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ABSTRACT

We test whether or not the orbital poles of the systems in the solar neighbourhood are isotropically distributed on the celestial sphere.
The problem is plagued by the ambiguity on the position of the ascending node. Of the 95 systems closer than 18 pc from the
Sun with an orbit in the 6th Catalogue of Orbits of Visual Binaries, the pole ambiguity could be resolved for 51 systems using
radial velocity collected in the literature and CORAVEL database or acquired with the HERMES/Mercator spectrograph. For several
systems, we can correct the erroneous nodes in the 6th Catalogue of Orbits and obtain new combined spectroscopic/astrometric orbits
for seven systems [WDS 01083+5455Aa,Ab; 01418+4237AB; 02278+0426AB (SB2); 09006+4147AB (SB2); 16413+3136AB;
17121+4540AB; 18070+3034AB]. We used of spherical statistics to test for possible anisotropy. After ordering the binary systems
by increasing distance from the Sun, we computed the false-alarm probability for subsamples of increasing sizes, from N = 1 up to
the full sample of 51 systems. Rayleigh-Watson and Beran tests deliver a false-alarm probability of 0.5% for the 20 systems closer
than 8.1 pc. To evaluate the robustness of this conclusion, we used a jackknife approach, for which we repeated this procedure after
removing one system at a time from the full sample. The false-alarm probability was then found to vary between 1.5% and 0.1%,
depending on which system is removed. The reality of the deviation from isotropy can thus not be assessed with certainty at this stage,
because only so few systems are available, despite our efforts to increase the sample. However, when considering the full sample
of 51 systems, the concentration of poles toward the Galactic position l = 46.0◦, b = 37◦, as observed in the 8.1 pc sphere, totally
vanishes (the Rayleigh-Watson false-alarm probability then rises to 18%).

Key words. binaries: visual – binaries: spectroscopic – techniques: radial velocities – techniques: high angular resolution –
methods: statistical – solar neighborhood

1. Introduction

In 1838, Mädler announced the probable existence of an anas-
tonishing phenomenon related to the orbital plane of visual dou-
ble stars: they seem to be aligned with each other. This phe-
nomenon has received quite some attention since then, but the
most earliest studies that was based on data secured with old
observational techniques and equipments, did not bring signif-
icant progress. In the years 1950–1967, Dommanget (with the
assistance of Nys) re-investigated the question after collect-
ing all available data needed to perform the first study based
on a sample of orbits for which the orbital poles were deter-
mined unambiguously. This research (Dommanget 1968), up-
dated in 1982–1987 (Dommanget 1988), confirmed Mädler’s
suspicion that the orbital poles of visual binaries in the solar
neighbourhood do not seem to be oriented isotropically, but
rather seem to cluster around the positions (l, b) ∼ (100◦,−15◦)
and (280◦,+15◦). This claim was based on a limited number
of objects (8 systems within 10 pc of the Sun and 70 systems

� Tables 1–3 and Appendices are available in electronic form at
http://www.aanda.org
† Deceased October 1, 2014.

up to 25 pc), and was not subject to any analysis of its statis-
tical significance. It was later confirmed by Glebocki (2000),
who found that the poles of 19 systems within 10 pc of the
Sun are concentrated around positions near (l, b) ∼ (110◦,−10◦)
and (−115◦,−5◦), although the global distribution of 252 sys-
tems is isotropic. An historical overview of all these studies may
be found in Dommanget (2014).

In this paper, we present the results of a new research con-
ducted since 2005 within the framework of a collaboration be-
tween professional astronomers and amateur astronomers that
are members of the Double Stars Committee of the Société
Astronomique de France1.

Following the suggestion of Dommanget & Nys (2006), we
re-investigated the question by concentrating on a very local data
set. Moreover, to the best of our knowledge, it seems that the
most recent list of orbital poles dates back to Batten (1967).
Because the more recent studies did not publish the data sets on
which they were based and because of the rapid increase of the
number of available orbits, we feel the necessity to collect such
data, and provide an updated list of orbital poles for binaries
within 18 pc of the Sun.

1 http://saf.etoilesdoubles.free.fr/
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As already noted by Finsen (1933) and Dommanget (1968,
1988, 2005), a severe pitfall awaits the researcher on this topic:
the ambiguity in the position of the ascending node, which, if
not correctly assessed (Sect. 2), may ruin the distribution of the
poles on the sphere.

To avoid this problem and establish a valid statistical ma-
terial, we have first a) assembled a list of known visual binary
orbits in the vicinity of the Sun for which a set of consistent and
accurate radial-velocity measurements is available for solving
the ambiguity of the orbital ascending node; and then b) com-
puted the Galactic positions of the orbital poles of all systems
for which the ambiguity of the orbital ascending node has been
solved.

At first sight, some large-scale coherence in the process of
binary formation might imply a non-random orientation of the
poles on the celestial sphere. However, such a large-scale co-
herence is not expected to last after the coeval association has
dissolved, since at any given time in the history of the Galaxy,
stars in a given volume emanate from very different birth places
and times, and their presence in a given volume is a momentary
event. Therefore, given these potentially important (and prob-
lematic) consequences, any deviation from isotropy in the pole
distribution should be firmly established before embarking on
any physical discussion on the above questions.

In this new research, emphasis has been place on

– increasing the sample size with regard to previous studies;
– using dedicated tests to evaluate the statistical significance of

any deviation from isotropy in the distribution of the orbital
poles;

– analysing the evolution, as a function of the volume sampled,
of such possible deviations from isotropy;

– discussing these results from the standpoint of Galactic
kinematics.

This paper is structured as follows: in Sect. 2, we briefly re-
call the problem of unambiguously determining of the direction
of the orbital pole, all mathematical details being provided in
Appendix B. The master list of selected systems is presented
in Sect. 3. For 51 systems up to 18 pc from the Sun, the dis-
tribution of the orbital poles on the sky is presented in Sect. 4.
This section describes the available statistical tools used to anal-
yse this distribution, and some indications about its degree of
anisotropy are given. Possible selection effects in our sample is
discussed in Sect. 5. The problem of possible orbital coplanarity
in multiple systems is briefly discussed in Sect. 6. Section 7 dis-
cusses the question of the orientation of the orbital poles in the
framework of Galactic kinematics. Conclusions and perspectives
are given in Sect. 8. In Appendix A, notes are given on indi-
vidual systems, along with new radial-velocity measurements
used in the present study and, in several cases, new combined
astrometric-spectroscopic orbits that resulted. In Appendix B,
we recall the conventions adopted to define the relative orbit of
a binary star, and we describe the method used to determine the
ascending node and the direction of the orbital pole without any
ambiguity.

2. Unambiguous determination of the orbital pole
of a binary

The spatial orientation of the orbital planes of double stars is
studied based on the knowledge of the orientation of their orbital
poles.

It is well known that an essential problem in this type of
study is that the oriention of the orbital pole is ambiguous for
visual and astrometric binaries because two true orbits are com-
patible with the apparent orbit calculated from the astrometric
observations: although the orbital inclination i is unambiguously
determined, it is impossible to distinguish between the two pos-
sible values of the position angle Ω of the ascending node. The
problem can only be solved if radial-velocity measurements are
available for at least one component of the system. Then, two
scenarios may occur:

i) for spectroscopic binaries resolved as visual or astrometric,
the ascending node is immediately known unambiguously;

ii) for visual or astrometry binaries for which radial-velocity
measurements are available, the correct ascending node may
be selected by comparing the trend of the measured radial
velocities with the slope of the relative radial velocity curve
computed from the orbit.

The conventions used in defining of the relative orbit of a binary
as well as the details on the method used to solve the ambiguity
of the ascending node and computating of the orientation of the
orbital pole in Galactic coordinates are given in the Appendix B.

3. Data

The selection of the 95 systems in the master sample presented
in Tables 1 and 2 was based on the availability of a visual or
an astrometric orbit in the 6th Catalog of Orbit of Visual Binary
Stars at USNO (6th COVBS2, Hartkopf et al. 2001) and of a
Hipparcos parallax (ESA 1997) larger than 50 mas3. Table 1
lists various identifiers for the systems, such as their designations
in the WDS (J2000 coordinates and the component designation
taken in the 6th COVBS), CCDM, HIP or HIC, HD and SB9 (the
9th Catalogue of Spectroscopic Binary Orbits4), catalogs, and
the discoverer name. Table 2 lists various physical data for the
systems identified by their WDS designation (Col. 1). The par-
allax (Col. 2) is for all HIP entries from the revised Hipparcos
Catalogue (van Leeuwen 2007), or from the paper listing the or-
bit otherwise. The spectral type (Col. 3) is generally taken from
the Simbad database at the Centre de Données Astronomiques
de Strasbourg (CDS; Genova et al. 2000). Columns 4 (orbital
period), 5 (orbital semi-major axis), 6 (total mass of the sys-
tem), 7 (mass ratio), 8 (Grade of the orbit) and 9 (reference
of visual orbit) come from the 6th COVBS, or are directly de-
rived from the catalogue data (the total mass of each system –
Col. 6 – is computed from the orbital elements and the parallax
using the third Kepler law), with the exception of the mass ratio
(Col. 7), which is listed when available from SB2 or astrometry.
Column 10 (“S.Orb”) lists either the reference of the spectro-
scopic orbit used to lift the ascending-node ambiguity, or “New”
if the spectroscopic orbit has been computed in the present paper
(see Appendix A), or “VD” if only the radial-velocity drift was
used to lift the ambiguity, or “SD” if the sign of the velocity dif-
ference Vr(B) – Vr(A) was used to lift the ambiguity. Column 11,
labelled “A”, contains a flag indicating whether the system has
(or not) been considered in the final analysis: Y stands for yes,

2 http://ad.usno.navy.mil/wds/orb6.html
3 See also Kirkpatrick et al. (2012), who recently compiled an exhaus-
tive list of stars nearer than 8 pc from the Sun, and Raghavan et al.
(2010), who collected orbits for visual binaries with Hipparcos paral-
laxes larger than 40 mas and with primary spectral types F6-K3 (their
Table 11).
4 http://sb9.astro.ulb.ac.be/intro.html
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NO stands for “no reliable visual orbit”, NV stands for “no ra-
dial velocities”, ND stands for “no visible drift in the veloci-
ties”, because either the period is too long or the velocities too
inaccurate, and IC stands for inconclusive analysis. For systems
with a combined visual and spectroscopic solution computed by
Pourbaix (2000), the orbital elements were adopted without an
additional verification because the method naturally lifts the am-
biguity on the ascending node. The last column of Table 2 iden-
tifies systems with an explanatory note (“n”) in Appendix A and
triple or higher-multiplicity systems noted (“t”).

Radial-velocity measurements were searched for in the lit-
erature and among unpublished measurements obtained with
the CORAVEL spectrovelocimeter (Baranne et al. 1979). A few
more radial velocities were obtained especially for this purpose
with the HERMES spectrograph installed on the Mercator 1.2 m
telescope (Raskin et al. 2011). In the end, 51 systems from the
master list comprising 95 binaries (Table 2) have radial veloci-
ties available that enable lifting the ambiguity on the ascending
node. Hence the number of systems used in our analysis drops
from 95 to 51, and the systems analysed all have d < 18 pc.

For each system, the ambiguity on the ascending node was
solved using one of the methods described in Appendix B.3.
The orbital pole orientation was been computed following the
method of Appendix B.4. In several cases, the radial velocities
collected from the HERMES spectrograph (Raskin et al. 2011)
or from the CORAVEL database (Table A.1) enable comput-
ing a new or updated spectroscopic binary orbit, as listed in
Tables A.2 and A.3. These solutions were computed by combin-
ing the astrometric and spectroscopic data, following the method
described by Pourbaix (2000). The orbital solutions are drawn in
Figs. A.2–A.8.

The positions of the orbital poles are listed in Table 3. The
column “Notes” identifies the entries for which a comment is
provided in Appendix A.

References to visual and spectroscopic orbits listed in Table 2:

A1918b : Aitken (1918); Abt2006: Abt & Willmarth (2006); AST1999:
Franz et al. (1999); AST2001: Benedict et al. (2001); B1960c:
van den Bos (1960); Bag2005: Balega et al. (2005); Baz1980b:
Baize (1980); Chg1972: Chang (1972); CIA2010: Farrington et al.
(2010); Cou1960b: Couteau (1960); Doc1985c: Docobo & Costa
(1985); Doc2008d: Docobo et al. (2008); Doc2010d: Docobo &
Ling (2010); Dom1978: Dommanget (1978); Dru1995: Drummond
et al. (1995); Duq1991b: Duquennoy et al. (1991); Egg1956: Eggen
(1956); Egn2008: Eggenberger et al. (2008); Fek1983: Fekel & Tomkin
(1983); FMR2008b: Rica Romero (2008); Frv1999: Forveille et al.
(1999); Gri1975: Griffin & Emerson (1975); Gri1998: Griffin (1998);
Gri2004: Griffin (2004); Grr2000: Girard et al. (2000); HaI2002:
Han & Gatewood (2002); Hei1974c: Heintz (1974); Hei1984a:
Heintz (1984); Hei1986: Heintz (1986); Hei1987b: Heintz (1987);
Hei1988d: Heintz (1988); Hei1990c: Heintz (1990a); Hei1990d: Heintz
(1990b); Hei1994a: Heintz (1994); Hei1994b: Heintz & Cantor
(1994); Hei1996: Heintz (1996); HIP1997d: ESA (1997); Hle1994:
Hale (1994); Hnk2011: Hinkley et al. (2011); Hop1958: Hopmann
(1958); Hop1973a: Hopmann (1973); Hrt1996a: Hartkopf et al. (1996);
Hrt2003: Hartkopf & Mason (2003); Irw1996: Irwin et al. (1996);
Jnc2005: Jancart et al. (2005); Kam1989: Kamper et al. (1989);
Kiy2001: Kiyaeva et al. (2001); Knc2010: Konacki et al. (2010);
Lip1967: Lippincott (1967); Lip1972: Lippincott (1972); Llo2007:
Martinache et al. (2007); Maz2001: Mazeh et al. (2001); Mnt2000a:
Mante (2000); Msn1995: Mason et al. (1995); Msn1999a: Mason
et al. (1999); Msn2011c: Mason & Hartkopf (2011); Mut2010b:
Muterspaugh et al. (2010a); Mut2010c: Muterspaugh et al. (2010b);
Nid2002: Nidever et al. (2002); Pbx2000b: Pourbaix (2000); Pbx2002:

Fig. 1. Positions of the orbital poles on the sky, with the grid represent-
ing Galactic coordinates. The Galactic centre is at the centre of the grid.
The systems are labelled by their numbers of Table 3. The circled la-
bels identify the systems up to N = 18 whose distribution is the most
significantly different from isotropic according to Fig. 3. The dashed
line displays the celestial equator. For comparison, the ecliptic pole is
located at l = 96.4◦, b = 30◦.

Pourbaix et al. (2002); PkO2006b: Gorshanov et al. (2006); Pop1996b:
Popovic & Pavlovic (1996); Sca2002c: Scardia (2002); Sca2007c:
Scardia et al. (2007); Sgr2000: Ségransan et al. (2000); Sgr2012: Barry
et al. (2012); Sod1999: Söderhjelm (1999); Str1969a: Strand (1969);
Str1977: Strand (1977); USN1988a: Dahn et al. (1988); USN1988b:
Geyer et al. (1988); USN2002: Seymour et al. (2002); vAb1957:
van Albada (1957); Wie1957: Wieth-Knudsen (1957); Zir2003: Zirm
(2003); Zir2011: Zirm (2011).

4. Distribution of the orbital poles on the sky

Figure 1 displays the distribution on the sky in galactic coor-
dinates of the orbital poles listed in Table 3, for systems up
to 18 pc. After estimating in Sect. 4.1 the typical errors affecting
the orbital-pole positions, we describe in Sect. 4.2 the available
statistical tools for studying the possible deviation from isotropy
of the distribution of orbital poles on the sky.

4.1. Estimating the error on the orbital-pole positions

To evaluate the typical error affecting the orbital-pole positions,
we used a Monte Carlo approach because of the complexity of
the algebraic relations that link the orbital elements and the sys-
tem position to the orbital-pole position (Eqs. (B.4) to (B.7)). We
used the system WDS 00057+4549 (HD 38) as a test case be-
cause it is one of the systems with the longest-period for which
we lifted the ascending-node ambiguity. Even though the error
on the orbital period is large (P = 509.6 ± 100.0 yr), only the
uncertainties on the inclination i and on the longitude of the
ascending node Ω affect the uncertainty on the pole position.
For WDS 00057+4549, we therefore adopted: α = 1.4209◦,
δ = 45.81◦, i = 54.9◦ ± 2.4◦, andΩ = 13.5◦ ± 2.3◦, according to
the orbit computed by Kiyaeva et al. (2001). We drew 104 (i,Ω)
pairs from this average and standard-deviation values, assum-
ing that they follow a normal distribution; we then derived the
orbital pole position for each of these cases from Eqs. (B.4)
to (B.7). The results are displayed in Fig. 2. The Gaussian fits to
the resulting longitude and latitude distributions (bottom panel),
show – as expected – that the uncertainties on i and Ω directly
propagate onto the polar position (2.3◦ and 2.0◦ in Galactic
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Fig. 2. Top panel: distribution of the orbital-pole positions on the sky,
drawn from the normal distributions for i = 54.9◦±2.4◦ andΩ = 13.5◦ ±
2.3◦ corresponding to the benchmark system WDS 00057+4549. The
intersection of the dashed lines marks the nominal pole position. As
expected, the distribution is centred on this nominal position. Bottom
panel: histograms corresponding to the longitude and latitude distribu-
tions. The dashed lines correspond to Gaussian distributions centred on
the nominal pole position, with standard deviations of 2.3◦ and 2.0◦ in
Galactic longitude and latitude, respectively.

longitude and latitude, respectively, for WDS 00057+4549). If
the uncertainties on i and Ω are unequal, the resulting distribu-
tion of the orbital poles will simply be tilted with respect to the
axis frame. In the analysis of the pole distribution presented be-
low, one should therefore keep in mind that these positions are
subject to an uncertainty of the same order as that on i and Ω.

4.2. Available statistical tools

The current section is mainly based on Gillett (1988), Upton
& Fingleton (1989), and Briggs (1993). In this section, we dis-
cuss how to test the null hypothesis that the pole distribution is

isotropic. The simplest test is the Rayleigh test (Fisher 1953;
Briggs 1993). For the purpose of Rayleigh statistics, the i =
1, ...N poles are represented by unit vectors (xi, yi, zi) (with
x2

i + y
2
i + z2

i = 1), and one computes

R2 = (Σi=1xi)2 + (Σi=1yi)2 + (Σi=1zi)2 , (1)

where R representing the module of the vectorial sum of the
N unit vectors (xi, yi, zi). This vectorial sum gives the orienta-
tion of the dipole of the distribution. If the poles are isotropi-
cally distributed, the unit vectors representing their orientation
will tend to cancel each other out and the resulting R will be
close to zero, while if the poles have a preferential orientation,
R will tend to be larger than expected for the isotropic distribu-
tion. However, there could be very specific anisotropic situations
leading to low R values, for instance one with an even number
of poles distributed in a bimodal distribution with the modes
aligned in exactly opposite directions, and equal numbers of
poles populating both modes. This underlines the fact that a test
such as the Rayleigh test should always be carried out against
an alternative model, and this model must be chosen on phys-
ical grounds (Gillett 1988). The most natural alternative to be
used with Rayleigh’s test is the Fisher distribution (Fisher 1953;
Watson 1956), which is unimodal and assumes symmetry about
the mean. Obviously, this bimodal situation does not follow a
Fisher distribution, and Rayleigh’s test has therefore no power to
distinguish it from isotropy (i.e., the second-kind risk of accept-
ing the null hypothesis of isotropy while it is false is high). The
combined statistic of Giné (1975), which are described below
(Eq. (17)), is the most powerful against all alternatives (Gillett
1988).

The Rayleigh statistics may be used as a test of isotropy
against a unimodal distribution by calculating the probability αR
of obtaining a value of R greater than or equal to the observed
value Robs assuming that the data are drawn from the isotropic
distribution (Watson 1956, 1983):

αR = P(R ≥ Robs) =
∫ N

Robs

fR(R) dR, (2)

where fR is the probability density function for R (i.e., the prob-
ability of finding R between R and R + dR is fRdR). Its detailed
expression may be found in Fisher (1953) and Briggs (1993). If
αR is small, then the poles are very unlikely to have been drawn
from an isotropic parent population. Under such circumstances,
it is said that the observed pole distribution is inconsistent with
isotropy at the 1 − αR confidence level. It means that there is a
(first-kind) risk αR of rejecting the null hypothesis of isotropy
while it is actually true. Stephens (1964) provides a table of
critical values for R for αR = 1, 2, 5 and 10%.

While the Rayleigh statistics is valid for any value of N, there
exists a more convenient form of it at large N (≥50), known as
the Rayleigh-Watson statisticsW (Watson 1956, 1983):

W =
3
N
R2. (3)

Upton & Fingleton (1989) used the table of Stephens (1964) to
devise an improved approximation, which works well even for
low values of N:

W∗ =
3

N − c(α)
R2· (4)

W∗ follows a χ2 distribution with three degrees of freedom.
For convenience, the values of the correction factor c(α) for the
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Table 4. Values of the correction factor c(α) for the Rayleigh test, from
Upton & Fingleton (1989).

Significance level α 10% 5% 1%
c(α) 0.121 0.278 0.630

Reference value χ2
3(α) 6.25 7.81 11.34

Rayleigh test are reproduced from Upton & Fingleton (1989) in
Table 4. A valueW∗ > 11.34 indicates that there is a significant
concentration of poles toward one direction (with a confidence
level of 99%).

Instead of considering R as the length of the resulting dipole
vector, it may be useful to consider it as the distance from the ori-
gin achieved by a random walk of N unit steps. A well-known
result from the randow-walk theory then states that

〈
R2

〉
= N,

from which it follows that 〈W〉 = 3. It is therefore not surprising
that the statistic W is asymptotically distributed as a χ2 distri-
bution with three degrees of freedom (Watson 1956, 1983), so
that

αW∗ = P(W∗≥W∗
obs)=

∫ ∞

W∗
obs

fχ2
3
(x) dx=Fχ2

3
(W∗ ≥W∗

obs), (5)

where fχ2
3

is the probability density of χ2
3 and Fχ2

3
is the upper cu-

mulative probability distribution function of χ2
3. Obviously, the

latter function is much easier to evaluate than the corresponding
one for the Rayleigh statistics (Eq. (2)). An additional advantage
of this statistics is that it is asymptotically independent from N.

Again, the isotropy of the data may be tested by calculat-
ing the observed statisticsW∗

obs and the corresponding probabil-
ity αW, which has a similar interpretation as the one given above
for αR. For large N, αR = αW, and the two tests are equivalent.

We stress here an important result from the hypothesis-
testing theory: although the first-kind risk (of rejecting the
null hypothesis of isotropy while it is true, also known as the
false-alarm probability) is controlled by the adopted confidence
level 1 − αR, the second-kind risk (of accepting the null hypoth-
esis of isotropy while it is false, also known as the power of
the test) is not controlled as easily, since this second-kind risk
depends on the exact nature of the true underlying distribution.
This was well illustrated above with the Rayleigh test which is
said to have no power against a bimodal distribution. Because
different statistical tests have different powers it is important not
to use only one if one does not know the actual underlying dis-
tribution.

Since the Rayleigh test is not appropriate when the alterna-
tive is a bimodal axial distribution, for testing uniformity when
the alternative is such, we must turn to tests based upon the prop-
erties of statistics involving the eigenvalues of the quadrupolar
matrix MN (Watson 1966, 1983; Briggs 1993):

MN =
1
N
ΣN

i=1

⎡⎢⎢⎢⎢⎢⎢⎣
xixi xiyi xizi

yixi yiyi yizi
zixi ziyi zizi

⎤⎥⎥⎥⎥⎥⎥⎦ · (6)

Since MN is real and symmetric, it has three eigenvalues λk,
and since it has unit trace, the sum of its eigenvalues λk is one5.
Moreover, the diagonal elements are sums of squares. In the co-
ordinate system in which MN is diagonal, the diagonal elements
are the eigenvalues, and therefore the eigenvalues are not neg-
ative. If the poles were drawn from the isotropic distribution,

5 The eigenvalues are ordered so that λ3 ≥ λ2 ≥ λ1.

then, excepting statistical fluctuations, the eigenvalues λk should
be equal, and since MN has unit trace, λk = 1/3.

If the alternative to isotropy is a rotationally asymmetric
axial distribution6, the Bingham statistics B is appropriate: it
measures the deviation of the eigenvalues λk of the quadrupolar
matrix MN from the value 1/3 expected for isotropy (Bingham
1974; Watson 1983):

B = 15N
2
Σ3

k=1

(
λk − 1

3

)2

· (7)

The statistics B is asymptotically distributed as a χ2 distribution
with five degrees of freedom, so that

αB = P(B ≥ Bobs) =
∫ ∞

Bobs

fχ2
5
(x) dx = Fχ2

5
(B ≥ Bobs), (8)

where fχ2
5

is the probability density function of χ2
5 and Fχ2

5
is the

upper cumulative probability distribution function of χ2
5. Again,

if αB is very small, the hypothesis of isotropy is contradicted and
rejected with a first-kind risk of αB. Briggs (1993) showed that
αB as derived from Eq. (8) overestimates the true first-kind risk
when N < 20 for αB = 0.05, and when N < 40 for αB = 0.01.
In other words, under these circumstances, 1 − αB will under-
estimate the statistical confidence with which the hypothesis of
isotropy can be rejected.

If the alternative to isotropy is a rotationally symmetric ax-
ial distribution (either a bipolar distribution along a given di-
rection, or a girdle with rotational symmetry, both known as
the Dimroth-Watson distribution; Upton & Fingleton 1989), the
Bingham test is still applicable, but two of the three eigenval-
ues will then be close to each other (Bingham 1974, and below).
Assuming that the pole of the distribution is located at φ0 = 0◦
and θ0 = 0◦ ((φ, θ) being a polar coordinate system on the sphere,
with φ the azimutal angle, and θ the polar angle), Mardia & Jupp
(2000) showed that (φ̂0, θ̂0), the maximum likelihood estimate of
the polar direction, is related to the eigenvectors of the MN ma-
trix; a girdle distribution will have its symmetry axis along e1:

e1 = (sin θ̂0 cos φ̂0, sin θ̂0 sin φ̂0, cos θ̂0) and λ1 < λ2 ∼ λ3, (9)

whereas an axial distribution will have e3 as symmetry axis7:

e3 = (sin θ̂0 cos φ̂0, sin θ̂0 sin φ̂0, cos θ̂0) and λ1 ∼ λ2 < λ3. (10)

In the general case of a rotationally asymmetric axial distribu-
tion, one has λ2 − λ1 and λ3 − λ1 large and non-equal (girdle), or
λ3 − λ1 and λ3 − λ2 large and non-equal (polar).

Anderson & Stephens (1972) showed that λ1 and λ3 them-
selves are the most appropriate test statistics for the compari-
son of the hypothesis of uniformity against that of a Dimroth-
Watson distribution. Upton & Fingleton (1989) have used the
tables computed by Anderson & Stephens (1972) to devise crit-
ical values of λ1 and λ3 at confidence level α. A significant de-
parture from isotropy towards the girdle form of the Dimroth-
Watson distribution is judged to have occurred ifλ1 < λ1(α),
where

λ1(α) =
1
3
+

a1(α)√
N
+

b1(α)
N
+

c1(α)

N
√

N
, (11)

6 In other words, the data points are non-uniformly distributed along a
ring.
7 We recall that the eigenvalues are ordered so that λ3 ≥ λ2 ≥ λ1.
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Fig. 3. Upper panel: evolution of the Rayleigh-Watson W∗ (blue
dashed line, and right-hand scale; the correction toW – Eq. (4) – has
been made for a confidence level α of 1%) and Bingham B (red dot-
dashed line, and right-hand scale) statistics as a function of the number
of systems. The horizontal blue dashed curve corresponds to a first-kind
risk of 1% of rejecting the null hypothesis of isotropy while it is true,
based on the W∗ statistics. The horizontal red dashed line is the 10%
first-kind risk for the B statistics. The number of systems as a function
of distance is given by the black solid line and left-hand scale. Isotropy
corresponds to B → 0 and W → 3. Lower panel: three eigenvalues
of the orientation matrix (Eq. (6)). Isotropy corresponds to λ1,2,3 = 1/3,
as seen at large distances. The critical values for λ1,3 corresponding to
α = 1% and 10% as given by Eqs. (11) and (12) are displayed by the
dash-dotted lines.

whereas a significant departure towards the bipolar form of the
distribution is judged to have occurred if λ3 > λ3(α), where

λ3(α) =
1
3
+

a3(α)√
N
+

b3(α)
N
, (12)

where the coefficients a1,3(α), b1,3(α), and c1(α) have values that
depend on the significance level, α. These values may be found
in Table 10.15 of Upton & Fingleton (1989). The values λ1(α)
and λ3(α) have been plotted as dashed lines in the lower panel of
Fig. 3 for α = 1% and 10%.

In summary, by combining the Rayleigh-Watson statis-
tics with the Bingham statistic, the isotropy of the distribu-
tion may be distinguished among several alternatives, since a
value W > 3 reveals that there is a concentration of poles
toward one direction, but values close to 3 indicate that the dis-
tribution is either isotropic or bipolar. The bipolarity of the dis-
tribution is in turn assessed from λ3 > λ3(α). To summarize
(see also Table 1 of Briggs 1993; and Table 10.7 of Upton &
Figgleton 1989):

• unipolar distribution around one end of the eigenvector e3:

W > 3 : λ1,2 < 1/3 < λ3, (13)

• bipolar distribution around both ends of the eigenvector e3:

W ∼ 3 : λ1,2 < 1/3 < λ3, (14)

• girdle orthogonal to the eigenvector e1:

W ∼ 3 : λ1 < 1/3 < λ2,3. (15)

Finally, one should mention the non-parametric statistical tests
that do not presuppose any alternative model. They are thus
more general than tests against a specific alternative, but for

that reason are also less powerful (i.e., have a higher risk
of accepting the null hypothesis of isotropy while it is false;
Gillett 1988; Mardia & Jupp 2000). To test against alternatives
that are asymmetric with respect to the centre of the sphere,
Beran’s B test (Beran 1968) is the most powerful:

B = N − 4
Nπ
ΣN

i < jΨi j = N − 2
Nπ
ΣN

i Σ
N
j Ψi j. (16)

To test against symmetric or axial alternatives, Giné’s test G
(Giné 1975) is the most powerful:

G =
N
2
− 4

Nπ
ΣN

i < j sinΨi j =
N
2
− 2

Nπ
ΣN

i Σ
N
j sinΨi j. (17)

The combined Giné statistic F = B + G tests against all alter-
natives. In Eqs. (16) and (17), N is the number of data points,
and Ψi j = cos−1(xi · x j) is the smaller of the angles between
poles xi and x j. High values of these statistics suggest depar-
ture from isotropy. Critical values for various percentage levels
of significance for B,G and F have been calculated by Keilson
et al. (1983). In the large-sample limiting distribution of F, the
10%, 5%, and 1% confidence levels are 2.355, 2.748, and 3.633,
respectively.

4.3. Isotropic or anisotropic?

In this section, we apply the methods outlined in Sect. 4.2 to
the sample of orbital poles listed in Table 3. The top panel
of Fig. 3 displays the evolution of the Rayleigh-Watson W∗
and Bingham B statistics as a function of distance, thus for an
increasing number of systems.

The various statistical indicators described in Sect. 4.2 are
listed in Table 5 separately for the 20 systems up to 8.1 pc, and
for all 51 systems closer than 18 pc. For estimating αW∗ and αB,
the asymptotically equivalent χ2

3 and χ2
5 distributions were used,

respectively.
For the 20 systems with d ≤ 8.1 pc, the Rayleigh-Watson

testW∗ signals a very significant deviation from isotropy8, with
a (first-kind) risk of αW∗ = 0.5% of rejecting the null hypothesis
of isotropy while it is actually true (Table 5). The Beran test (for
isotropy against alternatives that are asymmetric with respect to
the centre of the sphere) provides an identically significant result
(B = 3.32 or α ∼ 0.7%; Keilson et al. 1983).

As seen from Table 5, the Bingham and Giné tests are less
conclusive, but this is easily understood. The Giné test, being
“universal” (it tests against all alternatives), is less efficient than
Rayleigh-Watson’s in the sense that it requires a stronger devia-
tion from isotropy to yield similarly low α values. Bingham test
being devised against symmetric alternatives, which is not the
situation encountered in our data (Fig. 1), it is not efficient ei-
ther in the situation under study, and should not be given much
consideration.

Another way to understand why the Rayleigh-Watson and
Bingham statistics yield vastly different significance levels is
remembering that the Rayleigh-Watson and Bingham statistics
test for the presence of a dipole or of a quadrupole, respectively,
in the distribution of poles on the sphere (Hartmann & Epstein
1989; Briggs 1993, and Sect. 4.2). As already discussed in rela-
tion with Eq. (1), the vector R is the dipole moment of the dis-
tribution, whereas the eigenvectors of the quadrupole matrix MN

8 As apparent from Fig. 3, restricting the sample to 18 systems would
yield an even more significant result, but this would imply consider-
ing only one orbital pair from the triple system WDS 11182+3132
(Table 3), which is not physically sound. A discussion of the problem
of triple systems is presented in Sect. 6.
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Table 5. Various isotropy indicators, listed separately for the 20 systems up to 8.1 pc, and for all 51 systems up to 18 pc.

N x̄ ȳ z̄ R W W∗ αW λ3 λ2 λ1 B αB B αB G αG

Systems closer than 8.1 pc
20 0.254 0.262 0.268 9.05 12.28 12.68 0.005 0.52 0.27 0.21 8.20 0.14 3.32 0.007 0.65 0.19

All systems up to 18 pc
51 0.071 0.109 0.100 8.36 4.11 4.17 0.18 0.39 0.35 0.26 2.98 0.70 1.22 0.20 0.32 0.80

Notes. See Sect. 4.2 for the definition of the various indicators. x̄, ȳ and z̄ are the average of (xi, yi, zi). The Watson statistics has first been corrected
by Eq. (4) for α = 1%, before being approximated by the χ2

3 statistic so as to compute αW∗ . The columns labelled B and G refer to Beran and Giné
statistics, respectively (Eqs. (16) and (17)).

are related to the orientation of the quadrupolar component of the
distribution (see the discussion in relation with Eqs. (13)–(15)).
Therefore, the dipolar vector and the eigenvector e3 associated
with the highest eigenvalue of MN ought be different. For the
considered orbital-pole distribution, the largest dipole moment
is obtained for the N = 20 closest systems and points in the di-
rection l = 46.0◦, b = 36.7◦, with a clear deficit of poles in the
opposite direction. On the other hand, the eigenvector e3 asso-
ciated with the highest eigenvalue λ3 = 0.52 for N = 20 points
towards l = 77.4◦, b = 8.4◦. These directions are similar, albeit
not identical, and obviously point in the direction of a higher
concentration of poles (Fig. 1).

The Rayleigh-Watson (dipolar) test yields a deviation from
isotropy that is more significant than the Bingham (quadrupolar)
test. Figure 3 indeed signals that the eigenvalues λ1,2,3 andW∗
fulfill Eq. (13) that corresponds to a unipolar distribution.

To evaluate the robustness of the low first-kind risk obtained
for the Rayleigh-Watson statistics, a jackknife approach was
used, that is, we repeated the above procedure of computingW∗
as a function of distance (or sample size, with systems ordered
by increasing distance from the Sun) after removing one sys-
tem at a time from the full sample. Since W∗ peaks around
N = 20, it was sufficient to do so for the 25 systems closest
to the Sun, removing one system at a time. This way, 25 curves
of W∗ as a function of N were generated, one for each of the
25 samples thus generated. These curves are presented in Fig. 4
and are similar to the curve presented in the upper panel of
Fig. 3. The thick line in Fig. 4 corresponds to all systems be-
ing considered (thus identical to the curve in the upper panel of
Fig. 3). The lower (red) line is the one corresponding to the sam-
ple with system No. 16 removed (since this system is the one
weighting heavily in the originalW∗ peak; the number refers to
Table 3 and Fig. 1). As expected, this curve has the lowest signif-
icance, peaking at only 1.5% instead of 0.5% in the full sample.
The other thin curves are for all the other samples, as explained
above. Figure 4 thus provides a fair evaluation of the robustness
of the alarm signal: indeed, after removing system No. 16, the
false-alarm probability just misses 1% and is thus not especially
significant; but removing closer systems (such as Nos. 1 or 2,
i.e., systems far away from the pole cluster seen in Fig. 1) makes
the curve rocket to 0.1% significance! In summary, the fluctu-
ations caused by the small sample size causes the highestW∗
significance level to vary between 1.5 and 0.1%! The reality of
the deviation from isotropy can thus not be assessed with cer-
tainty at this stage, given the small number of systems available,
and despite our efforts to increase it.

The fact that this deviation from isotropy does not appear
for subsamples with cutoff distances shorter than 8 pc moreover
decreases its physical significance. One could have envisioned
for instance a situation where the W∗ index maintains statisti-
cally significant values all the way to 8 pc, and then fades to
insignificant values at larger distances. But the first part of that

Fig. 4. Evolution of the Rayleigh-WatsonW∗ statistics as a function of
the number of systems in a jackknife approach. Each curve thus cor-
responds to the full sample with one system removed. The thick line
corresponds to the full sample (same as the blue dashed line in the up-
per panel of Fig. 3). The lowest thin (red) line corresponds to the sample
with system No. 16 removed (WDS 14514+1906). False-alarm proba-
bilities of 2.5, 1, and 0.1% are depicted by the dashed horizontal lines.

statement is not fulfilled: the closest 15 systems (up to 6 pc)
have α(W∗) > 5% (Fig. 3). At distances larger than 8 pc, the
significance of the deviation from isotropy fades away again, at
least for the Bingham statistics: B → 0, λ1,2,3 → 1/3. The rise
of B above 2.5 for N > 47 is not at all significant since it cor-
responds to αB = 0.79. In contrast, the Rayleigh-Watson statis-
ticsW∗ does not drop to its isotropic value of 3, but rather stays
around 4, corresponding to a first-risk probability of about 18%
of rejecting the null hypothesis of isotropy despite being true.
Indeed, the addition of systems farther away than 8 pc does not
fully destroy the anisotropy that appeared in the 8 pc sphere,
since a deficit of poles remain around l = 270◦, b = −30◦
(Fig. 1).

We thus conclude that the poles of the binary systems
within 8 pc of the Sun exhibit a weak tendency to cluster
around l = 46◦, b = 37◦ (which, incidentally, is not far from the
pole of the ecliptic). The systems numbered 15–18 and 20 (see
Table 3) are responsible for that clustering, which fades away if
shorter or larger sampling distances are considered.

5. Impact of selection effects

As Blaauw appropriately commented after Batten’s talk on the
topic of the present paper during the IAU symposium 30 (Batten
1967), the possibility that observational selection effects could
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Fig. 5. Location of binary systems from Table 2 in Galactic coordinates,
with the galactic centre in the middle of the map. The circles identify
the systems with an unambiguously defined pole, as plotted in Fig. 1.
The dashed line is the celestial equator.

actually be causing an anisotropy in the pole distribution should
be considered. Figure 5 indeed reveals that the studied systems
are concentrated in the northern equatorial hemisphere, since
lifting the pole ambiguity requires radial velocities that are easier
to obtain for northern hemisphere targets (combined with the fact
that the astronomy of visual double stars relies on a longer time-
base in the northern hemisphere; hence long periods are more
commonly derived for northern targets). Could this anisotropic
initial distribution be the cause for the pole anisotropy observed
in the 8 pc sphere around the Sun?

For this to be the case, there should be a correlation between
the position of the binary on the sky and the position of its or-
bital pole. A non-uniform celestial distribution of the systems
studied (as observed in Fig. 5) would then propagate onto their
orbital-pole distribution. A correlation between system position
and pole position would manifest itself as a non-uniform distri-
bution of the scalar product between the unit vector defining the
system position (denoted 1∗ hereafter) and the unit vector defin-
ing the pole position (denoted 1p hereafter). From Eq. (B.4), it
is easy to verify that this scalar product 1∗ · 1p equals − cos i.
Thus, an observational bias acting on our ability to derive the
poles for systems with a given range of inclinations i would in-
troduce a correlation between 1∗ and 1p. To check whether this
is the case, we plot in Fig. 6 the distribution of cos i values for
all systems of Table 2 and for those with the poles analysed (thin
line and shaded histogram). There is no significant difference be-
tween these distributions, meaning that the requirement of hav-
ing radial velocities available for lifting the pole ambiguity does
not introduce a selection bias on the orbital inclination i. On the
other hand, the full-sample and pole-known distributions of cos i
are close to being uniform9 except for two marginal peaks at 0.2
and 0.7. However, given the small amplitude of these peaks, it
seems very unlikely that they could be at the origin of the seg-
regation observed in the pole distribution. Furthermore, there is
no obvious observational selection effect that we could think of
that could cause peaks at cos i ∼ 0.2 and 0.7.

9 The maximum absolute difference between the uniform distribution
and the distribution for pole-known systems is 0.11, which is not very
significant (about 20% probability that such a difference be due to
chance).
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Fig. 6. Distribution of cos i for all binaries from Table 2 (thick lines)
and for those with the poles analysed (thin line in the bottom panel and
shaded histogram in the upper panel).

6. Coplanarity in multiple systems

When searching for some anisotropy in the space orientation of
orbital poles, which could either be signatures of the process
of binary formation or of tidal effects from the Galactic disc,
one could be misled by evolutionary processes acting within the
stellar system itself that modify the orbital inclination. Within
a triple system, weak perturbations from the outer body can
have strong long-term effects on the inner binary. The sim-
plest of these is precession of the orbital plane, which occurs
if the orbital planes of the inner and outer binary are not aligned
(Fabrycky & Tremaine 2007). If the inner and outer binary or-
bits are circular, this precession is analogous to the precession
of two rigid rings with the same mass, radius, and angular mo-
mentum as the binary orbits; both the mutual inclination and the
scalar angular momenta of the rings remain fixed, while the two
angular momentum vectors precess around the direction defined
by the total angular momentum vector of the triple system.

An unexpected aspect of this behaviour was discovered
by (Kozai 1962; see also Kiseleva et al. 1998; Eggleton
& Kiseleva-Eggleton 2001; Fabrycky & Tremaine 2007;
Muterspaugh et al. 2008). Suppose the inner binary orbit is ini-
tially circular, with the initial mutual inclination between inner
and outer binaries equal to iinitial. Kozai found that there is a crit-
ical angle ic such that if iinitial is between ic and 180◦− ic, then the
orbit of the inner binary cannot remain circular as it precesses;
both the eccentricity of the inner binary ein and the mutual in-
clination i execute periodic oscillations known as Kozai cycles.
The amplitude of the eccentricity and inclination oscillations is
independent of the strength of the perturbation from the outer
body (which depends on the mass of that outer body, and on aout
and eout), but the oscillation amplitude does depend on iinitial; for
initial circular orbits with iinitial = ic or 180◦ − ic, the eccentricity
is 0, but if iinitial = 90◦, the highest eccentricity is unity, that is,
the two inner bodies collide.

In the framework of the present study, it is important to stress
that Kozai cycles occur independent of distances or component
masses, their only requirement is that the mutual inclination is
between ic = 39.2◦ and 180◦ − 39.2◦ = 140.8◦ (Fabrycky &
Tremaine 2007; Muterspaugh et al. 2008).
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Fig. 7. Same as Fig. 1, but for the binary stars without indications for
higher multiplicity.

Fig. 8. Same as Fig. 3, but restricted to binary systems without evidence
for higher multiplicity. The horizontal blue dashed and red dash-dotted
curves correspond to a first-kind risk of 5% and 10%, respectively, of
rejecting the null hypothesis of isotropy while it is true, based on the
W∗ statistics. The systems have the same number labels as in Table 3
and Fig. 3.

Hence, for triple systems, the current orbital pole may not at
all be representative of its initial orientation if the Kozai mecha-
nism is operating. Therefore, a discussion of the pole orientation
should properly identify the triple systems, and possibly exclude
them from the analysis. The triple and higher-multiplicity sys-
tems in our sample are identified by flag “t” in Tables 2 and 3,
the notes in the Appendix provide more details in most cases.

Because the Kozai mechanism does alter the orbital incli-
nations of non-coplanar triple systems, we now investigate the
pole-anisotropy problem separately for the sample devoid of
triple systems (Figs. 7 and 8). These figures reveal that the
Rayleigh-Watson test still predicts some deviation from isotropy
in the sample restricted to 8 pc, but the first-kind error of the
Rayleigh-Watson statistics this time is not better than 5%. We
thus conclude that triple systems in the analysed sample do
not degrade a possible anisotropy, quite the contrary, since the
first-kind error of rejecting the null hypothesis of isotropy even
increases when including the triple systems.

Nevertheless, the fact that several triple systems are now
known not to be coplanar is certainly not in favour of a con-
centration of orbital poles on the celestial sphere. The quadru-
ple system WDS 11182+3132 belongs to the sample of systems

closer than 8 pc to the Sun; the AB and Aa,Ab poles are known
(Nos. 18 and 19 in Fig. 1) and are separated by about 100◦ on the
sky. Although such a complete knowledge is not very frequent10,
non-coplanarity is also observed in η Vir (HIP 60129: the orbital
planes of the two systems are inclined by about 30◦ with respect
to each other; Hummel et al. 2003), and similarly for the triple
system V819 Her (HD 157482; O’Brien et al. 2011). In addition
to V819 Her and η Vir, unambiguous mutual inclinations have
been calculated for several other systems: κ Peg, ε Hya, ζ UMa,
and Algol (see Table 5 of O’Brien et al. 2011, and references
therein), and μ Ori, ξ UMa, ε Hya, and 88 Tau (Muterspaugh
et al. 2008). These studies, along with the earlier ones by Fekel
(1981) and Sterzik & Tokovinin (2002), strongly argued against
coplanarity, despite predictions from older theories of formation
of multiple stars (Bodenheimer 1978). Modern theories of stel-
lar formation (Sterzik & Tokovinin 2002; Fabrycky & Tremaine
2007, and references therein) indeed predicted that triple sys-
tems will form non-coplanarily. Clearly, this result jeopardizes
the possibility of observing coplanarity on a larger scale such
as that of the solar neighbourhood. Therefore, the weak evi-
dence for pole alignment observed in a sphere of 8 pc around the
Sun does not receive support from our analysis of the properties
of triple systems. In the next section, we show that neither
do theories of binary-star formation coupled with the disper-
sive effect caused by Galactic rotation provide supportive argu-
ments for a possible alignment of the orbital poles in the solar
neighbourhood.

7. Pole alignment in the context of binary-star
formation theories and Galactic kinematics

This section addresses the following two questions: (i) Do cur-
rent theories of binary-star formation predict alignment of orbital
poles for all binaries resulting from the same event of star for-
mation; and (ii) assuming that the answer to the first question be
positive, is this coherence in the pole orientation of young bi-
nary systems preserved by the Galactic kinematics in a volume-
limited sample (the solar neighbourhood) consisting of much
older systems?

Theories for wide and close binary-star formation have been
reviewed by Bodenheimer & Burkert (2001) and Bonnell (2001),
respectively. The favoured mechanism for producing most bi-
nary stellar systems is the fragmentation of a molecular cloud
core during its gravitational collapse. Fragmentation can be di-
vided into two main classes: direct fragmentation and rotational
fragmentation (see references in Bate 2000). Direct fragmen-
tation depends critically on the initial density structure within
the molecular cloud core (e.g., non-spherical shape or density
perturbations are needed to trigger the collapse), whereas rota-
tional fragmentation is relatively independent of the initial den-
sity structure of the cloud because the fragmentation occurs due
to non-axisymmetric instabilities in a massive, rotationally sup-
ported disc or ring. Not many studies of binary-star formation
however include a discussion about the possible spatial align-
ment of the orbital poles of binary systems resulting from the
same fragmentation event. This lack of information results from
the difficulty of conducting the numerical simulations till the end
of the binary formation, since a phase of accretion follows the
initial fragmentation of the molecular cloud. To obtain the final

10 Sterzik & Tokovinin (2002) revealed that there are only 22 triple sys-
tems with both orbits determined visually. Eight of these have question-
able elements and only three have had their ascending nodes identified
using radial velocity measurements.
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parameters of a stellar system, the calculation must thus be per-
formed until all of the original cloud material has been accu-
mulated by one of the protostars or by their discs. Following
simultaneously several among such events is an even more chal-
lenging task thus. Although Bate (2000) specifically investigated
the properties of binary systems after this phase of accretion,
there is no discussion whatsoever of the question of orbital-pole
alignment. This was addressed in a very qualitative way by Boss
(1988). A short discussion about the question of pole alignment
has been found in the context of a variant of the fragmentation
scenario, namely the shock-induced gravitational fragmentation
followed by capture (SGF+C). That mechanism was initially
proposed by Pringle (1989). Collisions between stable molec-
ular cloud clumps produce dense shocked layers, which cool ra-
diatively and fragment gravitationally. The resulting fragments
then condense to form protostellar discs, which at the same time
collapse and, as a result of tidal and viscous interactions, capture
one another to form binary systems. When the initial clumps are
sufficiently massive, a large number (>10) of protostellar discs is
produced. A prediction of the SGF+C mechanism (Turner et al.
1995) is that the resulting binary systems are likely to have their
orbital and spin angular momenta aligned – the preferred direc-
tion of alignment being that of the global angular momentum
of the original clump/clump pair. However, with more realistic,
that is less highly organized, initial conditions, such alignments
should still arise locally but are likely to be less well coordinated
across large distances.

Even though there is currently no strong evidence from the-
ories of binary formation for pole alignment in binary systems
resulting from the same molecular-cloud collapsing event, we
assumed for now such a coherence and followed what happened
as a result of Galactic kinematics dispersing these coeval binary
systems across the Galaxy. After several Galactic rotations, this
coeval association will (fully or partly) evaporate and form a
tube called supercluster. Woolley (1961) has presented an inter-
esting argument that makes it possible to tag stars that formed
at the same place and time, and that are still found together to-
day in the solar neighbourhood. In general, stars found today in
the solar neighbourhood emanate from various birth locations in
the Galaxy because the diversity of stellar orbits in the Galaxy.
Woolley’s argument goes as follows. Stars in the supercluster
mentioned above still share common V velocities (with the usual
notation (U,V,W) for the Galactic velocity components directed
towards the Galactic centre, along the direction of Galactic ro-
tation, and towards the north Galactic pole, respectively) when
located in the same region of the tube (for example in the so-
lar neighbourhood) for the following reason, as put forward by
Woolley (1961): if the present Galactocentric radius of a star on a
quasi-circular epicyclic orbit equals that of the Sun (denoted r),
and if such a star is observed with a peculiar velocity v = V+V,
then its guiding-centre radius rg writes

rg = r − xg = r +
v

2B
, (18)

where xg is the position of its guiding-centre in the Cartesian
reference frame associated with the local standard of rest (LSR)
(in the solar neighbourhood approximation, the impact of yg is
negligible), and B is the second Oort constant. Woolley (1961)
pointed out that disc stars (most of which move on quasi-circular
epicyclic orbits) that formed at the same place and time, and that
because they stayed together in the Galaxy after a few galactic
rotations (since they are all currently observed in the solar neigh-
bourhood) must necessarily have the same period of revolution

Fig. 9. Distribution of the systems in the (U,V) plane, with the same la-
bels as in Fig. 1. System 17 (01083+5455) falls outside the boundaries,
at U = −43 km s−1 and V = −157 km s−1. To fix the ideas, two velocity
ellipsoïds are shown, both centred on the reflex solar motion in the LSR:
−U = −10.2 km s−1, −V = −20.5 km s−1, and with σU = 34.5 km s−1,
σV = 22.5 km s−1, as derived by Famaey et al. (2005) from their most
precise sample. Horizontal bands and the corresponding labels are used
in Fig. 10.

around the Galactic centre, and thus the same guiding-centre rg,
and thus the same velocity V = v − V according to Eq. (18).

Therefore, according to this argument, binary systems that
formed in the same cluster or association and that stayed together
after a few Galactic revolutions are observed today in the solar
neighbourhood as sharing the same V velocity. In other words, if
there are any orbital-pole concentrations on the celestial sphere
that can be ascribed to angular momentum conservation for bi-
nary systems originating from the same cluster or association,
they should be identified from similar V velocities.

We first computed the (U,V,W) velocity components from
the Hipparcos proper motion and from the systemic veloc-
ity, according to standard prescriptions for converting equato-
rial to Galactic coordinates. The resulting distribution in the
(U,V) plane is shown in Fig. 9.

As expected, the sample is distributed according to the gen-
eral velocity ellipsoïd, with overdensities observed at the loca-
tion of the Sirius (〈U〉 ∼ 6.5 km s−1, 〈V〉 ∼ 3.9 km s−1) and
Hyades (〈U〉 ∼ −40 km s−1, 〈V〉 ∼ −20 km s−1) streams (e.g.,
Dehnen 1998; Famaey et al. 2005). Because of Woolley’s argu-
ment expressed above, the (U,V) diagram was divided into hor-
izontal bands of width 10 km s−1, as indicated in Fig. 9, with a
letter assigned to each of these V-bands. These letters were used
to label the position of each pole on a Galactic-coordinate map
(Fig. 10).

The absence of clustering of similar letters in restricted re-
gions of the celestial sphere provides definite proof that any pos-
sible pole concentration on the sphere (see Sect. 4.3) cannot
be traced back to a similar birth location for those systems. It
must therefore either be ascribed to statistical fluctuations in our
small-sized sample, or to some as yet unidentified physical pro-
cess that removes orbital poles from the region 90◦ ≤ l ≤ 300◦,
b ≤ 0◦, on a time scale of the order of that characterizing the
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Fig. 10. Same as Fig. 1 but with a letter coding the value of the galac-
tic V velocity (see Fig. 9). A necessary condition for binary systems to
originate from the same cluster/association at birth is to have similar
V velocities (see text), hence they should be labelled by the same letter.

convergence of systems with different Galactic orbits in the so-
lar neighbourhood. Our Galaxy being in general symmetric with
respect to its equatorial plane, it is however difficult to imagine a
physical process that would break such a symmetry (the fact that
the Sun lies somewhat above the Galactic plane? see below), as
it seems to be required to account for the observed asymmetry.

Conversely, the poles of the binary systems belonging to the
Sirius or Hyades streams do not concentrate either on the sphere,
which is a further confirmation that these streams are not evapo-
rated clusters, but rather have a dynamical origin (Famaey et al.
2005, 2007, 2008; Pompéia et al. 2011).

Finally, one should mention, for the sake of complete-
ness, that the location of the Sun slightly above the Galactic
plane (∼20 pc; Humphreys & Larsen 1995) could be respon-
sible for the (Galactic) North–South asymmetry observed in the
orbital-pole distribution, if some effect related to Galactic tides
were the cause of the pole anisotropy. That seems unlikely, how-
ever, given the low intensity of Galactic tides with respect to
the two-body interaction. Heisler & Tremaine (1986) have ex-
pressed Galactic tides in terms of the Oort constants. Based on
the size of the last closed Hill surface11, they conclude that in
the solar neighbourhood, the Galactic tides have a non-negligible
impact only on systems with semi-major axes of several 104 AU
(such as Oort-cloud comets around the Sun). The binary systems
defining the pole statistics are very much tighter than this, so that
there seems to be no way for the Galactic tides to imprint their
signature on the orbital-pole distribution.

8. Conclusion

Among the 95 systems with an orbit in the 6th Catalogue of
Orbits of Visual Binaries that are closer than 18 pc from the
Sun, we were able to lift the pole ambiguity for 51 systems,
thanks to radial-velocity data either collected from the literature,
obtained from the CORAVEL database, or acquired with the
HERMES/Mercator spectrograph. Of these 51 systems, several
had an erroneous node choice listed in the 6th USNO orbit
catalogue and had thus to be corrected. An interesting side
product of the present study is a number of new spectroscopic
orbits obtained from CORAVEL and HERMES radial velocities,

11 The Hill (or zero-velocity) surface is defined as the surface on which
the Jacobi integral of the restricted three-body problem is constant.

as well as new combined spectroscopic/astrometric orbits for
seven systems (WDS 01083+5455aa,Ab; 01418+4237AB;
02278+0426AB (SB2); 09006+4147AB (SB2);
16413+3136AB; 17121+4540AB; 18070+3034AB).

This new sample of 51 orbital poles was subjected to sev-
eral methods of spherical statistics (Rayleigh-Watson, Bingham,
Beran and Giné) to test possible deviations from isotropy. After
ordering the binary systems by increasing distance from the Sun,
the false-alarm probability (of rejecting the null hypothesis of
isotropy while it is true) was computed for subsamples of in-
creasing sizes, from N = 1 up to the full sample of 51 sys-
tems. Two tests (Rayleigh-Watson’s and Beran’s) delivered a
false-alarm probability of 0.5% when considering the subsam-
ple of 21 systems closer than 8.1 pc to the Sun. The poles tend
to cluster toward Galactic position l = 46◦, b = 37◦. This di-
rection is not so distant from that of the ecliptic pole (l = 96◦,
b = 30◦). To evaluate the robustness of this clustering, a jack-
knife approach was used by repeating the above procedure af-
ter removing one system at a time from the full sample. The
above false-alarm probability was then found to vary between
1.5% and 0.1%, depending on which system is removed from the
sample. The reality of the deviation from isotropy can thus not
be assessed with certainty at this stage, given the small number
of systems available, despite our efforts to increase it. Our so-
far uncertain conclusion should be seen as an incentive to foster
further studies on this problem, especially in the Gaia era.

For the full sample extending up to 18 pc, the clustering
totally vanishes (the Rayleigh-Watson first-kind risk then rises
to 18%). If present, coplanarity of orbits must thus be restricted
to small spheres with a radius of the order of 10 pc, but several
dynamical arguments were presented to show that the physical
origin of any such coplanarity, should it exist, will be difficult
to identify. In this context, the recent result of Rees & Zijlstra
(2013) on the non-random orientation of bipolar planetary neb-
ulae in the Galactic Bulge, using a statistical method much like
the ones used in our present study, came as a surprise. Rees &
Zijlstra found evidence for an anisotropy in the orientation of
the bipolar planetary nebulae, whose specific geometry is usu-
ally attributed to the binarity of the central star. Assuming that
the symmetry axis of the bipolar nebula coincides with the polar
axis of the orbit, the result of Rees & Zijlstra is therefore indi-
rect evidence of a deviation from anisotropy for the poles of a
subsample of binaries in the Galactic Bulge. The physical ex-
planation proposed for the Galactic Bulge (related to the impact
of the Galactic magnetic field on the binary formation process)
is, however, unlikely to hold also for the solar neighbourhood,
where the field is of lower intensity.
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Table 1. Cross-identifications for the master list of 95 systems closer than 20 pc from the Sun and the are known to have an orbit in the 6th COVBS
at USNO.

WDS CCDM HIP/HIC HD SB9 Name
00022+2705AB 00022+2705AB 171 224930 1468 BU 733
00057+4549AB 00057+4549AB 473 38 STT 547
00184+4401AB 00184+4401AB 1475 1326 GRB 34
00321+6715Aa,Ab 00325+6714A 2552 – – MCY 1
00321+6715AB 00325+6714AB 2552 – – VYS 2
00373-2446AB 00373-2446AB 2941 3443 – BU 395
00491+5749AB 00491+5749AB 3821 4614 – STF 60
01032+2006AB 01032+2006AB 4927 – – LDS 873
01083+5455Aa,Ab 01080+5455A 5336 6582 57 WCK 1
01388-1758AB 01390-1756AB – – – LDS 838
01398-5612AB 01398-5612AB 7751 10360 – DUN 5
01418+4237AB 01418+4237AB 7918 10307 2546 MCY 2
01425+2016AB 01425+2016AB 7981 10476 – HJ 2071
02171+3413Aa,Ab 02170+3414A 10644 13974 117 MKT
02278+0426AB 02278+0426AB 11452 15285 – A 2329
02361+0653Aa,P 02361+0653A 12114 16160 – PLQ 32
02442+4914AB 02441+4913AB 12777 16895 – STF 296
03095+4544AB 03095+4544AB 14669 – – HDS 404
03121-2859AB 03121-2859AB 14879 20010 – HJ 3555
03575-0110AB 03575-0110AB 18512 24916 – BU 543
04153-0739BC 04153-0739BC – 26976 – STF 518
04312+5858Aa,Ab 04312+5858A 21088 – – STN 2051
05025-2115AB 05025-2115AB 23452 32450 – DON 91
05074+1839AB 05075+1839AB 23835 32923 – A 3010
05167+4600Aa,Ab 05168+4559AP 24608 34029 306 ANJ 1
05333+4449 05333+4449A – – – GJ 1081
05544+2017 05544+2017A 27913 39587 1535 χ1 Ori
06003-3102AC 06003-3102AC 28442 40887 – HJ 3823
06262+1845AB 06262+1845AB 30630 45088 – BU 1191
06293-0248AB 06294-0249AB 30920 – – B 2601
06451-1643AB 06451-1643AB 32349 48915 416 AGC 1
06579-4417AB 06578-4417AB 33499 – – LPM 248
07100+3832 – 34603 – 434 GJ 268
07175-4659AB 07175-4659AB 35296 57095 – I 7
07346+3153AB 07346+3153AB 36850 60178/9 – STF 1110
07393+0514AB 07393+0514AB 37279 61421 467 SHB 1
07518-1354AB 07518-1354AB 38382 64096 478 BU 101
08592+4803A,BC 08592+4803AB 44127 76644 – HJ 2477
09006+4147AB 09007+4147AB 44248 76943 546 KUI 37
09144+5241AB 09144+5241AB 45343 79210 – STF 1321
09313-1329AB 09313-1329AB 46706 – – KUI 41
09357+3549AB 09357+3549AB 47080 82885 – HU 1128
10454+3831AB 10454+3831AB 52600 – – HO 532
11182+3132AB 11182+3132AB – 98231 – STF 1523
11182+3132Aa,Ab 11182+3132A – 98231 – ξ UMa
11247-6139AB 11247-6139AB 55691 99279 – BSO 5
12417-0127AB 12417-0127AB 61941 110380 – STF 1670
13100+1732AB 13100+1732AB 64241 114378 – STF 1728
13169+1701AB 13169+1701AB 64797 115404 – BU 800
13198+4747AB 13198+4747AB 65026 115953 – HU 644
13328+1649AB 13328+1649AB 66077 – – VYS 6
13473+1727AB 13473+1727AB 67275 120136 – STT 270
13491+2659AB 13491+2659AB 67422 120476 – STF 1785
13547+1824 13547+1824A 67927 121370 794 η Boo
14035+1047 14035+1047A 68682 122742 799 GJ 538

Notes. The column labelled “SB9” lists the entry number in the 9th Catalogue of Spectroscopic Binary Orbits (Pourbaix et al. 2004).
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Table 1. continued.

WDS CCDM HIP/HIC HD SB9 Name
14396-6050AB 14396-6050AB 71683 128620 815 RHD
14514+1906AB 14513+1906AB 72659 131156 – STF 1888
14540+2335AB 14539+2333AB 72896 – – REU 2
14575-2125AB 14574-2124AB 73184 131977 – H N 28
14575-2125Ba,Bb 14574-2124B 73182 131976 1475 H N 28B
15038+4739AB 15038+4739AB 73695 133640 – STF 1909
15232+3017AB 15233+3018AB 75312 137107 842 STF 1937
15527+4227 15527+4227A 77760 142373 – χ Her
16240+4822Aa,Ab 16240+4821A 80346 – 1542 HEN 1
16413+3136AB 16413+3136AB 81693 150680 915 STF 2084
16555-0820AB 16555-0820AB 82817 152751 2683 KUI 75
17121+4540AB 17121+4540AB 84140 155876 – KUI 79
17153-2636AB 17155-2635AB 84405 155885/6 – SHJ 243
17190-3459AB 17190-3459AB 84709 156384 – MLO 4
17191-4638AB 17191-4638AB 84720 156274 – BSO 13
17304-0104AB 17304-0104AB 85667 158614 969 STF 2173
17349+1234 17349+1234A 86032 159561 – MCY 4
17350+6153AB 17351+6152AB 86036 160269 2557 BU 962
17364+6820Aa,Ab 17366+6822A 86162 – – CHR 62
17465+2743BC 17465+2744BC 86974 161797 – AC 7
18055+0230AB 18055+0230AB 88601 165341 1122 STF 2272
18070+3034AB 18071+3034AB 88745 165908 – AC 15
18211+7244Aa,Ab 18211+7245A 89937 170153 1058 LAB 5
18428+5938AB 18428+5938A 91768 173739 – STF 2398
18570+3254AB 18570+3254AB 93017 176051 2259 BU 648
19074+3230Ca,Cb 19075+3231C – – – KUI 90
19121+0254AB 19122+0253A 94349 – – AST 1
19167-4553AB 19167-4553AB 94739 179930 – RST 4036
19255+0307Aa,Ab 19254+0307A 95501 182640 – BNU 6
20452-3120BC – 102141 196982 – LDS 720
21000+4004AB 21001+4004A 103655 – 1280 KUI 103
21069+3845AB 21069+3844AB 104214 201091/2 – STF 2758
21313-0947AB 21313-0947AB 106255 – – BLA 9
21379+2743Aa,Ab 21380+2743A 106811 – – HDS 3080
22070+2521 22070+2520A 109176 210027 1354 ι Peg
22234+3228AB 22235+3228AB 110526 – – WOR 11
22280+5742AB 22281+5741AB 110893 239960 – KR 60
22385-1519AB – – – – BLA 10
23317+1956AB 23319+1956AB 116132 – – WIR 1
23524+7533AB 23526+7532AB 117712 223778 – BU 996
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Appendix A: Notes on individual systems
and new orbits

WDS 00057+4549AB. The Sixth Catalog of Orbits of Visual
Binary Stars lists two orbits for the AB pair of that sys-
tem (separated by about 6′′): one with a period of 1550 yr
(Popovic & Pavlovic 1996) and another with a period of 509 yr
(Kiyaeva et al. 2001), indicating that the solution is not yet
well constrained. Radial velocities obtained by CORAVEL and
by Tokovinin & Smekhov (2002), as listed in Table A.4 and
displayed in Fig. A.1, correspond to a radial velocity differ-
ence VB − VA slightly decreasing from −2.7 km s−1 in 1980
to −3.8 km s−1 in 1996. The value −3.0 km s−1 has been used by
Kiyaeva et al. (2001) to determine unambiguously the ascend-
ing node. This result is confirmed thanks to the precise radial-
velocity measurements of Marcy (2013, priv. comm.) that show
a linear variation for VB − VA amounting to −6.4 m s−1 yr−1

from 2000 to 2010, while a value of −11.5 m s−1 yr−1 is calcu-
lated from the visual orbit. Thus we have computed the position
of the orbital pole but it is not expected to be precise.

Kiyaeva et al. (2001) also suggested that ADS 48 ABF is
a hierarchical triple system whose orbits (AB) and (AB-F) are
not coplanar. This hypothesis was contradicted by Cvetković
et al. (2012), who concluded that the F component has a com-
mon proper motion with the AB pair, but that it is not bound by
gravity.
WDS 00184+4401AB. Indeterminate visual orbit.
WDS 00321+6715Aa,Ab and AB. The preliminary visual orbits
of this triple hierarchical system were computed by Docobo et al.
(2008). No radial velocity measurements are available to resolve
the ambiguity of the ascending node.
WDS 01083+5455Aa,Ab. Drummond et al. (1995) obtained the
first relative astrometric orbit for that system from their di-
rect detection of the faint B component. Combining that or-
bit with earlier photocentric positions (Lippincott 1981; Russell
& Gatewood 1984), masses could be derived: MA = 0.74 ±
0.06 M and MB = 0.17 ± 0.01 M.

Duquennoy & Mayor (1991) derived a preliminary spectro-
scopic orbit, and Abt & Willmarth (2006) obtained thereafter
more radial velocities; however, Abt & Willmarth (2006) did
not attempt to compute a combined orbit, and merged the or-
bital elements ofDuquennoy & Mayor (1991) and Drummond
et al. (1995). Because this is not fully satisfactory and is prone
to confusion (as further discussed below), especially regarding
the ambiguity on ω, we decided to compute a new combined or-
bit (Fig. A.2), using data of Duquennoy & Mayor (1991) as well
as more recent unpublished CORAVEL data (Table A.5), plus
velocities reported by Abt & Willmarth (2006). The astromet-
ric positions of B relative to A taken from the WDS database
at USNO were used as well. As shown in Table A.2, the value
of ω for the astrometric orbit of B around A is 329.4◦ ± 3.8◦
(thus a change of 180◦ from the relative orbit of Drummond et al.
1995; their Table 9), and we stress that the value (332.7◦ ± 3.1◦)
listed by Abt & Willmarth (2006) for the spectroscopic orbit
(of A around the centre of mass of the system) is incorrect, as
it should differ by 180◦ from the astrometric value, confirming
the suspected confusion. It is in fact just the value reported by
Drummond et al. (1995), which should not have been copied
without change! Instead, the value (147.9◦±4.9◦) of Duquennoy
& Mayor (1991) for the spectroscopic orbit is correct.
WDS 01398-5612AB. Indeterminate visual orbit. In the absence
of recent radial-velocity measurements it is not possible to lift
the ambiguity on the position of the ascending node.

Fig. A.1. Top panel: radial velocities for the two components of the pair
HIP 473 AB =WDS 00057+4549AB. Dots refer to CORAVEL veloc-
ities and triangles to velocities from Tokovinin & Smekhov (2002) or
Chubak et al. (2012) for the last point, with the time spanned by the
measurements represented by the horizontal bar. Open symbols refer to
component A and filled symbols to component B. The parallel dashed
lines are just a guide to the eye. Bottom panel: radial-velocity differ-
ence B-A, with their errors taken as the root-mean-square of the errors
on A and B.

WDS 01418+4237AB. Spectroscopic orbits were published by
Duquennoy & Mayor (1991) and Abt & Willmarth (2006).
The present orbit (Table A.2) improves upon those, as it
includes several unpublished CORAVEL velocities given in
Table A.6. Lippincott et al. (1983) and Söderhjelm (1999) pub-
lished astrometric orbits. Here, we obtained a combined as-
trometric/spectroscopic solution by considering the astromet-
ric measurements from the Fourth Catalogue of Interferometric
Measurements of Binary Stars12. This solution agree well with
the existing solutions quoted above.
WDS 01425+2016AB. This system was announced as an as-
trometric binary with a period of 0.567 yr by the Double and
Multiple Star Annex (DMSA) of the Hipparcos Catalogue
(ESA 1997). However, reprocessing the Hipparcos data along
the method outlined by Pourbaix (2000) for a combined solution
including the CORAVEL velocities does not allow us to confirm
the Hipparcos DMSA/O solution. This system was therefore
dropped from our final list.
WDS 02278+0426AB. The most recent and thorough analysis of
that system was presented by Andrade (2007), including a re-
vised visual orbit. CORAVEL data (Table A.7) make it possi-
ble now to compute a combined SB2/astrometric orbit, which
thus gives access for the first time to the masses of the system
components. The combined orbital elements and other physical
parameters of the system (such as orbital parallax and compo-
nent masses) are listed in Table A.3, which identifies the com-
ponents as 1 and 2 rather than A and B. It must be stressed
that there is no easy way to identify for sure the spectroscopic
component 1 with either visual component A or B, since both
components fall in the spectrograph slit and are of almost equal
brightness: Hipparcos gives mHp,A = 9.45 and mHp,B = 9.63.
An indirect way to identify components A and B is by noting
that in Table A.3, the velocity semi-amplitude K2 is higher than
K1, hence M2 is smaller than M1. Since both components lie

12 Available from
http://www.usno.navy.mil/USNO/astrometry/
optical-IR-prod/wds/int4
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Fig. A.2. Combined astrometric (upper panel) and spectroscopic (lower
panel) orbits for WDS 01083+5455Aa,Ab = HIP 5336 = HD 6582 =
μ Cas. The solid line in the lower panel corresponds to the predicted ve-
locity curve for A. Triangles are CORAVEL measurements, squares are
measurements from Abt & Willmarth (2006). Individual measurements
for the visual orbit were taken from the WDS database.

on the main sequence, component 2 should thus be less lumi-
nous than component 1, hence component 2 should be identified
with B. It is possible to check quantitatively this assumption by
using the mass-luminosity relationship provided by Kroupa et al.
(1993), namely MV,1 = 5.4 for M1 = 0.95 M and MV,2 = 6.2
for M2 = 0.85 M, or MV,2 − MV,1 = 0.8, somewhat larger
than the observed mHp,B − mHp,A = 0.18, but certainly consis-
tent with the error bars on M1,2. Although Andrade (2007) clas-
sified HD 15285 A as K7V based on several spectral features,
among which the presence of weak TiO bands, its inferred mass
of 0.95 M is more typical of a G5V type, while the mass of
component B would flag it as K0V (Cox 2000).

These masses were derived from the orbital parallax of
52 ± 2 mas, to be compared with the Hipparcos value of
60.2 ± 1.7 mas (ESA 1997) or 58.3 ± 1.1 mas (van Leeuwen
2007), which yield total masses of 1.16 and 1.28 M, respec-
tively, to be compared with 1.8 M for the orbital parallax. From
the fractional mass M2/(M1 + M2) = 0.47 (Table A.3), one ob-
tains, (M1,M2) = (0.62, 0.54) and (0.68, 0.60) M. These values
agree much better with a K7V spectral type for component A.
WDS 02361+0653A. The 22 CORAVEL measurements
available for component A (spanning 6837 d) yield a standard
deviation of 0.29 km s−1, identical to the average error on a
single measurement. The constancy of the radial velocity was
confirmed by Chubak et al. (2012), who obtained 62 mea-
surements spanning 1299 d, with a standard deviation of
0.142 km s−1. Hence, radial velocities cannot be used to lift the
ambiguity on the orbital orientation.

WDS 02442+4914AB. Indeterminate visual orbit and roughly
constant radial velocity between 1900 and 1990.
WDS 03575-0110AB. Indeterminate visual orbit and almost con-
stant radial velocity between 1984 and 1993.
WDS 04153-0739BC. In the triple system STF 518 A-BC, B is
the white dwarf omi Eri B and C the flare star DY Eri.
WDS 04312+5858Aa,Ab. Triple system, with the A component
being an astrometric binary in the visual binary STI 2051 AB.
WDS 05074+1839AB. Visual orbit highly conjectural and radial
velocity from Duquennoy & Mayor (1991) is constant.
WDS 06003-3102AC. A quadruple system (Tokovinin et al.
2005): HU 1399 AB (P = 67.7 yr, a = 0.912′′), HJ 3823 AC
(P = 390.6 yr, a = 3.95′′ by Baize 1980, not confirmed by
Tokovinin et al. 2005), TOK 9 C,CE (P = 23.7 yr, a = 0.12′′).
A, B and C, CE are coplanar (Tokovinin et al. 2005).
WDS 06262+1845AB. Triple system, with A known as SB2 with
P = 6.99 d (Griffin & Emerson 1975).
WDS 06293-0248AB. Solution for the SB2 orbit includes masses
and orbital parallax (Ségransan et al. 2000). Although not clearly
stated, the orbital elements listed by Ségransan et al. (2000) cor-
respond to the spectroscopic orbit (hence ω and Ω listed in our
Table 3 differ by 180◦ from theirs).
WDS 06579-4417AB. Indeterminate visual orbit.
WDS 07100+3832. The spectro-visual orbit of this system was
only recently computed by Barry et al. (2012).
WDS 07175-4659AB. The visual orbit is still very uncertain. The
total mass of the system is abnormally low given the spectral
type.
WDS 07346+3153AB. A difficult system since both A and B
are spectroscopic binaries (Vinter Hansen et al. 1940), with
P = 9.21 d and P = 2.93 d, respectively. Batten (1967) has lifted
the ambiguity on the ascending node for that system, and we
used the orbital elements of the 6th Catalogue of Visual Binary
Orbits to compute the position of the pole, agreeing with that
of Batten (1967), allowing for the fact that our poles follow the
right-hand rule, opposite to that of Batten.
WDS07393+0514AB. The pole ambiguity was lifted from the
radial-velocity drift present in the Duquennoy et al. (1991) data.
WDS 08592+4803A,BC. Indeterminate visual orbit. It might be
a quadruple system, since Aa seems to be a SB1 system with a
period P ∼ 11 yr (Abt 1965) although the spectroscopic orbit is
not of an excellent quality.
WDS 09006+4147AB. The period of 21.05 yr for that visual bi-
nary is well established (Muterspaugh et al. 2010a). Based on
an older (albeit similar) value of the visual period from Heintz
(1967), Abt & Levy (1976) proposed a spectroscopic orbit based
on Heintz’ visual elements plus approximate values for the sys-
temic velocity and the semi-amplitude, which could account for
Abt & Levy’s own velocity measurements and older ones from
Underhill (1963). Although it is rather uncertain, this orbit is still
the one quoted by the SB9 catalogue (Pourbaix et al. 2004). The
spectroscopic orbit is difficult to derive because (i) the compo-
nents are not separated widely enough on the sky to record their
spectra separately; (ii) the velocity semi-amplitude is small; and
(iii) component A appears to rotate relatively fast. Therefore,
the available unpublished CORAVEL measurements appear use-
less, since the two components appear hopelessly blended in
the cross-correlation function. More recent HERMES/Mercator
spectra (Raskin et al. 2011) have a resolution high enough to
allow a comfortable double-Gaussian fit of the cross-correlation
function (CCF; Fig. A.5). Although such a fit has not necessarily
a unique solution, we found it re-assuring that the CCFs for all
seven available dates (Table A.1) are well fitted with Gaussians
having the same properties: height ∼0.08 and σ = 14 km s−1
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Table A.1. HERMES and CORAVEL radial velocities for components of some visual binaries lacking velocities so far.

JD−2 400 000 Vr(A) Vr(B) HER/COR Note

WDS 09006+4147AB

55 520.795 29.06 ± 0.09 22.06 ± 0.08 H a
55 521.640 29.03 ± 0.10 21.93 ± 0.09 H –
55 579.783 29.44 ± 0.09 21.83 ± 0.08 H –
55 589.620 29.53 ± 0.09 21.68 ± 0.08 H –
55 647.599 29.64 ± 0.08 21.45 ± 0.07 H –
56 046.402 31.11 ± 0.09 19.92 ± 0.05 H –
56 244.717 31.54 ± 0.13 19.48 ± 0.07 H –

WDS 09144+5241A

56 039.412 10.620 ± 0.002 – H –

WDS 09144+5241B

56 039.418 – 11.848 ± 0.002 H –

WDS 10454+3831AB

56 040.468 −3.380 ± 0.003 – H –
56 040.485 – −3.175 ± 0.005 H b

WDS 13491+2659AB

45 441.525 −20.32 ± 0.32 – C –
45 475.401 −19.29 ± 0.45 −22.70 ± 0.42 C –
45 789.537 −20.27 ± 0.33 −23.18 ± 0.37 C –
46 214.395 −20.06 ± 0.32 −23.95 ± 0.35 C –
46 562.422 −20.48 ± 0.31 −23.80 ± 0.37 C –
51 018.433 −20.27 ± 0.44 −23.01 ± 0.46 C –

WDS 17153-2636A

56 038.716 0.532 ± 0.002 – H –

WDS 17153-2636B

56 038.719 – 0.246 ± 0.001 H –

WDS 17364+6820Aa,Ab

55 6038.682 −30.0 ± 0.3 −27.0 ± 0.5 H c

WDS 18428+5938AB

55 655.719 −1.061 ± 0.006 – H –
55 660.748 −1.048 ± 0.005 – H –
56 037.736 −1.074 ± 0.005 – H –
56 038.695 −1.088 ± 0.005 – H –
56 038.699 – 0.779 ± 0.006 H –

WDS 19255+0307Aa,Ab

55 657.742 −28.68 ± 0.26 −37.70 ± 0.09 H

Notes. The quoted error corresponds to the fitting error, but does not account for the pressure-driven zero-point shift, which can amount up
to 200 m s−1 for HERMES velocities (Raskin et al. 2011). a: Component A (V = 4.2), of spectral type F4V, is a fast rotator. It has the largest peak
on the HERMES cross-correlation function (Fig. A.5). For details see note in Appendix A; b: barely separable; c: “blind” assignment based on the
depth of the cross-correlation peak: component A is assumed to have the deeper peak.
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Fig. A.3. Combined astrometric (upper panel) and spectroscopic (lower
panel) orbits for WDS 02278+0426AB. In the lower panel, filled and
open triangles correspond to CORAVEL velocities for components 1
and 2, respectively. Individual measurements for the visual orbit were
taken from the WDS database at USNO.

for the F4V component A (V = 4.2), and height ∼0.04 and
σ = 4 km s−1 for the K0V component B (V = 6.5). It thus
appears that component A is a relatively fast rotator. The assign-
ment of either of the two CCF peaks to component A thus relies
on the assumption that component A, being of spectral type F4V,
should correspond to the deepest peak when computed with a
F0V template.

The validity of our double-Gaussian fits, and of the resulting
orbital elements listed in Table A.3, may be assessed a posteri-
ori by the comparison of the orbital parallax (53.8 ± 1.0 mas)
with the Hipparcos parallax (60.9 ± 1.3 mas; ESA 1997).
The discrepancy probably comes from the fact that the lim-
ited phase coverage for the radial velocities does not yet im-
pose strong enough constraints on the velocity semi-amplitudes
(Fig. A.4). The astrometrically derived masses (MA = 1.37 M,
MB = 1.04 M, in relatively good agreement with the spec-
tral types; Martin & Mignard 1998; Söderhjelm 1999) are dif-
ferent from the types derived from our combined orbit (MA =
1.73 M, MB = 1.69 M), which also hints at inaccurate velocity
semi-amplitudes.
WDS 09144+5241AB. For this long-period binary, the determi-
nation of the orbital pole is based on the agreement between the
variation of the radial velocities VA and VB measured between
1910 and 1997 and the value predicted using the elements of the
visual orbit. This result is confirmed by the value of the measure-
ment of (VB − VA) performed with the HERMES spectrograph
in 2012 (see Table A.1).
WDS 09313-1329AB. Mass-ratio derived from the astrome-
try (Söderhjelm 1999). Two HERMES radial-velocity measure-
ments obtained one year apart neither showed any significant
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Fig. A.4. Combined astrometric (upper panel) and spectroscopic (lower
panel) orbits for WDS 09006+4147AB. Filled triangles in the lower
panel refer to component A. Individual measurements for the visual
orbit were taken from the WDS database.

drift (Vr = 7.93 km s−1 on JD = 2 455 657.5 and Vr =
7.89 km s−1 on JD = 2 456 038.4), nor any line doubling, as
would be expected for a system consisting of two components
only 0.6 arcsec apart.
WDS 09357+3549AB. Indeterminate visual orbit.
WDS 10454+3831AB. Triple system, Aa being the speckle bi-
nary CHR 191. A value of (VB−VA) obtained with the HERMES
spectrograph in 2012 is listed in Table A.1.
WDS 11182+3132AB. Quadruple system, A and B are both SB1
with P = 670.24 d and P = 3.98 d respectively (Griffin 1998).
WDS 11247-6139AB. Abnormally high total mass, inconsistent
with the spectral types.
WDS 13100+1732AB. Spectral types and masses of components
from ten Brummelaar et al. (2000).
WDS 13198+4747AB. Triple system (Aa = CHR 193; Beuzit
et al. 2004). CORAVEL sees this star as SB3, but no satisfac-
tory attribution of the various peaks to the corresponding com-
ponents could be made, making it very difficult to isolate the
trend of Vr(A).
WDS 13473+1727AB. Indeterminate orbit. The component
τ BooAb is a star with planet.
WDS 13491+2659AB. The pole ambiguity was lifted
from unpublished CORAVEL velocities yielding the sign
of Vr(B)−Vr(A) (=–3.3 km s−1) during the observation
span 1983–1988 (Table A.1).
WDS 13547+1824. Jancart et al. (2005) obtained a combined
spectroscopic/astrometric orbit based on Hipparcos data and
the spectroscopic orbit of Bertiau (1957). The value of ω from
Jancart et al. (2005) has been adopted in Table 3.
WDS 14514+1906AB. The visual orbital period is 151 yr
(Söderhjelm 1999), so that no strong trend must be expected
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Fig. A.5. Cross-correlation function of the spectrum of
WDS 09006+4147AB (=HD 76943) obtained with the
HERMES/Mercator spectrograph (Raskin et al. 2011) on
HJD 2 456 244.717 (November 13, 2012), correlated with a F0V
template. Both components (separated by 0.5′′ on the sky) enter the
fiber (2.5′′ on the sky). Component A corresponds to the wide peak
centred at 31.5 km s−1.

from the radial velocities over three decades. CORAVEL obser-
vations (Duquennoy et al. 1991) exhibit a weak upward trend be-
tween 1977 (1 km s−1) and 1991 (1.4 km s−1), which is however
not significant based on the average measurement uncertainty
of 0.34 km s−1. Later measurements by Abt & Willmarth (2006)
seem to confirm that trend, but the trend is made fragile by a pos-
sible zero-point offset between the two data sets. Nevertheless,
the pole quoted in Table 3 is based on the assumption that the
radial-velocity trend is real, which then implies that the node
given in the 6th USNO Catalogue is the correct one.
WDS 14575-2125AB. Indeterminate visual orbit.
WDS 15038+4739AB. Triple star: Bb = eclipsing SB2 with P =
0.27 d (Lu et al. 2001).
WDS 15527+4227. The Hipparcos Double and Multiple Star
Annex (DMSA; ESA 1997) claims HIP 77760 to be an astro-
metric binary with an orbital period of 0.14 yr and an inclination
of 131.68◦. These values seem, however, incompatible with the
absence of (CORAVEL) radial-velocity variations (33 measure-
ments with a standard deviation of 0.413 km s−1, to be compared
with the average instrumental error of 0.380 km s−1).
WDS 16413+3136AB. There are many visual orbits available
for that system, the most recent ones by Baize (1976) and
Söderhjelm (1999). Scarfe et al. (1983) already computed an or-
bit combining visual data and a collection of Coudé radial ve-
locities. Unpublished CORAVEL velocities given in Table A.8
nicely complement Scarfe’s velocities, yielding a somewhat
more accurate orbit as listed in Table A.2. A third component has
been detected by IR speckle interferometry (McCarthy 1983).
WDS 16555-0820AB. A triple system composed of M dwarfs,
in which all three stars are visible in the spectra. Spectroscopic
orbits are available for the inner (Ba-b) and outer pairs (A-Bab),
both as SB2 (Ségransan et al. 2000). The two orbits are proba-
bly coplanar (Mazeh et al. 2001). The whole system is probably
septuple.
WDS 17121+4540AB. A visual orbit for that system was ob-
tained by Hartkopf et al. (1996). The available CORAVEL veloc-
ities shown in Table A.9 make it possible to derive a combined
orbit for the first time. Visual observations are from the CHARA
database. The new combined orbit is presented in Fig. A.7. Ta

bl
e

A
.2

.N
ew

co
m

bi
ne

d
as

tr
om

et
ri

c-
sp

ec
tr

os
co

pi
c

or
bi

ts
co

m
pu

te
d

fr
om

C
O

R
A

V
E

L
an

d/
or

H
E

R
M

E
S

ve
lo

ci
ti

es
.

W
D

S
P

a
i

e
ω

B
Ω

T
0

V
0

K
A

(y
r)

(′′
)

(◦
)

(◦
)

(◦
)

(y
r)

(k
m

s−
1
)

(k
m

s−
1
)

01
08

3+
54

55
A

a,
A

b
21

.4
0
±0

.1
1

1.
07
±0

.0
4

10
4.

7
±1

.9
0.

53
±0

.0
2

33
0.

0
±3

.4
22

4.
6
±2

.0
19

75
.9
±0

.1
–9

7.
35
±0

.0
4

2.
13
±0

.1
1

01
41

8+
42

37
A

B
19

.7
3
±0

.0
9

0.
61
±0

.0
3

99
.4
±1

.5
0.

43
±0

.0
2

22
3.

4
±2

.3
30

.2
±1

.7
19

97
.0
±0

.1
3.

31
±0

.0
3

2.
93
±0

.0
7

16
41

3+
31

36
A

B
34

.4
47
±0

.0
04

1.
33

3
±0

.0
04

13
2.

0
±0

.2
0.

45
2
±0

.0
01

29
7.

0
±0

.2
23

5.
2
±0

.2
19

33
.2

6
±0

.0
09

–7
0.

44
1
±0

.0
08

4.
01
±0

.0
1

17
12

1+
45

40
A

B
12

.8
5
±0

.0
5

0.
88
±0
.0

2
13

4.
5
±1

.9
0.

80
±0

.0
1

99
.9
±1

.8
16

5.
6
±2

.5
19

90
.8

4
±0

.0
3

–3
0.

45
±0

.0
5

1.
8
±0

.1
18

07
0+

30
34

A
B

56
.3

7
±0

.0
6

1.
07
±0

.0
2

39
.8
±1

.6
0.

77
2
±0

.0
04

29
0.

7
±1

.0
22

7.
2
±1

.3
19

97
.7

2
±0

.0
3

0.
26

7
±0

.0
27

3.
23
±0

.0
3

N
ot

es
.T

he
va

lu
e

of
ω

gi
ve

n
in

th
e

pr
es

en
t

ta
bl

e
co

rr
es

po
nd

s
to

th
at

of
th

e
vi

su
al

or
bi

t
of

B
ar

ou
nd

A
(i

t
th

us
di
ff

er
s

by
18

0◦
fr

om
th

at
of

A
ar

ou
nd

th
e

ce
nt

re
of

m
as

s
of

th
e

sy
st

em
,o

bt
ai

ne
d

fo
r

pu
re

ly
sp

ec
tr

os
co

pi
c

bi
na

ri
es

).

A6, page 25 of 32

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201323056&pdf_id=15


A&A 574, A6 (2015)

HIP081693

R
ad

ia
l v

el
oc

ity
 (

km
/s

)

Time1962.54 1997.54

-76.0

-66.0

x 
("

)
y (")-1.00 2.50

1.50

-2.00

Fig. A.6. Combined astrometric (upper panel) and spectroscopic (lower
panel) orbits for WDS 16413+3136AB. The solid line in the lower
panel corresponds to the predicted velocity curve for A. Individual mea-
surements for the visual orbit were taken from the WDS database at
USNO.
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Fig. A.7. Combined astrometric (upper panel) and spectroscopic (lower
panel) orbit for WDS 17121+4540AB. The solid line in the lower panel
corresponds to the predicted velocity curve for A. Individual measure-
ments for the visual orbit were taken from the WDS database at USNO.

Table A.3. New combined astrometric-spectroscopic orbits (2 observ-
able spectra) computed from CORAVEL or HERMES velocities.

WDS 02278+0426AB 09006+4147AB
P (yr) 25.14 ± 0.04 21.78 ± 0.02
a (′′) 0.5429 ± 5.2e-03 0.633 ± 0.004
a (AU) 10.390 ± 0.086 11.76 ± 0.04
i (◦) 73.0 ± 0.7 133.2 ± 0.6
ω2 around 1 (◦) 49.1 ± 2.6 212.7 ± 1.9
Ω (◦) 290.1 ± 1.0 23.8 ± 0.8
e 0.21 ± 0.01 0.154 ± 0.004
T0 (Besselian year) 1962.8 ± 0.2 1972.0 ± 0.1
V0 (km s−1) 6.80 ± 0.15 25.6 ± 0.1
�dyn(′′) 0.052 ± 0.002 0.054 ± 0.001
M1 (M) a 0.95 ± 0.10 1.73:
M2 (M) 0.85 ± 0.10 1.69:
M2/(M1 + M2) 0.47 ± 0.02 0.5
K1 (km s−1) 5.6 ± 0.3a 5.9 ± 0.2
K2 (km s−1) 6.4 ± 0.3 6.0 ± 0.1

Notes. The value of ω given in the present table corresponds to that
of the visual orbit of B around A (it thus differs by 180◦ from that of
A around the centre of mass of the system, obtained for purely spec-
troscopic binaries). �dyn is the orbital parallax, which is obtained from
the ratio a (′′)/ a (AU). (a) Most likely, spectroscopic component 1 is
WDS 02278+0426 A (see text for details).

WDS 17153-2636AB. Irwin et al. (1996) derived precise B-A ra-
dial velocities (except for an acceleration component that they
were unable to explain). Velocity measurements of Vr(A) and
Vr(B) were obtained in 2012 by the HERMES spectrograph
(Table A.1).
WDS 17191-4638AB. Indeterminate visual orbit.
WDS 17304-0104AB. A combined astrometric/spectroscopic so-
lution has been computed by Pourbaix (2000) and has been used
to compute the position of the orbital pole.
WDS 17349+1234. Spectral types from Gatewood (2005).
Kamper et al. (1989) performed a combined spectro-
scopic/astrometric analysis of this system, and their orbit has
been recently updated by Hinkley et al. (2011), from whom we
adopted the orbital elements without requiring any change to
comply with our conventions.
WDS 17364+6820Aa,Ab. Velocity measurements of Vr(A) and
Vr(B) obtained in 2012 by the HERMES spectrograph are listed
in Table A.1.
WDS 17465+2743BC. HD 161797 (μ Her) is a quadruple sys-
tem (Raghavan et al. 2010). The components of the wide pair
STF 2220 AB (35′′) have common proper motion. The com-
ponent A is an astrometric binary (period of 65 years, Heintz
1994). The components B and C form the visual binary AC 7
for which the orbital pole ambiguity has been lifted from un-
published CORAVEL velocities, yielding a drift of Vr(B) over
1975–1995.
WDS 18070+3034AB. Based on available CORAVEL veloc-
ities (unpublished measurements are given in Table A.10), a
combined astrometric/spectroscopic solution (Table A.2 and
Fig. A.8) improves the spectroscopic orbital elements provided
by Abt & Willmarth (2006) for that system. AC 15 AB is a triple
system, with the separation Aa-Ab amounting to 0.228′′ and that
of AB to 0.851′′ in 2005, according to Scardia et al. (2008).
WDS 18428+5938AB. Velocity measurements (4 for Vr(A) and
one for Vr(B)) obtained by the HERMES spectrograph in 2012
are listed in Table A.1.
WDS 18570+3254AB. A combined astrometric/spectroscopic
solution confirms the spectroscopic orbital elements provided by
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Fig. A.8. Combined astrometric (upper panel) and spectroscopic (lower
panel) orbit for WDS 18070+3034AB. The solid line in the lower panel
corresponds to the predicted velocity curve for A. Individual measure-
ments for the visual orbit were taken from the WDS database at USNO.
In the lower panel, triangles correspond to CORAVEL data, squares
to velocities from Abt & Willmarth (2006), diamonds to Tokovinin &
Smekhov (2002), and double triangles to the old radial velocities col-
lected by Kamper & Beardsley (1986).

Abt & Willmarth (2006) for that system. BU 648 AB is a binary
with an exoplanet (Muterspaugh et al. 2010c) in coplanar orbits.
WDS 19121+0254AB. Masses are from Benedict et al. (2001).
WDS 19255+0307Aa,Ab. Kamper et al. (1989) performed a
combined spectroscopic/astrometric analysis of the Aa-Ab pair.
We adopted the orbital elements from their Table V, except
that 180◦ was added to their value of ω, to conform with
our convention that ω corresponds to the visual orbit of Ab
around Aa, rather than to the spectroscopic orbit of Aa around
the centre of mass. One HERMES measurement was obtained
(Table A.1) that reveals for the first time the companion in the
cross-correlation function as a narrow peak on top of the broad
peak (Vr sin i = 84 km s−1) due to the FV primary (Fig. A.9).
The companion does not rotate fast. From the orbit described
in Kamper et al. (1989), we estimate that the HERMES data
point (Vr(Aa) = –26.68 km s−1) has been taken at orbital phase
0.54 ± 0.14, when the velocity is 1.66 ± 0.15

0.70 km s−1 higher
than the centre of mass (CoM) velocity. The CoM velocity is
thus estimated to be −28.34 ± 0.15

0.70 km s−1. Combined with
Vr(Ab) = –37.70 km s−1, this yields a surprisingly high mass ra-
tio MAa/MAb of 5.6, or a mass of 0.29 M for the companion
if the primary is a F0V star of mass 1.6 M. The correspond-
ing spectral type would then be M4V for the Ab component,
8.6 mag fainter than the primary component. The close pair
WDS 19255+0307Aa,Ab, seems to form a triple system with
the wide pair (WDS 19255+0307AB = BUP 190, separation 96

Table A.4. CORAVEL velocities (labelled C in the last column),
Tokovinin & Smekhov (2002) velocities (labelled T), and Chubak
et al. (2012) velocities (labelled M) for the AB components of WDS
00057+4549AB = HIP 473.

JD – 2 400 000 Vr A Vr B Vr B-A
(km s−1) (km s−1) (km s−1)

43 791.437 1.83 0.43 –1.99 0.46 –3.82 C
43 791.450 1.16 0.48 –1.95 0.49 –3.11 C
43 795.447 1.45 0.43 –1.59 0.47 –3.04 C
43 806.403 1.16 0.43 –1.92 0.53 –3.08 C
43 808.388 1.32 0.43 –1.74 0.53 –3.06 C
43 813.391 0.19 0.51 –1.41 0.52 –1.60 C
44 211.319 0.67 0.47 –0.35 0.61 –1.02 C
44 849.517 1.48 0.45 –2.26 0.45 –3.74 C
45 264.406 1.06 0.37 –1.91 0.36 –2.97 C
45 615.458 1.63 0.48 –2.57 0.46 –4.20 C
46 008.457 1.86 0.48 –1.99 0.53 –3.87 C
46 016.404 1.12 0.56 –2.81 0.54 –3.93 C
46 372.418 0.85 0.33 –2.53 0.50 –3.38 C
46 373.385 0.87 0.34 –2.69 0.44 –3.56 C
46 413.273 0.96 0.43 –2.84 0.48 –3.80 C
46 725.421 0.87 0.52 –2.55 0.58 –3.42 C
47 035.584 1.01 0.50 –2.18 0.51 –3.19 C
47 556.262 –0.01 0.39 –2.14 0.40 –2.13 C
47 733.622 0.12 0.54 –1.13 0.58 –1.25 C
47 853.376 1.17 0.48 –1.54 0.56 –2.71 C
48 119.635 0.66 0.38 –2.44 0.39 –3.10 C
48 237.300 0.72 0.39 –1.91 0.37 –2.63 C
48 495.535 0.81 0.38 –2.39 0.38 –3.20 C
48 571.438 0.87 0.31 –2.54 0.40 –3.41 C
48 860.589 0.66 0.50 –2.74 0.51 –3.40 C
49 036.326 0.58 1.07 – – C
49 592.549 0.37 0.37 –2.43 0.35 –2.80 C
49 598.459 1.43 0.40 –1.96 0.39 –3.39 C
49 950.579 0.20 0.57 –4.64 0.59 –4.84 C
49 975.449 0.34 0.24 –2.30 0.25 –2.64 T
50 324.457 0.06 0.34 T
50 341.514 1.73 0.46 –3.97 0.51 –5.70 C
50 650.553 1.57 0.27 –3.06 0.34 –4.63 T
50 658.553 0.63 0.42 –2.46 0.56 –3.09 T
50 667.570 2.76 0.73 –1.12 0.63 –3.88 T
50 758.298 0.21 0.54 –0.87 0.52 –1.08 T
51 065.517 2.00 0.32 –1.92 0.26 –3.92 T
54 172.5 1.654 0.14 –1.700 0.10 –3.35 M

to 133′′), but the physical nature of this system is yet to be
confirmed.
WDS 21000+4004AB. Fekel et al. (1978) found that the visual
component A of KUI 103 is itself a spectroscopic binary with
a period of 3.27 d, but no information is available about copla-
narity (Tokovinin 2008). Pourbaix (2000) has made a combined
analysis of the visual and spectroscopic data. However, the au-
thors note that this orbital solution is somewhat uncertain, given
the large error bars and inconsistencies in the derived values for
stellar masses and orbital parallax. Thus, we decided to base our
determination of the orbital pole of this system on the analysis of
the published radial velocity measurements (Pourbaix 2000) and
the orbital elements of the new visual orbit proposed by Docobo
& Ling (2010).
WDS 21069+3845AB. The mass ratio is taken from Gorshanov
et al. (2006). The node assignment is based on the difference
Vr(B) – Vr(A) ∼ +1 km s−1 > 0, as provided by Table 1
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Table A.5. CORAVEL velocities for the components of
WDS 01083+5455Aa,Ab = μ Cas.

Date JD – 2 400 000 Vr
(km s−1)

210877 43 377.577 –99.42 0.56
050977 43 392.532 –99.72 0.41
050977 43 392.535 –99.88 0.49
070977 43 394.540 –99.64 0.45
070977 43 394.542 –99.49 0.41
170977 43 404.505 –100.03 0.51
170977 43 404.509 –100.77 0.52
171077 43 434.481 –99.30 0.47
171077 43 434.483 –99.32 0.45
011177 43 449.431 –99.21 0.62
011177 43 449.435 –99.07 0.48
011177 43 449.435 –99.07 0.48
011177 43 449.438 –99.37 0.51
191177 43 467.378 –98.83 0.39
191177 43 467.381 –98.76 0.39
191177 43 467.383 –99.29 0.44
180878 43 739.617 –99.13 0.37
190878 43 740.621 –99.32 0.34
240878 43 745.611 –98.91 0.33
240878 43 745.615 –99.38 0.33
211078 43 803.444 –100.06 0.35
081083 45 616.487 –97.44 0.35
240984 45 968.530 –97.42 0.34
070885 46 285.624 –96.88 0.35
201285 46 420.266 –96.47 0.37
020886 46 645.615 –96.48 0.32
300886 46 673.600 –96.73 0.36
021086 46 706.588 –96.62 0.36
071286 46 772.252 –96.37 0.37
111286 46 776.302 –96.50 0.36
170287 46 844.400 –96.44 0.33
121088 47 447.622 –95.83 0.37
170889 47 756.617 –96.46 0.36
170890 48 121.622 –96.12 0.36
141290 48 240.385 –96.06 0.36
200892 48 855.626 –96.27 0.35
250193 49 013.283 –96.23 0.36
180893 49 218.623 –95.90 0.33
200194 49 373.279 –96.39 0.35
080994 49 604.572 –97.11 0.35
200895 49 950.602 –97.12 0.44
130996 50 340.559 –98.85 0.36
120897 50 673.624 –100.58 0.39
090198 50 823.228 –100.67 0.32
200199 51 199.245 –99.14 0.34

of Gorshanov et al. (2006) and confirmed by unpublished
CORAVEL measurements.
WDS 22234+3228AB. The total mass seems too high for the
spectral type.
WDS 22280+5742AB. Masses are from Delfosse et al. (2000).
Among the many radial velocities available in the literature for
the components of this system, we give the highest weight to the
measurement [Vr(A) = –32.7 km s−1 and Vr(B) = –33.2 km s−1]
by Gizis et al. (2002) because (i) that measurement is pre-
cisely dated (JD 2 450 005.6) and on the same night for A
and B; and (ii) the 0.5 km s−1 velocity difference is consistent

Table A.6. New CORAVEL velocities for the components of
WDS 01418+4237AB in complement of velocities published by
Duquennoy & Mayor (1991).

Date JD – 2 400 000 Vr
(km s−1)

160890 48 120.647 4.12 0.33
070990 48 142.581 4.31 0.33
050891 48 474.627 3.32 0.32
240891 48 493.570 3.44 0.30
180892 48 853.646 2.64 0.32
250193 49 013.276 2.91 0.32
180893 49 218.649 2.14 0.32
200194 49 373.273 1.86 0.31
080994 49 604.602 0.87 0.32
190895 49 949.643 –0.27 0.38
130996 50 340.573 –0.64 0.33
090198 50 823.239 1.06 0.32
200199 51 199.263 3.04 0.32

Table A.7. CORAVEL velocities for the components of
WDS 02278+0426AB.

Date JD – 2 400 000 Vr (2)a ± Vr (1) ±
(km s−1) (km s−1)

011078 43 783.569 9.67 0.67 4.65 0.73
281078 43 810.476 9.11 0.86 4.81 0.96
301078 43 812.523 8.38 1.04 3.89 1.17
120279 43 917.269 9.28 0.73 4.76 0.81
180280 44 288.279 10.17 0.64 4.52 0.70
051081 44 883.540 11.13 0.66 3.65 0.72
281082 45 271.562 11.28 0.57 1.49 0.62
061083 45 614.559 13.10 0.58 1.45 0.63
011084 45 975.561 14.07 0.63 1.72 0.69
111185 46 381.452 13.86 0.68 –0.18 0.75
300986 46 704.567 13.03 0.62 0.46 0.67
270887 47 035.618 12.19 0.61 2.28 0.67
201088 47 455.516 10.78 0.61 2.66 0.67
231189 47 854.441 8.69 0.50 3.96 0.53
040990 48 139.643 5.24 0.83 7.94 0.75
061191 48 567.490 3.26 0.66 10.93 0.72
240892 48 859.605 2.30 0.62 11.08 0.67
050992 48 871.837 4.17 0.60 9.25 0.65
210193 49 009.264 2.07 0.51 10.97 0.54
180293 49 037.264 2.36 1.18 11.02 1.33
081293 49 330.432 1.82 0.54 10.70 0.58
280894 49 593.912 3.82 0.58 6.69 0.63
080994 49 604.626 1.39 0.54 10.35 0.57
240895 49 954.651 0.79 0.71 12.15 0.78
120996 50 339.632 0.75 0.68 11.82 0.75
090198 50 823.312 2.10 0.56 10.35 0.60
150199 51 194.289 2.74 0.57 10.18 0.62

Notes. (a) Most likely, spectroscopic component 2 is
WDS 02278+0426B (see text for details).

with the prediction from the visual orbit. The measurement
(Vr(A) = –34.0 km s−1 and Vr(B) = –35.0 km s−1) by Delfosse
et al. (1998) is equally useful (its epoch is not as precisely
known as that report by Gizis, but it was obtained between
September 1995 and March 1997, a short time span with re-
spect to the 44.7 yr orbital period); the 1 km s−1 velocity dif-
ference agrees better with the prediction from the visual orbit
than Gizis’ 0.5 km s−1. The determination of the sign of Vr(B)
– Vr(A) = –1 km s−1 is important and it is opposite to the
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Table A.8. New CORAVEL velocities for the components of
WDS 16413+3136AB in complement of velocities published by
Duquennoy & Mayor (1991).

Date JD–2 400 000 Vr
(km s−1)

270490 48 009.500 –68.18 0.32
090891 48 478.459 –67.56 0.32
070592 48 750.578 –67.49 0.32
020393 49 049.692 –67.57 0.31
140494 49 457.592 –66.77 0.33
140797 50 644.431 –67.76 0.33

Table A.9. New CORAVEL velocities for the components of
WDS 17121+4540AB.

Date JD – 2 400 000 Vr
(km s−1)

200477 43 254.623 –83.29 0.42
220477 43 256.617 –31.08 0.71
220477 43 256.633 –32.85 0.88
130378 43 581.648 –28.31 0.66
130378 43 581.662 8.83 0.93
270678 43 687.480 –26.94 1.10
180778 43 708.394 –27.87 1.11
210778 43 711.380 –29.76 0.73
220778 43 712.391 –29.06 0.68
240778 43 714.428 –28.50 0.68
140679 44 039.489 –29.18 0.93
140879 44 100.355 –29.56 0.68
010981 44 849.362 –30.13 0.84
250282 45 026.692 –30.34 0.76
160583 45 471.566 –31.33 0.57
300384 45 790.675 –30.06 0.73
280784 45 910.384 –30.68 0.52
130385 46 138.686 –30.11 0.77
110586 46 562.568 –30.74 0.72
200787 46 997.453 –30.82 0.63
230388 47 244.665 –31.06 0.61
070788 47 350.452 –30.88 0.52
060689 47 684.589 –31.15 0.46
270490 48 009.538 –32.24 0.71
190890 48 123.457 –31.65 0.71
070791 48 445.443 –28.81 0.68
051191 48 566.246 –29.53 0.64
080592 48 751.570 –30.31 0.66
190892 48 854.345 –29.40 0.60
210493 49 099.595 –30.22 0.53
140494 49 457.583 –29.35 0.51
260895 49 956.360 –31.26 0.65
110596 50 215.561 –29.70 0.50
140797 50 644.441 –30.55 0.47
070598 50 941.589 –30.94 0.46

prediction from the visual orbital elements from the 6th COVBS.
It is thus necessary to add 180◦ to the values ofΩ and ω listed in
the 6th COVBS. It is noteworthy that the velocity values listed
in the Wilson – Evans – Batten catalogue (Duflot et al. 1995,
Vr(A) = –24.0 km s−1 and Vr(B) = –28.0 km s−1) or in Reid
et al. (1995) (Vr(A) = –16.0 km s−1 and Vr(B) = –29.0 km s−1),
although the differences are much larger than anticipated, always
have Vr(B) – Vr(A) < 0.
WDS 23317+1956AB. Indeterminate visual orbit.
WDS 23524+7533AB. Indeterminate visual orbit. A triple sys-
tem with A being SB2 with a period of 7.75 d (Christie 1934).

Fig. A.9. Cross-correlation function of the HERMES spectrum of
WDS 19255+0307Aa,Ab (obtained at JD 2 455 657.742) with a F0V
template. Component Aa shows a rotationally broadened profile with
Vr sin i = 84 km s−1, and component Ab is visible as a weak Gaussian
(at Vr(Ab) = –37.70 km s−1) superimposed on the rotationally broad-
ened profile (centred on Vr(Aa) = –26.68 km s−1). Similar profiles have
been observed over several consecutive nights.

Table A.10. New CORAVEL velocities for the components of
WDS 18070+3034AB in complement of velocities published by
Duquennoy & Mayor (1991).

Date JD – 2 400 000 Vr
(km s−1)

190790 48 092.429 2.15 0.32
180890 48 122.388 2.21 0.33
020891 48 471.433 2.27 0.33
210891 48 490.384 2.02 0.32

Appendix B: Determining the orbital pole
of a double star

B.1. Orbital pole of a visual double star

The true relative orbit (B/A) is related to the classical visual orbit
of B relative to A. The pole of this orbit is defined by the unit
vector perpendicular to the orbital plane and directed in such a
way that an observer placed at its end sees that the B component
has a direct motion (counter-clockwise).

The spatial motion of the binary components is described
using the reference frame (A, x, y, z) centred on the A compo-
nent with two axes in the plane tangent to the celestial sphere
(which is denoted plane of the sky): Ax points north (position
angle = 0◦), Ay points east (position angle = 90◦), and the third
axis Az is along the line of sight, pointing in the direction of in-
creasing radial velocities (i.e. positive radial velocity). This ref-
erence frame is thus retrograde (i.e., viewed from the positive
side of the Az-axis, a rotation of the Ax-axis onto the Ay-axis is
carried out clockwise).

The relative (B/A) orbit is described by means of seven or-
bital elements:

(i) Four so-called dynamic elements specifying the prop-
erties of the Keplerian motion in the true orbit (T , the epoch
of passage through periastron; P, the revolution period; a, the
semi-major axis and e, the eccentricity).
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Fig. B.1. True and the projected relative orbit (B/A) of a visual binary
and its geometrical elements. The ascending node of the orbit is located
at point N.

(ii) Three so-called geometric elements that define the orien-
tation of the true and apparent orbits, the latter being the projec-
tion of the true orbit on the plane of the sky (see Fig. B.1):

– Ω is the position angle of the line of intersection between
the true orbital plane and the plane of the sky. There are
two nodes whose position angles differ by 180◦, but by
convention, Ω is the position angle of the ascending node
where the orbital motion is directed away from the Sun. If
radial-velocity measurements are not available to identify
the ascending node, a temporary value ranging between 0◦
and 180◦ is adopted (Finsen 1934).

– i, the inclination, is the angle between the planes of the pro-
jected orbit and of the true orbit, taken at the ascending
node. The motion is direct if 0◦ < i < 90◦ and retrograde
if 90◦ < i < 180◦.

– ω is the argument of the periastron in the true orbit plane,
measured in the direction of the orbital motion from the as-
cending node with a value ranging from 0◦ to 360◦.

Two other orbits may be considered: the (A/AB) orbit of A
around the centre of mass AB and the (B/AB) orbit of B around
the centre of mass.

For resolved binaries, astrometric observations give then ac-
cess to the (A/AB) and (B/AB) orbits projected on the plane
of the sky. For an unresolved binary, the astrometric measure-
ments capture the position of the photocentre F located be-
tween A and AB. The astrometric orbit (F/AB) is similar to that
of (A/AB), but with a smaller semi-major axis aF.

For a given projected orbit as derived from astrometric obser-
vations, two possible true orbits correspond that are symmetric
with respect to the plane of the sky.

Therefore, even though the dynamic elements and the incli-
nation i are determined unambiguously, it is impossible to se-
lect between the two possible true orbits (and thus between the
two possible ascending nodes Ω) without a radial-velocity mea-
surement. The argument of periastron ω being measured from
the ascending node, the ambiguity on Ω thus propagates onto ω.
One special case is i = 0◦ or 180◦, the true orbit being then in the
plane of the sky, and there is no ambiguity on the ascending node

(since there is no such thing as an ascending node in that case!).
In all other cases, radial-velocity measurements for at least one
component are needed to lift the ambiguity on the value of Ω,
before the orientation of the orbital pole can be fixed , as was
done by Dommanget (2005) and Dommanget & Nys (2006).

B.2. Radial velocities

If Vr(A), Vr(B) and Vr,sys are the heliocentric radial velocities
of components A and B and of the centre of mass of the binary
AB, and denoting VA/AB and VB/AB the radial components of the
orbital velocity of A and B around the centre of mass, then

Vr(A,B) = V(A,B)/AB + Vr,sys. (B.1)

The orbital radial velocity of each component relates to the or-
bital elements by

V(A,B)/AB = 2π
a(A,B) sin i

P
√

1 − e2
[e cosω(A,B) + cos(ω(A,B) + v)], (B.2)

where v is the true anomaly, aA,B are the semi-major axes, P the
orbital period, and ω(A,B) the argument of the periastron of the
(A/AB) and (B/AB) orbits.

For double-lined spectroscopic binaries (SB2), the measure-
ments of VA/AB and VB/AB are possible; for single-lined spectro-
scopic binaries (SB1), only VA/AB measurements are possible.

The relative radial velocity between the components,
Vr = Vr(B) − Vr(A), can be calculated from the orbital el-
ements of the (B/A) orbit using Eq. (B.2).

For an astrometric-binary orbit, the radial velocity of the
photocenter Vr(F) can be computed with the same formula
(Eq. (B.2)) where the semi-major axis aF and the argument of
the periastron ωF of the photocentric orbit have been inserted
instead.

It is easy to show that

ωA = ωF = ωB + 180◦. (B.3)

The variation of Vr and Vr(B) are the same and are opposite
to that of Vr(A). By definition, the maximum of the Vr(A) and
Vr(B) curves occurs at the passage of the ascending node in the
true orbits (A/AB) and (B/AB), respectively, whereas the maxi-
mum of the Vr curve corresponds to the passage at the ascending
node in the relative orbit (B/A).

B.3. Choosing the correct ascending node

Generally, the ascending nodeΩ of the relative orbit (B/A) is de-
termined by comparing the variations of the measured radial ve-
locities Vr with the shape of the relative radial-velocity curve Ṽr

(or Ṽr(F)) computed from the visual orbital elements. However,
finding the ascending node of the relative orbit (B/A) in practice
depends on the type of binary system and on the type of radial-
velocity measurements available, as described in Table B.1.

For spectroscopic systems with a combined spectro-visual
orbit available (case 1 of Table B.1), the ascending node of
the relative orbit is unambiguously determined (e.g., Pourbaix
2000). The values of the orbital elements i, Ω and ω can then be
directly used to compute the orbital pole orientation.

For visual binaries with available radial-velocity measure-
ments, if the slope of the computed Ṽr curve is the same as that
of the Vr(B) – Vr(A) measurements (cases 2 or 5 of Table B.1),
or opposite to that of the Vr(A) curve (cases 3 or 6 of Table B.1),
there is no need to change the values of the position angle of the
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Table B.1. The different ways to determine the ascending node of the relative orbit (B/A).

System type Available orbit Available velocities Ascending node determination Case
Spectroscopic binary spectro-visual from orbit i, Ω, ω result from (B/A) orbit computation 1

resolved as visual and SB2 Vr(B), Vr(A) from orbit Ṽr(B/A) compared to Vr(B)-Vr(A) 2

visual or astrometric visual and SB1 Vr(A) from orbit ṼAB/A compared to Vr(A) 3

binary astrometric and SB1 Vr(A) from orbit Ṽr(F) compared to Vr(A) 4

Visual binary visual Vr(A) and Vr(B) Ṽr compared to Vr(B)-Vr(A) drift 5

Vr(A) Ṽr compared to Vr(A) drift 6

Astrometric binary astrometric Vr(A) Ṽr(F) compared to Vr(A) drift 7

Notes. In the table, the Ṽr quantities denote the values derived from the visual or astrometric elements through Eq. (B.2), the values without a tilde
are the observed values.

Fig. B.2. Examples of lifting the ambiguity on the ascending node for a
visual binary. Top (cases 2, 5 of Table B.1): the slope of the computed
Ṽr curve is opposite to that of the Vr(B)−Vr(A) measurements: it is then
necessary to add 180◦ to the values of Ω and ω given by the 6th Catalog
of Orbits of Visual Binary Stars (6th COVBS; Hartkopf et al. 2001).
Bottom (cases 3, 6 of Table B.1): the slope of the computed Ṽr curve is
opposite to that of Vr(A) measurements; there is no need to change the
values of Ω and ω listed in the 6th COVBS.

ascending node Ω and of the argument of the periastron ω, from
the values adopted for computing Ṽr in Eq. (B.2). In the opposite
situation, it is necessary to add 180◦ to the values of Ω and ω.
Examples are given in Fig. B.2.

For astrometric binaries (cases 4 or 7 of Table B.1), if the
drift of the computed Ṽr(F) curve is opposite that of the Vr(A)
measurements, there will be no need to change the values of the

position angle of the ascending node ΩF or of the argument of
the periastron ωF. In the opposite case, it is necessary to add
180◦ to these values. Thus the ascending node of the (B/A) orbit
will be Ω = ΩF + 180◦ and ω = ωF + 180◦.

It is important to note that the ambiguity-free values listed
in Table 3 are correspond to the relative orbit (B/A). Hence, in
Tables A.2 and A.3, which provide newly determined orbital el-
ements of spectro-visual orbits, we list the values of ωB, con-
trary to usage with spectroscopic orbital elements, to ensure
consistency with Table 3.

B.4. Determining the direction of the pole of the true
relative orbit

This section describes the determination of the direction of the
pole of the true relative orbit (B/A), including the case of astro-
metric binaries for which the B component is invisible.

In the reference frame (A, x′, y′, z′) attached to the (B/A) or-
bit, the direction of the orbital pole is given by the unit vector (x′,
y′, z′) = (0, 0, 1).

The ambiguity on the position angle of the ascending node
was solved along the method described in Sect. B.3, the geo-
metric orbital elements i, Ω and ω are known, so that the equa-
torial coordinates of the pole (xeq, yeq, zeq) can be computed
from the equatorial coordinates of the binary (Right Ascension
α, Declination δ) by a succession of reference-frame changes as
shown in Fig. B.3:

– From (A, x′, y′, z′) to (A, x′, u, z) by a rotation of angle i
around the Ax′ axis;

– to (A, x, y, z) by a rotation of angle Ω around the Az axis;
– to (O, v, y, zeq) by a rotation of angle δ around the Ay axis;
– and finally to (O, xeq, yeq, zeq) by a rotation of angle α around

the Azeq axis.

It is then easy to show that in the equatorial reference frame (O,
xeq, yeq, zeq), the direction of the orbital pole is given by the unit
vector with the coordinates

xeq = cosα sin δ sinΩ sin i − cosα cos δ cos i − sinα cosΩ sin i

yeq = sinα sin δ sinΩ sin i − sinα cos δ cos i + cosα cosΩ sin i

zeq = − cos δ sinΩ sin i − sin δ cos i. (B.4)

We stress that our convention, which leads to a polar direction
opposite to that of the system when i = 0◦, is opposite to that
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Fig. B.3. Orientation of the true and apparent relative orbits (B/A) with
respect to the celestial sphere and the corresponding reference frames.
(α, δ) are the equatorial coordinates of the binary system.

of Batten (1967). In the terminology of Batten (1967), our poles
are thus those that would be derived by applying the right-hand
rule to the orbital motion.

The Galactic coordinate system is the most appropriate for
studying the distribution of the orbital poles in a Galactic frame-
work. Therefore, the coordinates (xeq, yeq, zeq) of the unit vector
giving the direction of the pole are converted into the coordinates
(xg, yg, zg) in the Galactic frame using the relation (for details see
Johnson & Soderblom 1987)
⎛⎜⎜⎜⎜⎜⎜⎝

xg
yg
zg

⎞⎟⎟⎟⎟⎟⎟⎠ = [T ]

⎛⎜⎜⎜⎜⎜⎜⎝
xeq
yeq
zeq

⎞⎟⎟⎟⎟⎟⎟⎠ . (B.5)

The terms of the transformation matrix [T ] are computed from
the J2000 equatorial coordinates of the Galactic centre and pole
given by the Institut de Mécanique Céleste et de Calcul des
Ephémérides (IMCCE):

– North Galactic pole:
α0 = 12h51m26.28s and δ0 = 27◦7′41.7′′

– Galactic center:
αG = 17h45m37.20s and δG = −28◦56′10.2′′

This leads to the transformation matrix:

[T ] =

⎛⎜⎜⎜⎜⎜⎜⎝
−0.054875 −0.873437 −0.483835

0.494110 −0.444829 0.746982
−0.867666 −0.198077 0.455984

⎞⎟⎟⎟⎟⎟⎟⎠ . (B.6)

After the coordinates (xg, yg, zg) are computed, the Galactic lon-
gitude l and latitude b are deduced using the relations

cos l cos b = xg
sin l cos b = yg with 0◦ ≤ l < 360◦
sin b = zg with −90◦ ≤ b ≤ 90◦.

(B.7)
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