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Abstract

We consider generalized diffeomorphisms on an extended mega-space associated to the

U-duality group of gauged maximal supergravity in four dimensions, E7(7). Through the

bein for the extended metric we derive dynamical (field-dependent) fluxes taking values

in the representations allowed by supersymmetry, and obtain their quadratic constraints

from gauge consistency conditions. A covariant generalized Ricci tensor is introduced,

defined in terms of a connection for the generalized diffeomorphisms. We show that for

any torsionless and metric-compatible generalized connection, the Ricci scalar reproduces

the scalar potential of gauged maximal supergravity. We comment on how these results

extend to other groups and dimensions.
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1 Introduction

The classical symmetry group of the massless fields of string theory is larger than that

of the metric, namely the group of diffeomorphisms, and includes purely stringy trans-

formations such as T- or S-duality. The program to rewrite the theory in a covariant

language under O(d, d), the group that includes T-duality, goes under the name of Gen-

eralized Geometry [1], or Double Field Theory (DFT) [2] (the latter based on previous

constructions on Double Geometry [3]). In Generalized Geometry, the tangent space,

where the vectors generating diffeomorphisms live, is enlarged to include the one-forms

corresponding to gauge transformations of the B-field. Instead, in DFT, which aims at

providing a field theory approach for strings, the space itself is doubled, and the extra

half of the coordinates can be thought of as the duals of winding modes. Both approaches

are related when a section condition is imposed which, effectively, un-doubles the double

space. This condition is sufficient for consistency of DFT, but only a relaxed version of it

is necessary for gauge consistency at the classical level [4].

By including also S-duality in the game, i.e. by promoting the covariance to the full

U-duality group, the tangent space or the double space gets enlarged to an extended

(or exceptional) generalized tangent space or a mega-space (a mega-torus [5, 6], in the

case of toroidal backgrounds). The enlarging is such that it accounts for the symmetries

corresponding to RR fields as well as the NSNS, or equivalently combines the D-brane

charges together with the momentum and winding charges of the string. The exceptional

tangent space is the starting block of Exceptional Generalized Geometry [7, 8] (EGG),

while we will call the extension of DFT to the U-duality groups, first discussed in [9],

“Extended Field Theory” (EFT). As DFT, EFT can be restricted by a section condition

[10], that also constraints the fields to depend on a reduced number of physical coordinates,

but more generally this constraint can also be relaxed. The U-duality symmetry groups are

the exceptional groups Ed+1 of toroidal compactifications, where d is the dimension of the

compactification space in string theory (or d+1 in M-theory, or rather in 11-dimensional

supergravity).

An appealing feature of the extended space is that the stringy symmetries (diffeomor-
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phisms plus gauge transformations of all the gauge fields) look just like diffeomorphisms,

and are encoded in a generalized Lie derivative [10]-[13], which gives the differential struc-

ture of the space. It allows to define a generalized, metric compatible, and torsion-free

connection [10]. Moreover, a generalized Ricci tensor, whose flatness condition repro-

duces the supergravity equations of motion, and a generalized Ricci scalar, encoding the

supergravity Lagrangian [10], can be constructed. For the case of Generalized Complex

Geometry, these tensors were worked out in [11], inspired from older double formalism

[14]-[16]. More explicit constructions in DFT are presented in [17]-[22].

In this paper, we extend the more explicit DFT constructions to the exceptional case,

for d = 6, when the symmetry group is1 E7, following the definitions introduced in [10]

for EGG. To be more precise, from the generalized Lie derivative acting on the bein of

the generalized metric we define the “dynamical fluxes”. These are required to live in

certain representations of the duality group. Jacobi-type constraints on these fluxes are

obtained from requiring closure of the algebra and gauge invariance. Interestingly enough,

for constant fluxes, which correspond to the embedding tensor of N = 8 supergravity [23],

the Jacobi-type constraints reduce to the usual quadratic constraints of maximal super-

gravity. We show that a generalized Levi-Civita connection, related to the fluxes by a

torsion free condition, can be constructed allowing to build Riemann and Ricci tensors

[10]. When these are defined in the usual way, they turn out to be non-tensorial, and thus

one has to resort to generalized versions of them. Covariant definitions of these tensors

were introduced in [10, 17, 19], which interestingly contain undetermined components.

Here, extending the definition of [17] to the exceptional case, we find a covariant (though

still not uniquely defined) version of the generalized Ricci tensor. Taking its trace, the

undetermined pieces go away, and we show that the generalized Ricci scalar, which co-

incides with that of [10] when the section condition is imposed, can be written purely

in terms of the dynamical fluxes. In the case of constant fluxes, the generalized Ricci

scalar is exactly equal to the potential of N = 8 supergravity, provided we identify the

generalized metric with the moduli space metric for the N = 8 scalars. Some definitions

and results for d < 6 are given in [12], and some more for d = 4, 5 in [24]. Finally, for

1All throughout the paper when we refer to E7, we really mean E7(7).
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completion we provide a list of complementary results along these lines [25]-[30].

The paper is organized as follows. In Section 2 we set the basic notation and ad-

dress the definition of generalized diffeomorphisms on a 56 dimensional extended space.

The generalized Lie derivative is introduced and through it the “dynamical fluxes” are

defined. In Section 3 we deal with constraints required from closure of the algebra of

gauge transformations. We discuss two different solutions to the Jacobi-type constraints.

The so called section condition (also known as strong constraint) and what we call twisted

constraints. We mainly deal with these latter constraints. They reproduce the quadratic

constraints of maximal N = 8 supergravity and would naturally appear in Scherk-Schwarz

like compactifications. A geometrical structure for the extended space is addressed in Sec-

tion 4 where a generalized covariant derivative and generalized torsion are introduced. A

generalized Ricci tensor is defined in Section 5. Interestingly enough it is shown that,

under contractions with the generalized metric, the associated Ricci scalar is completely

determined in terms of generalized fluxes, and corresponds to the scalar potential of max-

imal supergravity. Final comments are presented in Section 6. Some notation and useful

results are summarized in the Appendices.

2 Generalized diffeomorphisms and fluxes

Our starting point is the 56-dimensional exceptional generalized tangent space, or ex-

tended space, for an extended version of Double Field Theory, where 56 is the dimension

of the fundamental representation of E7. For toroidal compactifications, such a space was

called megatorus [5]2. This space encodes all the symmetries of string theory compacti-

fied on 6-manifolds, or M-theory compactified on 7-manifolds, namely internal diffeomor-

phisms and gauge transformations of the NSNS and RR gauge fields (or the 3-form gauge

field in M-theory).

The coordinates in the extended space are Y M with M = 1, . . . , 56, and the derivatives

2Here we do not require the extended space to be a parallelizable manifold (i.e., a torus or a “twisted

torus"), except for sections 3.2 and 5.2, and at the very end of section 5, where we compare the generalized

Ricci scalar to the potential of N = 8 supergravity.
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are noted by ∂M = ∂/∂Y M and transform in the fundamental representation of E7. We

postpone to Section 3 the discussion about constraints to be satisfied by them.

We will actually consider an augmented duality group, R+ × E7, which accounts for

a conformal factor [10, 11]. This gives an extra degree of freedom in the 4D supergravity

whose string theory origin can be traced to the measure of the 6-, 7-dimensional manifold,

as well as extra gauge parameters, as we will see.

There is a generalized metric on the extended space HMN , which transforms covari-

antly under R
+ × E7, and is invariant under SU(8), the maximal compact subgroup of

E7. It can be written in terms of a generalized bein EĀ
M taking values in the quotient

R
+ × E7/SU(8)

EĀ
M = e−∆ẼĀ

M , (2.1)

where ẼĀ
M is an E7 frame, and the conformal factor e−∆ corresponds to the component

in R
+. In what follows, the tilde refers to objects that transform under E7 only. The

generalized metric then reads

HMN = EĀ
MEB̄

NH ĀB̄ , (2.2)

where Ā, B̄, ... = 1, . . . , 56 are SU(8) planar indices.

The E7 generalized bein ẼĀ
M preserves the Sp(56) anti-symmetric matrix ω̃MN

ẼĀ
M ω̃MN ẼB̄

N = ω̃ĀB̄ , ω̃MN ω̃
NP = −δPM , (2.3)

so it is natural to define a weighted symplectic metric

ωMN = e2∆ω̃MN , (2.4)

which raises and lowers indices according to the following convention

AM = −ωMNAN , AM = ωMNA
N . (2.5)

With this convention, the following relations hold

EĀ
MEĀ

N = −δNM , EĀ
PEB̄

P = −δĀB̄ , where EĀ
M = −ωĀB̄ωMNEB̄

N . (2.6)
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In addition to the symplectic invariant, in R
+ × E7 there is also a quartic invariant

EĀ
M EB̄

N EC̄
P ED̄

Q KM
N

P
Q = KĀ

B̄
C̄
D̄ . (2.7)

A generalized diffeomorphisms compatible with this symmetry group is generated by

an infinitesimal generalized vector (or gauge parameter) ξ, and is given by the generalized

Lie derivative Lξ (or equivalently a generalized gauged transformation δξ, which coincide

when acting on tensors). Acting on a generalized vector field V , we expect it to be a linear

combination of the gauge parameter and its derivatives. A detailed discussion on how to

construct generalized diffeomorphisms can be found in Appendix C. Here we simply give

its general expression

δξV
M = LξV

M = ξP∂PV
M − AM

N
P
Q∂P ξ

QV N +
ω

2
∂P ξ

PV M . (2.8)

This was first proposed in [10] and we are using the notation of [13] (see also [14, 15] in

DFT context). The tensor A is fixed by requiring that the gauge transformations preserve

the E7 structure (see (2.3) and (2.7)) and is given by

AM
N

P
Q = 12 P(adj)

M
N

P
Q = 12 (tα)N

M (tα)Q
P , (2.9)

where tα is a generator of E7, with α = 1, . . . , 133 an index in the adjoint, and P(adj) is a

projection to the adjoint 133 of E7. We give its expression in terms of E7 invariants in

(A.1). The coefficient ω corresponds to the R
+ weight of the object being transformed,

which for the bein EĀ
M is ω = 1, but for ẼĀ

M is ω = 0.3

In the appendices we provide more information about the general structure of gener-

alized diffeomorphisms, showing how the E7 case arises as a particular example. We also

include many useful identities that we will use repeatedly along the paper. The relative

coefficient between A and the projector onto the adjoint depends on the group in question.

In Appendix C we explain where this arises from, and why it is 12 for the case of E7(7).

Applying the generalized diffeomorphism (2.8) to the bein, generated by a bein itself,

we get

δEĀ
EB̄ = FĀB̄

C̄EC̄ , (2.10)

3We use the same symbol ω for the symplectic invariant. However, the latter has two indices, while

the weight ω is a number, so there should be no confusion.
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where the “generalized dynamical fluxes" FĀB̄
C̄ are defined as

FĀB̄
C̄ = ΩĀB̄

C̄ − 12P(adj)
C̄
B̄
D̄
ĒΩD̄Ā

Ē +
1

2
ΩD̄Ā

D̄δC̄B̄ , (2.11)

where

ΩĀB̄
C̄ = EĀ

M∂MEB̄
N(E−1)N

C̄ . (2.12)

In the case when there is a global frame (or in other words when the space is parallelizable),

this object is called the Weitzenböck connection. Here, with the exception of sections 3.2,

5.2 and 5.3, we do not a priori require the existence of such a global frame, and as such our

expressions should be understood as local. This means in particular that the generalized

dynamical fluxes need not be constant (hence the name dynamical), and furthermore they

need not even be globally defined. Nevertheless, by an abuse of notation we will still call

these fluxes, and we will call Ω in (2.12) the Weitzenböck connection.

Rotating these expressions with the bein we can define the fluxes with curved indices

FMN
P = ΩMN

P − 12P(adj)
P
N

R
SΩRM

S +
1

2
ΩRM

RδPN , (2.13)

and the corresponding Weitzenböck connection in curved indices

ΩMN
P = (E−1)N

B̄∂MEB̄
P . (2.14)

The Weitzenböck connection (2.14) takes values in the algebra of R+ ×E7 (see Appendix

B), i.e. it can be written as linear combination of the generators of R+ × E7

ΩMN
P = −∂M∆ δPN + Ω̃MN

P = ΩM
0(t0)N

P + Ω̃M
α(tα)N

P , (2.15)

and is therefore in the 56 × (1 + 133) product. Here, (t0)N
P = −δPN is the generator of

R
+. The 56× 133 part

Ω̃MN
P = (Ẽ−1)N

B̄∂M ẼB̄
P , (2.16)

contains the irreducible representations 56 + 912 + 6480. The projectors onto the first

two representations in this product is given by (see Appendix C)

P(56)A
α,B β =

56

133
(tαtβ)A

B

P(912)A
α,B β =

1

7
δαβ δ

B
A − 12

7
(tβt

α)A
B +

4

7
(tαtβ)A

B . (2.17)
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Equations (2.13) to (2.17) imply that the fluxes are in the 912 and 56 representations

only. More precisely

FAB
C = XAB

C +DAB
C , (2.18)

with

XAB
C = ΘA

α(tα)B
C with ΘA

α = 7P(912)A
α,B β Ω̃B

β , (2.19)

and

DAB
C = −ϑAδ

C
B + 8P(adj)

C
B
D
AϑD , ϑA = −1

2
(Ω̃DA

D − 3∂A∆) . (2.20)

The fluxes F involve therefore a projection onto the 912 given by the gaugings X plus

contributions from the gaugings ϑ. In the language of gauged supergravity, they corre-

spond to the gauge group generators, i.e. are contractions of the embedding tensor (which

dictates how the gauge group is embedded in the global symmetry group) with the gen-

erators of the global symmetry group [23]. For this reason we will sometimes call them

“gaugings”. The X piece in (2.18) corresponds to the 912 component of the fluxes, and

in terms of the Weitzenböck connection and the quartic invariant reads

XABC = ΩABC − Ω(BC)A + 12KBC
DEΩDEA +

2

3
ωA(BϑC) + 8KABC

DϑD . (2.21)

Using the identities (A.5) of the quartic invariant, one can show that X enjoys the prop-

erties of the 912

P(adj)
C
B
D
E XAD

E = XAB
C , XA[BC] = XAB

B = X(ABC) = XBA
B = 0 , (2.22)

which are the well known conditions satisfied by gaugings in N = 8 maximal supergravity

[32].

The D piece (2.20) contains two terms, one belonging to the 56 in 56×1, and another

belonging to the 56 in 56×133. Notice however, that both terms contain the same degrees

of freedom in terms of ϑ and are therefore not independent.

With these results we are able to express the gauge group generators (FA)B
C as in [35]

FA = ϑAt0 + (ΘA
α + 8ϑB(t

α)A
B)tα . (2.23)
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The so-called intertwining tensor (i.e., the symmetric components of the gauge group

generators) takes the form

ZAB
C = (F(A)B)

C = −1

2
(ΘCα − 16ϑD(t

α)CD)(tα)AB , (2.24)

and therefore takes values in the E7 algebra, as expected [35].

3 Consistency constraints

Closure of the algebra and Leibniz rule of gauge transformations

[Lξ1,Lξ2]ξ
M
3 = L[[ξ1,ξ2]]ξ

M
3 = LLξ1

ξ2ξ
M
3 (3.1)

impose a set of Jacobi-type constraints on the vector fields, which are quadratic in deriva-

tives. We first obtain their general expressions, and then show two different set of solu-

tions, commenting on the relevance of each. Defining

∆123
M = [Lξ1,Lξ2 ]ξ

M
3 − LLξ1

ξ2ξ
M
3 = 0 (3.2)

the closure of the algebra and Leibniz rule can be cast in form

∆[12]3
M = [Lξ1,Lξ2 ]ξ

M
3 − L[[ξ1,ξ2]]ξ

M
3 (3.3)

∆(12)3
M = −L((ξ1,ξ2))ξ

M
3 = L[[ξ1,ξ2]]ξ

M
3 − LLξ1

ξ2ξ
M
3

where

[[ξ1, ξ2]] =
1

2
(Lξ1ξ2 − Lξ2ξ1) (3.4)

is the Exceptional Courant Bracket [8, 10], while the ((ξ1, ξ2)) is given by

((ξ1, ξ2)) =
1

2
(Lξ1ξ2 + Lξ2ξ1). (3.5)

In the following, it is useful to define the invariant [13]

Y Q
M

R
S = δQS δ

R
M +

1

2
δQMδRS − 12P(adj)

Q
M

R
S =

1

2
ωQRωMS − 12P(adj)MS

QR (3.6)
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where in the last equality we have used (A.4). The generalized diffeomorphisms (2.8) can

be written in terms of this operator as

LξV
M = LξV

M + Y M
N

P
Q∂P ξ

QV N (3.7)

where LξV is the ordinary Lie derivative. Therefore, Y can be understood as an object

measuring the departure from usual Riemannian geometry.

A first constraint arising form closure of the gauge algebra states that two successive

gauge transformations should effectively correspond to a unique gauge transformation.

If the first (second) transformation is parameterized by ξ1 (ξ2), the parameter of the

composed transformation is given by the Exceptional Courant Bracket. Explicitly, this is

[[ξ1, ξ2]]
M = ξP[1∂P ξ

M
2] −AM

N
P
Q ∂P ξ

Q
[1 ξ

N
2] +

1

2
∂P ξ

P
[1 ξM2] . (3.8)

Using equation (A.6), the closure condition can be written in the form

∆[12]3
M = Y Q

L
O
I ∂Oξ

I
[2 ξL1] ∂Qξ

M
3

+ AM
N

J
LY

Q
J
O
I ∂Qξ

I
[2 ∂Oξ

L
1] ξ

N
3

+ QM
N

QO
LI ∂Q∂Oξ

I
[2 ξL1] ξ

N
3 = 0 (3.9)

where we have defined

QM
N

QO
LI = Y Q

J
O
(LA

J
I)

M
N +

1

2
ωILY

QMO
N − 1

2
Y Q

L
O
Iδ

M
N . (3.10)

Additionally using

((ξ1, ξ2))
M = Y M

N
P
Q∂P ξ

Q
(1ξ

N
2) (3.11)

the Leibniz rule is written as

−∆(12)3
M = Y Q

L
O
I ∂Qξ(1 ξL2) ∂Oξ

M
3

− QM
N

QO
LI∂Q(ξ

L
(1 ∂Oξ

I
2)) ξ

N
3

− 1

4
ωLIω

QO ∂Qξ
L
1 ∂Oξ

I
2 ξM3 = 0 (3.12)

Equations (3.9) and (3.12) imply that any theory invariant under generalized diffeo-

morphisms will necessarily be a constrained or restricted theory, meaning that the fields
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and gauge parameters will not be generic, but must necessarily obey these differential

conditions. Therefore, these constraints select subset of fields and gauge parameters for

which the theory can be consistently defined.

Notice also that, as shown in [13], the Jacobiator can be written as

J(ξ1, ξ2, ξ3) ≡ [[[[ξ1, ξ2]], ξ3]] + cyclic =
1

3
(([[ξ1, ξ2]], ξ3)) + cyclic (3.13)

so even if non-vanishing, it generates trivial gauge transformations by virtue of (3.12).

We would now like to explore two different set of solutions to the above constraints, and

comment on their relevance for different purposes.

3.1 The section condition

In DFT, there exists a so-called section condition, also known as the strong constraint,

consisting of the following differential operator that must annihilate all fields and gauge

parameters and their products [2]

S = ηmn∂m∂n , (3.14)

where m,n = 1, ..., 2d span the fundamental of O(d, d). In the strong version of the

constraint, each partial derivative acts on a given field. In its weak version, what should

vanish is the second order operator acting on a single field. The result of the strong

constraint is that the fields and gauge parameters no longer depend of the full set of 2d

coordinates, but rather on a d-dimensional section of the space.

The E7 version of the constraint is given by the following operator [10]

SMN = P(adj)MN
QR∂Q∂R , (3.15)

and again in its weak version this whole operator should vanish when acting on a single

field, while in its strong version each derivative hits a different field.

In SL(8) indices4 the 63 and 70 pieces of the strong version of the constraint SM
N = 0

4The decomposition of E7 representations into SL(8) ones is the same as for SU(8) representations,

and these are given in Appendix A
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read (see equation (A.11))

0 = ∂cbA∂caB − 1

8
δba ∂

cdA∂cdB + ∂cbB ∂caA− 1

8
δba ∂

cdB ∂cdA

0 = ∂[abA∂cd]B +
1

4!
ǫabcdefgh ∂

efA∂ghB , (3.16)

for any pair of fields A,B, where a, b, ... = 1, .., 8 are fundamental SL(8) indices. It is not

hard to see that implies that the fields can only depend on 7 out of the 56 coordinates

of the extended space [13]. Indeed, calling these directions â = 1, ..., 7, we get that, up

to E7 rotations, ∂â8 ≡ ∂â, ∂âb̂ = 0, ∂ab = 0 is the only solution to the constraint. This is

precisely how the derivative, which spans a 7-dimensional space for compactifications of

M-theory on 7-dimensional manifolds, is embedded in the fundamental representation of

E7 in Exceptional Generalized Geometry [8].

To make contact with DFT, or equivalently with compactifications of type II theories,

it is useful to use the SL(2) × O(6, 6) subgroup of E7, under which the fundamental

representation breaks according to M = (̂ım, α) where ı̂ = +,− (m = 1, ..., 12) is a

fundamental of SL(2) (O(6, 6)), and α is a spinorial index in the 32 of O(6, 6). The 56

coordinates of the extended space contain therefore two copies of the double torus in DFT

∂±m (which are related by an SL(2) S-duality) plus 32 spinorial directions ∂α.

The different components of the projector onto the adjoint representation are given in

(A.14). In particular, the first one of them gives the following constraint

Sı̂m̂n = −1
2
ǫı̂̂ ∂[+|mA∂|−]nB + 1

12
ηmn∂(̂ı|pA∂|̂)qB ηpq − 1

8
ǫı̂̂ ∂αA [γmn]

αβ ∂βB . (3.17)

The requirements S+m+n = 0, S−m−n = 0 give on one hand that the derivative can only

span one of the two copies of the DFT coordinates (call it +, or electric), and on the other

hand we get exactly the DFT strong constraint (3.14), which implies that the dependence

is only on half of the double coordinates, that we call m = 1, . . . , 6. Using this in the

S+m−n − S−m+n constraint, only the last term in (3.17) survives, and one can see that

the spinorial derivative can only span a two-dimensional (12-dimensional) subspace in

the case of positive (negative) chirality. The former is relevant for compactifications of

type IIA, where D-branes have even dimensionality, while the latter applies to type IIB.

The allowed components of the spinorial derivatives are further reduced by the condition
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S+mα = 0 (where the relevant projector is given in the last line of (A.14)) to a one-

dimensional (zero-dimensional) space in the case of positive (negative) chirality, defined

by the constraint [γm]α
β∂β = 05. In summary, the strong constraint implies that the

dependence is on 6 coordinates only6 ∂+m 6= 0 , plus an extra spinorial coordinate for

the case of positive chirality, which arises in compactifications of type IIA. This extra

coordinate is nothing but the M-theory circle. If one wants to avoid this dependence, an

extra constraint should be supplemented to (3.15).

With this information, we can now show that a possibility to solve the constraints

(3.9) and (3.12) is to restrict the vector fields to depend only on a 7-dimensional slice of

the full mega-space, i.e. constrain them to satisfy the section condition

P(adj)MN
PQ ∂PV

R ∂QU
S = 0 P(adj)MN

PQ ∂P∂QU
S = 0 . (3.18)

Notice that in (3.9) and (3.12) all the derivatives are contracted with the Y tensor defined

in (3.6). When acting on two partial derivatives ∂Q∂R, the last term on the last equality

in (3.6) vanishes due to the section condition. The first term vanishes because the section

condition restricts the derivatives to lie in an isotropic bundle, i.e. to have zero inner

product with respect to the symplectic form. Therefore the section condition implies

Y Q
M

R
S ∂Q∂R = 0 , (3.19)

acting on any two fields, and this in turn guarantees that (3.9) and (3.12) are satisfied.

3.2 Twisted constraints

In [4] it was shown that the section condition is sufficient for the gauge consistency of the

theory, but not necessary. Rather, in particular setups such as the ones discussed below,

it is not hard to see that the constraints (3.9) and (3.12) are weaker than the strong

constraint, and this allows for extended configurations not solving the section condition.

5In the one-to-one correspondence between O(6,6) spinors and forms on the cotangent space T ∗

6M ,

this corresponds to the six-forms.
6This is precisely how the derivative is embedded into an E7 representation for compactifications of

type II theories in EGG [37].
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These weaker conditions apply when the vector fields are required to take the form

V M = EĀ
M(Y ) vĀ (3.20)

with v constant. Note that this is only possible in parallelizable manifolds, so in this

section (as well as in section 5.2), where we use these weaker constraints, we restrict

to this case (i.e. we demand that the extended space is parallelizable). This definition

can be trivially extended to tensors with more indices. This kind of behavior arises

naturally in the context of Scherk-Schwarz compactifications, where the bein plays the

role of a twist, and the vĀ vectors correspond to fields or gauge parameters in the effective

action, and therefore only depend on space-time coordinates (which we are ignoring in

this paper, thus v is constant here). We therefore call the constraints obtained in thee

setups “twisted constraints”. We will show that requiring the vector fields in planar indices

to be constant, equations (3.9) and (3.12) admit solutions that do not necessarily satisfy

the section condition.

Let us now move to closure (3.9) and the Leibniz rule (3.12). Notice that in the

particular case when (3.9) is evaluated on frames, i.e. ξ1 → EĀ, ξ2 → EB̄ and ξ3 → EC̄

∆[ĀB̄]C̄
M = Y Q

L
O
I ∂OE[B̄

I EĀ]
L∂QEC̄

M

+AM
N

J
LY

Q
J
O
I ∂QE[B̄

I ∂OEĀ]
L EC̄

N

+QM
N

QO
LI ∂Q∂OE[B̄

I EĀ]
LEC̄

N (3.21)

and the same for (3.12)

L((EĀ,EB̄))EC̄
M = −∆(ĀB̄)C̄

M . (3.22)

Alternatively one can compute ∆ĀB̄C̄
M using (2.10) directly in terms of FĀB̄

C̄

∆ĀB̄C̄
D̄ =

(

[FĀ, FB̄] + FĀB̄
ĒFĒ

)

C̄
D̄ (3.23)

+2∂[ĀFB̄]C̄
D̄ + AD̄

C̄
Ē
F̄∂ĒFĀB

F̄ − 1

2
∂ĒFĀB̄

ĒδD̄C̄ .

Then the closure and the Leibniz rule are recovered in the form

∆ĀB̄C̄
M = 0. (3.24)
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Notice that if the section condition is imposed the closure and the Leibniz rule are guar-

anteed as noted above. However if we restrict our vectors to take the form (3.20) a weaker

version of the constraints can be considered provided the quadratic constraint (3.23) is

imposed to ensure the consistency of the theory. In the particular case in which the fluxes

are constant, condition (3.23) becomes

[FA, FB] = −FAB
CFC (3.25)

which are precisely the quadratic constraints of maximal supergravity, even with local

scaling symmetry [35](notice that the trace of this equation implies in turn FAB
CϑC = 0).

Let us mention that when the fluxes are expressed in planar indices, they should

transform as scalars. In fact, we find

δξFN̄P̄
M̄ = ξQ̄∂Q̄FN̄P̄

M̄ − ξQ̄∆Q̄N̄P̄
M̄ (3.26)

This actually guarantees that X and ϑ transform as scalars independently. For example,

in the case of ϑ we get

δξϑM̄ = ξN̄∂N̄ϑM̄ − 1

56
ξN̄∆N̄M̄P̄

P̄ . (3.27)

In summary, the constraints (3.24) are the only necessary and sufficient conditions for

consistency of the theory at the classical level when the vectors are restricted as in (3.20).

So, while the relaxed constraints are necessary and sufficient for gauge consistency in this

case, the section condition is only sufficient. In DFT, explicit examples of truly extended

configurations were found in [34], and it would be interesting to find some here as well.

A few words are in order. The section condition is crucial to make contact with 10

or 11-dimensional supergravity, and therefore puts the extended theory in a safe and

controlled place. When relaxed, the connection between this construction and higher

dimensional supergravity is less clear and should be understood better. Configurations

that satisfy the relaxed constraints but not the section condition lie beyond supergravity

compactifications, and are therefore strictly non-geometric (we refer to [34] for a discussion

on these issues). Whether they correspond to allowed configurations in the full string or

M-theory is a question that remains partially unanswered and worth exploring.
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4 A geometry for the extended space

In this section we discuss the covariant derivative on the extended space, seek for a

covariant definition of torsion, and propose a set of conditions that the connection must

satisfy. Later in the following section we will define a generalized Ricci tensor, and

show that under contractions with the generalized metric, the associated Ricci scalar

is completely determined in terms of generalized fluxes, and corresponds to the scalar

potential of maximal supergravity.

Having defined the generalized notion of Lie derivative in (2.8), it is natural to look

for derivatives that behave covariantly under such transformations. We begin by defining

the covariant derivative of a bein E as

∇MEĀ
N = WMĀ

B̄EB̄
N = ∂MEĀ

N + ΓMP
NEĀ

P , (4.1)

in terms of a Christoffel connection Γ, or alternatively a spin connection W . They are

related to the Weitzenböck connection ΩĀ (2.12) taking values in the algebra of R+ ×E7

(see Appendix B). The three connections are related through

WCA
B = ΩCA

B + ΓCA
B . (4.2)

In addition, one can relate the gaugings to the Weitzenböck connection through projec-

tions, as in equation (2.11).

These connections must also transform properly so as to compensate the failure of the

usual derivative to transform as a tensor. Given that the covariant derivative is requested

to transform covariantly, so must the spin connection. Hence, taking into account (4.2),

we see that the Christoffel connection must fail to transform as minus the failure of the

Weitzenböck connection

∆ξΩBC
D = −∆ξΓBC

D , (4.3)

where ∆ξ = δξ − Lξ is defined as in an analogous way as in (3.26), and represents the

failure of an object to transform as a tensor.
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4.1 Generalized connections and torsion

We can define the generalized torsion through [11]

TĀB̄
C̄ ≡ (E−1)M

C̄(L∇
EĀ

−LEĀ
)EB̄

M , (4.4)

where L∇ is defined as in (2.8), but with a partial replaced by a covariant derivative.

Using (4.2) we arrive at

TAB
C = ΓAB

C − 12P(adj)
C
B
P
QΓPA

Q +
1

2
ΓDA

DδCB . (4.5)

A torsionless connection requires this to vanish, which amounts to

ΓAB
C = 12P(adj)

C
B
D
EΓDA

E − 1

2
δCBΓDA

D . (4.6)

Now, acting on this condition with the projector to the adjoint in the last two indices, we

find

P(adj)
G
H

B
CΓAB

C = 12P(adj)
G
H

B
C ΓBA

C , (4.7)

and now plugging this result in (4.6) we find

ΓAB
C = P(adj)

C
B
D
EΓAE

D − 1

2
ΓDA

DδCB , (4.8)

so the trace of the connection measures its failure to take values in the 56 × 133 of E7.

Notice the two traces of the connection are related

ΓAB
B = −28ΓBA

B. (4.9)

Let us now dedicate a few lines to comment on the relation between the trace of the

Christoffel connection and the R
+×E7 measure. Notice that

√
H does not transform as a

density under the generalized diffeomorphisms (2.8), instead the proper measure is given

by (
√
H)−1/28 = e−2∆ since

δξe
−2∆ = ∂P (e

−2∆ξP ) . (4.10)

Partial integration of the covariant derivative in the presence of the R
+×E7 density e−2∆

∫

e−2∆U∇MV M = −
∫

e−2∆V M∇MU (4.11)
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is ensured if

ΓMN
M = −2∂N∆ . (4.12)

which, as we show below, is a consequence of metric compatibility. The torsionless (4.6)

and the trace equations (4.12) imply that the connection takes the form

ΓMN
P = Γ̃MN

P − 24

19
P(adj)

P
N

K
M∂K∆+ ∂M∆δPN , (4.13)

where Γ̃ belongs to the 6480 of 56× 133 (which is traceless). This piece remains unde-

termined here, but a part of it will be fixed by imposing metric compatibility.

We now turn to the analysis of the spin connection W . Using (4.2), (2.15) and (4.13)

one can obtain

WAB
C = Ω̃AB

C + Γ̃AB
C − 24

19
P(adj)

C
B
P
A∂P∆ =

(

Ω̃A
α + Γ̃A

α − 24

19
(tα)A

P∂P∆

)

(tα)B
C .

(4.14)

From this expression we learn on the one hand that the spin connection takes values in

56× 133, and on the other that its trace is proportional to the ϑ gaugings (2.13)

WAB
A = −2ϑB . (4.15)

Knowing that the spin connection belongs to the 56 × 133, we can now act with the

projectors to its irreducible representations, and find

P(912)AB
C ,MN

PWMN
P =

1

7
XAB

C

P(56)AB
C ,MN

PWMN
P = −16

19
P(adj)

C
B
D
AϑD , (4.16)

while the projector to the 6480 just relates it to Γ̃ which is undetermined by the torsionless

condition. Finally let us write explicitly the expression for the torsionless condition in

terms of W , because it will be useful in the following

WAB
C − 12P(adj)

C
B
D
E WDA

E = FAB
C + ϑAδ

C
B . (4.17)
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4.2 Generalized metric compatibility

Another condition we can impose to the connections is compatibility with the generalized

metric H , equation (2.2). The constraint reads

0 = ∇AH
BC ⇒ WA

α(tα)D̄
(B̄H C̄)D̄ = 0 . (4.18)

It is instructive to turn to the SU(8) language. When E7 is broken to SU(8), the

fundamental 56 and adjoint 133 representations break according to

M = 56 = 28+ 28 = (M[ij],M
[ij]) , α = 133 = 63 + 70 = (αi

j , α[ijkl]) , (4.19)

where i, j, · · · = 1, . . . , 8 and the 63 is traceless αi
i = 0. One can then see that metric

compatibility equations (4.18) reduce to

WA
[ijkl] = 0 . (4.20)

Hence the projection of the spin connection to the 70 of 133 must vanish. On the other

hand, metric compatibility leaves the 63 piece of the connection undetermined.

Another consequence of the metric compatibility is Eq. (4.12). This can be proven

taking into account (4.9), the fact that the metric is covanriantly constant (Eq. (4.18))

and the useful formula for the derivative of the determinat

∂AH = −HHBC∂AH
BC , H ≡ detHAB = e2·56∆ (4.21)

Let us also comment on compatibility with E7 invariants. The compatibility with the

symplectic metric is not an additional constraint on the connection, but is automatically

satisfied, in fact

∇MωPQ = −2∂M∆ ωPQ − 2ΓM
[PQ] = 0 , (4.22)

where we have used (4.13). The same holds for the compatibility with the quartic invari-

ant, since

∇MKPQRS = −4∂M∆ KPQRS + 4ΓML
(PKQRS)L = 0 , (4.23)

is automatically satisfied using (A.7).

We summarize the properties of the different connections introduced, as well as that

of the fluxes, in Table 1.
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Ω F W Γ

Name Weitzenböck Fluxes Spin Levi-Civita

Definition (E−1)N
Ā∂MEĀ

P ΩMN
P −AP

N
R

SΩRM
S + 1

2
ΩQM

QδP
N

Ω + Γ ∇− ∂

R
+ × E7 Rep 56+ 912+ 6480 56(D) + 912(X) (56+ 912)(F ) 56+ 6480(Γ̃)

+ 6480

Undetermined −−−− −−−− 6480

(torsionless)

Undetermined −−−− −−−− 56× 63

(Metric comp.)

Table 1: Definitions and properties of the different connections introduced. In parenthesis

we have indicated the name given to the particular representations. “Undetermined (torsion-

less/Meric comp.)” means that the given component is not fixed by the torsionless/metric com-

patibility condition.

5 Generalized Ricci tensor and the scalar potential of

gauged maximal supergravity

The Riemann and torsion tensors are usually defined through the relation

[∇M ,∇N ]VP = −RMNP
LVL − TMN

L∇LVP , (5.1)

with

RMNP
R = ∂MΓNP

R − ∂NΓMP
R + ΓML

RΓNP
L − ΓNL

RΓMP
L , (5.2)

and

TMN
P = ΓMN

P − ΓNM
P . (5.3)

We already discussed a generalized version of torsion, arguing that the usual defini-

tion is non-covariant under generalized diffeomorphisms (2.8). The same happens to the

Riemann tensor and its trace (the Ricci tensor), and then one has to resort to generalized

versions of them. We will now split the discussion in two parts. We will begin with

the definition of a generalized Ricci tensor, that is covariant under generalized diffeomor-

phisms that close under the section condition. Then, we will extend the definition of this

tensor so that it is also covariant under generalized diffeomorphisms that close under the

twisted constraints.
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5.1 Generalized Ricci tensor and the section condition

In this section we will restrict to diffeomorphisms parameterized by vectors obeying the

section condition, defined in Section 3.1.

As we mentioned, under generalized diffeomorphisms (2.8), the generalized Riemann

tensor is not covariant. Using the section condition (3.15) (or its variant (3.19)), we find

∆ξRMNK
L = 2∆ξΓ[MN ]

QΓQK
L , ∆ξΓMP

N = 12P(adj)
N

P
R
S∂M∂Rξ

S − 1

2
∂M∂Qξ

QδPN ,

(5.4)

which in the usual case (i.e. in ordinary general relativity where Y = 0) vanishes due

to vanishing torsion. Notice that for everything to be consistent here, we must have

∆ξΓNM
N = −2∆ξ(∂M∆), and this holds up to terms that vanish under the section con-

dition.

The usual Ricci tensor is defined as

RMN = RMPN
P , (5.5)

and in this case is not symmetric, and fails to transform covariantly as

∆ξRMN = 2∆ξΓ[MQ]
PΓPN

Q . (5.6)

However, note that the vanishing (generalized) torsion condition (4.6) imposes

2Γ[MN ]
Q = −Y Q

N
R
PΓRM

P , (5.7)

and this allows to rewrite

2∆ξΓ[MP ]
QΓQN

P = 2∆ξΓPM
QΓ[NQ]

P . (5.8)

Using this, is it easy to see that the following symmetric object

RMN ≡ 1

2

(

RMN +RNM + ΓRM
P Y R

P
S
Q ΓSN

Q
)

= RNM , (5.9)

is a covariant extension of the Ricci tensor

∆ξRMP = 0 . (5.10)
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This is the natural extension of the DFT definition of Ricci tensor introduced in [17, 19].

Let us conclude this section by noticing that a definition of the generalized Ricci tensor

can be given in terms of covariant derivatives. In fact, after some algebra we find that

[10]

[∇M ,∇P ]V
P +

1

2
∇A(Y

A
M

B
P∇BV

P ) = RMRV
R . (5.11)

Namely, the generalized Ricci tensor can be expressed as a commutator of covariant deriva-

tives plus a term proportional to the invariant Y that, as pointed out above, measures in

some sense the departure from ordinary Riemannian geometry. Interestingly enough, due

to the section condition the operator ∇A(Y
A
M

B
P∇B·) has no second order derivatives.

Moreover, when the Ricci is projected to the space of deformations of the generalized

metric, its undetermined pieces get projected out [10].

5.2 Generalized Ricci tensor and twisted conditions

In this section we assume that all vectors take the form (3.20), and consider diffeomor-

phisms that close under the twisted constraints of Section 3.2.

The starting point is the failure of the Christoffel connection to transform as a tensor

∆ξΓMP
Q = AQ

P
R
S ∂M∂Rξ

S − 1

2
δQP ∂M∂Rξ

R − Y N
M

R
S ΩRL

SΩNP
Q ξL . (5.12)

It can be verified that its trace (4.12) transforms properly, provided the twisted constraints

hold

∆ξΓNM
N −∆ξ(−2∂M∆) = − 1

28
ξP∆PMN

N = 0 . (5.13)

In this case, for the Riemann tensor we get

∆ξRMNK
L =

(

2∆EĀ
Γ[MN ]

QΓQK
L (5.14)

−2 Y T
[M |

R
S ∂REĀ

S ∂TΓ|N ]K
L − 2 Y T

[M |
R
S∂|N ](ΩRĀ

SΩTK
L)

−2 Y T
[M |

R
S ΩRĀ

S
(

ΩTK
OΓ|N ]O

L − ΩT |N ]
OΓOK

L − ΩTO
LΓ|N ]K

O
))

ξĀ .

So again we find that the usual Riemann tensor (i.e. in ordinary general relativity) is not

covariant under the diffeomorphisms that close under the twisted constraints. The same
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happens for the usual Ricci tensor, because tracing the above expression does not solve

the problem

RMN = RMPN
P , ∆RMN = ∆RMPN

P 6= 0 . (5.15)

However, the Ricci tensor can be generalized into a (symmetric) generalized Ricci tensor

by slightly extending the definition (5.9)

RMN ≡ 1

2

(

RMN +RNM + ΓRM
P Y R

P
S
Q ΓSN

Q − ΩRM
P Y R

P
S
Q ΩSN

Q
)

= RNM .

(5.16)

The last term vanishes if the section condition is imposed, which is not the case here.

This term must therefore be added to define a covariant Ricci tensor. The trace of this

term is the analogue of the term added in DFT in [4].

To check the covariance of the generalized Ricci tensor up to twisted constraints, it is

instructive to use planar indices. We first write the Riemann tensor in planar indices

RC̄D̄Ā
B̄ = 2∂[C̄WD̄]Ā

B̄ − 2Ω[C̄D̄]
ĒWĒĀ

B̄ − 2W[C̄|Ā
ĒW|D̄]Ē

B̄ , (5.17)

in terms of which the generalized Ricci tensor (5.16) takes the form

2RĀB̄ = RĀD̄B̄
D̄ +RB̄D̄Ā

D̄ + (W − Ω)D̄Ā
ĒY D̄

Ē
F̄
Ḡ(W − Ω)F̄ B̄

Ḡ − ΩD̄Ā
ĒY D̄

Ē
F̄
ḠΩF̄ B̄

Ḡ .

(5.18)

Using the following identity

Y D̄
Ē
F̄
Ḡ ΩF̄ B̄

Ḡ = FB̄Ē
D̄ − 2Ω[B̄Ē]

D̄ , (5.19)

the generalized Ricci tensor can be recast in the form

2RĀB̄ = 2WĒ(Ā
D̄(W − F )B̄)D̄

Ē +WD̄Ā
ĒY D̄

Ē
F̄
ḠWF̄ B̄

Ḡ − 2WD̄Ē
D̄W(ĀB̄)

Ē

−2∂D̄W(ĀB̄)
D̄ + 2∂(Ā|WD̄|B̄)

D̄ . (5.20)

Here, the first line is manifestly covariant, because (the planar version of) both the spin

connection and the fluxes are covariant, up to the twisted constraints. The covariance

in the second line is less trivial, because derivatives of scalars are only tensors when the

section condition holds

∆ξ(∂Mφ) = Y R
M

P
Q∂P ξ

Q∂Rφ , (5.21)
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which is not an assumption in this section. Notice however, that the last two terms can

be re-written in an explicitly covariant form

− 2∂D̄W(ĀB̄)
D̄ + 2∂(Ā|WD̄|B̄)

D̄ = 2WQ̄N̄
Q̄W(ĀB̄)

N̄ − 8ϑĀϑB̄ − 2∇NV
N

(ĀB̄) , (5.22)

where V N
(ĀB̄) is a tensor defined by

V N
(ĀB̄) = EC̄

NW(ĀB̄)
C̄ + 2E(Ā

NϑB̄) . (5.23)

We finish this section by giving an explicit expression for a covariant generalized Ricci

tensor

2RĀB̄ = 2WĒ(Ā
D̄(W − F )B̄)D̄

Ē +WD̄Ā
ĒY D̄

Ē
F̄
ḠWF̄ B̄

Ḡ − 8ϑĀϑB̄ − 2∇NV
N

(ĀB̄) .(5.24)

When tracing this expression and integrating with the measure to obtain an action, the last

term gives a total derivative and therefore vanishes. We emphasize that this generalized

Ricci tensor was constructed only imposing the twisted constraints, and reduces to (5.9)

if the section condition is imposed.

5.3 Generalized Ricci scalar and scalar potential of maximal su-

pergravity

As we show in the Appendix D, when taking the trace of the generalized Ricci tensor

(5.16) with the generalized metric H

R = H ĀB̄RĀB̄ , (5.25)

the undetermined pieces of the connections drop out, and it can be expressed purely in

terms of fluxes (no constraints are imposed in this derivation). In the particular case of

ϑA = 0, we find

1

4
R =

1

672

(

HADHBEHCFXAB
CXDE

F + 7HABXAC
DXBD

C
)

. (5.26)

Remarkably, this takes the exact same form as the scalar potential of gauged maximal

supergravity [32] if we identify the generalized metric with the moduli space matrix M.
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Note also that this is true for any torsionless and metric-compatible connection, and

the concrete expression of the determined part does not need to be known. In fact, we

never needed to solve for the spin connection, but only used the equation that defines it

implicitly.

Finally, notice that by definition the Ricci scalar transforms indeed as a scalar under

generalized diffeomorphisms

δξR = ξP∂PR . (5.27)

This can also be checked taking into account that the fluxes are covariant provided the

quadratic constraints hold. Combining this with the fact that e−2∆ transforms as a density

(4.10)

δξe
−2∆ = ∂P (e

−2∆ξP ) , (5.28)

we arrive at the action of EFT

S =
1

4

∫

d56Y e−2∆ R, (5.29)

which is invariant under generalized diffeomorphisms (2.8). In Appendix D we provide a

detailed derivation of (5.26). Form (5.29) we can see that in the context of string theory

or M theory, when the section condition holds, e−2∆ can be identified with the measure

of the internal 6 or 7-dimensional manifold

e−2∆ ∝ √
g . (5.30)

6 Summary and outlook

In this work we explored the U-duality covariant framework of extended geometry, focus-

ing on the case of E7, and applied it to describe the moduli space of maximal gauged

supergravity in four dimensions. The extended space is a 56-dimensional mega-space

equipped with a generalized bein taking values in R
+ × E7/SU(8), which can be pa-

rameterized in terms of Type II or M-theory degrees of freedom. The first step in the

construction is the introduction of generalized gauge transformations (or generalized dif-

feomorphisms) (2.8), which unify all the possible gauge transformations of the theory
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inherited from the metric, NSNS and RR forms in Type II strings or from the 3-form in

M-theory.

When the generalized diffeomorphisms act on the bein, one obtains field-dependent

(i.e. non constant) fluxes (2.11), which are in the 56+ 912 irreducible representations of

E7. For consistency, the generalized diffeomorphisms must satisfy a set of conditions, such

as closure of the gauge algebra (3.9). We showed that, as happens in DFT, these constrains

allow for at least two different type of “solutions”. One of them are configurations obeying

the section condition (3.18), which implies that the fields only depend on coordinates

spanning a 7-dimensional slice of the extended space, therefore allowing to make contact

with supergravity and Exceptional Generalized Geometry. In the other type of solutions,

which we call “twisted”, the fields are taken to have a Scherk-Schwarz form, and the

constraints translate into constraints for the fluxes. Interestingly, in the case of constant

fluxes they match the quadratic constraints of maximal supergravity, but more generally

we provide the extension to the case of non-constant fluxes. The advantage of this second

approach is that it allows for truly extended configurations, with dependence on the extra

coordinates. Duality orbits of gaugings allowed in maximal gauged supergravity which are

beyond those coming from conventional compactifications (and their dual configurations)

can be reached in this way.

We then described the geometry of the extended space, starting from a derivative trans-

forming covariantly under generalized diffeomorphisms, and their corresponding Christof-

fel and spin connections. These are not uniquely defined, only a subset of its components

are, via the torsionless and metric compatibility conditions. We summarized the prop-

erties of the different connections in Table 1. The next question is whether a curvature

for the extended space can be defined. Since there seems to be no easy way to define a

covariant generalized Riemann tensor [11], we considered only the Ricci tensor and scalar,

which transform appropriately up to the constraints of the theory. We showed how to

meet these conditions in two different ways. In the first one, the Ricci tensor behaves

appropriately if the section condition is imposed, and it corresponds to the natural gener-

alization of that introduced in the context of Double Field Theory [17, 19] and equals that

of [10] in the context of generalized (R+ × E7(7)) geometry. In the second approach, the
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section condition is relaxed within the context of Scherk-Schwarz-like compactifications,

and we showed that the definition of the Ricci tensor must be further extended so that

it is also covariant up to the twisted constraints (3.24). Up to our knowledge, this is the

first covariant construction of an extended geometry where the section condition is not

imposed.

Finally, we showed that the resulting Ricci scalar matches exactly the scalar potential

of gauged maximal supergravity, provided one associates the generalized metric with the

moduli scalar matrix, the dynamical fluxes are taken to be the constant gaugings, and the

gaugings in the 56 are taken to zero. Although the original expression for the generalized

Ricci scalar (5.16) is a function of the spin connection, which contains undetermined

pieces, we show that these contributions simply drop out, and therefore any torsionless and

metric compatible connection gives the desired Ricci scalar, whatever its undetermined

part is.

Let us finally comment on some interesting questions that remain open, and are worth

exploring in our point of view. It is known that the section condition implies that this

framework is a covariant re-writing of higher-dimensional supergravity compactifications.

In this kind of compactifications only a subset of the gaugings can be reached in the lower

dimensional effective action, and thus the space of gauging orbits is split into those that

can be obtained (geometric) and those that cannot (non-geometric) [34]. Restricting to

Scherk-Schwarz-type backgrounds, this construction does not necessarily use the section

condition, and instead uses the twisted conditions, which are in one to one correspondence

with the constraints of gauged supergravity. Therefore, any orbit of gaugings can be

reached geometrically in this construction, even those that are non-geometric from a

supergravity point of view. Recently there has been much progress in moduli-fixing,

fluxed induced supersymmetry breaking, de Sitter vacua surveys, etc. in the presence of

non-geometric gaugings, and we believe that this framework can shed light on the higher

dimensional uplift of these orbits, as background fluxes on the mega-space. For example,

recently a one-parameter family of new maximal gauged supergravity with SO(8) gauge

group was found [38]. It would be nice to seek for an uplift of these gaugings to the

mega-space considered here.
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Note added: After our work appeared on the ArXiv the preprint [39], with substantial

overlap with our sections 4 and 5, was uploaded.
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A Useful E7 identities

The e7(7) algebra with generators (tα)M
N where α = 1, . . . , 133 is an index in the adjoint

133, and M,N, · · · = 1, . . . , 56. The indices are raised and lowered with the symplectic

Sp(56) ⊃ E7 metric ωMN according to the conventions (2.5). With this in mind, the

adjoint of E7 is symmetric (tα)(MN).

The symplectic metric ωMN is left invariant by E7 transformations, as is the quartic

invariant KMNPQ. Contracting two generators, we can define a projector to the adjoint

representation

P(adj)MNPQ = (tα)MN(t
α)PQ =

1

12
ωM(PωQ)N +KMNPQ , (A.1)

satisfying the useful identities

P(adj)
M

N
P
Q P(adj)

Q
P
R
S = P(adj)

M
N

R
S , P(adj)

M
N

N
M = 133 (A.2)

P(adj)MN
PQ = P(adj)(MN)

(PQ) = P(adj)
PQ

MN , (A.3)

and

P(adj)M
K

N
L =

1

24
δKMδLN +

1

12
δLMδKN − 1

24
ωMNω

KL + P(adj)MN
KL . (A.4)
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Also, using (A.2) one can show

KMN
PQKMNKL = −5

6
KPQKL − 11

12× 12
ωP (KωL)Q . (A.5)

A very useful identity to show the relation between the relaxed constraints and the section

condition is

12P(adj)
(MN

QTP(adj)
P )T

RS − 4KMNPTP(adj)TQRS + P(adj)
(MN

RSδ
P )
Q = 0 , (A.6)

and the final useful properties we used in the paper are

(tβ)M
Q(tα)Q

P (tβ)P
N =

7

8
(tα)M

N , (tα)L
(PKQRS)L = 0 . (A.7)

A.1 SU(8) subgroup

The maximal compact subgroup of E7 is SU(8). When E7 is broken to SU(8), the

fundamental 56 and adjoint 133 representations break according to

M = 56 = 28+ 28 = ([ij],
[ij] ) , α = 133 = 63+ 70 = (i

j,[ijkl] ) , (A.8)

where i, j, · · · = 1, . . . , 8 and the 63 is traceless i
i = 0.

The 133 generators of E7 break into 63 and 70 generators, respectively [35]

(ti
j)mn

kl = −δj[mδ
kl
n]i −

1

8
δji δ

kl
mn = −(ti

j)klmn

(tijkl)mnpq =
1

24
ǫijklmnpq , (tijkl)

mnpq = δmnpq
ijkl , (A.9)

with Cartan-Killing metric

κm
n,p

q = 3(δqmδ
n
p − 1

8
δnmδ

q
p) , κijkl,mnpq =

1

24
ǫijklmnpq . (A.10)

The projection to the adjoint in the product 56× 56 reads

(V · V̂ )i
j = (V kjV̂ki −

1

8
δjiV

klV̂kl) + (V̂ kjVki −
1

8
δji V̂

klVkl) (A.11)

(V · V̂ )ijkl = −3(V[ijV̂kl] +
1

4!
ǫijklmnopV

mnV̂ op) .
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A.2 SL(2)× O(6, 6) subgroup

The fundamental 56 representation of E7 splits according to its SL(2)×O(6, 6) subgroup

as follows

56 = (2, 12)⊕ (1, 32)

M = (̂ım) ⊕ α , (A.12)

where ı̂ = +,− is a fundamental SL(2) index, m an O(6, 6) index, and α is an O(6, 6)

Majorana-Weyl spinor index.

The symplectic metric decomposes as

ΩMN =





ǫı̂̂ηmn

Cαβ



 , ǫı̂̂ =





0 −1

1 0



 , ηmn =





0 1

1 0



 . (A.13)

The different components of the projector onto the 133 representation read [36]

P(adj) ı̂m̂n
k̂pl̂q = −1

2
ǫı̂̂ ǫ

k̂l̂ δpqmn +
1
12
δ
(k̂
ı̂ δ

l̂)
̂ ηmn η

pq

P(adj) ı̂m̂n
αβ = −1

8
ǫı̂̂ [γmn]

αβ

P(adj)αβ
γδ = − 1

32
[γmn]αβ [γmn]γδ

P(adj) ı̂mα
̂nβ = 1

24
δ̂ı̂

(

[γm
n]α

β + δm
n δα

β
)

.

(A.14)

B The Weitzenböck connection and the algebra

Given an element E of E7

E = exp(φαtα) , (B.1)

where tα are the generators of G

[tα, tβ] = fαβ
γtγ , (B.2)

the Weitzenböck connection, defined as

ΩMN
P = −∂M (E−1)N

Q EQ
P , (B.3)
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is an element of the algebra of G. This can be easily seen by use of the identity

∂MeX .e−X = ∂MX +
1

2!
[X, ∂MX ] +

1

3!
[X, [X, ∂MX ]] + . . . . (B.4)

A quick computation shows that

ΩMN
P = ΩM

α(tα)N
P , (B.5)

with

ΩM
α = ∂Mφα − 1

2!
fσβ

αφσ∂Mφβ +
1

3!
fµρ

σfβγ
ρφµφβ∂Mφγ − . . . (B.6)

C Representations, projectors and generalized diffeo-

morphisms

In this Appendix we first present the projectors onto the irreducible representations in

the tensor product of the fundamental with the adjoint representation of an arbitrary

simple group G, following the appendix of [23]. Related expressions and useful identities

can be found in [31]. We will then show how this sheds light in the interpretation of the

coefficients appearing in the structure of generalized diffeomorphisms, in terms of group

theoretical quantities.

C.1 Representations and Projectors

For any simple group (with the exception of E8), the product of a fundamental repre-

sentation D(Λ) times the adjoint decomposes in the direct sum of D(Λ) plus two other

representations, D1 and D2, with dim(D1) < dim(D2),

D(Λ)×Adj(G) → D(Λ) +D1 +D2 . (C.1)

This is also true for orthogonal groups by replacing the fundamental representation by

the spinor representation. Supersymmetry requires

FMN
P ∈ D(Λ) +D1 , (C.2)
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and therefore it is useful to construct projectors onto these representations.

Let us call dΛ = dim(D(Λ)), d = dim(G), and {tα} (α = 1, . . . , d) the generators of G

in the D(Λ) representation. Furthermore, let Cθ, CΛ be the Casimirs of the adjoint and

fundamental representations, respectively. The invariant matrix ηαβ = Tr(tαtβ) is used to

rise and lower the adjoint indices, and is related to the Cartan-Killing metric καβ by

καβ =
d

CΛdΛ
ηαβ . (C.3)

Using the definition of the Casimir operator, CΛ 1dΛ = καβt
αtβ, we have the following

relation

fαβ
γ fαβ

σ = − d

dΛ
Cr δ

γ
σ , with Cr =

Cθ

CΛ

=
dΛ
d

g∨

ĨΛ
, , (C.4)

where g∨ is the dual Coxeter number and ĨΛ is the Dynkin index of the fundamental

representation. In the simply laced case we have additionally

Cr =
dΛ
d

(

d

r
− 1

)

1

ĨΛ
, (C.5)

with r the rank of G.

Denote the projectors on the representations in (C.1) by P(D(Λ)), P(D1), P(D2). These

are orthonormal, i.e.

P(X)M
αP

γ P(Y )P
γN

β = δXY P(X)M
αN

β , (C.6)

and sum to the identity on D(Λ)×Adj(G). These three projectors can be expressed in

terms of three independent objects, namely:

P(D(Λ))M
αN

β =
dΛ
d

(tαtβ)M
N ,

P(D1)M
αN

β = a1 δ
α
β δM

N + a2 (tβt
α)M

N + a3 (t
αtβ)M

N ,

P(D2)M
αN

β = (1− a1) δ
α
β δM

N − a2 (tβt
α)M

N − (dΛ/d+ a3) (t
αtβ)M

N , (C.7)

where

a1 =
dΛ (4 + (Cr − 4)d)) + d1 ((Cr − 2)d− 2))

(10 + d(Cr − 8) + d2(Cr − 2)) dΛ
,

a2 = −2 (4 + (Cr − 4)d)) ((d− 1)dΛ − 2d1)

(10 + d(Cr − 8) + d2(Cr − 2))Crd
,
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G g∨ dΛ ĨΛ d1 a1 a2 a3

Ar r + 1 r + 1 1
2

1
2
(r − 1)(r + 1)(r + 2) 1

2
−1

2
− 1

2r

Br 2r − 1 2r + 1 1 1
3
r(4r2 − 1) 1

3
−2

3
0

Br 2r − 1 2r 2r−3 2r+1 r 2
2r−1

−2r−1 1
2r−1

2r−1 2r−7
4r2−1

Cr r + 1 2r 1
2

8
3
r(r2 − 1) 2

3
−2

3
− 2

1+2r

Dr 2r − 2 2r 1 2
3
r(2r2 − 3r + 1) 1

3
−2

3
0

Dr 2r − 2 2r−1 2r−4 2r−1 (2r − 1) 1
r−1

−2r−3 1
r−1

2r−3 (r−4)
r (r−1)

G2 4 7 1 27 3
7

−6
7

− 3
14

F4 9 26 3 273 1
4

−3
2

1
4

E6 12 27 3 351 1
5

−6
5

3
10

E7 18 56 6 912 1
7

−12
7

4
7

Table 2: Coefficients needed to construct the projectors for all simple algebras except E8.

a3 =
−dΛ (4 + (Cr − 4)d)) (2 + (Cr − 2)d) + d1 (16(d− 1)− 10(d− 1)Cr + C2

r d)

(10 + d(Cr − 8) + d2(Cr − 2))Crd
,

with d1 = dim (D1). Moreover, d1 is determined to be

d1 =
dΛ
2

[

d− 1 +

√
Cr (10 + d(Cr − 8) + d2(Cr − 2))

√

256(d− 1) + Cr(100 + 4d(5Cr − 38) + (Cr − 2)2d2)

]

. (C.8)

In table 2, taken from [23], we give these coefficients for all simple Lie algebras except E8

(for which the relevant projectors have been computed in [33]).

C.2 Generalized diffeomorphisms

Let us show how these results shed light on the general structure of generalized diffeomor-

phisms, equation (2.8), in particular why is the proportionality coefficient between the

tensor A and the projector to the adjoint representation equal to 12 for E7 (see equation

(2.9)), and what it would be for other groups. Let us write the generalized diffeomor-

phisms (2.8) in the generic form, as in [13]

LξV
M = ξP∂PV

M − αP(adj)
M

N
P
Q∂P ξ

QV N +
ω

2
∂P ξ

PV M , (C.9)
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where α is some group-dependent constant, and the projector to the adjoint is given in

(2.9). Restricted to orthogonal frames EĀ, these transformations must reproduce the

embedding tensor components that are compatible with supersymmetry, i.e., the D(Λ)+

D1 components, and project out the remaining representation D2. Let us set ω = 0 for

the moment, i.e., let us assume that the global symmetry group has no R
+ component

(later we will restore ω). In this case we find

FMN
P = EĀ

MEB̄
NLEĀ

EB̄
P = ΩMN

P − αP(adj)
P
N

K
LΩKM

L . (C.10)

As we showed in (B), the Weitzenböck connection Ω takes values in the fundamental times

the adjoint of the global symmetry group, so

FMN
P = FM

α(tα)N
P , (C.11)

with

FM
α = QM

α,N βΩN
β , QM

α,N β = δNMδαβ − α(tβt
α)M

N . (C.12)

The coefficient α must then be fixed in such a way that the tensor QM
α,N β is a linear

combination of the projectors to D(Λ) +D1. We find

QM
α,N β =

1

a1
P(D1)M

αN
β −

a3
a1

d

dΛ
P(D(Λ))M

αN
β , (C.13)

provided

α = −a2
a1

=
2dΛ (4 + (Cr − 4)d)) ((d− 1)dΛ − 2∆)

[dΛ (4 + (Cr − 4)d)) + d1 ((Cr − 2)d− 2))]Crd
, (C.14)

corresponding in particular to α = 12 in E7, as stated in equation (2.9).

Let us now see how the coefficient ω can be fixed. A possibility is to demand that

the intertwining tensor (i.e. the symmetric part of the gauge group generators F(MN)
P )

takes values in the algebra of the global symmetry group without the R
+, as explained in

[35]. Here we work out the E7 case, but the other cases follow analogously. For a generic

value of ω, we can compute the general form of the symmetric part of the gauge group

generators, which reads

F(MN)
P = −ωϑ(MδPN) + (tα)(M

PΘN)
α + 8ϑQP(adj)

Q
(M

P
N) . (C.15)
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We can now use the relation (A.4), together with the fact that the 912 satisfies

(tα)(M
PΘN)

α = −1

2
(tα)MNΘ

Pα , (C.16)

to show that (C.15) can be written as

F(MN)
P = (1− ω)ϑ(MδPN) −

1

2
(ΘPα − 16ϑQ(t

α)PQ)(tα)MN . (C.17)

Here the first term measures the failure of the intertwining tensor to take values in the

algebra of E7, and in order to cancel it we must take

ω = 1 . (C.18)

This procedure can be repeated for any other group analogously.

In supersymmetric theories, the representation D2 is projected out from the embed-

ding tensor through a linear constraint. Given that the projectors are normalized to add

to unity, the projectors to D(Λ) and D1 contain information about the projector to D2.

This means that the coefficient α carries information about supersymmetry. The linear

constraint is automatically engineered in the definition of the generalized Lie derivative

through (C.13), which is therefore consistent with (and encodes information of) super-

symmetry.

Let us conclude this section to see how the generalized diffeos of Double Field Theory

and usual Riemannian geometry arise as particular examples of these generalized expres-

sions. For DFT, with gauge group O(d, d), the generators and projector to the adjoint

are given by

(t[MN ])P
Q = ηP [MδQN ] , P(adj)

M
N

P
Q =

1

2
(δPNδ

M
Q − ηMPηNQ) , (C.19)

and we have α = 2, so

LξV
M = ξP∂PV

M − 2P(adj)
M

N
P
Q∂P ξ

QV N = ξP∂PV
M + (∂MξP − ∂P ξ

M)V P , (C.20)

which matches the expression of [2]. For usual Riemannian geometry, we have the group

GL(d) with generators and projector to the adjoint

(tM
N)P

Q = δQMδNP , P(adj)
M

N
P
Q = δQMδNP , (C.21)
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and we have α = 1, so

LξV
M = ξP∂PV

M − P(adj)
M

N
P
Q∂P ξ

QV N = ξP∂PV
M − ∂P ξ

MV P , (C.22)

which is the usual Lie derivative.

D The scalar potential from extended geometry

Here we show how the trace of the generalized Ricci tensor (5.20)

2RĀB̄ = 2WĒ(Ā
D̄(W − F )B̄)D̄

Ē +WD̄Ā
ĒY D̄

Ē
F̄
ḠWF̄ B̄

Ḡ − 8ϑĀϑB̄ − 2∇NV
N

(ĀB̄) ,(D.1)

introduced in Section 5 gives the scalar potential of maximal supergravity (5.26). To

prove this we will use the following assumptions:

• The spin connection is torsionless (4.17)

WAB
C − 12P(adj)

C
B
D
E WDA

E = FAB
C + ϑAδ

C
B . (D.2)

From here it is also clear that it belongs to the 56 × 133 representation WAB
C =

WA
α(tα)B

C . This also implies that the trace is given by

WBA
B = −2ϑA . (D.3)

• The spin connection is generalized metric compatible (4.18)

WAE
CHBE = −WAE

BHCE . (D.4)

Under these assumptions we will show here that the generalized Ricci scalar equals the

scalar potential of maximal supergravity. Let us emphasize that we will not solve equations

(D.2) nor (D.4), instead we will only use them as implicit equations.

The Ricci scalar is defined as

R = H ĀB̄RĀB̄ , (D.5)
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and it is convenient to split it as

R = R0 − 4H ĀB̄ϑĀϑB̄ −H ĀB̄∇NV
N
ĀB̄ , (D.6)

where

R0 =
1

2
H ĀB̄WD̄Ā

Ē(2WB̄Ē
D̄ + Y D̄

Ē
F̄
ḠWF̄ B̄

Ḡ)−H ĀB̄WĒĀ
D̄FB̄D̄

Ē . (D.7)

In R0, the Y can be decomposed as in (3.6) and then using the torsionless condition (D.2)

together with the trace of the spin connection (4.15) one obtains

R0 = −1

2
H ĀB̄WĒĀ

D̄FB̄D̄
Ē +

1

2
H ĀB̄(WD̄Ā

ĒWĒB̄
D̄ +WĒĀ

D̄WB̄D̄
Ē) , (D.8)

where last two terms vanish due to metric compatibility (D.4). We can now use the

decomposition of the fluxes F as in (2.18), (2.19) and (2.20) to obtain

R0 = −1

2
H ĀB̄WD̄Ā

Ē(XB̄Ē
D̄ + 8P(adj)

D̄
Ē
F̄
B̄ϑF̄ − ϑB̄δ

D̄
Ē ) . (D.9)

When the projector acts on the spin connection, one can use again the torsionless condition

(D.2) and metric compatibility (D.4) to re-cast this expression in the form

R0 = −1

2
H ĀB̄

(

WD̄Ā
ĒXB̄Ē

D̄ +
8

3
ϑĀϑB̄ − 2

3
FĀB̄

F̄ϑF̄

)

. (D.10)

Now plugging this in (D.6) we get

R = −1

2
H ĀB̄

(

WD̄Ā
ĒXB̄Ē

D̄ +
32

3
ϑĀϑB̄ − 2

3
FĀB̄

F̄ϑF̄

)

−H ĀB̄∇NV
N

(ĀB̄) . (D.11)

Here, the first term can be treated as follows. First, we use the fact that the last two

indices of X project the corresponding indices of W into the adjoint

XB̄Ē
D̄ WD̄Ā

Ē = XB̄Ē
D̄ P(adj)

D̄
Ē
F̄
Ḡ WF̄ Ā

Ḡ , (D.12)

and using the torsionless condition (D.2) one obtains

− 1

2
H ĀB̄WD̄Ā

ĒXB̄Ē
D̄ = −1

4
H ĀB̄(XB̄F̄

ḠWĀḠ
F̄ −XB̄F̄

ḠFĀḠ
F̄ ) . (D.13)

Finally, the first term here can be massaged by explicitly extracting a projector to the

912 from X

H ĀB̄ XB̄F̄
Ḡ WĀḠ

F̄ = H ĀB̄ P(912)B̄F̄
Ḡ,M̄N̄

P̄ XM̄N̄
P̄ WĀḠ

F̄ , (D.14)
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and exploiting the fact that the projector is invariant under rotations with the generalized

metric

P(912)ĀB̄
C̄ ,M̄N̄

P̄H
Ā
Ā′H B̄

B̄′HC̄
C̄′

HM̄
M̄ ′

HN̄
N̄ ′

H P̄
P̄ ′ = P(912)Ā′B̄′

C̄′

,M̄
′N̄ ′

P̄ ′ , (D.15)

after some algebra one obtains the final result

1

4
R =

1

672

[

H ĀD̄H̄ B̄ĒHC̄F̄XĀB̄
C̄XD̄Ē

F̄ + 7H ĀB̄XĀC̄
D̄FB̄D̄

C̄
]

−4

3
H ĀB̄ϑĀϑB̄ +

1

12
H ĀB̄FĀB̄

F̄ϑF̄ − 1

4
H ĀB̄∇NV

N
(ĀB̄) . (D.16)

Being expressed purely in terms of fluxes, we see that the undetermined pieces of the

spin connection dropped out. Remarkably, this takes the exact same form as the scalar

potential of gauged maximal supergravity [32] if we identify the generalized metric with

the moduli space metric M and take the gaugings in the 56 to vanish

1

4
R =

1

672

[

H ĀD̄H̄ B̄ĒHC̄F̄ XĀB̄
C̄ XD̄Ē

F̄ + 7H ĀB̄ XĀC̄
D̄ XB̄D̄

C̄
]

. (D.17)

Note also that this is true for any torsionless and metric-compatible connection, and

the concrete expression of the determined part does not need to be known. In fact, we

never needed to solve for the spin connection, but only used the equation that defines it

implicitly.

Finally, let us mention that the factor 7 in the scalar potential comes form a projec-

tion of the spin connection into the space of fluxes (4.16). It is known that it is fixed

by supersymmetry [32], so one can wonder where does supersymmetry arise in all this

analysis. This factor is actually 1/a1 in the language of Appendix C, and it is set by

supersymmetry in an indirect way. As we explained in Appendix C, the projectors to the

irreducible reps of the direct product of the fundamental and the adjoint are normalized

to add up to unity. Since supersymmetry projects out some reps through a linear con-

straint, the remaining are normalized in such a way that they capture information about

supersymmetry and this is exactly how this coefficient is obtained here.
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