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ABSTRACT

In asteroseismology, the observed time series often suffers from incomplete time coverage due to gaps. The presence of periodic
gaps may generate spurious peaks in the power spectrum that limit the analysis of the data. Various methods have been developed
to deal with gaps in time series data. However, it is still important to improve these methods to be able to extract all the possible
information contained in the data. In this paper, we propose a new approach to handling the problem, the so-called inpainting method.
This technique, based on a prior condition of sparsity, enables the gaps in the data to be judiciously fill-in thereby preserving the
asteroseismic signal as far as possible. The impact of the observational window function is reduced and the interpretation of the power
spectrum simplified. This method is applied on both ground- and space-based data. It appears that the inpainting technique improves
the detection and estimation of the oscillation modes. Additionally, it can be used to study very long time series of many stars because
it is very fast to compute. For a time series of 50 days of CoRoT-like data, it allows a speed-up factor of 1000, if compared to methods
with the same accuracy.
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1. Introduction

Asteroseismology, the study of stellar oscillations, has proved
to be a very powerful tool for probing the internal structure
of stars. Oscillation modes can be used to obtain reliable in-
formation about stellar interiors, and this has motivated a huge
observational effort with the aim of doing asteroseismology.

Until recently, ground-based observations have been the pri-
mary source of our knowledge about oscillation modes in dif-
ferent types of pulsating stars. In the past decade, missions
like WIRE (Wide-field InfraRed Explorer, Buzasi et al. 2004),
MOST (Microvariability and Oscillations of STars, Walker et al.
2003), CoRoT (Convection, Rotation and Planetary Transits,
Baglin et al. 2006), or Kepler (Borucki et al. 2010) have made it
possible to simultaneously record long time series on numerous
targets. Nevertheless, ground-based networks, such as SONG
(Stellar Oscillations Network Group, Grundahl et al. 2006),
can still be used in a complementary way to observe stars that
are much brighter than the ones observed from space. All these
missions have allowed us to study the internal structure of a lot
of stars (e.g., Christensen-Dalsgaard et al. 1996; Mathur et al.
2012, 2013b), their dynamics, including internal rotation (e.g.,
Fletcher et al. 2006; Beck et al. 2012; Deheuvels et al. 2012;
Mosser et al. 2012; Gizon et al. 2013), their magnetism (e.g.,
García et al. 2010; Karoff et al. 2013), and their fundamental pa-
rameters, such as their masses, radii, and ages (e.g., Mathur et al.
2012, 2013; Metcalfe et al. 2012; Doğan et al. 2013; Chaplin
et al. 2014).

However, to be able to extract all the possible information
on the stochastically excited oscillations of solar-like stars from
the light curves, it is important to have continuous data without
regular gaps. One important criterion for observational astero-
seismology is the duty cycle. This is the measure of the frac-
tion of time that is spent successively observing the variabil-
ity of a given star. From the ground, for extended periods, even
when instruments (or telescopes) from the same networks are de-
ployed at different longitudes, the day/night cycle, the weather,
and other factors make it impossible to obtain continuous data
sets. Normal duty cycles of ground-based networks of several
continuous months are typically below 90%. From space, most
of these problems are overcome and duty cycles are commonly
above 90%. However, even small time gaps can cause significant
confusion in the power spectrum. For example, the presence of
repetitive gaps induced when a spacecraft, in a low Earth orbit,
crosses the so-called South Atlantic Anomaly, may generate spu-
rious peaks in the power spectrum, as is the case for the CoRoT
satellite.

In the helioseismology of Sun-as-a-star instruments GOLF
(Global Oscillations at Low Frequency, Gabriel et al. 1995) and
VIRGO (Variability of Solar Irradiance and Gravity Oscillations,
Fröhlich et al. 1995), no interpolation is used. Missing points
are filled with zeros assuming that the time series have been
properly detrended and thus have a zero mean (García et al.
2005). In particular, for the SoHO instruments, the average duty
cycle is around 95% and the gaps are concentrated during the
SoHO vacation periods (see more details about the GOLF data
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in García et al. 2005). In the case of BiSON (Birmingham Solar-
Oscillations Network, Chaplin et al. 1996), only one-point gaps
are filled using a cubic spline. For imaged instruments – such as
GONG (Global Oscillation Network Group, Harvey et al. 1996)
and MDI (Michelson Doppler Imager, Scherrer et al. 1995) –
only gaps of one or two images are filled using autoregressive al-
gorithms (e.g. Fahlman & Ulrych 1982). Recently, in the case of
HMI (Helioseismic and Magnetic Imager, Scherrer et al. 2012),
gaps up to a certain size are corrected (Larson & Schou 2008).
Autoregressive algorithm could be a possible choice in astero-
seismology, but they need to be studied further and tested for
other stars and data sets.

In asteroseismology, it is common to directly compute
the periodogram using the light curves with gaps using algo-
rithms such as the Lomb-Scargle periodogram (Lomb 1976;
Ferraz-Mello 1981; Scargle 1982; Frandsen et al. 1995;
Zechmeister & Kürster 2009) or CLEAN (Roberts et al. 1987;
Foster 1995). It is also commonly used to interpolate the missing
data to estimate the power spectrum with a fast Fourier trans-
form (FFT). In particular, this is the case for the seismic light
curves provided by the CoRoT mission in which a linear in-
terpolation is performed in the missing (or bad) points (e.g.,
Appourchaux et al. 2008; García et al. 2009; Auvergne et al.
2009). However, in some cases a better interpolation algorithm
has been used in the analysis of the CoRoT data (e.g., Mosser
et al. 2009; Ballot et al. 2011). It is important to note that the
light curves have been properly detrended and have a zero mean
(e.g., García et al. 2011).

The aim of this paper is to present a new interpolation
method of reducing the undesirable effects on the power spec-
trum coming from incomplete time coverage. We want to reduce
the presence in the power spectrum of non desirable peaks due
to the absence of data, without modifying the seismic signals
from the stars, as much as possible. For this purpose, we pro-
pose a new approach, the so-called inpainting technique, based
on a sparsity prior introduced by Elad et al. (2005). The method
we introduce in this paper, consists of filling the gaps prior to
any power spectrum estimation.

In Sect. 2, we first recall the basis of the classic methods
currently used in asteroseismology. Then, the inpainting tech-
nique is presented. In Sect. 3, we study the impact of inpaint-
ing techniques in the power spectrum using solar-like data to
which we apply standard window functions from ground-based
observations, as well as other artificially modeled masks. Then,
in Sect. 4, a similar study is performed but this time using
standard windows from space-based observations. Finally, our
conclusions are summarized in Sect. 5.

2. Data analysis

To measure the characteristics of the acoustic modes (frequen-
cies, amplitudes, lifetimes, etc.) in solar-like stars with a good
precision, long and uninterrupted light curves are desired. Both
ground and space observations have gaps that can have differ-
ent lengths. They can introduce spurious peaks in the power
spectrum, especially if they are regularly distributed.

2.1. Power spectrum estimation

Various methods have been developed to deal with incomplete
time series.

2.1.1. Lomb-Scargle periodogram

One of the most common methods used is the Lomb-Scargle
periodogram introduced by Lomb (1976) and Scargle (1982),
which is based on a least-squares fitting of sine waves of the form
y = a coswt + b sinwt. Another variant, described in Frandsen
et al. (1995), consists of using statistical weights to reduce the
noise in the power spectrum at low frequencies. However, these
strategies are subject to false detections due to the observational
window function.

2.1.2. CLEAN algorithm

Another widely used method is the CLEAN algorithm (Roberts
et al. 1987; Foster 1995), that is based on an iterative procedure
that searches for maxima in the power spectrum. This procedure
consists of finding the highest peak in the periodogram, then re-
moving it in the time domain, recomputing the power spectrum,
and iterating for the next highest peak. This procedure is iterated
until the residual power spectrum is a pure noise spectrum. At
each iteration the highest peak is removed but so are all the spuri-
ous frequencies that arise from spectral leakage. False peaks can
be removed by this method, However, any error on the properties
of the peaks to be removed (amplitude, frequency, and phase)
will introduce significant errors into the resulting “cleaned” pe-
riodogram. This is especially true when the duty cycle is low and
the spectral leakage of the main lobe into the side lobes is very
large.

2.2. Gap filling and regular sampling

The detection and estimation of oscillation modes in the power
spectrum of an incomplete time series sometimes suffer false de-
tection due to large observational gaps. In order to lower the im-
pact of the gaps on the estimation of the power spectrum, specific
methods have already been developed to interpolate the missing
data in order to estimate the power spectrum with a fast Fourier
transform.

In some cases, a linear interpolation is sufficient for this (e.g.,
Appourchaux et al. 2008; Benomar et al. 2009; García et al.
2009; Deheuvels et al. 2010), but in other cases a more sophis-
ticated algorithm is necessary (e.g., Mosser et al. 2009). In this
paper, we present a new approach that consists of filling in the
gaps using a sparsity prior. We note that there are other interpo-
lation algorithms, such as autoregressive models, that could also
be applied to asteroseismic data (as is the case in helioseismol-
ogy for the HMI pipeline, Larson et al., in prep.). Because these
algorithms are not commonly used in asteroseismology, we have
not shown any comparison with them in the present paper.

2.2.1. Inpainting introduction

A solution that has been proposed to deal with missing data con-
sists of judiciously filling in the gaps by using an “inpainting”
method. The inpainting technique is an extrapolation of the miss-
ing information using some priors on the solution. This tech-
nique has already been used to deal with missing data for sev-
eral applications in astrophysics (Abrial et al. 2008; Pires et al.
2009), including asteroseismology (Sato et al. 2010). In these
applications the authors use inpainting introduced by Elad et al.
(2005). This inpainting relies on a prior of sparsity that can eas-
ily be applied to asteroseismic data. Some methods in asteroseis-
mology have already used the fact that the spectra are sparse. For
example, in the CLEAN algorithm, a sparsity prior is introduced
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implicitly. In autoregressive methods as in Fahlman & Ulrych
(1982), a sparsity prior is also used, but the degree of sparsity
is imposed in advance. It requires having some priors on the
number and the frequency range of the oscillations modes.

The method presented here just uses the prior that there is
a representation ΦT of the time series X(t) where most coeffi-
cients α = ΦT X are close to zero. For example, if the time se-
ries X(t) was a single sine wave, the representation ΦT would be
the Fourier transform because most of the Fourier coefficients
α are equal to zero except one coefficient that is sufficient to
represent the sine wave in Fourier space.

We let X(t) be the ideal complete time series, Y(t) the ob-
served time series (with gaps), and M(t) the binary mask (i.e.,
window function with M(t) = 1, if we have information at data
point X(t); M(t) = 0 otherwise). We have Y = MX, so when
M(t) = 0, the observed value (e.g., a flux or radial velocity mea-
surement) is set to zero, rather than removing the data point.
Inpainting consists of recovering X knowing Y and M. There
is an infinite number of time series X that can fit the observed
time series Y perfectly. Among all the possible solutions, we
search for the sparsest solution in the representation ΦT (i.e.,
the time series X that can be represented with the fewest coef-
ficients α, such as the sine curve in the Fourier representation),
while imposing that the solution is equal to the observed data
within the intrinsic noise of the data. Thus, the solution is ob-
tained by solving

min ‖α‖0 subject to ‖ Y − MX ‖2≤ σ, (1)

where the l0 pseudo-norm ‖α‖0 is the number of non-zero coef-
ficients α, ||.|| is the classical l2 norm (i.e. ||z|| =

∑
k(zk)2), and σ

is the standard deviation of the noise in the observed time series
(for further details please see Pires et al. 2009).

It has been shown by Donoho & Huo (2001) that the l0
pseudo-norm can be replaced by the convex l1 norm (i.e., ||z||1 =∑

k |zk |) if the time series X is sparse enough in the representation
ΦT (i.e., a few large coefficients can represent the data). This
representation is described in the next section. Thus, its global
minimum can be reached by decent techniques.

2.2.2. Description of the algorithm

The solution of such an optimization task can be obtained
through an iterative algorithm called morphological component
analysis (MCA) introduced by Elad et al. (2005). Let Xi denote
the reconstructed time series at iteration i. If the time series is
sparse enough in the representation ΦT , the largest coefficients
should come from the signal we want to measure. Thus, the al-
gorithm is based on a threshold that decreases exponentially (at
each iteration) from a maximum value to zero. By accumulating
more and more high coefficients through each iteration, the gaps
in Xi fill up steadily, and the power of the coefficients due to the
gaps decreases. This algorithm needs the observed incomplete
data Y and the binary mask M as input.

The algorithm can be described as follows:

1. Set the maximum number of iterations Imax, and the solu-
tion X0 is initialized to zero, the maximum threshold λmax =
max(| ΦT Y |), and the minimum threshold λmin � σ.

2. Set i = 0, λ0 = λmax. Iterate.
3. Set U i = Xi + M(Y−Xi) to enforce the time series to be equal

to the observed data where the mask is equal to 1.
4. Compute the forward transform of U i: α = ΦT U i.
5. Compute the threshold level λi = F(i, λmax, λmin), where F is

a function that describes the decreasing law of the threshold.

6. Keep only the coefficients α above the threshold λi.
7. Reconstruct Xi+1 from the remaining coefficients α̃ : Xi+1 =

Φα̃.
8. Set i = i + 1. If i < Imax, and return to step 3.

As mentioned previously, in this application, F decreases expo-
nentially from λmax at the first iteration, to λmin at the last itera-
tion. When λmin is much smaller than the noise level, σ, and thus
very close to zero, the algorithm assigns it the value of zero to
avoid numerical issues. Setting λmin to zero when the threshold
is very small does not affect the results because we are well be-
low the noise level σ. Also the threshold can be stopped at 2σ
or 3σ if one wants to denoise the time series.

The number of iterations Imax is chosen to be 100, which en-
sures convergence. This value is obtained experimentally and is
not specific to asteroseismic data (Pires et al. 2009). The condi-
tions under which this algorithm provides an optimal and unique
sparse solution to Eq. (1) have been explored by a number of
authors (e.g., Elad & Bruckstein 2002; Donoho & Elad 2003).
They have shown that the proposed method is able to recover the
sparsest solution, provided this solution is indeed sparse enough
in the representation ΦT and the mask is sufficiently random in
this representation. In asteroseismology, ΦT can be represented
by a multiscale discrete cosine transform. Like the Fourier trans-
form, the discrete cosine transform (DCT) is a decomposition
into a set of oscillating functions, and thus it is a good represen-
tation of the asteroseismic signal. To go one step further and treat
the large variation in gap sizes present in helio- and asteroseis-
mic data, the light curves were decomposed beforehand with an
“à trous” wavelet transform (see Starck & Murtagh 2002) (us-
ing a B3-spline scaling function). Then, each wavelet plane is
decomposed using a local DCT whose block size Bl depends
on the scale of the wavelet plane l as follows: Bl = B0 ∗ 2l.
This corresponds to what we call the multiscale discrete cosine
transform.

3. Application to low duty cycle time series

Ideally, we would like to have a 100% duty cycle when analyzing
time series. Unfortunately, from a single ground-based site, we
can only reach duty cycles of about 40% for short time series
under ideal weather conditions. For long time series, duty cycles
are generally between 20% and 30%. Combining several sites
leads to duty cycles between 60% and 95% depending on the
number of sites and their position in terms of longitude.

The time series obtained from the ground are mainly affected
by the day/night cycle and weather conditions. Thus we can de-
fine a toy model where the window function (i.e., mask) is mod-
eled by a rectangular window ΠT1 convolved by a Dirac comb
function XT2 , with T1 corresponding to the daily observation
window that is about six hours and T2 corresponds to the Earth
rotation period of 24 h. In the Fourier domain, the multiplication
by this mask becomes a convolution, and then the Fourier trans-
form of the signal is convolved by the Fourier transform of the
mask M̂( f ):

M̂( f ) = T1
sin(π f T1)
π f T1

·
1
T2

X 1
T2

( f ). (2)

The product of a signal and a Dirac comb is equivalent to a
sampling. Thus, the convolution by a regular window function
causes a spectral leakage from the main lobe to the side lobes
that are regularly spaced in frequency by 1

T2
and their heights

are modulated by the sinc term. This window effect depends on
both T1 and T2.
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Fig. 1. Power density spectrum (in units of ppm2/µHz) of VIRGO/SPM
data in the frequency range between 2700 to 3500 µHz estimated with
a fast Fourier transform from a complete time series of 50 days (top)
and 91.2 days (bottom).

For this study, we use the time series obtained by
the SunPhotometers (SPM) of VIRGO (Variability of Solar
Irradiance and Gravity Oscillations, Fröhlich et al. 1995) in-
strument onboard the SoHO spacecraft (with a duty cycle close
to 100%) in order to mimic ground-based observations. We
only considered 50 days of observations in order to be close
to what we expect for a typical long observation run with the
SONG network. This is our ideal time series X(t). The top
panel of Fig. 1 shows the power density spectrum (PDS) esti-
mated from 50 days observations with a complete time coverage
(duty cycle of 100%). We only plotted the PDS in the frequency
range between 2700 to 3500 µHz to focus around the maxi-
mum power of the p modes. For this simple case, with regularly
sampled data, without gaps, the spectrum was computed using
a fast Fourier transform and we normalized it as the so-called
one-sided PDS (Press et al. 1992).

3.1. Ground-based observations of single- to multiple-site
networks: worst-case scenario

We started by studying the impact of different standard window
functions from ground-based observations that have different

Fig. 2. Sample of 50 days of the original VIRGO/SPM data multiplied
by a MARK-I like mask to simulate ground-based observations from a
single site corresponding to a duty cycle of 23% (top panel), two dif-
ferent sites with a duty cycle of 50% (middle panel), and multiple sites
corresponding to a duty cycle of 77% (bottom panel).

duty cycles. To do so, we applied three different window
functions to the VIRGO/SPM data.

To study the case of ground-based observations from a sin-
gle site, we expanded the MARK-I window function to simu-
late a duty cycle of 23%. MARK-I is one of the helioseismic
Doppler-velocity instruments of the BiSON network operated at
the Observatorio del Teide, Tenerife (Chaplin et al. 1998), and
located close to the first SONG node. This window function is
therefore a reasonable approximation of what the observations
with one node will have during its operation. We applied a dilata-
tion operator (i.e., an operator that enlarges the regions where in-
formation is provided) to the MARK-I window function to sim-
ulate the case of ground-based observations from two different
sites with a duty cycle of 50%. Although this mask is not typical
of real data, it contains highly periodic gaps. This allows us to
test our algorithm in the worst-case scenario and to establish a
lower limit of any improvement in the inpainting algorithm com-
pared to CLEAN. Finally, a mask for a multiple-site network is
obtained by inverting the MARK-I window function providing a
duty cycle of 77%. Although day-time and night-time observa-
tions are not the same and instruments are different, these arti-
ficial regular masks are representative enough for ground-based
network observations for us to reasonably compare the differ-
ent methods, these artificial regular masks represent the worst-
case scenario for ground-based observations, because they have
a large number of regular gaps. The time series X is then multi-
plied by these observational window functions M to obtain the
artificial observed data Y (see Fig. 2).

These sets of data were then analyzed with the three meth-
ods described in Sect. 2. A comparison with linear interpo-
lation for gap filling was shown in previous work, based on
CoRoT data, which concluded that the inpainting method was
superior (Sato et al. 2010). Nevertheless, we have applied the
linear interpolation to the sets of simulated ground-based data
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Fig. 3. Power density spectrum (in units of ppm2/µHz) for a duty cy-
cle of 23%. The PDS is calculated with a least-squares sinewave fit on
the incomplete time series (top panel), using an FFT on the CLEANed
time series (middle panel) and an FFT on the inpainted time series (bot-
tom panel). The errors correspond to the difference between the original
PDS and the PDS estimated from the incomplete data. The inset corre-
sponds to the spectral window of the time series.

described above, and the results are much poorer than the results
with the three methods described in this paper.

The PDSs obtained with the three methods described in
Sect. 2 are shown in Figs. 3–5 for duty cycles of 23%, 50%,
and 77%, respectively. In the top panel, the PDS is calculated
by the method described in Frandsen et al. (1995), which con-
sists of a least-squares sinewave fit (SWF) to the incomplete data
where data points in the gaps are removed from the time series.

Fig. 4. Power density spectrum and errors (in units of ppm2/µHz) esti-
mated from a time series of 50 days with a duty cycle of 50%. The PDS
is computed with a least-squares sinewave fit on the incomplete time
series (top panel), using an FFT on the CLEANed time series (middle
panel) and an FFT on the inpainted time series (bottom panel).

In the middle panel, the PDS is obtained using a fast Fourier
transform on a time series reconstructed using the CLEAN algo-
rithm. The bottom panel presents the PDS computed with a fast
Fourier transform after performing an inpainting. Each panel in-
cludes two plots: the PDS (top) and the error on the PDS (bot-
tom). The plotted error corresponds to the difference between the
power spectrum estimated from the complete data and the power
spectrum estimated from the incomplete set. Thus positive errors
correspond to underestimation of the signal. The magenta dotted
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Fig. 5. Power density spectrum and errors (in units of ppm2/µHz) esti-
mated from a time series of 50 days with a duty cycle of 77%. The PDS
is computed with a least-squares sinewave fit on the incomplete time
series (top panel), using an FFT on the CLEANed time series (middle
panel) and an FFT on the inpainted time series (bottom panel).

lines have been plotted as a reference, and they correspond to an
error of ±0.01 ppm2/µHz.

For a duty cycle of 23%, when using the SWF (top panel
of Fig. 3) the oscillation modes are convolved by the Fourier
transform of the mask, shown in the inset. The amplitude of
the oscillation modes is substantially underestimated because of

the spectral leakage1 of the power into the high amplitude side
lobes of the spectral window. As a result, there are several spu-
rious peaks, which correspond to negative values in the PDS er-
ror. This leakage is reduced when we increase the duty cycle
(thus T1) as expected by Eq. (2), but the spurious peaks are still
present in the PDS (top panels of Figs. 4 and 5).

With the CLEAN algorithm (middle panel of Fig. 3), we can
see the improvement compared to the least-squared sinewave
fit. The amplitude of the main high peaks is closer to the orig-
inal PDS, and the side lobes have been reduced compared to
the previous method. However, there are still some side lobes
in the power spectrum that correspond to incorrect removal of
the peaks. Because of the regularity of the mask, we are in the
“worst case scenario” for the CLEAN algorithm, which looks in
an iterative way for the highest peaks in the PDS, assuming they
are due to real signal. As seen in Fig. 3, the amplitude of the
side lobes is very close to the amplitude of the main lobe, so two
side lobes from two nearby main lobes can be larger than the
main lobes. This explains the side lobes that remain in the power
spectrum. With duty cycles of 50% and 77% (middle panels of
Figs. 4 and 5), the side lobes are significantly reduced as for the
SWF method, but there is still a small spectral leakage even at
the 77% duty cycle.

Like CLEAN, applying the inpainting method to the data
with 23% duty cycle (bottom panel of Fig. 3) shows a clear re-
duction in the side lobes compared to SWF, but the amplitude
of the peaks is not recovered well. However, there are a few in-
stances where the main peaks are almost completely missed (see
large positive peaks in the PDS error plots). These errors are due
to the mask not satisfying one of the principal conditions previ-
ously laid down: “mask has to be sufficiently random”. Also for
inpainting this is the “worst case scenario”, because the amount
of missing data is significant, and the mask is coherent. Even
worse, because the mask is regular, it is sparse in the representa-
tion ΦT of the data (i.e. multiscale discrete cosine transform) in
which the signal is also sparse. In this case, the effect of the win-
dow function cannot be fully removed. The increase in the duty
cycle to 50% and 77% (bottom panels of Figs. 4 and 5) improves
the results of the inpainting method where we clearly see the re-
duction of the side lobes. We also notice that the amplitudes of
the main peaks are recovered much better.

In summary, the CLEAN method is better at estimating the
amplitude of the modes for typical ground-based data with duty
cycles of 23%, while the inpainting method removes the side
lobes better than CLEAN does for the 50% and 77% cases.

3.2. Fitting the acoustic modes of the different power density
spectra

In the case of a 23% duty cycle, the inpainting method is clearly
not optimal for processing the regularly gapped ground-based
data, but for a duty cycle of 77%, the inpainting method outper-
forms the other methods. To further quantify the results obtained
in the intermediate case of 50% duty cycle, we fit the oscillation
modes with a maximum likelihood estimation as described in
Anderson et al. (1990) and Appourchaux et al. (1998). Modes
are modeled as the sum of Lorentzian profiles (see, e.g., Kumar
et al. 1988) and are fitted simultaneously over one large sepa-
ration, i.e., a sequence of l = 2, 0, 3, and 1 modes, assuming a
common width for the modes and a common rotational splitting

1 The spectral leakage caused by the window function is sometimes
called incorrectly aliasing. Aliasing should only be used if the spectral
leakage is caused by sampling.
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Table 1. Fitted parameters: frequency (ν), rms amplitude (σrms), and
width (Γ) of modes l = 0 to 3 of five radial orders around νmax.

DFT 100% SWF 50% Inpainting 50%
Frequency l = 0 [µHz]

2764.09 ± 0.16 2763.94 ± 0.14 2764.27 ± 0.19
2898.53 ± 0.18 2898.74 ± 0.11 2898.61 ± 0.17
3033.76 ± 0.17 3033.83 ± 0.14 3033.74 ± 0.17
3168.65 ± 0.20 3168.61 ± 0.16 3168.37 ± 0.15
3304.08 ± 0.31 3304.01 ± 0.27 3303.59 ± 0.33

Frequency l = 1 [µHz]
2828.29 ± 0.14 2828.23 ± 0.09 2828.47 ± 0.21
2963.33 ± 0.58 2963.84 ± 0.12 2963.15 ± 0.20
3098.13 ± 0.16 3097.93 ± 0.10 3097.95 ± 0.14
3233.39 ± 0.24 3233.50 ± 0.28 3233.86 ± 0.16
3368.78 ± 0.21 3368.85 ± 0.15 3368.92 ± 0.19

Frequency l = 2 [µHz]
2754.26 ± 0.21 2754.19 ± 0.16 2753.44 ± 0.38
2889.70 ± 0.15 2889.95 ± 0.09 2889.84 ± 0.12
3024.71 ± 0.19 3024.73 ± 0.19 3025.04 ± 0.22
3159.81 ± 0.13 3159.97 ± 0.14 3160.01 ± 0.11
3295.44 ± 0.34 3295.54 ± 0.31 3295.37 ± 0.28

Frequency l = 3 [µHz]
2813.19 ± 0.35 2813.21 ± 0.25 2813.17 ± 0.22
2946.69 ± 0.18 2946.93 ± 0.25 2947.53 ± 0.11
3082.11 ± 0.20 3081.95 ± 0.34 3080.49 ± 0.44
3216.65 ± 0.34 3217.29 ± 0.35 3217.54 ± 0.07
3352.38 ± 0.64 3353.29 ± 1.08 3352.30 ± 0.80

Amplitude σrms [ppm] l = 0
3.21 ± 0.30 3.16 ± 0.20 2.84 ± 0.24
3.84 ± 0.35 3.43 ± 0.23 3.80 ± 0.34
3.89 ± 0.30 3.70 ± 0.20 3.65 ± 0.27
3.76 ± 0.31 3.34 ± 0.19 4.51 ± 0.47
2.88 ± 0.19 2.69 ± 0.14 2.74 ± 0.19

Width Γ [µHz] l = 0
0.66 ± 0.18 0.65 ± 0.21 0.95 ± 0.24
0.70 ± 0.17 0.56 ± 0.15 0.53 ± 0.12
0.84 ± 0.17 0.91 ± 0.18 0.91 ± 0.17
0.90 ± 0.19 0.94 ± 0.19 0.36 ± 0.09
1.61 ± 0.31 1.37 ± 0.27 1.45 ± 0.29

Notes. Fits are done on the PDS obtained by sinewave fitting and the
inpainting method for a duty cycle of 50%. As a reference, we use the
PDS obtained with the complete series.

(fixed to 0.4 µHz), and assuming that the Sun is observed from
near the equatorial plane of the Sun (90◦ inclination). We fit five
sequences of modes by fixing within each sequence the visibili-
ties for l = 1, 2, 3 modes relatively to the l = 0 mode (see, e.g.,
Ballot et al. 2011, for details on fitting techniques).

In the PDS obtained by sinewave fitting, the amplitude of
the modes is significantly underestimated due to leakage of the
power into the side lobes of the spectral window. To minimize
the effect of this spectral leakage, the fitted model is convolved
with the spectral window.

The PDS reconstructed from the CLEAN method is hard to
fit with this technique, since the statistics of the noise is modified
in a non-trivial way. To avoid this problem, we would need to
CLEAN the spectrum down to very low amplitude, which is too
time-consuming.

Fitting results are reported in Table 1. We should remember
that the errors are underestimated in the case of the PDS obtained
by sinewave fitting, because the statistics used does not take
the correlation between the points introduced by the window
function into account. Except for l = 3 modes, we see that the
mode parameters are recovered well in both cases. Nevertheless,
we must be very cautious by interpreting such a table because

it concerned only five modes for one given noise realization.
Moreover, these results are obtained with good guesses, close to
the real parameters. Fits of the PDS obtained by sinewave fitting
are very sensitive to the guesses because of the presence of day
aliases. This problem is avoided when the series are inpainted
for which side lobes are strongly reduced.

4. Application to realistic simulations
of space-based data

Space-based observations, in particular those by CoRoT and
Kepler, have duty cycles around 90%. However, even small gaps
on the time series can introduce significant artifacts into the
power spectrum if they are regularly distributed.

4.1. CoRoT-like data

The CoRoT mission provides three to five month-long observa-
tions of high-precision photometry. However, these time series
are periodically perturbed by high-energy particles hitting the
satellite when crossing the South Atlantic Anomaly (SAA; e.g.,
Auvergne et al. 2009), resulting in gaps in the data. The gaps in
the CoRoT light curves have a typical time duration of 20 min
and a periodicity that comes from the orbital period of the satel-
lite. Fortunately, even if the satellite is crossing the SAA regu-
larly, the perturbation is not the same for each orbit. Thus, the
observational window of CoRoT is more complex and cannot be
easily modeled. We can still estimates the spectral window us-
ing a fast Fourier transform. The inset in the top panel of Fig. 6
shows a typical spectral window of CoRoT. There is about 15%
of the power that leaks from the main lobe into the side lobes.
However, in contrast to the previous masks, the side lobes are
not significant. In this case, only 0.1% of the amplitude leaks
into the first side lobes because the power is spread into more
frequencies. It would be 3%, if the mask was regular.

4.1.1. Oscillation modes

In this section, we study the impact of these small repetitive
gaps on the detection and estimation of the oscillation modes.
For this purpose, we consider the observation window of the
star HD 169392 (Mathur et al. 2013a), which was observed by
CoRoT over 91.2 continuous days during the third long-run in
the galactic center direction with a duty cycle of 83.4% and
with a sampling of 32 s. This window is applied to 91.2 days
of VIRGO data in which the original CoRoT 32 s cadence has
been converted into the 60 s cadence of VIRGO data. The bot-
tom panel of Fig. 1 shows the power density spectrum (PDS)
estimated from 91.2 days of observations with a complete time
coverage (duty cycle of 100%).

Figure 6 shows the results for this CoRoT-like data follow-
ing the previous format. As expected from the shape of the win-
dow function in the Fourier domain (see inset), the side lobes
have almost disappeared from the PDS obtained by sinewave fit-
ting. However, there is still a small spectral leakage of the power
into the side lobes as said previously. The PDS estimated from
CLEAN yields a good estimation of the amplitude of the oscil-
lation modes and the side lobes have almost disappeared. This
is due to the observation window that produces a low level of
side lobes, that helps the CLEAN algorithm to avoid detecting
false peaks. Once more, there is a significant improvement in
estimation of the amplitude of the oscillation modes for the in-
painted data. This is certainly due to the random way in which
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Fig. 6. Power density spectrum and errors (in units of ppm2/µHz) esti-
mated from a time series of 91.2 days masked with a mask of CoRoT
corresponding to a duty cycle of 83.4%. The PDS is computed with a
least-squares sinewave fit on the incomplete time series (top panel), us-
ing an FFT on the CLEANed time series (middle panel) and an FFT on
the inpainted time series (bottom panel).

the high-energy particles hit the satellite. This insures a given
amount of incoherence to the mask despite the regularity with
which the satellite crosses the SAA area.

4.1.2. Background power spectrum

Again, we study the impact of the small repetitive gaps in-
duced by the SAA crossing on the power spectrum estimation.
However, this time we focus on the background part of the power

Fig. 7. Power density spectrum smoothed with a 4-point boxcar func-
tion (in units of ppm2/µHz) estimated from a time series of 24 days of
VIRGO/SPM masked with a mask of CoRoT with a duty cycle of 70%.
The black curve corresponds to the original PDS estimated from the
complete data. In the top panel, the blue curve corresponds to the PDS
calculated with a least-squares sinewave fit on the incomplete data.
Bottom panel, the red curve correspond to the PDS estimated using a
fast Fourier transform on the inpainted data.

spectrum rather than the oscillation modes. In addition to the os-
cillation modes, the asteroseismic observations allow us to mea-
sure the stellar granulation signature by the characterization of
the background power spectrum (Mathur et al. 2011). The spec-
tral signature of granulation is expected to reveal time scales that
are characteristic of the convection process in the stars. However,
this analysis requires that we estimate the full power spectrum.

For this study, the CLEAN algorithm has not been consid-
ered because it is very time-consuming to reconstruct the full
power spectrum as explained in Sect. 4.1.3.

The top panel of Fig. 7 shows the original PDS of
VIRGO/SPM estimated from the complete data compared to a
PDS estimated from the incomplete data. We can see that the
level of power at high frequencies is overestimated, resulting in
a bad granulation characterization. Moreover, the increase in the
high-frequency noise affects the oscillation modes at high fre-
quency (Jiménez et al. 2011), as well as the pseudo-mode region
(García et al. 1998). In the bottom panel of Fig. 7, we show the
power spectrum estimated after inpainting of the data, and it ap-
pears that the inpainting technique recovers the high-frequency
level of the power spectrum better.

To quantify the difference between the backgrounds of the
different PDS, we fit them with the following model:

B(ν) =
ζgσ

2
g

1 + (2πτgν)3.5 +
ζfσ

2
f

1 + (2πτfν)6.2

+ exp
[
−

(ν − νo)2

2δ2
o

]
+ W. (3)

The first two terms are Harvey profiles. The first component is
modeling the granulation, and it is parametrized with τg, the
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Table 2. Fitted parameters for the background (see Eq. (3)).

τg σg τf σf W
[s] [ppm] [s] [ppm]

[
10−3ppm2

µHz

]
Original 190 ± 7 42 ± 1 48 ± 1 30 ± 1 1.34 ± 0.12
SWF 273 ± 24 23 ± 1 94 ± 4 23 ± 1 59.5 ± 1.1
Inpaint. 200 ± 9 40 ± 1 57 ± 1 30 ± 1 8.78 ± 0.22

characteristic time scale of the granulation, σg its rms ampli-
tude and ζg = 2.73 is a normalization factor. The second com-
ponent, possibly originating in faculae, is parametrized with τf
and σf . The normalization factor is ζf = 3.00. The exponents 3.5
and 6.2 are chosen according to Karoff (2012). The third com-
ponent is a Gaussian function parametrized with νo and δo to
account for the power excess due to oscillation modes. Finally,
W is the white noise component. Spectra are fitted using a max-
imum likelihood estimation between 100 µHz and the Nyquist
frequency, by assuming that the noise follows a χ2

2 distribution.
Table 2 shows the results of the fitting. In the spectrum ob-

tained with the sinewave fitting, the Harvey parameters are badly
fit. By contrast, the inpainted spectrum allows us to correctly re-
cover both the amplitude and the characteristic time scale for
the two components. The main visible change is an increase in
the white noise component, generated by an increase in the high
frequency noise. However, this excess of high frequency noise
remains small compared to the SWF case.

4.1.3. Processing time

For space-based data for which we have to deal with long and
continuous observations, the impact of the gaps is less, because
the duty cycle is approaching 100%. For this reason, the way the
missing data are handled is frequently driven by the time it takes
to do the correction.

We have estimated the processing time for the three methods
used in this paper:

– The SWF has a time complexity of O(N2) where N is the
number of data points of the time series. This time com-
plexity can be reduced to O(NNf) if we are just interested
in reconstructing a number of frequencies Nf .

– The CLEAN algorithm has a time complexity of O(N3). In
the same way, it can be reduced to O(NN2

f ) if we are just in-
terested in a part of the power spectrum. This scaling means
that for long time series, this algorithm may prove to be very
time-consuming.

– The inpainting algorithm has a time complexity of
O(ImaxN log(N)). The number of iterations Imax is taken as
equal to 100.

For a time series of 50 days observed with a sampling of 32 s,
which is the case for the CoRoT long-cadence observations, with
a duty cycle of about 77%, it takes four hours to compute one
tenth of the full SWF power spectrum up to the Nyquist fre-
quency, about four days to compute one tenth of the CLEAN
power spectrum and only 4 min to compute the full inpainted
power spectrum on a 2×2.4 GHz Intel Xeon Quad-Core proces-
sor. Thus, even considering just a fraction of the power spectrum,
the inpainting algorithm is 1000 times faster than the CLEAN
algorithm and 60 times faster than the SWF method.

4.2. Kepler-like data

Since its launch in May 2009, NASA’s Kepler mission (Borucki
et al. 2010) has also been used to study stars with asteroseismol-
ogy. Indeed, around 2000 solar-like stars (Chaplin et al. 2011)
have been observed continuously in short cadence – with a sam-
pling rate of ∼58.85 s (see for details, Gilliland et al. 2010b;
García et al. 2011) – for at least one month and up to two
years. In addition, around 15 000 red giants showing solar-like
oscillations have been observed in long cadence (sampling of
∼29.5 min) (e.g., Bedding et al. 2010; Huber et al. 2011; Stello
et al. 2013).

Kepler data typically reach duty cycles of about 93%, where
gaps are mainly due to a combination of data downlinks (of
around one day in average) every three months and desaturations
(of one long-cadenced data point and several short-cadenced
data points) every three days (Christiansen et al. 2013).

Owing to their regularity, these single-point gaps produce a
similar effect at high frequencies to those shown for CoRoT in
Fig. 7, which is the most pronounced for stars showing high-
amplitude modulation at low frequencies. By only inpainting the
single long-cadence point missing every three days, we could
thus almost completely remove the spectral leakage of power at
high frequencies in the Kepler data.

4.2.1. Irregularly sampled data

The inpainting algorithm has not yet been developed for irregu-
larly sampled data, such as Kepler data, because the multiscale
discrete cosine transform that is used assumes regularly sam-
pled data. Therefore, before applying the algorithm, we place
the irregularly Kepler data into a regular grid using the nearest-
neighbor resampling algorithm (Broersen 2009). We therefore
built a new time series with a sampling rate equal to the median
of the original. Each point in the new series is built from the
closest observation (irregularly sampled) if it is within half of
the new sampling distance. The regular grid point is set to zero
if there is no original observation falling within the new grid (for
further details see García et al. 2014).

5. Conclusions

All improvements in the gap-filling data are of special im-
portance for analyzing asteroseismology data. We have shown
in this paper that CLEAN and inpainting are efficient meth-
ods for dealing with gaps in ground-based and spaced-based
data. Both CLEAN and inpainting methods are based on iter-
ative algorithms that try to deconvolve the observed time series
from the window function. However, the difference comes from
the way the deconvolution is conducted. In the CLEAN algo-
rithm, a direct deconvolution is performed for each frequency.
In the inpainting algorithm, the window function is deconvolved
indirectly by filling in the gaps.

We showed that CLEAN allows us to process ground-based
data with low duty cycles (lower than 50%) more efficiently than
the inpainting method because it recovers the amplitudes of the
modes better. In addition, these low duty cycle time series can
be tackled with a reasonable amount of time by CLEAN that
removes the data points from the gaps. For duty cycles higher
than 50%, the inpainting becomes more interesting. It provides
similar and even slightly better results than CLEAN but for a
much shorter computational time. Indeed for 50 day-time se-
ries with a sampling of 32 s and a duty cycle of 77%, it is
about 1000 times faster than CLEAN.
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For data with higher duty cycles as is typical of space-based
observations, the inpainting algorithm retrieves the modes better
and becomes a powerful tool that we can apply to thousands
of stars in a short amount of time. This is very important in
the framework of the Kepler mission that provided very long
time series (around 4 years) for hundreds of thousands of stars
covering the HR diagram (e.g., Gilliland et al. 2010a).

Finally, we showed that it is important to fill the gaps of the
data to better characterize the background at high frequency, as
well as the granulation components, which are very affected.
Given the computation time factor, the choice of the method
would lean toward the inpainting because it would be much
more time-consuming to compute the whole power spectrum
with CLEAN.

The Kepler Asteroseismic Scientific Consortium has devel-
oped its own automated correction software (García et al. 2011)
to correct most of the light curves with a minimum human in-
tervention. As a result of this study, the inpainting technique has
been added to the pipeline to improve the asteroseismic studies.
Furthermore, the inpainting software presented in this study is
now publicly available2.
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Doğan, G., Metcalfe, T. S., Deheuvels, S., et al. 2013, ApJ, 763, 49
Elad, M., & Bruckstein, A. 2002, IEEE Transactions on Information Theory, 48,

2558
Elad, M., Starck, J.-L., Querre, P., & Donoho, D. 2005, Journal on Applied and

Computational Harmonic Analysis, 19, 340
Fahlman, G. G., & Ulrych, T. J. 1982, MNRAS, 199, 53
Ferraz-Mello, S. 1981, AJ, 86, 619
Fletcher, S. T., Chaplin, W. J., Elsworth, Y., Schou, J., & Buzasi, D. 2006,

MNRAS, 371, 935
Foster, G. 1995, AJ, 109, 1889
Frandsen, S., Jones, A., Kjeldsen, H., et al. 1995, A&A, 301, 123
Fröhlich, C., Romero, J., Roth, H., et al. 1995, Sol. Phys., 162, 101
Gabriel, A. H., Grec, G., Charra, J., et al. 1995, Sol. Phys., 162, 61
García, R. A., Palle, P. L., Turck-Chieze, S., et al. 1998, ApJ, 504, L51
García, R. A., Turck-Chièze, S., Boumier, P., et al. 2005, A&A, 442, 385
García, R. A., Régulo, C., Samadi, R., et al. 2009, A&A, 506, 41
García, R. A., Mathur, S., Salabert, D., et al. 2010, Science, 329, 1032
García, R. A., Hekker, S., Stello, D., et al. 2011, MNRAS, 414, L6
García, R. A., Mathur, S., Pires, S., et al. 2014, A&A, 568, A10
Gilliland, R. L., Brown, T. M., Christensen-Dalsgaard, J., et al. 2010a, PASP,

122, 131
Gilliland, R. L., Jenkins, J. M., Borucki, W. J., et al. 2010b, ApJ, 713, L160
Gizon, L., Ballot, J., Michel, E., et al. 2013, PNAS, 110, 13267
Grundahl, F., Kjeldsen, H., Frandsen, S., et al. 2006, Mem. Soc. Astron. It., 77,

458
Harvey, J. W., Hill, F., Hubbard, R. P., et al. 1996, Science, 272, 1284
Huber, D., Bedding, T. R., Stello, D., et al. 2011, ApJ, 743, 143
Jiménez, A., García, R. A., & Pallé, P. L. 2011, ApJ, 743, 99
Karoff, C. 2012, MNRAS, 421, 3170
Karoff, C., Campante, T. L., Ballot, J., et al. 2013, ApJ, 767, 34
Kumar, P., Franklin, J., & Goldreich, P. 1988, ApJ, 328, 879
Larson, T. P., & Schou, J. 2008, J. Phys. Conf. Ser., 118, 2083
Lomb, N. R. 1976, Ap&SS, 39, 447
Mathur, S., Hekker, S., Trampedach, R., et al. 2011, ApJ, 741, 119
Mathur, S., Metcalfe, T. S., Woitaszek, M., et al. 2012, ApJ, 749, 152
Mathur, S., Bruntt, H., Catala, C., et al. 2013a, A&A, 549, A12
Mathur, S., García, R. A., Morgenthaler, A., et al. 2013b, A&A, 550, A32
Metcalfe, T. S., Chaplin, W. J., Appourchaux, T., et al. 2012, ApJ, 748,

L10
Mosser, B., Michel, E., Appourchaux, T., et al. 2009, A&A, 506, 33
Mosser, B., Goupil, M. J., Belkacem, K., et al. 2012, A&A, 548, A10
Pires, S., Starck, J.-L., Amara, A., et al. 2009, MNRAS, 395, 1265
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992,

Numerical recipes in C. The art of scientific computing (Cambridge
University Press)

Roberts, D. H., Lehar, J., & Dreher, J. W. 1987, AJ, 93, 968
Sato, K. H., García, R. A., Pires, S., et al. 2010, in Proc. of the HELAS IV

International Conf.
Scargle, J. D. 1982, ApJ, 263, 835
Scherrer, P. H., Bogart, R. S., Bush, R. I., et al. 1995, Sol. Phys., 162, 129
Scherrer, P. H., Schou, J., Bush, R. I., et al. 2012, Sol. Phys., 275, 207
Starck, J.-L., & Murtagh, F. 2002, Astronomical image and data analysis (Berlin:

Springer)
Stello, D., Huber, D., Bedding, T. R., et al. 2013, ApJ, 765, L41
Walker, G., Matthews, J., Kuschnig, R., et al. 2003, PASP, 115, 1023
Zechmeister, M., & Kürster, M. 2009, A&A, 496, 577

A18, page 10 of 10

http://irfu.cea.fr/Sap/en/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=3346
http://irfu.cea.fr/Sap/en/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=3346
http://irfu.cea.fr/Sap/en/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=3346

	Introduction
	Data analysis
	Power spectrum estimation
	Lomb-Scargle periodogram
	CLEAN algorithm

	Gap filling and regular sampling
	Inpainting introduction
	Description of the algorithm


	Application to low duty cycle time series
	Ground-based observations of single- to multiple-site networks: worst-case scenario
	Fitting the acoustic modes of the different power density spectra

	Application to realistic simulations of space-based data
	CoRoT-like data
	Oscillation modes
	Background power spectrum
	Processing time

	Kepler-like data
	Irregularly sampled data


	Conclusions
	References

