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ABSTRACT

Estimation of the sky signal from sequences of time ordered data is one of the key steps in cosmic microwave background (CMB) data
analysis, commonly referred to as the map-making problem. Some of the most popular and general methods proposed for this problem
involve solving generalised least-squares (GLS) equations with non-diagonal noise weights given by a block-diagonal matrix with
Toeplitz blocks. In this work, we study new map-making solvers potentially suitable for applications to the largest anticipated data
sets. They are based on iterative conjugate gradient (CG) approaches enhanced with novel, parallel, two-level preconditioners. We
apply the proposed solvers to examples of simulated non-polarised and polarised CMB observations and a set of idealised scanning
strategies with sky coverage ranging from a nearly full sky down to small sky patches. We discuss their implementation for massively
parallel computational platforms and their performance for a broad range of parameters that characterise the simulated data sets in
detail. We find that our best new solver can outperform carefully optimised standard solvers used today by a factor of as much as
five in terms of the convergence rate and a factor of up to four in terms of the time to solution, without significantly increasing the
memory consumption and the volume of inter-processor communication. The performance of the new algorithms is also found to be
more stable and robust and less dependent on specific characteristics of the analysed data set. We therefore conclude that the proposed
approaches are well suited to address successfully challenges posed by new and forthcoming CMB data sets.

Key words. methods: numerical – methods: data analysis – cosmic background radiation – cosmology: miscellaneous

1. Introduction

The majority of current and anticipated cosmic microwave back-
ground (CMB) experiments scan the sky with large arrays of
detectors, producing as the result time-ordered data, composed
of many billions of samples. One of the key steps of the CMB
data analysis consists of recovery of the sky signal from these
huge noisy, time-ordered data set. This can be phrased as a lin-
ear inverse problem if some of the crucial characteristics of the
instrument and its operations are known. These typically in-
clude some knowledge of the noise properties of all detectors,
an instrumental response function, or an observation direction
at each measurement. A well-known solution to such a prob-
lem is given in a form of a generalised least-squares (GLS)
equation with weights given by an arbitrary, symmetric posi-
tive definite matrix (Tegmark 1997b). If the weights are taken
to be equal to the inverse covariance of the time-domain noise,
this estimate is also a minimum variance and a maximum like-
lihood solution to the problem. Its computation typically re-
quires either an explicit factorisation of a huge matrix (Tegmark
1997a; Borrill 1999; Stompor et al. 2002) or some iterative
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procedure (Wright et al. 1996; Oh et al. 1999; Doré et al. 2001),
involving multiple, large matrix-vector products at each itera-
tion. The map-making problem is therefore primarily numeri-
cal and is a particularly challenging problem given sizes of the
current and forthcoming CMB data sets. These not only de-
termine the number of floating point operations (flops), which
need to be performed to calculate the solution, but also sizes of
the arrays, which have to be manipulated on and stored in the
computer memory. These set requirements on the computer re-
sources, which often can be only matched by massively parallel
computing platforms. The GLS approach indeed has been fre-
quently used by many past and current modern CMB data anal-
ysis efforts, requiring parallel numerical algorithms and their ef-
ficient implementation.

As of today, essentially all existing map-making codes im-
plementing the GLS solution resort to the same iterative tech-
nique based on a preconditioned conjugate gradient (PCG)
method with a preconditioner that corresponds to the system ma-
trix of the GLS problem computed under a hypothesis of white
noise in the time domain (however, see, e.g., Wandelt & Hansen
2003; Næss & Louis 2013, for some exceptions restricted to
special scanning strategies.). This approach has been exten-
sively used in the analysis of diverse CMB data sets and found
to be very efficient and suitable for parallelisation. However,
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its current implementations are unlikely to meet the demands
of future data sets, even if the projected increase in computa-
tional power is accounted for. This performance gap can be ad-
dressed by either further optimising of the numerical implemen-
tations of the current approach, or by devising better alternative
algorithms.

In the spirit of the latter, we recently proposed in Grigori
et al. (2012) a new preconditioner suitable for the GLS map-
making problem and studied its properties in the context of simu-
lated CMB-like, total intensity data sets. The aim of this paper is
to further generalise this technique, extending it to accommodate
polarisation-sensitive data sets and to evaluate its performance
on a set of realistic simulations of CMB observations. We also
discuss the role of some of the fundamental map-making param-
eters, such as the noise correlation length, on the performance of
the standard and new map-making algorithms and the quality of
the derived estimates.

2. Problem definition

A measurement, dt, performed at time t by a detector of a typical
scanning CMB instrument can be modelled in general as a sum
of two contributions, a sky signal, st, and noise of the instrument,
n̆t. The sky signal, st, corresponds to the signal in the direction in
which the instrument was pointing to at time t. Treating the sky
signal as pixelized and denoting the number of measurements
byNt and the number of sky pixels byNp (�Nt), the measured
signal can be represented as the result of the application of a
(Nt × Np) projection operator, Ptp, to the sky map, xp. The data
model can be consequently written as,

dt = st + n̆t = Ptp xp + n̆t. (1)

Hereafter, we refer to the projection operator, Ptp, as the pointing
matrix, and to vectors dt and n̆ as the time domain data and noise
streams, respectively.

In general, the structure of the pointing matrix can be quite
complex, as it may represent an instrumental beam convolu-
tion (e.g., Armitage & Wandelt 2004; Harrison et al. 2011;
Keihänen & Reinecke 2012). However, if, for simplicity, we
assume that the instrumental beams are axially symmetric and
consider the sought-after sky maps, xp, as already convolved
with the beam, the resulting pointing matrices are typically very
sparse. For example, for a total intensity measurement obtained
by a single dish experiment, the pointing matrix has only one
non-zero entry per row corresponding to the pixel, p, observed
at time t. For a polarisation-sensitive, single dish experiment, the
map, xp, is composed of three sky maps corresponding to three
potentially non-zero Stokes parameters, I, Q, and U, which are
used to describe the linear polarised CMB radiation. The sig-
nal detected by the experiment is a linear combination of three
Stokes amplitudes measured in the same pixel on the sky at a
given time. Consequently, the pointing matrix has three non-zero
entries per row, corresponding to three Stokes parameters. If we
observe pixel p at time t and denote the values of the Stokes
parameters in this pixel as ip, qp, and up, we can then write

st = ip + qp cos 2 φt + up sin 2 φt, (2)

where φt is the orientation of the polariser with respect to the sky
coordinates at time t. The elements of the first vector on the right
hand side of this equation define the only three non-zero values
in the row of the pointing matrix that correspond to time t. For
a total intensity measurement, the second and third of these ele-
ments are also zero, and its Q and U entries can be removed from

the solution vector as their value can not be recovered from the
data. Consequently, the size of the estimated map is smaller, and
the pointing matrix has only one non-zero per row as mentioned
earlier. In this way, the latter case can be looked as a subcase
of the polarised one and we focus on the former in the follow-
ing. The structure of the pointing matrix therefore reflects the
type of the experiment and also its scanning strategy, defining
which sky pixel is observed at time t. Hereafter, we assume that
the pointing matrix is full column-rank as we restrict ourselves
solely to the sky pixels, which are actually observed. We refer
to the operation P x, where x is a map-like vector, as the de-
pointing operation, to the transpose operation, Pt y, where y is a
time domain vector, as the pointing operation.

2.1. Generalized least-squares problem

A generalised least-squares (GLS) solution to the problem in
Eq. (1) is given by (e.g., Bjorck 1996),

m =
(
P t M P

)−1
P t M d, (3)

where M is a non-negative definite symmetric matrix and m is an
estimate of the true sky signal, s. If the instrumental noise, n̆, is
Gaussian and characterised by covariance N, then the maximum
likelihood (as well as minimum) variance estimates of the sky
signal are given by Eq. (3), if M is selected to be equal to the
inverse noise matrix, M = N−1. We note that whatever the choice
of this matrix, the GLS solution results in an unbiased estimate
of the true sky signal, at least as long as the pointing matrix is
correct. Nevertheless, to obtain the map estimate of sufficient
quality, it is usually important to ensure that M is close to the
inverse noise covariance.

The instrumental noise is typically well described as a
Gaussian piece-wise stationary process. Its covariance N =
〈n̆ n̆T 〉 is therefore a block-diagonal matrix with Toeplitz blocks
corresponding to different stationary time pieces. Though the
inverse of a Toeplitz matrix is not Toeplitz, it has been sug-
gested (Tegmark 1997a) and shown (e.g., Stompor et al. 2002)
that precision sufficient for most practical purpose, that N−1

can be approximated as a block-diagonal matrix with Toeplitz
blocks, which are constructed directly from the corresponding
blocks of the covariance itself. We therefore assume throughout
this work that

M = N−1 '


T0 0 . . . 0
0 T1 . . . 0
...

. . . 0
0 . . . . . . TK

 , (4)

where Ti denotes a symmetric Toeplitz block of a size ti × ti,
and therefore

∑K
i=0 ti = Nt. The noise covariance (as well as

its inverse) is a matrix of size Nt × Nt, where Nt >∼ O(109) for
modern observations. However, if the structure of the matrix is
explicitly accounted for, the memory required for its storage is
of the same order as the memory needed to store the data vec-
tor, d. Another advantage of Toeplitz matrices is that they can be
efficiently multiplied by a vector using fast Fourier transforms
(FFTs; e.g. Golub & Van Loan 1996).

We note that further approximations of the inverse noise
covariance are possible and often employed. For instance, the
Toeplitz blocks can be assumed to be band-diagonal (e.g.,
Stompor et al. 2002). We discuss this option in detail later on.

The problem of reconstructing the underlying sky signals
therefore amounts to efficiently solving Eq. (3) given the as-
sumptions about the noise covariance listed previously. Given
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the sizes of time-domain data sets of current and forthcoming
CMB experiments, this has been shown to be rather challenging,
requiring advanced parallel numerical algorithms.

A direct computation of such a solution requires an explicit
construction and inversion of the GLS system matrix,

A ≡ P tN−1P. (5)

This matrix has a size of Np × Np and is in general dense and
without any universal structure. Consequently, both of these op-
erations require O(N3

p) flops. What turned out to be sufficient
for some of the first big CMB data sets (de Bernardis et al. 2000;
Hanany et al. 2000) is thus prohibitive for the data sizes consid-
ered here.

Alternately, the problem can be rephrased as a linear sys-
tem (e.g. Oh et al. 1999; Cantalupo et al. 2010),

A x = b, (6)

with matrix A as given above and the right-hand side given by

b ≡ P t N−1 d, (7)

and its solution obtained with help of some iterative linear sys-
tem solver (e.g. Golub & Van Loan 1996).

Iterative solvers repeatedly perform matrix-vector products
of the system matrix, A, and a vector. This is the case for the
so-called Krylov space methods, which are the methods consid-
ered in this work (see Appendix A for some background). The
question therefore arises whether the matrix-vector product can
be accomplished efficiently in our case and in particular with-
out ever explicitly constructing the matrix. This indeed turns out
to be possible by representing the matrix, A, as in Eq. (5), and
performing the required matrix-vector operations from right to
left (see, for example, Cantalupo et al. 2010). That is,

A x ≡ P t
[
N−1[Px

]]
. (8)

This exchanges the product of the dense, unstructured matrix,
A, for a sequence of operations starting with a depointing oper-
ation, Px, followed by a noise weighting, N−1y, and a pointing
operation, Pty. Here x and y are arbitrary pixel and time domain
vectors. As all these operations involve either highly structured,
N−1, or sparse, P, operators, one can expect that they can be per-
formed very efficiently, as has been found to be the case (e.g.,
Cantalupo et al. 2010).

The computational complexity of the map-making algorithm
described above is O(Niter ×Nt (1 +

∑
i log2 ti)), whereNiter rep-

resents the number of iterations of the iterative solver with the
linear term in the data size,Nt, quantifying the cost of the point-
ing and depointing operations and the logarithmic term the cost
of fast Fourier transforms. In the latter case, the block-diagonal
structure of N−1 has been explicitly accounted. One obvious way
to shorten the computational time is to reduce the number of iter-
ations, Niter, required to reach a desired precision. Another way
is to try to cut the time needed to perform each step. This could
be achieved either by employing better algorithms or introducing
some additional assumptions.

There are currently several implementations of iterative
solvers developed in the CMB map-making context, such as
MapCUMBA (Doré et al. 2001), ROMA (de Gasperis et al.
2005), SANEPIC (Patanchon et al. 2008), MINRES (Sutton
et al. 2009), and MADmap (Cantalupo et al. 2010). They all
employ a preconditioned conjugate gradient (PCG) method and,
as defined at the beginning of the next section, seek efficiency
in better implementations of the operations perfomed in Eq. (8)

while adhering to the same set of the most straightforward pre-
conditioners.

In this work, we instead focus on the iterative solvers them-
selves and propose new, more efficient preconditioning tech-
niques suitable for the map-making problem. We then compare
their performance with that of the standard technique, discussing
approaches to improving the performance of the latter in this
context.

3. Preconditioned iterative solvers

3.1. Preliminaries and motivation

It is well known (see Hestenes & Stiefel 1952; van der Sluis &
van der Vorst 1986) that the convergence rate of the conjugate
gradient method applied to solving a linear system with a sym-
metric positive definite (SPD) system matrix, as in Eq. (6), de-
pends on the distribution of the eigenvalues of the system matrix.
Indeed, it can be shown that we have

‖x − x j‖A ≤ 2‖x − x0‖A

( √
κ − 1
√
κ + 1

) j

, (9)

after j iterations of CG, where x0 is an initial guess for the solu-
tion x and ‖x‖A is a norm of x defined as ‖x‖A =

√
xTAx. The

condition number, κ = κ(A), is given by the ratio of the largest
to the smallest eigenvalue of A. To accelerate the convergence
of CG, one may therefore opt to solve a preconditioned system
M Ax = Mb, where the preconditioner M is chosen so that M A
has a smaller condition number than A and/or a more clustered
eigenspectrum.

To date nearly all studies of the PCG solver in context of
the map-making problem have relied on the same, intuitive, easy
to compute and implement preconditioner (e.g., Cantalupo et al.
2010), defined as,

MBD =
(
PT diag (N−1) P

)−1
. (10)

Here, diag (N−1) is a diagonal matrix consisting of the diagonal
elements of N−1. MBD is the inverse of A whenever the time-
domain noise is diagonal, that is diag (N−1) = N−1. It can there-
fore be expected to provide a good approximation to the inverse
of the system matrix, A−1, in more general cases and hence to be
efficient as a preconditioner. Given the assumptions made here
about the pointing matrix the preconditioner, MBD, is a block di-
agonal, and the sizes of the blocks are equal to the number of
Stokes parameters. We will therefore refer to it in the following
as either the standard or the block-diagonal preconditioner.

The impact of this preconditioner on the eigenspectrum of
the system matrix is illustrated in Fig. 1, where we compare
the eigenspectra of the preconditioned and actual system ma-
trix. It is clear from the figure that the preconditioner performs
very well as far as very large eigenvalues of the initial matrix
are concerned as it shifts them to nearly unity. This leads to
an overall improvement of the system matrix condition number,
as large and small eigenvalues are clearly rescaled differently.
Nevertheless, small eigenvalues persist and can potentially con-
tinue to hinder the convergence of the iterative solvers. However,
the number of these small eigenvalues seems limited in the cases
of interest here. Indeed, in the example shown in the Figure with
red triangles, there are fewer than 20 eigenvalues smaller than a
factor of ∼20 than the largest one, which, however, span a range
of nearly two orders of magnitude. This suggests that we could
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 0.001  0.01  0.1  1  10  100  1000
Re || hi ||

No M, g = 3 484.52
MBD, g = 509.00
M2lvl,S, g = 82.92
M2lvl,D, g = 17.35

Fig. 1. An approximated spectrum (twenty of the smallest and largest
eigenvalues) of an example system matrix derived for the polarisation-
sensitive case and preconditioned with different preconditioners. From
the bottom to the top, we show the eigenvalues of A, MBD A, and
M2lvl,{S ,D} A, where M2lvl,{S ,D} denotes the two-level preconditioners pro-
posed in Sect. 3.2. The respective condition numbers, κ, are given in the
legend.

significantly improve on the condition number of the precondi-
tioned system matrix, if we could scale up these small eigen-
values and do so without affecting significantly the others. This
observation leads to the idea of a two-level preconditioner dis-
cussed in the next section.

3.2. Two-level preconditioners

Let us first consider a numerically efficient preconditioner,
which can selectively rescale a set of the smallest eigenvalues
of the system matrix. This can be done with a technique called
deflation. Deflation has been an active research area in numerical
algebra, since the late eighties (see, e.g., Nicolaides (1987) or the
recent survey Gutknecht (2012) and references therein) and suc-
cessfully employed in diverse scientific and industrial contexts.
In essence, it aims at deflating the matrix from an unwanted
subspace which hinders the convergence of iterative methods.
This unwanted subspace is typically the subspace spanned by
eigenvectors corresponding to the eigenvalues close to zero of
the system matrix (Morgan 1995; Kharchenko & Yeremin 1995;
Chapman & Saad 1996). We use a deflation method based on the
deflation matrix R (Tang et al. 2009) in our work defined as

R := I − A Z E−1 ZT , E := ZTA Z. (11)

Here I is the identity matrix of size Np × Np, and Z is a tall and
skinny matrix of size Np × r and rank r (� Np). Matrix Z is re-
ferred to as a deflation subspace matrix, while matrix E is called
a coarse operator. As A is SPD, so is E. The size of E is r×r, and
its direct factorisation can be easily computed. The columns of Z
are linearly independent and are selected in such a way that they
span the subspace, referred to as the deflation subspace, which
is to be projected out from any vector it is applied to. That this is
indeed the case can be seen noting that RAZ = 0. When applied
to the case at hand, the deflation subspace is defined to contain
the eigenvectors corresponding to small eigenvalues of A. As a
result, all these eigenvalues are replaced by zeros in the spec-
trum of R A, while all the others remain unchanged. In the exact
precision arithmetic, R would potentially be a very efficient pre-
conditioner, as all the steps of any iterative CG-like solver would
be orthogonal to the null space of the preconditioned matrix,
R A. However, in the finite precision arithmetic, this may not
be the case, and the zero eigenvalues are often as bothersome as

the small ones due to numerical errors. Another practical prob-
lem is that the dimension of the deflation subspace, given by the
number of columns of Z, is typically limited for computational
reasons. Hence, preconditioners based on deflation are most ef-
fective when the system matrix has only few small and outlying
eigenvalues.

Both these issues can be overcome by combining a deflation
preconditioner with another one. Such combined constructions
are referred to as two-level preconditioners. There are numer-
ous prescriptions, both additive or multiplicative, in the literature
proposing how to combine two preconditioners. In our work, we
use the proposal of Tang et al. (2009) and combine them together
with the standard and deflation preconditioners as follows:

M2lvl := MBD R + Z E−1ZT (12)

= MBD

(
I − A Z E−1 ZT

)
+ Z E−1 ZT.

This corresponds to the “Adapted Deflation Variant 1” method
(A-DEF1) in Tang et al. (2009). We note that this may not be the
most obvious choice from a purely theoretical perspective, see
Appendix B. However, this is the one, which has proven to be
the most robust and efficient in our numerical experiments, and
for this reason, we have adapted it in this work.

We note that this new, two-level preconditioner indeed re-
solves the two problems mentioned before. First,

M2lvl AZ = Z, (13)

and therefore the two-level preconditioner rescales all the eigen-
values of A contained in the deflation subspace defined by Z to
unity. Second, for YtA X = 0,

M2lvl AY = MBD A Y. (14)

That is, the action of the two level preconditioner, M2lvl, on
the eigenvectors of A orthogonal to the deflation subspace in
the sense of the A-norm is equivalent to that of the standard
preconditioner, which we have seen in Fig. 1 effectively shifts
the large eigenvalues towards one. If Z is defined to include all
small eigenvalues of A, the two-level preconditioner will there-
fore shift both the small and large eigenvalues of A to the vicinity
of one. In practice, the size of the deflation subspace is limited,
so this can be achieved only partially. The challenge, therefore,
is in a construction of Z that ensures that the smallest eigen-
values, which are potentially the most troublesome eigenvalues
from the point of view of the iterative method convergence, are
included and which should be numerically efficient so the perfor-
mance of this approach is competitive with the standard method.
We discuss two different proposals for the latter task in the next
section.

3.3. Deflation subspace operator

In the ideal case, the columns of the deflation subspace ma-
trix, Z, should be made of the eigenvectors corresponding to
the smallest eigenvalues of the preconditioned system matrix,
MBD A. However these are typically too expensive to compute
and, instead, one needs to resort to some approximations.

There are two broad classes of suitable approximation
schemes, which are either a priori, and therefore using only the
initial knowledge of the problem that we want to solve to con-
struct Z, or a posteriori, which resorts to some explicit precom-
putation performed ahead of the actual solution. The precom-
putation can rely on prior solutions of analogous linear systems
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solved via some iterative algorithm and some simpler precondi-
tioner, as, for instance, MBD in our case. The preconditioners of
this type are clearly useful if the map-making problem with the
same system matrix needs to be solved multiple times for differ-
ent right hand sides, so the precomputation cost quickly becomes
irrelevant. This is indeed the case in many practical situations,
be it extensive Monte Carlo simulations or posterior sampling
algorithms, such as the Monte Carlo Markov Chain approaches,
which both are frequently used in CMB data analysis.

In Grigori et al. (2012), we proposed an a priori two-
level preconditioner suitable for total intensity observations of
the CMB. Below, we first generalise this preconditioner to
polarisation-sensitive observations and then introduce a new
a posteriori preconditioner.

3.3.1. A priori construction

For the total intensity case, our a priori two level preconditioner
is based on the deflation subspace built to include a pixel do-
main vector of ones, 1p. This is because the vector of ones is
in the near nullspace of the system matrix, whenever long-term
time domain correlations are present. To demonstrate this, let
us consider the typical power spectrum of such noise, as given
in Eq. (19). This spectrum displays a characteristic “1/ f ” be-
haviour at the low-frequency end, which results in a significant
excess of power in this regime. Though more realistic noise
spectra typically flatten out at very low frequencies, instead of
continuing to increase as 1/ f , the power excess is nevertheless
present, as the flattening happens at frequencies much lower than
fknee. As the noise spectrum corresponds to the eigenvalues of
the noise correlation matrix, N, as in Eq. (4), it is apparent that
the eigenvalue of the zero frequency mode is significantly larger
than the majority of the other eigenvalues corresponding to the
high frequency plateau of the spectrum. Consequently, the zero
frequency mode given by a vector of ones in the time-domain,
1t, is in the near nullspace of the inverse time-domain correlation
matrix, N−1, that is N−1 1t ' 0. Hence, given that

A 1p = Pt N−1 P 1p = Pt N−1 1t ' 0, (15)

the pixel domain vector of ones, 1p, is expected to be in the near
nullspace of A. We can, thus, expect that including this vector
in the deflation subspace should result in significant gains in the
solver’s convergence, as is indeed borne out by our results dis-
cussed in section 4.

We can strive to further accelerate the convergence by em-
ploying a richer deflation subspace matrix, Z. In the approach
proposed here, we capitalise on the observation that the instru-
mental noise, n̆, is piece-wise stationary. Let us assume that we
have a disjoint K + 1 stationary intervals, d0, . . . , dK . Each inter-
val, d j, is associated by construction with a unique time domain
noise correlation matrix, T j. The deflation matrix, which we de-
note hereafter as ZS, is built by assigning each of its columns
to one of the piece-wise stationary time intervals (Grigori et al.
2012), such that the jth column corresponds to the jth stationary
interval, d j. In the case of the total intensity observations for a
given pixel, p, the elements in the jth column define the fraction
of the observations of this pixel performed within the jth period,
s j

p, as compared to all its observations, sp,

Ztint
S :=



s0
0

s0

s1
0

s0
· · ·

sK
0

s0

s0
1

s1

s1
1

s1
· · ·

sK
1

s1
...

...
...

s0
p

sp
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We note that each row of Ztint
S represents some partition of unity

as
∑

j Ztint
S (p, j) = 1.

In experiments with polarisation, the extra entries of each
column, corresponding to Q and U signals, are simply set to 0, so
the deflation subspace matrix for the polarised cases is given by:

(
Zpol

S

)
:=
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. (17)

This choice essentially implies that we apply no correction to the
eigenvectors of the system matrix, which have a non-zero com-
ponent in the part of the space corresponding to the polarised
degrees of freedom. This seems justified given that these are de-
grees of freedom related to the temperature, which are expected
to lead to the smallest eigenvalues. We note for instance that the
deflation subspace defined in this way does not include the unit
vector, that is a vector of ones for all pixels and all three Stokes
parameters but it includes only a vector of ones for the tempera-
ture pixels and zero otherwise. This is consistent with Eq. (15),
which implies that this is the latter not the former vector, which
generally is in the near null space of A whenever 1/ f noise is
present. For the unit vector, 13p, and for polarisation-sensitive
observations, typically P 13p , 1t, while equality is assumed in
the derivation of Eq. (15). We note that this choice is efficient in
improving the condition number of the system matrix, as can be
seen in Fig. 1, and we test its impact on the convergence of the
iterative solvers in Sect. 5.

The deflation subspace matrix, ZS, constructed in this sec-
tion can be rather sparse, reflecting that only a small subset of
all pixels is typically observed within each stationary period. The
sparsity is therefore uniquely given by the definition of the sta-
tionary periods and the structure of the pointing matrix and can
be predicted ahead of time and used to implicitly construct the
preconditioner, which is then applied at each step of the iterative
solver. As the number of columns, r, of the operator ZS is tied to
the number of stationary periods, it may seem that the size of A
is uniquely predetermined by the data set properties. However,
though not completely arbitrary, the number of columns of A can
always be reduced by combining some of the stationary periods
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together. As we discuss in Sect. 5.1.2, at least in some cases,
such an approach can ensure satisfactory performance at lower
numerical cost with fewer columns of ZS. We emphasise that the
reduction of the size of ZS must be performed consistently, and
in particular the sum of all elements for each nonzero row of ZS
has to remain equal to 1 after such an operation is performed.
Hereafter, unless stated explicitly, we always take r = K.

3.3.2. A posteriori construction

In this case, the deflation subspace matrix, Z, is constructed
based on some suitably devised precomputation, which typically
yields approximate eigenvectors of the preconditioned system
matrix, MBD A. A particularly interesting option, which we fo-
cus on here, is when the precomputation consists in solving a
similar linear system to the actual one and featuring the same
system matrix, A, but potentially different right-hand side, b′,

Ax′ = b′. (18)

Any iterative solver of such systems based on the Krylov sub-
space methods (see Appendix A) internally derives information
about the spectral properties of the system matrix. This infor-
mation can, therefore, at least in principle, be stored and then
re-used in building the deflation subspace matrix (denoted here-
after ZD) of a two-level preconditioner, which could be sub-
sequently applied in the following solves of the same system.
We could expect that this approach leads to a two-level pre-
conditioner, which generally is more efficient than any a priori
construction, as the coarse space operator constructions is per-
formed using estimates of the true eigenvectors of the matrix.

There are many specific proposals of these constructions in
the numerical linear algebra literature, which are specialised for
either GMRES (Morgan 1995; Kharchenko & Yeremin 1995;
Chapman & Saad 1996; Saad et al. 2000; Parks et al. 2006) or the
conjugate gradient method (Erhel & Guyomarc’h 2000; Risler &
Rey 2000; Gosselet & Rey 2003). For more details, we refer the
reader to Appendix A and the original papers, while we just list
the main common steps of these algorithms here. These steps are
as follows:

1. Solve the initial linear system (or systems) MBD A x′ =
MBD b′ using a Krylov subspace iterative method. As a by-
product, we obtain a spectral decomposition of the respective
Krylov subspace, see Eq. (A.1).

2. Derive approximations of the eigenvalues and eigenvec-
tors of A by employing the Ritz eigenvalues approach, see
Eq. (A.4).

3. Select the Ritz eigenvectors, which correspond to eigenval-
ues with real parts smaller than some given threshold, εtol.
(Note that we describe here a more general setting, which
does not assume that the matrices are SPD.)

4. Construct the deflation subspace matrix as ZD :=
|V1|V2| . . . |Vr |, where (V1, . . . ,Vr) denote r eigenvectors se-
lected in the previous step.

5. Construct our two-level preconditioner using ZD.

Unlike the matrix ZS discussed earlier, ZD will typically be
dense. However, the number of its columns r could essentially be
set arbitrarily and be typically determined by a suitable choice
of the tolerance threshold, εtol.

We also note that in principle one could imagine that the
deflation subspace operator constructed for the current run is
subsequently updated with the new information obtained from
it before being used for the next run if many map-making runs

have to be performed. Thus, it can be potentially used to pro-
gressively construct a more efficient coarse operator. From our
experience, the additional benefits of such an approach are very
quickly becoming minor and come at the cost of a significant
extra complexity of the implementation. We have, therefore, not
considered this option in this work.

3.4. Cost of application and storing M2lvl

The two-level preconditioners, as defined in Eq. (12), are in gen-
eral dense. Therefore, in the algorithms proposed here, they are
not and not can be constructed explicitly. Instead, we precom-
pute only the matrix AZ and the coarse operator, E, which we
store in the computer memory. We then apply M2lvl to a vector
as in Eq. (12), performing the matrix vector operations from left
to right.

The details of our implementation are given in Appendix C.
Once A Z and E are available they demonstrate that the oper-
ations required by the two-level preconditioner are performed
within either deflation or pixel space and are, therefore, sub-
dominant as compared to the time-domain operations, such as
noise-weighting, which is involved in the products of the sys-
tem matrix by a vector and, therefore, needs to be repeated on
every iteration. We can, therefore expect that the extra computa-
tional cost introduced by these preconditioners are manageable.
We confirm this expectation by means of numerical experiments
in Sect. 5 and Appendix C.

4. Numerical experiments

In this section, we present a number of numerical experiments
demonstrating that PCG preconditioned by the two-level pre-
conditioners provide an efficient and robust iterative solver for
the map-making problem. The numerical experiments have been
designed with the following main objectives in mind:

1. To demonstrate that the number of iterations needed to con-
verge that is to reach a given pre-defined magnitude of the
residuals, is smaller in the case of the two-level precondi-
tioner than in the case of the standard one.

2. To demonstrate that the two-level preconditioner also leads
to important savings in terms of time to solution.

3. To demonstrate that the two-level preconditioner can be im-
plemented for massively parallel computers and in a scalable
manner. That is, that it is capable of maintaining its perfor-
mance and, in particular, fulfils the two first objectives, with
an increasing number of processors. This is necessary given
the volumes of current and future CMB data sets.

In the following, we discuss the efficiency of the two-level pre-
conditioners with respect to these objective for a range of sim-
ulated CMB-like observations with realistic characteristics. In
particular, we consider different scanning patterns, sizes of the
data set in time- and pixel- domains, noise correlation lengths,
etc. We also discuss the role of the bandwidth assumption, which
is typically imposed on the Toeplitz matrices used to describe
properties of stationary time domain noise, as seen in Eq. (4). As
the reference for all the runs described below, we use the PCG
solver with the standard block-diagonal preconditioner, MBD.

4.1. Simulations

The numerical experiments use simulated CMB data sets with
characteristics inspired by actual CMB experiments but are kept
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Fig. 2. Visualisation of the input information used for the simulations (see Sect. 4.1 for more details). Upper row: panels a)-c), hit maps obtained
for the grid-like, small circle, and big circle scans, respectively. Bottom row: d) noise correlations assumed for the stationary intervals and cor-
responding to different values of the knee frequency fknee, (the diagonal, highly dominant element is not shown to emphasise the off-diagonal
correlations), e) an example of the total intensity map of the CMB fluctuations.

simple to permit inferences about the impact of their different
parameters on the performance of the method. In general, the
time ordered data (TOD) is simulated by generating a list of tele-
scope pointings produced for a selected scanning strategy and
assigning the respective signals to it, ip, qp, and up, as read off
from the simulated CMB maps. The recovered signals are com-
bined together as in equation (2), added to simulated instrumen-
tal noise n̆t, and stored as a time domain vector, dt.

4.1.1. Scanning strategies

We employ three simplified scanning strategies in our simu-
lations, as listed in Table 1. They correspond to either small-
scale or nearly full-sky observations, have different sizes in the
time and pixel domains, and have various levels of redundancies
present in the scan, as quantifiable by a different distribution of
the number of revisits of sky pixels, or a different distribution of
the attack-angles in pixels. The studied cases are

1. A grid-like scan in which a patch of 20◦ ×20◦ deg on the sky
is observed in turn either horizontally or vertically, as seen
in Fig. 2a.

2. A scan made of 128 circles on the sky with the diame-
ter of 15◦ deg and centres located along one of the celes-
tial sphere’s great circles, as seen in Fig. 2b. Each circle is
scanned four times before the experiment moves to the an-
other one.

3. A scan pattern made of 2048 densely crossing circles,
as shown in Fig. 2c, which are scanned one-by-one,

Table 1. Size of the problem for the different cases analysed.

# of stationary # of # of
Case Pattern intervals pixels time samples

1 Grid scan 1 7762 '1.0 × 106

2 Small circles 1 20585 '2.0 × 106

3 Big circles 2048 998836 '2.0 × 109

consecutively, from left to right. The circles have the open-
ing angle of 30◦. The time spent on each circle is as-
sumed to be the same. Each circle is scanned 16 times and
sampled ≈106 times before the experiment switches to an-
other one. As a result of such a procedure, we have a vec-
tor of more than two billion observation directions. This
scan reflects some of the basic properties of a satellite-like
observation.

4.1.2. Polariser

We specify a dependence of the orientation of the polariser, φt,
as defined in Eq. (2), on time, assuming three scenarios.

1. Fast polariser rotation: the polariser is rotated by 45◦ deg
from one to another pointing along the scan direction.

2. Medium rotation: we change the polariser angle by 45◦ deg
after each scan of one circle (for the circular scans) or after
changing of direction of scanning (for the grid-like scan).
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3. Slow rotation: in this case we repeat the full scan four times
before changing the polariser angle by 45◦ deg. As a conse-
quence, the time domain is four times larger than the ones
listed in Table 1.

4.1.3. CMB signal

Theoretical power spectra have been calculated using the CAMB
package1 (Challinor & Lewis 2011) assuming the concor-
dance model parameters (Planck Collaboration VIII 2014). They
have subsequently been convolved with a fiducial symmetric
Gaussian instrumental beam of FWHM 10 arcmin and used
to simulate a Gaussian realisation of the CMB map using the
synfast routine from a HEALPix (Górski et al. 2005) with a
HEALPix resolution parameter set to Nside = 512.

4.1.4. Noise

We have simulated the noise contribution, n̆t, as a Gaussian real-
isation of a piece-wise stationary noise composed of an uncorre-
lated white noise and correlated 1/ f components with the power
spectrum density for each of the stationary pieces that are that
are parametrized in the usual manner as

P( f ) = σ2 tsamp

1 +

(
fknee

f

)2 · (19)

Here, σ2 defines the white noise level, tsamp is the sampling in-
terval, and fknee – the knee frequency of the spectrum. For defi-
niteness, we used σ2 = 8.8×10−10 K2

CMB for a single observation
noise variance – a value roughly corresponding to a typical noise
level of current bolometric detectors.

For the two smaller scans, cases 1 and 2 in Table 1, we have
assumed that the noise is stationary over the entire period of the
observation, while stationary intervals correspond to the time
spent scanning each circle for the largest experiment (case 3).
This implies that noise correlations are then present only be-
tween the samples corresponding to the same circle, and the re-
sulting (inverse) noise covariance, as seen in Eq. (4), is com-
posed of as many diagonal blocks, as circles, that is up to 2048.
This is in contrast with cases 1 and 2, where there is only one
Toeplitz block.

For any stationary interval, noise correlations may exist be-
tween any two of its samples however distant they are. This
would correspond to full dense Toeplitz blocks of the (inverse)
noise correlation matrix, N−1. It is, however, frequently assumed
that the correlations are zero if the time lag between the samples
exceeds some correlation length, λT. If this is indeed the case,
the Toeplitz blocks of N−1 are band-diagonal with a half band-
width set by λT. In our experiments for definiteness, we set this
parameter to be λT = 213, unless it is explicitly stated otherwise.
We discuss the role and importance of this parameter on the ef-
ficiency of the iterative solvers in Sect. 5.

4.2. Experimental setup

We evaluate performance of our two-level solver on NERSC’s
supercomputer Hopper2, based on a Cray XE6 system. Hopper
is made up of 6384 compute nodes with each node composed
of two twelve-cores AMD MagnyCours (2.1 GHz), with a peak
performance of 201.6 Gflops per node and 1.288 Peta-flops for

1 http://camb.info
2 http://www.nersc.gov/nusers/systems/hopper2/

the entire machine. The nodes are connected with Cray’s Gemini
high performance interconnect network.

For the tests we use our own parallel code written in C++,
which uses a multithreaded version of Intel’s Math Kernel
Library for calculation of the fast Fourier transforms and for
dense linear algebra. We use Intel Compiler version 12.1.4.

The code is fully parallelised using a distributed-memory
programming model with help of the MPI (Message Passing
Interface) library. In addition, some routines in our code and the
MKL library used in our implementation allow us to exploit multi-
threading. This is done by assigning each MPI (distributed mem-
ory) process to a single multicore processor and then by capital-
ising on its multicore structure with OpenMP threads, which is
managed via calls to the OpenMP library. On Hopper, we use
four MPI processes per compute node and six OpenMP threads
per MPI process. Consequently, a run using 2048 MPI processes
typically uses up to 2048 × 6 = 12, 288 cores. Details of our im-
plementation and the assumed data layout are given in Sect. C.

5. Results and discussion

5.1. Convergence comparison

Figure 3 shows the magnitude of the relative error of the solu-
tion defined as (||b − A xi||2/||b||2) as a function of the number
of iterations for the standard and two two-level precondition-
ers: a priori and a posteriori. The results shown here are derived
for the scanning strategy referred to as case three in Sect. 4.1.1
and the different panels correspond to the three variants for po-
lariser dynamics, as described in Sect. 4.1.2. In each panel, we
show results for different lengths of the time domain data, vary-
ing the number of assumed sky circles from 32 to 2048. For
cases 1 and 2 of the polariser rotation, each circle corresponds
to a stationary interval, and we alternate the value of fknee be-
tween 0.5 Hz and 1 Hz for odd and even circles, respectively. For
case 3, each circle is scanned four times, each time with a differ-
ent fknee alternating as above. The number of stationary intervals,
K, is marked in each panel for each of the studied cases. For the
a priori construction, K defines the dimension of the deflation
subspace and the number of columns of ZS. The a posteriori op-
erator, ZD, is built from approximated eigenvectors, which are
selected assuming εtol = 0.2. The number of these eigenvectors
is given by dim (Z), as displayed in each panel.

In terms of the number of iterations needed to reach some
nominal precision, assumed hereafter to be 10−6. It is apparent
from the plots that the two-level preconditioners outperform the
standard one by as much as twice for the a priori two-level pre-
conditoner and a factor of 3.5 for the a posteriori one. This con-
firms the theoretical expectations from Sect. 3.2.

Clearly, both two-level preconditioners offer important per-
formance gains. However, these are more modest compared to
those found in Grigori et al. (2012), who reported typical reduc-
tion in the number of iterations by as much as a factor of 6. We
attribute this to two facts. First, the bandwidth of the Toeplitz
matrices assumed in this work was shorter than what was used
in the previous work. Second, the long-time scale noise correla-
tions are more important in the case of total intensity, as studied
in Grigori et al. (2012), than in the polarised case, as consid-
ered in this work. We elaborate on these issues in the following
sections.
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Fig. 3. Convergence of the preconditioned CG solver applied to the simulated data, as described in Sect. 5.2. Different line styles correspond
to different sizes of the problem, while different colours correspond to the three different types of preconditioners: red for the standard block
preconditioner MBD, and green and blue for the two-level preconditioners, M2lvl,S and M2lvl,D, respectively. In the legend, K corresponds to the
number of stationary intervals in the time domain data and dim(Z) denotes the number of columns in the deflation subspace operator, Z. For the
a posteriori preconditioner, M(2lvl,D), dim(Z) is the number of eigenvalues, which fulfill the condition Re|λi| < εtol = 0.2.
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Fig. 4. Convergence of the PCG solver of the CMB map-making problem for two different scanning strategy. Different types of lines correspond
to different versions of the Toeplitz matrix used in the simulation, as described by the parameter fknee. Different colours correspond to the two
different types of preconditioners: red for the standard block preconditioner MBD and green for the two-level preconditioner M2lvl,D whose coarse
space ZD, is made of approximated eigenvectors corresponding to small eigenvalues λi of MBD A. dim(Z) denotes the number of columns in the
deflation subspace operator ZD which is the number of eigenvalues with (Re|λi| < εtol = 0.3).

5.1.1. Convergence rate and low frequency noise
correlations

We illustrate the dependence on a level of the noise correlations
in Fig. 4, which shows the convergence of the preconditioned
CG solver for several different data sets that correspond to dif-
ferent values of the parameter fknee. In the cases shown in the
figure, we used simulations with scanning characteristics that
correspond to cases 1 and 2 and, therefore, assume only one
stationary period for the entire scan as seen in Table 1. In the
plot, red curves show the results of the runs with the block diag-
onal preconditioner. It is clear that the convergence of the block
diagonal preconditioner depends very strongly on the value of
fknee, whenever the required convergence precision is better than
∼10−4. This is around this level that the relative residuals reach
typically a plateau and continue their decrease only once it is
over. The length of the plateau depends on fknee and so does the
number of iterations needed to reach our nominal precision level
of 10−6.

This plateau in the convergence of iterative methods is
usually attributed to the presence of small eigenvalues in
the spectrum of the system matrix, MBD A (see e.g. Morgan
1995; Kharchenko & Yeremin 1995; Chapman & Saad 1996;
De Gersem & Hameyer 2001). In our case, the presence of small
eigenvalues depends on the level of the noise correlations, as
does the length of the stagnation phase, as indeed observed em-
pirically. As our two-level preconditioners have been designed
expressly to deal with the effects due to small eigenvalues, we
expect that they should be able to help with the convergence
slow-down as seen for the standard preconditioner. This is in-
deed confirmed by our numerical results shown in Fig. 4, where
green lines show the results obtained with the two-level a poste-
riori preconditioner.

The upshot of these considerations is that the overall per-
formance gain expected from the two-level preconditioners will
strongly depend on the assumed noise properties. We point out
that the dimension of the deflation subspace operator, ZD, used
in these runs increases with an increasing value of fknee. This
is because the number of small eigenvalues of MBD A also in-
creases, and more columns of ZD are needed to correct for them.
This manifests the adaptive character of this version of the two-
level preconditioner and should be contrasted with the a priori

one, for which the dimension of ZS would have been kept con-
stant in all runs and equal to 1. This would unavoidably result
in its inferior performance. We note that we recover a gain of a
factor of 5 between the standard and two-level preconditioners
for the largest value of fknee and case 2 scanning strategy, which
is close to the results reported in Grigori et al. (2012).

We emphasise that the number of small eigenvalues does not
depend only on the value of fknee, but also on where the sky sig-
nal resides in the frequency domain (see Appendix D for an anal-
ogous argument in a somewhat different context). For fixed fknee
the number of small eigenvalues increases if the signal shifts
towards the smaller frequencies (as a result, for instance, of a
decreasing scan speed). Consequently, both these factors play a
role in determining what gain one can expect from applying the
two-level preconditioner.

5.1.2. Convergence rate and the deflation space dimension

As is evident from the discussion above, the rank of the deflation
subspace operator, Z, is yet another parameter with a potentially
crucial impact on the performance of the two-level precondition-
ers. We could expect that increasing the operator’s size has to
translate directly into a faster convergence, as it can carry infor-
mation about more peculiar eigenvalues of the system matrix.
This expectation is indeed supported by our numerical exper-
iments. However, we also find that the gain quickly decreases
with growing dimension of the deflation space. This is demon-
strated in Fig. 5 for the a priori preconditioner and in Fig. 6 for
the a posteriori one. In an extreme case, as shown in the for-
mer figure, nearly the entire gain from the two-level construc-
tion is already obtained assuming a one dimensional deflation
subspace. This single eigenvalue is related to the overall offset
of the recovered map, as discussed in Sect. 3.3.1. For fast, well-
connected scan speeds and weak noise correlations, it may be
sufficient to take care of this major small eigenvalue. This is in-
deed the case in the example shown in Fig. 5.

The dimension of the deflation subspace also has important
consequences for the computational cost of the application of the
preconditioner. Its adopted value should be ideally a result of a
trade-off between these two effects: the expected decrease of the
number of iterations and the expected increase in the calculation
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Fig. 5. Convergence of the CG solver preconditioned with the two-level a priori precondtioner for the scan made of K = 1024 big circles. Green
lines correspond to the solutions obtained using the deflation subspace matrix, ZS, with a progressively lower rank, which is given by dim(Z) in
the legend. Red curves depict the solution with the standard preconditioner, MBD.
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Fig. 6. Convergence of PCG solver preconditioned with the two-level
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obtained with the deflation subspace operator, ZD, with different ranks
as defined by the number of approximated eigenvectors with eigenval-
ues smaller than εtol, as indicated in the legend. Red curve shows the
solution with the standard preconditioner, MBD.

time per iteration. We discuss the performance in terms of algo-
rithm runtime in the next section.

5.1.3. Convergence rate and the bandwidth of the inverse
noise correlation matrices

In the remainder of this section, we discuss the role of the
Toeplitz matrix bandwidth λT, which has been assumed to be
fixed in all our numerical tests presented so far with a value of
λT = 213. The importance of this parameter for the total compu-
tational time needed to estimate a map is generally recognised
and well known (e.g., Cantalupo et al. 2010). It stems from the
fact that the calculation of a product of the inverse noise ma-
trix, N−1, by a time-domain vector is one of the main opera-
tions, which needs to be performed recurrently, while solving
for the map estimate. At the very best, this cost can be brought
down to O(NT log λT), where NT is the length of the stationary
interval, but even then it still constitutes a significant, and of-
ten dominant, fraction of the entire run-time of the map-making

solver (Cantalupo et al. 2010). It is, therefore, desirable to select
as small a value of λT as possible.

However, a value of λT generally also has a direct impact on
the number of iterations needed to converge to the solution. This
observation, which is less broadly recognised, is illustrated in
Fig. 7. For the standard preconditioner, we can see that changing
the bandwidth can lower the number of iteration by as much as
a factor of 10. Combined with the gain in computation time per
iteration, as mentioned above, this may seem to suggest that this
is the parameter one should focus on while optimising any map-
making code performance. We argue that though it is clearly
very important, the gain in terms of number of iterations, which
can be obtained in practice from manipulating the value of λT
is quite limited, and does not supersede the gain, which can be
achieved thanks to our preconditioners.

The restriction here is due the affect a too small value of λT
may have on the quality of the estimated map. A discussion of
this issue is presented in Appendix D, where we also discuss pa-
rameters playing a role in defining the appropriate value for λT.
We note that such a critical value of λT is generally a result of a
trade-off between acceptable loss of precision and code perfor-
mance. Moreover, determining it may not be trivial, in particu-
lar, for complex scanning strategies. These problems should be
contrasted with the preconditioning techniques discussed in this
paper, which attempt to speed up the calculation without any im-
pact on the solution.

For the cases shown in Fig. 7, the a posteriori precondi-
tioner delivers an order of magnitude improvement in terms of
the number of iterations over the run based on the application
of the standard preconditioner with λT = 219. This is compara-
ble to the gain achieved by simply decreasing λT by a factor of
29 = 512. However, the final bandwidth, if adopted, would affect
the quality of the produced map. Indeed, in the examples studied
here, the value of λT should be equal to larger than 213 to en-
sure its high precision. The two-level preconditioners yet again
deliver competitive and robust performance here with a gain of a
factor 2.5 over the standard run with λT = 213 and do so without
compromising the quality of the solution.

For the two-level preconditioners, the dependence of the
number of iterations on λT is also much weaker than in the stan-
dard case, and, hence, the major driver for keeping the band-
width as small as possible in this case is the need to minimise
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Fig. 7. Convergence of PCG solver of the simulated CMB map-making problem with the same noise power spectrum but for different lengths of
the imposed band limit and for the three preconditioners considered here.

the overall time of the computation, as we discuss in the next
section.

5.2. Runtime comparison

In this section, we evaluate the performance of the proposed
methods in terms of the time needed for solving the map-
making problem by separately measuring the time required by
each solver to construct the preconditioner and time spent on
the iterative method. These results are summarised in Figs. 8
and 9, showing the runtime results and achieved speed-ups,
respectively.

We emphasise that we have not performed any tuning of the
deflation subspace dimension for these runs, which could fur-
ther improve performance of the two level preconditioners. We
also use the standard value for λT(=213) and a moderate value
of fknee(=1 Hz). As was shown earlier, these two parameters af-
fect the performance of the standard preconditioner significantly
more than that of the two-level ones, so the timings shown here
should be seen as rather conservative.

Figure 8 shows the timing results. Dashed lines depict times
needed to construct the preconditioners, and solid lines display
time required by the iterative solver to converge to the nomi-
nal tolerance of 10−6. These timings are shown as a function of
the number of MPI processes used for the runs. The left panel
shows the so-called weak scaling, when the size of the problem
increases proportionally to the number of MPI processes. The
right panel shows the strong scaling when the problem size is
fixed. In our weak scaling performance tests, we assign a sin-
gle stationary interval and, therefore, a single diagonal block of
N−1 to a single MPI process. Increasing the number of MPI pro-
cesses concurrently increases the length of the data set and the
number of stationary intervals. In the strong scaling tests, we
fix the number of circles to 1024 and distribute the data evenly
among the available processes, by assigning multiple blocks to
one MPI process. This limits the number of processes which can
be used in these tests to 1024, and, therefore, the number of cores
to 6144.

The results shown in Figs. 8 and 9 demonstrate that the two-
level preconditioners fare better in all cases and often much bet-
ter than the standard one with the a posteriori preconditioner
found to be consistently the best. The speedups over the stan-
dard case can be as large as 3.5 ∼ 4 and tend to be on average
around ∼2.5 for the a posteriori option and on the order of 1.5
for the a priori one. The two-level a posteriori preconditioner
shows superior performance even when the preconditioner con-
struction time is taken into account, despite its construction tak-
ing the longest out of the three options considered in this work.
The respective speedups are consequently lower and typically
around ∼2 for the a posteriori preconditioner. For the a priori
preconditioner the speedup is minor but still consistently better
than 1. Importantly, if successive linear systems with the same
system matrix but different right-hand sides need to be solved,
the cost of building the preconditioner needs to be incurred only
once, and we can eventually recover the speedups of ∼3.5 and
∼1.5 for the a posteriori and a priori two-level preconditioners,
respectively.

We note that the limitations on the speedups obtained here
are not due to our numerical implementation but stem from
the method itself. This can be seen by comparing the speedups
achieved by the code without the precomputation time (dashed
lines in Fig. 9) with that estimated solely on the basis of the
improvement in the number of iterations needed for the conver-
gence (0solid lines). Both these speedups are found to be close,
even though the latter estimates do not account for the extra
time needed to apply the more complex two-level precondition-
ers. We conclude that there is little we could gain by optimis-
ing our code at this time. This is supported by the discussion of
the overall time breakdown between specific operations given in
Appendix C.

The results also show very good scaling properties of the
proposed two level algorithms. Indeed, the time needed to solve
a fixed-size problem decreases nearly inversely proportionally to
the number of employed MPI processes (strong scaling), while
it remains essentially constant if the problem size grows in uni-
son with the number of the process (weak scaling). This poten-
tially shows that these algorithms eventually can be run on a
very large number of distributed compute nodes, as required by
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Fig. 8. Total time spent in the iterative solver for the standard, block-diagonal preconditioner, MBD, and the two variants of our new two-level
preconditioner, M2lvl, plotted as a function of the number of MPI process used for the computation. The results of the weak scaling tests, i.e., in
which problem size is increased proportionally to the number of employed MPI processes, are shown in the left panel, while the results of the tests
with a fixed size of the problem, so called strong scaling, are depicted in the right panel. Dashed lines show the cost of the construction of the
preconditioners.
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Fig. 9. Solid lines: speedups achieved by the methods with the two-level preconditioners, M2lvl,S and M2lvl,D, with respect to the traditional solver
with the block diagonal preconditioner, MBD, dotted and dashed lines: speedups obtained on different stages of the solution. The panels show weak
(left), and strong (right), scaling, respectively.

forthcoming huge data sets and can do so without significant
performance loss.

6. Conclusions

We have proposed, implemented, and tested two new iterative
algorithms suitable for solving the map-making problem in the
context of scanning, polarisation-sensitive CMB experiments.
These algorithms are based on the PCG method supplied with
new two-level preconditioners, which are constructed either on
the basis of global properties of the considered data set, referred
to as a priori preconditioners, or with help of some specialised
precomputation, a posteriori preconditioners. This work, there-
fore, generalises the considerations of Grigori et al. (2012) in
two directions. First, it considers polarisation-sensitive observa-
tions. Second, it studies a broader class of preconditioners.

With the help of numerical experiments, we have demon-
strated that the proposed solvers consistently lead to better
performance than the standard, block-diagonal preconditioners,
which define the state-of-the art in the field. In particular, we find
that the a posteriori preconditioner can decrease the number of
iterations needed for convergence by as much as a factor of 5,

and the overall runtime by as much as a factor of 3.5. The gains
obtained with the a priori preconditioner are more modest but
still interesting given how straightforward its implementation is.

We have studied the dependence of the performance of the
proposed preconditioners on some of the parameters defining
CMB data sets. In particular, we have found that the perfor-
mance of the new preconditioners deteriorates only slowly when
increasing the bandwidth of the inverse noise correlations, in
contrast with the performance of standard preconditioners. This
permits us to avoid a subtle and difficult trade-off between calcu-
lation quality and speed, which is inherently present in the latter
case. Indeed, with the two-level preconditioners we can opt for a
conservatively high value of the bandwidth, evading any danger
of compromising the quality of the estimate, while retaining the
computational efficiency.

Throughout this work, we have assumed that the time-
domain noise covariance has a block-diagonal structure with
Toeplitz blocks. The proposed approaches can, however, be
applied to more complex noise models as long as the noise
weighting procedure, a prerequisite also required by the stan-
dard approach, is computationally feasible. This applies to noise
models obtained by a marginalization of unwanted systematic

A39, page 13 of 18

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201323210&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201323210&pdf_id=9


A&A 572, A39 (2014)

contributions, as discussed in Stompor et al. (2002). As these
more complex noise models will typically require more com-
putations, the overhead due to the application of the two-level
preconditioners will be relatively smaller and their relative per-
formance compared to the standard method better. Further gains
could be expected if these more complex noise models result in
some near degeneracies of the system matrix. This may affect
the performance of the standard approach to a larger extent than
that of the two-level ones.
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Appendix A: Background on Krylov subspace
iterative methods

In this Appendix, we provide a brief overview of Krylov sub-
space iterative methods, as well as an approach for approxi-
mating eigenvectors of a matrix. Broader background of these
techniques can be found in, e.g., Golub & Van Loan (1996)
and Saad (2003). Approximations of eigenvectors/eigenvalues of
a matrix in the context of deflation techniques are discussed in
e.g., Morgan (1995) and Chapman & Saad (1996). Havé et al.
(2013) gives a recent example of applications of all these tech-
niques in the context of preconditioners of linear systems.

There are several different classes of iterative methods for
solving the linear system of equations,

B x = b,

where B is a real n × n matrix, b is the right hand side vector
of dimension n, and x is the sought of solution vector of dimen-
sion n. Among those, Krylov subspace methods are the most ef-
ficient and popular ones. They belong to a more general class of
projection methods, which start from an initial guess x0 and, af-
ter m iterations, find an approximate solution, xm, from the affine
subspace x0 +Km, which fulfills the Petrov-Galerkin condition,

b − Bxm ⊥ Lm,

where Km and Lm are some appropriately defined, method-
dependent, m-dimensional subspaces of Rn.

For the Krylov subspace methods, Km is defined as

Km(B, r0) = span
{
r0,Br0,B2r0, . . . ,Bm−1r0

}
, (A.1)

where r0 is the initial residual, i.e., r0 := b − B x0. It is referred
to as the Krylov subspace of dimension m. A Krylov subspace
method therefore approximates the solution as

xm = x0 + pm−1(B) r0,

where pm−1 is a polynomial of degree m − 1. While all Krylov
subspace methods are based on the same polynomial approxi-
mation, different choices of the subspace Lm give rise to differ-
ent variants of the method, such as a conjugate gradient (CG),
or general minimal residual method (GMRES) (Saad & Schultz
1986).

Algorithm A.1 Basic Arnoldi Algorithm
Require: r0,w1 = r0/||r0||

1: for j = 1→ m do
2: for i = 1→ j do
3: hi, j = (Bw j,wi)
4: end for
5: u j = Bw j −

j∑
i=1

hi, jwi

6: h j+1, j = ||u j||2
7: w j+1 = u j/h j+1, j
8: end for

In particular, the GMRES algorithm employs the so-called
Arnoldi iterations (see algorithm A.1) to build an orthogonal ba-
sis of the Krylov subspace. These produce the orthonormal ba-
sis, W(m) = |w1 |w2 | . . . | wm|, of the Krylov sub-space together
with a set of scalar coefficients, hi j, (where i, j = 1, . . . ,m and
i ≤ j + 1) plus an extra coefficient, hm+1,m. The first group of the
coefficients can be arranged as a square matrix of rank m, called
H(m), with all elements below the first sub-diagonal equal to 0. A
matrix with such structure is referred to as an upper Hessenberg
matrix. It can be shown (e.g., Golub & Van Loan 1996) that there
exists a fundamental relation between all these products of the
Arnoldi process, which reads

B Wm = Wm Hm + hm+1,m wm+1eT
m. (A.2)

Here, em is a unit vector with 1 on the mth place. The eigen-
pairs of the matrix Hm are commonly referred to as Ritz eigen-
pairs. They can be straightforwardly computed thanks to the
Hessenberg structure of the matrix and its moderate size, which
is given by the size of the Krylov space and therefore by the typ-
ical number of the iterations needed to solve the system. This
is in the CMB applications of the order of O(100). By denoting
these eigenpairs as (ui, λi), we can therefore write

Hm ui = λi ui. (A.3)

From Eq. (A.2) for every eigenvector, ui, of Hm, we find that

B Wm ui = Wm Hm ui + hm+1,m wm+1 e†m ui

= λi Wm ui + hm+1,m wm+1 e†m ui. (A.4)

Consequently, if hm+1,m = 0, then every eigenvector of Hm de-
fines an eigenvector of B given by yi := Wm ui, both of which
have the same corresponding eigenvalue, λi.

If hm+1,m is not zero, but is small, as it is usually the case if the
solver is converged with sufficient precision. The pairs (yi, λi)
then provide a useful approximation of the m true eigenvalues
of B, and the magnitude of the last term on the right hand side of
Eq. (A.4) serves as an estimate of the involved error.

In our construction of the a posteriori preconditioner, we take
B = MBDA and apply the algorithm described above to calculate
the set of the vectors, yi, from which we subsequently select the
vectors used to build the deflation subspace operator, ZD.

Though the specific approach described here relies on the
GMRES solver, we note that a similar construction can be per-
formed using the CG technique as elaborated on, for instance,
in Erhel & Guyomarc’h (1997).

Appendix B: Alternative construction of a two-level
preconditioner

A two-level preconditioner can be constructed in a differ-
ent way than what is proposed in Sect. 3.2. One potentially
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promising alternative, which stands out from a theoretical point
of view, can be derived from the “Adapted Deflation Variant 2”
method (A-DEF2) of Tang et al. (2009) that renders the follow-
ing expression,

M(alt)
2lvl, := RT MBD + Z E−1ZT. (B.1)

This preconditioner, like the one proposed earlier, is neither sym-
metric nor positive definite (Tang et al. 2009). However, it can
be more robust than the choice studied in this work in some ap-
plications. This is, because it can be shown that there exists an
initial solution for the iterative solver in exact arithmetic such
that M(alt)

2lvl, is equivalent to an SPD preconditioner. while this is
not the case for M2lvl. This is an important difference, as the con-
vergence of a conjugate gradient algorithm is only guaranteed
for the SPD matrices. For our choice of the two-level precondi-
tioner, the convergence has to be tested experimentally case-by-
case. Nevertheless, once this turns out to be so, as in the map-
making problem studied in this work, the convergence rates of
both these two-level constructions, are expected to be similar for
the same choice of the deflation space matrix, Z. This is because
the spectra of M2lvlA and M(alt)

2lvl A can be shown (Theorem 3.1
of Vuik et al. 2006) to be identical. In particular, this precondi-
tioner shifts the small eigenvalues of A to 1, that are set to zero in
MBD R A by the deflation operator, as does so our standard two-
level preconditioner, what results in a similar clustering pattern
of the eigenvalues of the preconditioned system matrix in both
these cases.

While we have experimentally confirmed all these theoreti-
cal expectations in the context of the map-making problem, we
have also found that this latter construction has a higher com-
putational cost and is therefore disfavoured for our application.
Nevertheless, it still may provide an alternative whenever con-
vergence problems arise.

Appendix C: Implementation of the two-level
preconditioner

In this Appendix, we describe major features of the paral-
lel implementation of our two-level preconditioner. For clarity,
we comment explicitly only on the memory-distributed parallel
layer of the code, assuming that one MPI process is assigned to
every allocated processor, even though, as mentioned elsewhere,
the code attempts to also capitalise on the shared-memory capa-
bilities whenever possible.

In our code, we implement the data layout scheme
of Cantalupo et al. (2010), which has been designed to facili-
tate time-domain operations and to keep communication volume
low. We therefore distribute all time domain objects by dividing
all stationary intervals into disjoint subsets and assigning data
corresponding to each subset to one process. The distribution of
the pointing matrix, P, and the inverse noise correlations, N−1,
follows that of the time-ordered data with each of these objects
first being divided into blocks relevant for each stationary inter-
val and then assigned to a corresponding process. We denote the
data stored by process j as, d j, P j, and N−1

j .
We can now define a subset of pixels, P j, as observed within

the time period assigned to process j. This generally is a small
subset of all observed pixels, P (≡

⋃
j P j). Moreover, the sub-

sets assigned to different processes may but do not have to be
disjoint, that is Pi ∩ P j , ∅, as any given pixel may have been
and, indeed, ideally has been observed many times over the full
observation. These subsets,P j, define the distribution of all pixel
domain objects, such as maps, the standard preconditioner, or

coarse space projection in the case of the two level precondi-
tioners operators. The downside of such a distribution is that all
these objects are potentially distributed with overlaps. The up-
side is that this restricts the communication volume.

As elaborated in Cantalupo et al. (2010), this data distribu-
tion is particularly efficient when calculating matrix-vector prod-
ucts of the matrix A = PT N−1 P by a pixel-domain vector x.
This is the fundamental operation performed by any iterative
map-making solver. In particular, it limits the need for interpro-
cess communication to a single instance, which is an application
of the de-projection operator PT to a vector of the time-ordered
data. A global reduce operation is unavoidable to combine par-
tial results, P j d j, which are pre-calculated by each of the in-
volved processors. This operation can be performed by calling
MPI_AllReduce() (Cantalupo et al. 2010), and this is the ap-
proach implemented here. We note, however, that recently more
efficient solutions have been proposed (Sudarsan et al. 2011;
Cargemel et al. 2013), which scale better with the growing num-
ber of processors, and could further improve our runtime results.

In the case of the two-level preconditioners, we also need to
perform multiple dot-products of pixel-domain objects in addi-
tion to applying the matrix A to a vector. As these are distributed,
this does necessarily involve a communication of the same type,
as used in applying the deprojection operator above. Special at-
tention has to be paid here to the data overlaps. In the case of
the dot-products if left unaccounted, overcounting contributions
from pixels, which are shared by more processors will occur. To
avoid that, we precompute the frequency with which each pixel
appear on different MPI processes and use it to weight their con-
tribution to the final result of the dot-product. The calculation of
the frequency requires one extra global reduce operations, which
can be performed on the onset. Once accomplished, its result is
stored in the memory of each process, as distributed as all other
pixel domain objects.

We can now describe steps involved first in constructing and
then applying the two-level preconditioner. In principle, the con-
struction needs to be performed only once, while the actual ap-
plication has to be done at every iteration. However, due to the
memory constraints, the preconditioner can not be constructed
explicitly and, therefore, only some of the steps involved in the
construction can be done ahead of the time, while the others will
need to be performed on every iteration, whenever the precondi-
tioner needs to be applied. The challenge is to find the right bal-
ance between extra memory overhead to store pre-computation
products and extra computations, which have to be performed
repetitively.

Constructing the preconditioner – we precompute two objects:
AZ and E and store them in memory throughout the iterative
process. The latter object is stored as a two factor matrices
computed via the LU factorization to facilitate its application
later. The involved calculations are implemented as follows,

1. AZ: we compute it by applying the system matrix,
A, to each column of Z separately, using the standard
map-making technique outlined above and in Sect. 2.1.
This can be time consuming if the number of columns,
which is equal to the dimension of the coarse space, r,
is large. This is, however, typically the case only for the
a priori preconditioner, and then the computational load
can be decreased efficiently by capitalising explicitly
on the fact that Z is very sparse. The result, AZ, is pre-
computed once in the code and stored in the distributed
memory. Though this can be large as it amounts to
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storing multiple map-like vectors, it is typically merely
a fraction of the volume of all the time domain data
required for computation, and it leads to significant
savings in the operation count.

2. E = ZT A Z: this calculation capitalises on AZ which
was precomputed earlier, and therefore involves only a
series of weighted dot-products. Once computed, the
matrix E is decomposed using the LU factorisation and
stored in the memory of each process. This is clearly
superfluous. For the coarse space dimension considered
in this work, the memory overhead is minor, while this
choice helps to keep the code simpler.

Application of the preconditioner – on each iteration of the
iterative solver, we need to apply our preconditioner to some
pixel-domain vector. This involves the following operations:

1. ZT x: for any arbitrary, pixel-domain vector, x, this
calculation is straightforward by using the weighted
dot-product procedure that is applied to each column of
Z. As explained above, this calculation involves global
interprocessor communication.

2. E−1 u: for any arbitrary, coarse space vector, u, this is
done by solving on each process a linear system of
equation given by E uout = u. This is quick, as E is
already precomputed and suitable decomposed using
LU decomposition. This operation does not require any
communication.

3. Z u and (AZ) u: this is done explicitly locally by each
process as it does not require any communication. The
second operation uses the result of the precomputation.

4. MBD x: this is performed directly. No communication is
required.

Thus far, we have assumed that the coarse space projection
matrix Z is given explicitly. In the case of the a posteriori
preconditioner, it is computed as described in Appendix A.
For the a priori case, the elements of Z reflect the frequencies
with which a given pixel appears in all the stationary intervals.
Consequently, the relevant computation is analogous to the one
computing the weights for the weighted dot products, explained
above.

From the memory load perspective, the two-level precon-
ditioner requires extra memory to store the results of the pre-
computation step. However, for typical cases of interest, the
time domain objects, which include the pointing matrix and
the inverse noise correlations, keep on dominating the memory
requirements.

The total time breakdown between the main steps of one
iteration of the preconditioned system is shown in Fig. C.1.
The 60% of the overall time is spent in the depointing op-
eration, Pt

jx j, which requires communication, which is imple-
mented in our code using a single global MPI_Allreduce. The
second most expensive operation is the multiplication of the
Toeplitz matrices by a vector, which is implemented with help
of a parallel (multithreaded) FFT algorithm. Finally solving the
small factorized linear system to compute E−1u has an almost
negligible impact on the total time but becomes progressively
more important for the large test cases. However, the computa-
tions overall in the range of considered problem sizes scale well
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Fig. C.1. Average time per iteration and its breakdown between differ-
ent operations shown as a function of the number of MPI processes. The
former is shown for all three preconditioners with solid lines of differ-
ent colours. The latter is shown for the a priori two-level preconsitioner
only. However, the time breakdown for the a posteriori preconditioner
has been found to be essentially the same in this specific experiment.

with the growing number of processors. Moreover, the time per
iteration of the CG solver preconditioned by our two level pre-
conditioner is almost the same as the time per iteration of the CG
that is preconditioned by the standard preconditioner, as the solid
red, green, and blue lines in Fig. C.1 nearly overlap. This also
explains the good performance of our preconditioner, which re-
quires a smaller number of iterations and, hence, a smaller over-
all time to solution.

In summary, our current implementation of the map-making
software makes a convincing case for the superior overall effi-
ciency of the new preconditioners proposed and studied in this
work. Though additional optimisations can be implemented, as,
for instance, included in the MADmap code (Cantalupo et al.
2010), these are not expected to change our conclusions in any
major way as they are largely derived from comparisons of
the relative performance as the major optimisations would af-
fect the performance of both preconditioners to a similar extent.
Consequently, as long as the cost of solving the system with the
factorized matrix E and operations with Z remain subdominant
with respect to the remaining steps of algorithm, the speedup
factors measured in our experiments should be recovered.

A39, page 16 of 18

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201323210&pdf_id=10


M. Szydlarski et al.: Accelerating the cosmic microwave background map-making procedure through preconditioning

Appendix D: Role and impact of the assumed noise
correlation length

In the presence of the off-diagonal correlations and assuming the
noise correlation matrix that describes the piece-wise stationary
noise present in the input time-ordered data, it is often conve-
nient to think of the map-making problem in the Fourier rather
than time domain. In this case, the data are represented as com-
plex amplitudes of the Fourier modes as

d̃ := F d, (D.1)

where F is a block diagonal matrix with the blocks correspond-
ing to the Fourier operators that acts independently on each sta-
tionary interval. Consequently, the sizes of the blocks reflect
those of the inverse noise correlation matrix, N−1, in Eq. (4).
Moreover, given the Toeplitz character of the blocks of the lat-
ter, we have

Ñ−1 := FT N−1 F ' (D.2)

'


diag P−1

0 ( f ) 0 . . . 0

0 diag P−1
1 ( f )

...
...

... . . .
. . . 0

0 . . . . . . diag P−1
K−1 ( f )

 ,
and therefore, the noise matrices in this representation are es-
sentially diagonal with the diagonal given by an inverse noise
power spectra for each of the stationary intervals. These can be
typically parametrized as in Eq. (19).

The map-making process in the Fourier domain can be writ-
ten as in Eq. (3),

m =
[
(F P) t Ñ−1 F P

)−1
F P t Ñ−1 d̃, (D.3)

and comes down to weighting of the Fourier amplitudes that rep-
resents the data. d̃, by respective amplitudes of the noise power
spectra, P−1

j ( f ). These are subsequently projected to the pixel
domain by the projection operator, (F P) t, and one corrected
for by the weight matrix,

[
(F P) t Ñ−1 F P

)−1
. We note that this

is analogous to what happens in the pixel domain if the time-
domain noise is uncorrelated but potentially inhomogeneous.
The first step of the map-making process is then a simple noise-
weighted co-addition of the data in the pixels on the sky. We
point out that the resulting map will still be unbiased, but po-
tentially noisier than necessary in both cases, if our assumptions
about the time- or frequency- domain weights are wrong.

For each Toeplitz block of the full inverse noise correlation
matrix, the corresponding inverse noise power spectrum can be
calculated by computing a Fourier transform of one of its rows.
For the noise models in Eq. (19), these Toeplitz blocks are not
generally band-diagonal. This is because the inverse power spec-
trum, as shown with a solid line in Fig. D.1, is never flat even
at the lowest considered frequencies. If band-diagonality is de-
sired, it would have to be therefore imposed. This corresponds
to apodizing the row of the Toeplitz matrix with an appropriately
chosen apodization window. The respective inverse noise power
spectrum after the apodization is then given by a convolution of
the Fourier transform of the window and the initial inverse power
spectrum. In the time domain, the apodization window, which is
required for this task, has to fall off quickly at some required
correlation length, λT, which defines the effective bandwidth.
Its Fourier representation also does so but at the scale given by
fdefl ≡ 1/(πλT tsamp), where tsamp stands for the sampling rate,

as in Eq. (19). The convolution of this spectrum with the initial
one therefore flattens the noise spectrum at the low frequency
end with flattening that extends up to fdefl. This is illustrated in
Fig. D.1, where we used a Gaussian window for the apodization,

G(k) =


exp 2

(
k
λT

)2

, k ≤ λT;

0, otherwise.

(D.4)

Consequently, imposing the band-diagonality modifiies the in-
verse noise power spectra and, therefore, weights, which are
used in the map-making process, and, therefore, generally leads
to suboptimal maps. How big is the loss and, in particular,
whether it is acceptable, depends on how the sky signal is dis-
tributed in the Fourier domain. If the sky signal resides only3

in the frequency above some threshold, >∼ fsig, there is no loss
of precision as long as fsig >∼ fdefl and, therefore, as long as
λT >∼ 1/(π fsig tsamp). In practice, such circumstances are realised
only for some periodic scanning strategies (e.g., Stompor &
White 2004) and, more commonly, at least some part of the sky
signal is present at arbitrary low, though non-zero, frequencies.
In such cases, the magnitude of the precision loss clearly de-
pends on the properties of the low frequency noise, such as its
knee frequency and slope with the effect becoming larger for
larger values of fknee and steeper noise spectra. For given noise
properties and a scan strategy, if the loss is found unacceptably
large, it can be mitigated by appropriately increasing the band-
width width, as is indeed the standard rule of thumb used in
the map-making community. However, the extra amount of the
bandwidth, which is needed to ensure some required precision,
depends on the sky signal distribution in the frequency domain.

We also note that 1/(πtsamp fknee) defines a maximal band-
width, which is still merely equivalent to uniform weighting in
the frequency domain and white noise weighting in the time do-
main. Therefore, only by adopting a larger bandwidth, we can
obtain any improvement over the map produced with white noise
weighting that is when all Toeplitz blocks are assumed propor-
tional to unity.

The purpose of extending the correlation length is not so
much to help to include the constraints coming from the very
low frequency modes on the sky signal, as these are very noisy
to start with and therefore, can anyway provide only weak con-
straints, but to ensure that those modes are properly weighted
down, so the noise they contain does not overwhelm the con-
straints from higher frequencies where the noise per frequency
is lower. Though filtering out these modes by setting the corre-
sponding inverse power spectrum weights to zero, could avoid
this issue, this procedure has to be consistently included in the
calculation of the weight matrix, (P tN−1P)−1, if an unbiased map
estimate is to be derived. This, in turn, entails an effective in-
crease of the actual bandwidth of the inverse noise correlation
matrix, N−1, and typically enhances the level of noise correla-
tions of the produced map. The trade-off in this case is therefore
among the magnitude of the bias, the noise matrix bandwidth,
and the complexity of the pixel-domain noise.

If the actual noise spectrum is more complex, and in partic-
ular, if it has some narrow features, then these also are affected
as a result of imposing the band-diagonality.

3 We note that there is always some part of the sky signal residing at the
zero frequency however, this signal is already lost whenever the time-
domain noise has 1/ f -like behaviour at low frequencies independent of
the choice of the bandwidth.
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Fig. D.1. Effects of imposing band-diagonality on the inverse noise correlation matrix, N−1, right panel, and its consequences for the inverse noise
power spectrum, P( f ), left panel. The apodization kernel used here is defined in Eq. (D.4). The right panel shows a first row of the matrix, which is
assumed to be Toeplitz. In both panels, solid lines show the result derived for the noise spectrum as in Eq. (19) without applying any apodization.
Dashed lines show the results when the apodization is applied with the kernel length, λT, assuming values, 104, 2000, 500 and 100, as shown
bottom-up, in the left panel, and right-to-left in the right panel. Dash-dot-dash lines in the left panel show the characteristic frequency at which
the apodized spectrum deflects from the original one for each apodization length. This frequency is given by fdefl = 1/πλTtsamp.
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