μsþ nT ¼ ρþ p; ð5:16Þ

which must be valid for any UðbÞ. This can be achieved,
for instance, with the identification b ¼ n (and then
T ¼ 0), which implies μ ¼ −Ub, and is in principle
suitable for a degenerate system (i.e. in the limit
T → 0). A different option is b ¼ s (with μ ¼ 0) and
T ¼ −Ub, as for a gas of photons. This second choice is
the one that was advocated e.g. in [10,23,24].

3. UðXÞ: Perfect fluid
At the opposite side of the spectrum from solids and

perfect fluids lie the self-gravitating media that can be
described at LO by introducing only the temporal
Stückelberg field Φ0. We have not found a symmetry that
forbids the spatial Stückelberg fields at LO but reintroduces
them at NLO or at higher orders in derivatives. This is
analogous to what happens for the solids and perfect fluids
studied above, but exchanging the roles of the temporal and
spatial fields. By looking at Table II, it seems that VsDiff
and Φa → Φa þ faðΦ0Þ select X, but this combination of
transformations is not a symmetry of an action based on
UðXÞ, simply because Φa are not in X. Therefore, the
absence of these fields must be assumed.
Clearly, with such an assumption, the function UðXÞ is

the only shift-symmetric possibility that exists at LO (with
a single scalar field). Further restrictions involve neces-
sarily discrete symmetries such as e.g. X → −X.

BALLESTEROS, COMELLI, and PILO PHYSICAL REVIEW D 94, 124023 (2016)

124023-10



Then for a generic UðXÞ, the EMT is given by

Tμν ¼ pgμν þ ðρþ pÞVμVν;

ρ ¼ −U þ 2XUX; p ¼ U: ð5:17Þ

This type of perfect fluid is fundamentally different from
the caseUðbÞ because its four-velocity, Vμ, is the derivative
of a scalar and thus it has zero vorticity. This is due to the
fact that for UðXÞ the transverse phonons πiT are entirely
absent by construction. Actually, since both UðXÞ and
UðbÞ describe perfect fluids, their phonon expansions (2.8)
can be matched setting to zero the transverse modes of the
latter and identifying through an equation the divergence of
πi with the time derivative of π0. This matching generically
involves as well a linear combination of the scalar metric
perturbation. The correspondence can also be easily estab-
lished at the level of the background. For instance, a
constant barotropic equation of state is obtained choosing
U ∝ Xð1þwÞ=ð2wÞ, to be compared with (5.13). For an early
study of irrotational perfect fluids where longitudinal
fluctuations were already interpreted as phonons and a
thermodynamic dictionary was provided, see [53].
In order to extend beyond LO the medium that can be

constructed using only the temporal Stückelberg, we must
linearly add to the action the operators ð∇μVμÞ2 and
∇μVν∇μVν at NLO. Clearly, the operator ∇2Φ0 ∼∇μVμ

can be omitted assuming appropriate boundary conditions,
since it is a total derivative. Besides, the NLO operators
ϵμναβ∇αVμ∇βVν and VμVν∇μVα∇νVα need not be included
thanks to the fact that Vμ is hypersurface orthogonal. The
first of the two vanishes and the second one can be written
as a combination of ð∇μVμÞ2 and ∇μVν∇μVν.
If we assume that the operator X is absent, and we work

only at NLO, the resulting model is a special case of the
“Einstein-aether” model [54], see e.g. [55].
Notice that the extension to all orders of UðXÞ is not a

generalization of the ghost condensate [56], but instead the
most general modified gravity model based on a single
scalar derivatively coupled. Actually, including all the
orders in the derivative expansion corresponds to a large
class of models contained in the EFT of inflation [57] (or
DE [14]) for which the (soft) breaking of the temporal shift
symmetry Φ0 → Φ0 þ c0 (with constant c0) due to a
potential term for the inflation (or, generically, the extra
scalar mode) is entirely neglected.

B. Four-dimensional media

We will now move on to describe the media of Table II,
which pertain to a different class than the cases we have
studied so far, because all of them contain the four
Stückelberg fields ΦA, which motivates the name we give
them. As we will now see, the most general of these media
(whose action is invariant under shifts and internal spatial
rotations) is the covariant generalization of a nonrelativistic

model used in [46] to introduce supersolids. If we further
constrain these systems by requiring invariance under
internal spatial diffeomorphisms that preserve the volume,
we get superfluids [24]. Symmetries that mix the temporal
and spatial Stückelberg fields—see Table II—lead to a set
of particular subcases of the general supersolid.

1. UðX;Y;τn;ynÞ: Supersolid
Let us start with the most general media that our

symmetries allow. The less symmetric self-gravitating
media that we can construct with our assumptions respect
only the internal shifts (2.1) and the spatial rotations
SOð3Þs of (4.1). Therefore, their LO master function U
contains all the operators of the set (4.6), which we
identified in Sec. IV, and thus their diffeomorphism
invariant action is precisely (5.1). A nonrelativistic descrip-
tion of systems characterized precisely by these symmetries
was given in [46], where they were interpreted as zero-
temperature supersolids. According to [46], the three
spatial Φa would correspond to the comoving coordinates
of the medium (as we have been interpreting them),
whereas Φ0 would be the (shift-symmetric) phase field
related to a Uð1Þ symmetry associated to particle number
conservation.
In spite of some claims, see e.g. [58], whether actual

supersolids exist in nature is still unclear. For the purpose of
this work we will simply use the term to refer to a
continuous medium amenable to a coarse-grained descrip-
tion with four degrees of freedom and based on the shift and
rotational symmetries (2.1) and (4.1). For a review on
supersolids we point the reader to [59].
The same set of symmetries, Eqs. (2.1) and (4.1), was

later considered in [30], where the CCWZ method [60] was
applied to derive (for Minkowski spacetime) a relativistic
version of the LO action given in [46]. However, the action
written in [30] for these symmetries depends on a generic
function of all our kinetic blocks CAB except X, which is an
independent invariant operator under internal translations
and SOð3Þs rotations. Besides, the concrete operators yn,
defined in (4.4) were not given in [30].
Phenomenologically, the media of this kind possess

many interesting properties. First of all, they share with
the solids UðτnÞ the fact that the graviton acquires a
nonvanishing mass that is related to the presence of
anisotropic stress and to the speed of propagation of
transverse modes. We refer to the group velocity dω=dk,
which given e.g. a dispersion relation of the form ω2 ¼
k2 þm2 clearly involves the massm. In addition, given that
Φ0 andΦa lead to two different four-vectors in the medium,
the four-velocities (3.4) and (3.8), the energy-momentum
tensor exhibits a nonvanishing “heat-flux.’.
We point out that the object CAB, defined in (2.2), is the

four-dimensional generalization of the left Cauchy-Green
tensor, see Sec. VA 1. This agrees with the picture in which
the general media described by the EFT (5.1) can be
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interpreted as four-dimensional media (or hypervolumes)
propagating in spacetime. In Sec. VI we will make the
connection between these media and massive (and modi-
fied) gravity, using the unitary gauge as tool to simplify the
matching.

2. UðX;Y;bÞ: Superfluid
Imposing that the action (5.1) has to be invariant under

VsDiff, the internal volume preserving diffeomorphisms
(4.9), the only invariant LO operators that appear in the
master function are X, Y and b. The corresponding EMT is
given by

Tμν ¼ ðU − bUbÞgμν þ ðYUY − bUbÞuμuν þ 2XUXVμVν:

ð5:18Þ

In general this is not a perfect fluid, due to the four-
velocities Vμ and uμ not being parallel. The fact that Vμ has
zero vorticity has motivated interpreting these media as
relativistic superfluids [24,26], following earlier ideas for
(nonrelativistic) supersolids [46] and superfluids [61]. The
key idea of this picture is that the EMT (5.18) can be seen
as a two-component fluid whose admixture allows us to
describe the various phases of a superfluid. For instance, it
is straightforward to show that the phonon expansion of
the action leads to two kinds of longitudinal waves
(propagating with different speeds of sound), which sug-
gests interpreting them as the first and second sound in
superfluids [26].
It is worth highlighting some special cases of the general

superfluid.
(i) If in addition to the symmetry VsDiff we impose also

invariance under Φ0 → Φ0 þ fðΦ0Þ, the master
function has to be a function of the operators Oα,
which we defined in (4.17), and b. The operators
O−1 and b, together with the NLO operators that can
be constructed from Vμ, were used in [41] to model
Lorentz breaking in dark matter.

(ii) The master function Uðb; YÞ describes a perfect
fluid with four-velocity uμ and energy density and
pressure

ρ ¼ YUY −U; p ¼ U − bUb: ð5:19Þ

This case is interesting because it comes from
imposing not only the symmetry VsDiff but also
requiring invariance under Φ0 → Φ0 þ fðΦaÞ, see
Table II. This feature makes it qualitatively different
from the other perfect fluids that we have encoun-
tered, UðXÞ and UðbÞ, whose LO structure does not
derive from symmetries acting on the four Stückel-
berg fields. One can obtain a constant barotropic
equation of state for UðY; bÞ choosing

U ∝ b1þwUðb−wYÞ; ð5:20Þ

where U is an arbitrary function. Another choice of
master function which also leads to a constant
barotropic equation of state isU ∝ ðb1þw þ Y1þ1=wÞ.

(iii) An equation of state w ¼ −1 can be obtained from
(5.20) by choosing

U ¼ UðbYÞ; ð5:21Þ

which interestingly corresponds to the enhanced
symmetry

ΦA → ΨAðΦBÞ; det j∂ΨA=∂ΦBj ¼ 1: ð5:22Þ

By looking at Eq. (4.8), it is now clear why bY is the
operator that allows us to switch from Eulerian to
Lagrangian coordinates.

3. Special supersolids

These media are the subclasses of the general action (5.1)
listed in Table II.

(i) For instance, imposing the symmetry Φ0 →
Φ0 þ fðΦaÞ, the leading invariant operators are τn
and Y and the EMT is

Tμν ¼ Ugμν − 2Uab∂μΦa∂νΦb þ YUYuμuν: ð5:23Þ

Given what we have seen so far, a natural inter-
pretation of (5.23) seems to be that it describes a
solid coupled to a perfect fluid. An analysis of the
thermodynamics of perfect fluids [52] suggests that
Y can be interpreted as the temperature so that
Uðτn; YÞ may be a possible description for a solid at
finite temperature.

(ii) The symmetry Φa → Φa þ faðΦ0Þ enforces the
master function to be of the form U ¼ Uðwn; XÞ.
If in addition we impose the symmetry Φ0 →
Φ0 þ fðΦ0Þ, the operators wn are selected. We will
comment on these cases in the next section, wherewe
build the connection between massive gravity and
self-gravitating media.

VI. SO(3) SPATIALLY SYMMETRIC
MASSIVE GRAVITY

The main motivation for massive and modified gravity in
the context of cosmology is the possibility that the observed
acceleration of the Universe could be due to a modification
of GR that weakens gravity at large distances. In this
respect, the idea of MG is appealing, since endowing the
graviton with a mass could effectively make gravity a short
range interaction (on cosmological scales).
The first attempt to provide a mass to the graviton dates

back to 1939, when Fierz and Pauli [20] studied the most
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general Lorentz invariant mass term for metric perturba-
tions around Minkowski space. It was thought for a long
time that any extension of the Fierz-Pauli Lagrangian
beyond the quadratic level was pathological. Indeed,
Boulware and Deser argued that at the nonlinear level
a ghost mode would have necessarily be present [62].
The problem was solved in [63] by finding a ghost-free
extension of the Fierz-Pauli Lagrangian at the nonlinear
level [63,64]. This model, which exhibits Lorentz sym-
metry when expanded around Minkowski, solves the ghost
issue at the (heavy) price of lacking spatially flat homog-
enous FLRW solutions [65]. As shown in [66] the Fierz-
Pauli model as an effective theory (and also [63]) has a
(very low) cutoff Λ3 ¼ ðm2MplÞ1=3, where m sets the scale
of the graviton mass scale. A recent proposal to improve
this cutoff has been given in [67,68].
Fierz-Pauli MG fails to reproduce the correct light

bending around heavy and dense objects, in sharp contrast
with standard GR. This also happens in the limit of
vanishing graviton mass, an issue that is known as the
vDVZ discontinuity [69]. A possible way out was proposed
by Vainshtein in [70], by arguing that nonlinear effects
restore the correct GR behavior at short distances from a
gravitational source. Whereas this mechanism has been
studied for various models [71], it is important to stress that
it relies on strong nonlinearities, even at the macroscopic
scales of the Solar System where the value of the gravi-
tational potential is small.
A possible way out of this last difficulty is to abandon

Lorentz invariance in the gravitational sector9 in favor of a
simpler symmetry group, in practice, by requiring only
spatial rotational invariance [7,73]. All Lorentz-breaking
MG models with five degrees of freedom (d.o.f.) having (at
least) spatial rotational invariance are free of ghost insta-
bilities and can be classified [11,12]. In addition, they have
no vDVZ discontinuity and FLRW solutions do exist for
these models [74]. Their range of validity is given by an
ultraviolet cutoff Λ, which is dictated by the symmetries
that define the EFT. Typically, for Lorentz-breaking MG
the cutoff is Λ2 ¼ ðmMplÞ1=2 ≫ Λ3 [7,8,73,74]. In order to
have any impact on the current acceleration of the Universe,
the scale m should thus be of the order of today’s Hubble
scale, giving Λ−1

2 ∼ 0.1 mm.
The EFT of four derivatively coupled scalar fields with

internal spatial SOð3Þs invariance allows us to reinterpret
Lorentz-breaking MG models as self-gravitating media.
From the perspective of this EFT, the breaking of Lorentz
symmetry is simply a consequence of a background choice.
MG is then a class of models within a broad framework. In
other words, the EFT of self-gravitating media leads to a

systematic construction of models for the acceleration of
the Universe, including MG.
The basic idea that helps to build this connection is

the Stückelberg mechanism or trick, which we already
mentioned in Sec. II. The application of the Stückelberg
mechanism for Fierz-Pauli MG was already given in [75]
and was later generalized to other models of MG in [66]
and [7]. If hμν is a metric perturbation around a (reference)
background metric, ḡμν, such that the full metric is
gμν ¼ ḡμν þ hμν, a generic (Lorentz invariant) MG potential
may be expressed as function of the perturbation hμν with
indices raised using gμν, i.e.

ffiffiffiffiffiffi−gp
Vðhμν; gμνÞ. Given such a

potential, added to the Einstein-Hilbert Lagrangian, the
Stückelberg trick can be implemented replacing the back-
ground metric ḡμν with a tensor field made out of four
scalars, Gμν ≡ ∂μΦA∂νΦBḡAB½ΦCðxαÞ�, so that the metric
perturbation hμν is replaced with gμν − Gμν, see e.g. [76].
Using these replacements to express the action in terms of
the spacetime metric gμν and the tensor Gμν we obtain a
covariant embedding of any Lorentz invariant MG model
originally defined with a reference metric ḡμν. This pro-
cedure can be adapted to deal also with Lorentz breaking
models, as described in [7].
In this work, we started our analysis directly with an

explicitly diffeomorphism invariant action (2.3) in a “top-
down” approach [8]. This automatically implements the
Stückelberg mechanism for the actions obtained imposing
the background ΦA ¼ δAμxμ. Indeed, assuming that the
condition detð∂μΦAÞ ≠ 0 holds, it is possible to find a
local set of coordinates (unitary gauge) such that

∂μΦA ¼ δAμ : ð6:1Þ

Notice that, defined in thisway, the unitary gauge is actually a
collection of gauges, which are equivalent modulo constant
shifts, i.e. ΦA ¼ xA þ cA with ∂cA=∂xμ ¼ 0, where for
simplicity we do not distinguish between spacetime and
internal manifold indices. These gauges are all equivalent
since the action is, by assumption, shift invariant in the
Stückelberg fields.
The unitary gauge reflects the fact that since we have

four scalars ΦA and four spacetime coordinates, we can use
the diffeomorphism invariance of the action (5.1) to absorb
the dynamics of the scalar fields into the degrees of freedom
of the metric. By using the ADM splitting of spacetime to
describe the metric gμν and its perturbations [77], it is then
straightforward to make a connection with MG in the so-
called broken phase. Therefore, this phase (of broken
diffeomorphisms) can be simply understood as a way of
expressing the dynamics of the comoving coordinates of
the self-gravitating medium through their effect on the
metric perturbations. The correspondence between self-
gravitating media and massive and modified gravity
models written explicitly in terms of metric perturbations

9Bounds on Lorentz violation in the gravitational sector are
rather mild assuming the equivalence principle and come from
post-Newtonian preferred frame effects, see e.g. [72], and
gravitational wave emission.
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is depicted in Table IV, where the arrows indicate how to
move from one picture to the other.
In the ADM formalism the metric can be written in terms

of the lapse N, the shifts Ni and the spatial metric γij,
namely

gμν ¼
�−N2 þ NiNjγij γijNj

γijNj γij

�
;

gμν ¼
�
−1=N2 Ni=N2

Nj=N2 γij − NiNj=N2

�
; ð6:2Þ

where γimγmj ¼ δij. In the unitary gauge (6.1), the matrix
CAB defined in (2.2) coincides with inverse of the spacetime
metric,

CAB ¼ gμνδAμ δBν : ð6:3Þ

Defining

ξi ≡ Ni=N ð6:4Þ

for convenience, we decomposeCAB in the unitary gauge as
follows:

X¼C00¼−1=N2; Ci¼Ci0¼ξi=N; Bij¼Cij¼γij−ξiξj:

ð6:5Þ

Then, we can write the building blocks of LO self
gravitating media—see (4.6) and Table I—in terms of
the ADM variables,

X ¼ −1=N2; Y ¼ 1

N
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p ;

τn ¼ Tr½ðγ − ξ ⊗ ξÞn�; yn ¼
ξ · ðγ − ξ ⊗ ξÞn · ξ

N2
;

ð6:6Þ

where γ is the 3 × 3 matrix of components γij. In these
expressions the dot (·) represents the standard matrix
product and we use the following notation: ξ2 ≡ ξiγijξ

j

and ðξ ⊗ ξÞij ≡ ξiξj. Therefore, the master function U of
the action (5.1) becomes an algebraic function of the ADM
variables in the unitary gauge,

S ¼ M2
pl

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d4x

ffiffiffiffiffiffi
−g

p
UðN; ξi; γijÞ: ð6:7Þ

Special cases—see Tables II and III—can be obtained from
the remaining SOð3Þs invariant scalar operators of Table I,
which are combinations of X, Y, τn and yn,

b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ξ2Þdetγ

q
;

wn ¼TrðγnÞ;Oαβn ¼ð−1Þαð1−ξ2Þαþβðξ · ðγ−ξ⊗ ξÞn ·ξÞβ:
ð6:8Þ

Notice also that the four-velocities Vμ and uμ become in
the unitary gauge

uμ ¼ δμ0
N

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p ; Vμ ¼ ð−1=N; ξiÞ: ð6:9Þ

If the shifts are zero, e.g. as in Minkowski and FLRW
spacetimes, uμ and Vμ coincide, up to a sign; see also
Sec. III.
The action (6.7) was the starting point in [11–13] where a

large class of nonderivative10 massive and modified gravity
models—those with spatial SOð3Þ invariance—was studied
by means of a Hamiltonian analysis. Models with six, five,
three and two (d.o.f.) were thus found. The condition of
SOð3Þ spatial invariance turns to be important to avoid
ghost instabilities. If this restriction is relaxed, six d.o.f.
generically propagate and one of them (a scalar mode
with respect to spatial rotations) is a ghost around flat
space, which corresponds to the infamous Boulware-Deser
ghost [62].
For example, a SOð3Þ invariant master function U of

the form

U ¼ UðτnÞ þ
ffiffiffiffiffiffiffi
−X

p
EðwnÞ ð6:10Þ

propagates precisely five d.o.f. [12] (provided that U is not
a constant). As a matter of fact, this is not the most general
U that propagates five d.o.f., see [12]. We leave open a
detailed exploration of the structure of the most general
case, which is contained in our formalism, for a possible
future investigation. The functions U and E of (6.10) are

TABLE IV. Relationship between material Lagrangians and massive gravity models.

LO self-gravitating media Map Massive gravity

LðCAB; gμνÞ Unitary gauge → Lðhμν; gμνÞ
OLO∶ X; Y; τn; yn ← Stückelberg “trick” SOð3Þ invariants of ADMs N;Ni; γij

10By “nonderivative” we refer to the actions for which the
master function U contains only nonderivative combinations of
the ADM variables, precisely as in (6.7).
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generic and thus there exist infinitely many U with five
d.o.f. Therefore, according to the discussion in the previous
section ghost-free massive gravity can be identified with a
specific kind of supersolid. Moreover, setting E ¼ 0 there
are still five d.o.f. and the medium is a solid. Thus, the
construction of ghost-free massive gravity with five d.o.f.
needs at least the three spatial Stückelberg fields Φa.
Cases where only three or two d.o.f. occur also exist

[13]. In particular, exactly three d.o.f. are present if U has
the structure

U ¼ Uðwn; XÞ: ð6:11Þ
We recall that the above form for U is protected by the
symmetry Φa → Φa þ faðΦ0Þ, see Table II. It should be
stressed that although three d.o.f. are present at the non-
perturbative level for (6.11), only two d.o.f. are found
expanding around flat space [13]. A proposal for a UV
completion, where the LO order part of the action is built
out of the scalar operators w1 and w2, was put forward in
[78] adding the symmetry Φ0 → Φ0 þ fðΦ0Þ, see Table II.
In that model the fields Φa are further coupled with a triplet
of purely spatial vector fields, whereas the dynamics Φ0 is
dictated by NLO operators.
A particular case of (6.11) is given by the Lagrangian

U ¼
ffiffiffiffiffiffiffi
−X

p
EðwnÞ þ λ; ð6:12Þ

where only two nonperturbative d.o.f. are found. In this
expression λ is a (dimensionless) cosmological constant.
This last case is rather interesting since it gives an example
of a model of gravity with two d.o.f. that is different
from GR.

VII. COSMOLOGICAL PERTURBATIONS
IN FLRW

In this section we discuss a basic aspect of cosmological
perturbation theory for self-gravitating media. In particular,
we are interested in determining the number of degrees of
freedom that propagate in a FLRW background for the
different kinds of self-gravitating media that we have
considered. A more detailed account of the cosmology
of these media will be given elsewhere [79]. Here we
present the Lagrangians for perturbations that are required
for such a study and discuss their main features.
Let us consider a spatially flat11 FLRW metric written in

the following way:

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2δijdxidxj; ð7:1Þ

where we denote x0 ¼ t. The derivatives with respect to t
will be indicated by primes. For instance, by definition

H ¼ a0=a is the Hubble function in these coordinates. With
this choice of metric, the field configuration

Φ0 ¼ ϕðtÞ; Φi ¼ xi ð7:2Þ

is compatible with the equations of motion for the
Stückelberg fields derived from the action (5.1), giving a
spatially homogeneous and isotropic EMT. In what follows
we will work in the unitary gauge, setting ϕðtÞ ¼ t. It is
important to stress that in general it is not possible to
choose NðtÞ ¼ aðtÞ or NðtÞ ¼ 1 at the same time that
ϕðtÞ ¼ t. Therefore, NðtÞ has to be determined using the
(background) equations of motion.
We will now study perturbations around the metric (7.1).

Choosing the unitary gauge, the dynamics of perturbations
for the whole system (metric and Stückelberg fields) is
encoded in the metric.12 Denoting the metric perturbations
by hμν, the master function U of the action (5.1) can be
expanded up to second order in hμν as follows:

ffiffiffiffiffiffi
−g

p
U ¼ tμνhμν þ

M2
pl

4
ðm2

0h
2
00 þ 2m2

1h0ih0i

− 2m2
4h00hii þm2

3h
2
ii −m2

2hijhijÞ; ð7:3Þ

where tμν and the masses m2
i depend on U and its

derivatives.
Although the operator b is redundant once the τn are

included, it is convenient to single out its effect, since it
plays a special role for some symmetry choices. Hence, we
write the LO action (5.1) as

S ¼ M2
pl

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d4x

ffiffiffiffiffiffi
−g

p
UðX; Y; τn; yn; bÞ:

ð7:4Þ
Then the masses of (7.3) are given by

m2
0 ¼−

a7

2N3M2
pl

�
4UXY

N3
−
4UXX

N4
−
UYY −4UX

N2
−
UY

N
þU

�
;

ð7:5Þ

m2
1 ¼

a
NM2

pl

�
a4U þ 2a4

N2
UX − aUb

þ
X3
n¼0

2na2−2nUyn − 2
X3
n¼1

a4−2nUτn

�
; ð7:6Þ

m2
2 ¼

N
M2

pl

�
a3U −Ub − 4

X3
n¼1

ðnþ 1Þa3−2nUτn

�
; ð7:7Þ

11Spatial curvature can be introduced without altering the
conclusions. For simplicity we set it to zero.

12In the unitary gauge, the “phonons” πA of (2.8) are set to
zero. We could as well choose to trade some degrees of freedom
of the metric (7.15) by the πA.
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m2
3 ¼

N
M2

pl

�
1

2
ða3U þ a−3Ubb −UbÞ þ 8a−3Uτ1τ2 þ 12a−5Uτ1τ3 þ 24a−7Uτ2τ3

þ 2
X3
n¼1

ðna−2nUbτn − na3−2nUτn þ n2a3−4nUτnτnÞ
�
; ð7:8Þ

m2
4 ¼

a2

2N3M2
pl

�
a3N2U − a3NUY þ 2a3UX − N2Ub − 2UbX þ NUbY

þ 2
X3
n¼1

na3−2nðNUYτn − N2Uτn − 2UXτnÞ
�
: ð7:9Þ

These masses can be simplified (on a case by case basis) taking into account the background equations of motion.
Concretely, the condition tμν ¼ 0 is required for consistency. This gives two equations,

6M2
plH

2 þ N2U − NUY þ 2UX ¼ 0;

N3U þ 2M2
plNð2H0 þ 3H2Þ − 4M2

plHN0 − 2N3
X3
n¼1

na−2nUτn − a−3N3Ub ¼ 0: ð7:10Þ

These equations are equivalent to the conservation of
the medium’s EMT on the background or, equivalently,
to the equations of motion of the Stückelberg fields (in the
background), see Sec. II. EliminatingH0 from the second of
them we obtain the condition

F1ðU;N; aÞN0 þHF2ðU;N; aÞ ¼ 0; ð7:11Þ

where

F1 ¼ −
a3

2N4H
ðN2ðUYY − 2UXÞ − 4NUXY þ 4UXXÞ;

ð7:12Þ

F2 ¼
3

2

�
a3UY −UbY − 2

X3
n¼1

na3−2nUτn

�

þ 3

N

�
UbX − aUX þ 2

X3
n¼1

na3−2nUXτn

�
: ð7:13Þ

Therefore, we have the following possibilities:
(i) F1 ≠ 0 and therefore it is possible to solve for N0. As

a result, N is dynamical.
(ii) F1 is identically zero. Therefore, (7.11) is an

algebraic equation for N, i.e. F2ðU;N; aÞ ¼ 0,
except if H ¼ 0.

(iii) Both F1 and F2 are identically zero. In this case N is
not fixed by the background (so there exists a
residual gauge freedom). We can fix N, for instance,
to be equal to a.

Let us now consider the scalar, vector and tensor modes
of the metric with respect to spatial rotations. A general
perturbation of (7.1) can be written as

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2δijdxidxj þ aðtÞ2hμνðxαÞdxμdxν;
ð7:14Þ

where

h00 ¼ ψ ; hij ¼ χij þ ∂isj þ ∂jsi þ δijτ þ ∂i∂jσ;

h0i ¼ ui þ ∂iv; ð7:15Þ

with

∂iui ¼ ∂jχij ¼ ∂isi ¼ 0; δijχij ¼ 0: ð7:16Þ

In the scalar sector, one can integrate out the fields v and ψ
of (7.15), arriving at the following canonical form for the
effective quadratic Lagrangian

LðsÞ
ð2Þ ¼

1

2
φ0tKφ0 þφ0tDφ−

1

2
φtAmassφ; φt ¼ ðτ;−ΔσÞ;

ð7:17Þ

where the 2 × 2 matrices K, D and Amass satisfy Dt ¼ −D,
Kt ¼ K and At

mass ¼ Amass, respectively. The propagation
of modes is related to the determinant of the matrix K: if
detðKÞ ¼ 0 there can be at most one propagating scalar
d.o.f. We have that

detðKÞ ∝ ð6a5H2 þm2
1N

3Þð3a7H2 −m2
0N

5Þ: ð7:18Þ
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Defining the effective masses

M2
0 ¼ m2

0N
5 − 3a7H2; M2

1 ¼ 6a5H2 þm2
1N

3; ð7:19Þ

we see that if M2
0 ¼ 0 or M2

1 ¼ 0, there is a single
propagating scalar mode, whereas if M2

1 ¼ M2
0 ¼ 0 no

scalar mode propagates. In a general case, two different
scalar modes can propagate. The study of scalar perturba-
tions is important for cosmological signatures that could
help to distinguish a modification of gravity such as the
ones discussed here from a pure cosmological constant, see
[80] for the prospects with the Euclid satellite. First, given a
certain background evolution, the growth of dark matter
perturbations is generically altered if there are extra scalar
modes. This can be detected by measuring precisely the so-
called growth index and its scale and redshift dependence,
see e.g. [81–85]. Moreover, a detection of the speed of
propagation of DE perturbations would also indicate a
deviation from the ΛCDM model, see e.g. [86–91].
Besides, a late-time measurement of a non-negligible
excess in the gravitational slip (i.e. the difference between
the two gauge-invariant Bardeen potentials [92]) would
signal the presence of an anisotropic stress component, see
e.g. [83,93,94]. In our case, a gravitational slip appears in
solids and supersolids, for which (at linear order in
perturbations)

δTij ⊃ M2
2∂i∂jπL; ð7:20Þ

where πL is defined via πiL ¼ ∂iπL and πi ¼ πiL þ πiT ,
being ϵijk∂jπ

k
L ¼ 0, see (2.8), and we define

M2
2M

2
pl ¼

X3
n¼1

n2a−2ðn−1ÞUτn : ð7:21Þ

Notice also that in a general case, the two scalar d.o.f. that
appear from the action (7.4) allow for the propagation of an
adiabatic mode and a entropy mode, see also [52].
In the tensor sector there are always two propagating

d.o.f., with quadratic Lagrangian

LðtÞ
ð2Þ ¼

M2
pl

2

�
a3

N
χ0ijχ

0
ij þ Nað2M2

2 − k2Þχijχij
�
: ð7:22Þ

A nonzero M2
2 changes the propagation speed of gravita-

tional waves with respect to that of light. This could induce,
for instance, observable effects on the propagation and
lensing of cosmic microwave background B-modes if the
continuous medium is relevant at sufficiently early times,
see [95,96]. It is remarkable that the same quantity,M2

2, that
is responsible for the gravitational slip also determines the
propagation of gravitational waves. The relation between
these two effects has also been noted for VDiff systems of
three scalars at NLO in derivatives [16] and for other
examples of modified gravity models [97].
Finally, in the vector sector the quadratic Lagrangian

reads

LðvÞ
ð2Þ ¼ M2

pl

�
a3k2

2N
ðui − s0iÞðui − s0iÞ

þ M2
1

2N3
uiui þ aNk2M2

2sisi

�
: ð7:23Þ

The fields ui have a purely algebraic equation of motion
and thus can be integrated out, giving the Lagrangian

~LðvÞ
ð2Þ ¼ k2M2

pl

�
a3M2

1

2a3N3k2 þ 2NM2
1

s0is
0
i þ NaM2

2sisi

�
:

ð7:24Þ
The vectors si propagate only if M2

1 ≠ 0, see Table V. The
dispersion relation is not trivial only when M2

2 ≠ 0. Thus,
M2

2, besides controlling the dispersion relation of tensors,
also determines the dynamics of the vectors. The fact that
M2

2 ≠ 0 in the unitary gauge is equivalent to the presence of
an anisotropic stress in the EMT of the Stückelberg fields.
As we mentioned above, a complete study of the cosmol-
ogy of these media will be given in a separate publication
[79]. We summarize in Table V the d.o.f. counting for
various examples of sets of operators that may appear
inside the LO master function.

TABLE V. Counting of d.o.f. for various LO self-gravitating media in FLRW.

Media Operators DetðKÞ M2
0 M2

1 M2
2

d.o.f.

Perfect fluids b 0 0 ≠ 0 0 3
X 0 ≠ 0 0 0 3
Y ≠ 0 ≠ 0 ≠ 0 0 3

b, Y ≠ 0 ≠ 0 ≠ 0 0 3

Superfluids b, X ≠ 0 ≠ 0 ≠ 0 0 4
b, X, Y ≠ 0 ≠ 0 ≠ 0 0 4

Solid τn 0 0 ≠ 0 ≠ 0 5

Special supersolid τn; Y ≠ 0 ≠ 0 ≠ 0 ≠ 0 6
wn; X 0 ≠ 0 0 ≠ 0 2
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VIII. DARK MATTER AND DARK
ENERGY SIGNATURES

To illustrate the novel phenomenology that arises for the
description of dark energy and dark matter from the
effective theory of self-gravitating media, we will focus
now on certain aspects of cosmological perturbations that
are specific of our framework. In particular, we will
consider scalar perturbations for nonbarotropic fluids and
also the propagation of gravitational waves.

A. Scalar perturbations in nonbarotropic fluids

As we mentioned in Sec. V B 2, if the symmetry Φ0 →
Φ0 þ fðΦaÞ is imposed on the general superfluid master
function Uðb; X; YÞ, the operator X drops and the resulting
Uðb; YÞ system is a perfect fluid. This type of perfect fluid
is generically nonbarotropic because the pressure and the
energy density cannot be written one as a function of the
other, see (5.19). This kind of action can be used to describe
a generic perfect fluid, since b can be identified with the
entropy density and Y with the chemical potential.13 Then,
the entropy per particle σ ¼ b=UY is nonlinearly conserved
in time [52]. The pressure perturbation can be written as

δp ¼ c2sδρþ
ϕ0

a4
ðc2s − c2bÞδσ; c2s ¼

p0

ρ0
; c2b ¼

∂p
∂ρ

����
b
;

ð8:1Þ

where ϕ ¼ ϕðtÞ describes the background evolution of
the field Φ0, see (7.2). In this expression and in all that
follows, primes denote derivatives with respect con-
formal time t. The quantities c2s and c2b are, respectively,
the standard adiabatic sound speed (i.e. the variation
of the pressure with respect to the density at fixed σ)
and the variation of the pressure with respect to the
density at constant b. The latter of the two determines
the evolution of ϕ, which obeys (from the conservation
of the EMT)

ϕ00 þHð3c2b − 1Þϕ0 ¼ 0: ð8:2Þ

Let us now write the scalar part of the perturbed metric in
the conformal Newtonian gauge,

ds2 ¼ −a2ðtÞð1 − ψÞdt2 þ a2ðtÞð1þ τÞδijdxidxj: ð8:3Þ

We will work in Fourier space, so that the perturbations ψ
and τ will be functions of conformal time and the modulus,
k, of the comoving momentum ki. Uðb; YÞ being a perfect
fluid, there is no anisotropic stress and, in consequence,
τ ¼ ψ . The evolution of the metric perturbation is then
governed by the equation

ψ 00 þ 3Hðc2s þ 1Þψ 0 þ ½c2sk2 þ ð3c2s þ 1ÞH2 þ 2H0�ψ −
ϕ0ðc2s − c2bÞ
2a2Mpl

2
δσ ¼ 0: ð8:4Þ

We recall that the quantity Γ≡ δp − c2sδρ (that is
sometimes called “intrinsic entropy perturbation”) is
gauge invariant and ψ corresponds to one of the
(gauge-invariant) Bardeen potentials [92]. Equation (8.4)
is a linear combination of the 0-0 and the i − i Einstein
equations. In the case at hand, it contains a generic time-
dependent speed of sound c2s , plus a time-dependent
source term that is due to the nonbarotropic character
of Uðb; YÞ.
Indeed, whereas δσ ≡ δσðkÞ is constant in time, with its

k-dependence fixed by initial conditions, the factor that
multiplies it in Eq. (8.4) has a nontrivial time dependence
determined by c2s and c2b, which in turn depend on the
function Uðb; YÞ. Dynamical (and thermodynamic) stabil-
ity of the perturbations requires c2s > 0; see [52].

In the special case of nonzero and constant c2b, from (8.2)
one has that

ϕ0 ¼ ϕ0
0a

1−3c2b ; ð8:5Þ

where ϕ0
0 is a constant and we take a ¼ a0 ¼ 1 today.

Then, the solution of (8.4) during a matter domination
period, where H ∝ 1=

ffiffiffi
a

p
, is given by

ψ ¼ ~ψ −
ϕ0
0δσ

3M2
plH

2
0Ω0

mð6c2b − 5Þc2b
a−3c

2
b ; ð8:6Þ

where ~ψ ¼ ~ψðkÞ is the constant solution of the homo-
geneous equation and Ω0

m and H0 ¼ H0 are, respectively,
the relative matter density and the Hubble parameter in
cosmic time, both evaluated today. We have neglected the
decreasing solution of (8.4) and the effect of c2s , which is
assumed to be positive but sufficiently small to be negli-
gible for dark matter.
The energy density perturbation can be written directly

from the 0-0 Einstein equation,

13This thermodynamic interpretation is not unique: b can
alternatively be associated to particle number density, and Y to
temperature, see [52]. However, we stress that the results of this
section are independent of this choice and can be derived purely
algebraically, without resorting to either of the two possibilities.
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δρ ¼ 2a−2M2
pl½ψðk2 þ 3H2Þ þ 3Hψ 0�: ð8:7Þ

We get from it the time evolution of the density contrast
δ ¼ δρ=ρ,

δ¼ δad−
σ̂

3ð6c2b−5Þc2b

�
1−3c2bþ

ak2

3H2
0Ω0

m

�
a−3c

2
b ; ð8:8Þ

where

δad ¼ ~ψ

�
1þ ak2

3H2
0Ω0

m

�
ð8:9Þ

is the nonentropic (or adiabatic) part of the fluctuation and
we define the constant

σ̂ ≡ ϕ0
0δσ

M2
plH

2
0Ω0

m
: ð8:10Þ

With respect to the standard cold dark matter (for which
δσ ¼ 0), the entropic term modifies the time evolution of
the density contrast. It is interesting to note that as soon as
c2b < 0, there is an entropic mode that grows with respect to
the adiabatic one, both for super- and subhorizon scales.14

As an explicit example we can take the function Uðb; YÞ
corresponding to a perfect nonrelativistic gas [52],

Uðb; YÞ ¼ bY

�
1þ Log

�
gs
b

�
mY
2π

�
3=2

�	
− bm; ð8:11Þ

where gs is the number of spin states and m is the atomic
mass of the gas. One gets c2b ¼ 2=3 so that ϕ0 ∝ a−1, see
(8.5), and

δ ¼ δad þ
σ̂

2

�
−1þ ak2

3H2
0Ω0

m

�
a−2: ð8:12Þ

Therefore, in this example the entropic corrections
decrease in time with respect the adiabatic perturbation
(since c2b > 0).
A more dramatic example of the influence of δσ is

obtained, for instance, by taking

Uðb; YÞ ¼ −λbþ VðbYÞ: ð8:13Þ

In this case, c2b ¼ −1 and ϕ0 ∝ a4, see (8.5), so that
bY ¼ ϕ0

0 is constant in time, and

c2s ¼ 0; w ¼ p=ρ ¼
Vðϕ0

0Þ − ϕ0
0

dV
dðbYÞ jϕ0

0

λ=a3 − Vðϕ0
0Þ þ ϕ0

0
dV

dðbYÞ jϕ0
0

:

ð8:14Þ

In the regime in which λ=a3 dominates the denominator,
w → 0 (as cold dark matter) in a first approximation. In the
opposite limit, w → −1 and the fluid describes a phase of
dark energy domination. During matter domination, when
w ∼ 0, the energy density contrast is given by

δ ¼ δad −
σ̂

33

�
4þ ak2

3H2
0Ω0

m

�
a3: ð8:15Þ

In this case, the entropic perturbation grows faster than the
adiabatic one. Although in this example, in order to keep
under control the validity of linear perturbation theory, very
strong constraints have to be imposed on the initial
conditions (specifically on σ̂), it illustrates the relevance
of possible interactions between dark matter and dark
energy in the context of the effective theory of self-
gravitating media.
In general, by splitting Uðb; YÞ as UDMðb; YÞ þ VðbYÞ

one can systematically study the coupling of dark matter
and dark energy, the corresponding EMT tensors not being
separately conserved.
To conclude this subsection it is also worth hinting how

the evolution of perturbations is affected for a superfluid
and a solid. In the first of these two cases, described by a
function Uðb; X; YÞ, the function δσ is not constant in time
and the conservation equation δσ0 ¼ 0 will be replaced by a
dynamical one. On the other hand, if a solid is considered,
an anisotropic stress is present and the two Bardeen
potentials are not equal, so that

τ − ψ ¼ 4M2
2πL; ð8:16Þ

where πL is the longitudinal mode of the spatial
Stückelberg perturbations, Φi ¼ xi þ ∂iπL, see also
(7.20). We plan to do a complete analysis of both effects
in a forthcoming paper.

1. Gravitational waves

The dynamics of gravitational waves is governed by
(7.22). Without loss of generality, we can choose
NðtÞ ¼ aðtÞ, so that in Fourier space we have the action

M2
pl

2

Z
dtd3ka2½χ0ijχ0ij þ ð2M2

2 þ k2Þχijχij�: ð8:17Þ

The resulting propagation equation is

χ00ij þ 2Hχ0ij þ ðk2 −M2
2Þχij ¼ 0: ð8:18Þ

The difference with respect to the standard expression is the
presence of the time-dependent effective mass squared,M2

2,

14Notice that in a more general case, where c2s is not negligible,
there is an interplay between c2s and c2b that makes the growth
condition more complicated that just c2b < 1.
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which is nonvanishing for solids and supersolids. As we
had anticipated, this mass also controls the difference of the
Bardeen potentials, see (8.16). We point out that, at leading
order in derivatives,M2

2 induces a modification of the speed
of propagation (the dispersion relation) of gravitational
waves, which becomes scale-dependent. Interestingly, it
was shown in [16] that at next-to-leading order, the
propagation speed changes in a scale-independent (but
time-dependent) way in the case of VDiff invariant media
made of just the three spatial Stückelberg fields. The same
kind of modification is expected to occur at NLO for a
generic medium, leading to a generic propagation equation
of the form,

χ00ij þ 2Q1Hχ0ij þ ðQ2k2 − ~M2
2Þχij ¼ 0; ð8:19Þ

where ~M2
2, Q1 and Q2 are time-dependent functions

and we expect M2
2= ~M2

2 ∼ 1þOðH=ΛÞ and also Q1;Q2 ∼
1þOðH=ΛÞ, where Λ denotes the cutoff of the effective
theory.

IX. CONCLUSIONS AND OUTLOOK

The main result of this work is that a vast class of
modified gravity models, including MG, can be interpreted
as self-gravitating continuous media. The low-energy
dynamics of these systems is described by the EFT of four
scalar fields ΦA that respect shift symmetries. Due to these
symmetries, the fields are derivatively coupled between
them and are minimally coupled to gravity at leading order
in derivatives. At this order, the action is a functional
of ten independent scalars encoded in the induced four-
dimensional (inverse) metric CAB ¼ gμν∂μΦA∂νΦB.
The four scalar fields can be interpreted as the (comov-

ing) coordinates of the medium. They can be conveniently
split into three spatial coordinates Φa, a ¼ 1, 2, 3, and a
temporal coordinate Φ0. Using diffeomorphism invariance,
the EFT can be examined in the unitary gauge, where the
scalar fields are “frozen” to be coincident with the
spacetime coordinates. With this choice of spacetime
coordinates, the induced metric is CAB ¼ gAB. This sends
all the dynamics of the medium into the gravitational metric
and allows us to make direct contact with the traditional
framework of MG. The inverse path (going from MG to
continuous media) can be travelled by using the well-
known Stückelberg “trick,” which allows us to write in a
diffeomorphism-invariant way any theory in which diffeo-
morphisms appear to be broken. Indeed, the four scalar
fields ΦA of our EFT can also be seen as the four
Stückelberg fields of a diffeomorphism-invariant formu-
lation of MG. We have discussed in Sec VI how to move
from one picture to the other.
We have provided a comprehensive and systematic

classification of massive gravity and modified gravity
models in terms of symmetries and low-energy degrees

of freedom, establishing a direct connection to the theory of
(self-gravitating) continuous media and the pull-back
formalism. In doing so, we have determined also which
are the propagating degrees of freedom for each case (as a
function of the symmetries) and obtained the Lagrangians
that are necessary for the study of (linear) cosmological
perturbations at large scales, highlighting which operators
affect the different kinds of observables.
The mechanical and thermodynamic properties of these

continuous media (or modified/massive gravity) models
depend crucially on extra symmetries that can be imposed
on the scalar sector and may restrict drastically the number
of allowed operators. The minimal assumption we have
used in this work is that the action is invariant under
(spatial) SO(3) rotations of the fields Φa, a ¼ 1, 2, 3. This
reduces the number of allowed operators from ten to nine at
leading order in derivatives; see Table I. Imposing further
assumptions, such as symmetries that relate the spatial and
temporal Stückelberg sectors—see Table II—the number of
independent operators can be decreased even down to a
single one. For instance, volume preserving internal spatial
diffeomorphisms selects just three operators and the result-
ing action describes superfluids.
Another way to simplify the action is to make it depend

(by assumption) only on either the spatial or temporal
Stückelberg fields; see Table III. The models that are
allowed in those cases can describe self-gravitating solids,
perfect fluids and superfluids. In the general SO(3) spatially
symmetric case, which contains the four scalars ΦA, the
medium shares some of its properties with both superfluids
and solids, and therefore is called a supersolid. Therefore, a
general MG model is interpreted a supersolid propagating
in spacetime.
Working in the unitary gauge and expanding a generic

example of our EFT around Minkowski spacetime, it is
straightforward to see that the resulting action for the metric
fluctuations will not respect Lorentz symmetry. This is
simply a natural consequence of the presence of the
medium and the fact that we have assumed the operator
content to be dictated by a broad symmetry: internal spatial
SO(3) rotations. Nevertheless, it is possible to choose a
combination of operators such that the resulting action for
metric perturbations is Lorentz invariant, if one wishes to
do so [13].
The correspondence between self-gravitating media and

massive/modified gravity is intriguing and deserves further
study. In the context of cosmology, it can be relevant for a
deeper understanding of the properties of dark matter and
dark energy. Moreover, the systematic EFT framework
presented in this work can aid to devise a program for the
interpretation of the data coming from future probes. From
this perspective, the key idea is that the symmetry proper-
ties of a (coarse-grained) cosmological medium could be
imprinted in the large-scale structure of the Universe,
including the cosmic microwave background.
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We plan to analyze the cosmology of these models in a
future publication, by studying in further detail the sig-
natures that would allow to distinguish these models from
the standard ΛCDM model [79]. In the present work, we
have initiated this program (in Secs. VII and VIII) by
determining the number of propagating degrees of freedom
in FLRW for various representative examples of continuous
media (or models of massive/modified gravity), as sum-
marized in Table V, and by studying analytically some
representative examples. In particular, in Sec. VIII we have
considered the modification to the growth function of
matter in nonbarotropic perfect fluids and the modifications
to the propagation of gravitational waves. Other avenues
that are also worth exploring can be opened if different
internal symmetries—such as supersymmetry [27] or
Galileon symmetry [98]—are assumed instead of spatial
SO(3).
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APPENDIX A: CONSERVED CURRENTS
AND CHARGES

Each of the systems we consider in this paper is
characterized by some conserved currents and their asso-
ciated charges. These currents and charges have special
significance for the thermodynamic and dynamical inter-
pretation of the different media. Generically, the currents can
be broadly classified in two different types. First, we have
those currents which, by virtue of Noether’s theorem, are due
to the symmetries that define the Lagrangians of the different
models. These currents are grouped in sets of infinite
dimension because the defining symmetries are (infinite)
subgroups of the internal diffeomorphisms ΦA → ΨAðΦBÞ.
Then, we also have currents that are conserved irrespectively
of the equations of motion. An example of the latter is

Jμ ¼ −buμ; ðA1Þ

where uμ was defined in (3.4). This current is covariantly
conserved off-shell and exists for all the models we consider
(regardless of their symmetries) that involve the spatial
Stückelberg fields Φa. It has often been interpreted as the
entropy current for fluid actions of the form S ¼ R

d4xUðbÞ,
see e.g. [10,24], although this is not the only possible
interpretation, see e.g. [99].
Independently of whether a current is conserved due to a

symmetry of the action or for another reason, an associated
charge that is conserved in time can be defined. In general,
given a current Jμ that satisfies

∇μJμ ¼ 0; ðA2Þ
the corresponding time-conserved charge is

Q ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
J0 ¼

Z
d3Φ

J0

bu0
; ðA3Þ

which can be proven using the divergence theorem and
assuming that the fields fall of quickly enough at infinity.
For instance, in the particular case of the current (A1), the
charge is

V3 ¼ −
Z

d3Φ ∝ ϵijkϵ
0αβγ

Z
d3x∂αΦi∂βΦj∂γΦk ðA4Þ

and, clearly, _V3 ¼ 0 due to the antisymmetric character of
ϵμαβγ . The physical interpretation of this result is that the
flux lines of the medium are neither created nor destroyed,
which is a topological statement. In other words, the
conservation of V3 means that these continuous media
have neither flux sources nor sinks.

1. General volume currents

Let us first consider conserved currents that are inde-
pendent of the internal symmetries. We just encountered
one example of them in (A1). This type of current can be
generalized in a simple way with a permutation of the fields
ΦA. Concretely, the four currents

JμD ¼ ϵμαβγ

6
ffiffiffiffiffiffi−gp ϵABCD∂αΦA∂βΦB∂γΦC; D ¼ 0; 1; 2; 3

ðA5Þ

are covariantly conserved, and Jμ0 is precisely (A1). In fact,
any four-vector of the form

J μ
D½hðΦAÞ� ¼ hðΦAÞJμD; ðA6Þ

where h is an arbitrary function of the fields ΦA,
satisfies
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∇μJ μ
D½hðΦAÞ� ¼ 4

∂hðΦAÞ
∂ΦD det

�∂ΦB

∂xν
�
: ðA7Þ

This allows to construct further conserved currents by
simply multiplying any of the currents JμD with a function h
that does not depend on the field ΦD. The relation (A7)
can be easily proven using the identity

ffiffiffiffiffiffi−gp ∇μUμ ¼
∂μð ffiffiffiffiffiffi−gp

UμÞ, valid for any vectorUμ, and the antisymmetry
of JμD under the permutation of two fields ΦA.

2. Noether currents

Let us now consider the currents coming from the
different symmetries that we have considered in the paper.
First of all, we have SOð3Þs and the internal shifts (2.1).
The first one of these two symmetries leads to the
conservation of angular momentum in the internal spatial
manifold. The conservation of the currents associated to the
shift symmetries is nothing but the equations of motion of
the Stückelber fields, see (2.5). We will now enumerate the
conserved currents due to the additional symmetries of
Sec. IVA.

a. Four-dimensional media

(i) If the action is invariant under VsDiff, the volume-
preserving spatial diffeomorphisms in the space of
Stückelberg fields, the operators b, Y and X are
selected and the resulting LO medium is a super-
fluid. The currents associated to this symmetry are
known to be related to vorticity conservation, see for
instance [9,10]. These currents are of the form

JμðεÞ ¼ −bUbðB−1Þcd∂μΦdεcðΦjÞ; ðA8Þ

where εaðΦjÞ satisfies ∂εa=∂Φa ¼ 0 . A basis of
vorticity charges (in which any other vorticity
charge can be expressed) is constructed choosing
εa ¼ ϵabcαb∂δ3ðΦ − ~ΦÞ=∂ ~Φc, with constant αb, see
e.g. [10].

(ii) The covariantly conserved Noether currents associ-
ated to the symmetry Φa → Φa þ faðΦ0Þ, which
selects the operators X and wn, are

Jμf ¼
X3
a¼1

faðΦ0Þ
X3
n¼1

nUwn
½Wn−1 · j�μa; ðA9Þ

where we define

jμa ¼ ð∂μΦa − CaX−1∂μΦ0Þ: ðA10Þ

Each set of three functions ff1; f2; f3g of the
temporal Stückelberg field defines a different cur-
rent. By using the unitary gauge expressions (6.5)
we interpret Φa → Φa þ faðΦ0Þ as a transformation

that does not change the slicing of spacetime but
modifies the threading with a time-dependent
shift: N → N , Ni → Ni þ N−1∂fi=∂Φ0. Notice
the spatial part of the metric, γij, is invariant under
Φa → Φa þ faðΦ0Þ.

(iii) In the case of the symmetry Φ0 → Φ0 þ fðΦaÞ, the
symmetric LO scalar operators are Y and τn, and the
covariantly conserved currents are

Jμf ¼ fðΦaÞYUYuμ: ðA11Þ
It seems natural to interpret this set of currents—
recall that there is a current for each choice of the
function f—as transporting charges of the fluid in
the direction of the four-velocity uμ. Notice that
these currents are parallel to the current (A1).
Therefore, if (A1) is interpreted as the entropy
current, the currents (A11) carry charges that flow
with the entropy.

(iv) If the symmetry Φ0 → Φ0 þ fðΦ0Þ is imposed, the
LO action depends on the operators τn and Oαβn.
The operators τn do not contribute to the conserved
currents, since they do not contain Φ0. The currents
in this case are

Jμf ¼ fðΦ0Þ
Y2

X
α;β;n

UOαβn
ðA12Þ

where the sums extend over all the Oαβn operators
and

jμαβγ ¼ αOðα−1Þβn∂μϕ0 − ðαþ βÞYOαβnuμ

þ βOαðβ−1ÞnðBnÞabC0a∂μΦb: ðA13Þ

As we discussed in Sec. IVA, the symmetry Φ0 →
Φ0 þ fðΦ0Þ allows at LO an infinite number of
different scalarsOαβn. This is because the exponents
α and β appearing in the definition of Oαβn are
arbitrary real numbers (whereas n can take the
values 1, 2 or 3). In consequence the summatoryP

α;β;n has to be understood to extend over all the
possible values of these parameters, unless some
restriction is enforced on them.

b. Media with reduced internal dimensionality

(i) We can also consider the case in which the
Lagrangian depends only on the temporal Stückel-
berg field, although, as we explained is Sec. VA 3,
we do not know of any symmetry that forbids the
spatial Stückelberg fields at LO (and allows them at
higher orders). In this case the master function U
depends exclusively on X at LO and the relevant
symmetry is the invariance under Φ0 → Φ0 þ c0,
with ∂μc0 ¼ 0. This simply tells us that the current
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Xμ ¼
ffiffiffiffiffiffiffi
−X

p
UXVμ ðA14Þ

is covariantly conserved. The conservation of Xμ is
precisely the equation of motion for Φ0, given the
master function UðXÞ.

(ii) Analogously, we can consider the case in which
only the spatial Stückelberg fields are present. Since
we are assuming always an SOð3Þs symmetry this
corresponds to the standard solid UðτnÞ. Notice,
again, that we know of no symmetry that prevents
the appearance of Φ0 at LO but reintroduces this
field at higher orders. Aside from the conservation
of internal angular momentum, due to SOð3Þs,
there are also the currents associated to the
internal translational invarianceΦa → Φa þ ca, with
∂μca ¼ 0. This symmetry generates in this case the
set of covariantly conserved currents

tμ ¼ ca
X3
n¼1

nUτnðBn−1Þab∂μΦb; ðA15Þ

a base of which is obtained by setting, alternatively,
ca to 0 or 1 for a ¼ 1, 2 or 3.
The currents associated to SOð3Þs invariance have

a similar structure. In fact, they can be formally
obtained from the previous ones simply replacing ca

by rabΦb, where rab belongs to the Lie algebra of
SOð3Þs, and so is antisymmetric. These are just the
generators of the angular momentum in the internal
spatial manifold. Therefore, the currents

Jμr ¼ rabΦb
X3
n¼1

nUτnðBn−1Þab∂μΦb; ðA16Þ

are also conserved in this case. A basis for this
currents can be obtained choosing the matrices rab

as the standard Lx, Ly, Lz generators. The con-
servation of the currents of this basis are the
equations of motion for the spatial Stückelberg
fields.

APPENDIX B: A SHORTCUT TO COUNT
DEGREES OF FREEDOM

We can determine the number of d.o.f. by studying
directly to the equations of motion of the Stückelberg fields
(2.5). From the action (2.3) we know that there are at most

six d.o.f., that is, two from the metric plus those
coming from the scalar fields (≤ 4). Equation (2.5) can
be rewritten in the following form (using the notation
UAB ¼ ∂U=∂CAB):

LA ¼ ½UABgμν þ ðUAD;CB þ UAD;BCÞ∇μΦC∇νΦD�∇μ∇νΦB

≡Kμν
AB∇μ∇νΦB ¼ 0; ðB1Þ

where Kμν
AB contains only first derivatives of the fields.

From this expression we see that the second-order time
derivatives of ΦA are always proportional to the matrix
kernel K00

AB, thus the number of Stückelberg propagating
d.o.f. is

Δ ¼ Rank½K00
AB�: ðB2Þ

To simplify the analysis it is convenient to use the phonons
(2.8) and study the system perturbatively. The coefficient of
second-order time derivatives of the perturbations are
determined by K̄00

AB ≡K00
ABjΦA¼xA. From (B1) we have that

ðK̄00
AB þOð∂πÞÞπ̈B ¼ 0 where

K̄00
AB ¼ L̄ABg00 þ ðL̄AD;CB þ L̄AD;BCÞg0Cg0D; ðB3Þ

where the overbars mean that the corresponding quantities
are evaluated on ΦA ¼ xA. It is easy to see that K̄00

AB gives
the number of d.o.f. also at the nonperturbative level.
Indeed, by going to the unitary gauge we have that
Rank½K00

AB� ¼ Δ and so the counting of d.o.f. is background
independent. For SOð3Þs invariant Lagrangians one finds
the same results obtained applying the Hamiltonian for-
malism [11–13], that is,

(i) for U ¼ LðgABÞ we get four scalar d.o.f.,
(ii) for U ¼ LðgabÞ þ

ffiffiffiffiffiffiffiffiffiffi
−g00

p
~LðγabÞ we get three scalar

d.o.f.,
(iii) for L1 ¼ Lðg00; γabÞ we get one scalar d.o.f.,
(iv) for L0 ¼

ffiffiffiffiffiffiffiffiffiffi
−g00

p
~LðγabÞ we get zero scalar d.o.f.

The Hamiltonian analysis applied to field theories allows
for a noninteger number of d.o.f. (see [11,13]) while the
prescription of (B2) seems to evade such a problem. For
example the naive Hamiltonian counting of d.o.f. for a
master function of the form U ¼ P

aC
0aC0a=C00 gives

3þ 1=2 d.o.f. in the Hamiltonian formalism and three d.o.f.
when computed following (B2). This mismatch is being
studied.
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