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1 Introduction

In heavy ion collisions at ultrarelativistic energies, such as those performed at the RHIC

or the LHC, the bulk of particle production originates from soft gluons that carry a small

fraction of the projectile longitudinal momentum [1–6]. Because of the infrared singularity

present in the emission probability of soft massless gluons, the occupation number of these

gluons increases as an inverse power of the longitudinal momentum fraction x, according

to the BFKL evolution equation [7, 8]. When it reaches values of order 1/αs, non-linear

processes such as recombinations become important and tame the growth of the occupation

number — a phenomenon known as gluon saturation [1].

By virtue of this large occupation number, the dynamics of these soft gluons is essen-

tially classical, but non-perturbative because highly non-linear [9, 10]. The Color Glass

Condensate (CGC) effective theory [11–13] provides an organization principle for this

regime of strong interactions, and a calculational framework for computing observables

relevant to hadronic or nuclear collisions involving such densely occupied projectiles.

In the study of heavy ion collisions, the CGC has been applied to calculate the gluon

yield at early times [14, 15]. At leading order (tree level), this amounts to solving the

classical Yang-Mills equations with light-cone currents representing the fast color charges

of the two projectiles. At next-to-leading order (one loop) [16], one can extract the terms

that contain logarithms of the collision energy and show that they can be absorbed into

the renormalization group evolution –according to the JIMWLK equation [17, 18] — of the

probability distribution of the above currents.

The CGC framework can also be used in order to study the production of quarks

in heavy ion collisions. In this framework, the light-cone color currents couple only to

gluons (because gluons are the dominant constituents of high energy hadrons or nuclei),

and quarks are produced indirectly from the gluons by the process gluons → qq. Thus,

the quark spectrum is one order higher in αs than the gluon spectrum. Equivalently, one

may say that the quark spectrum is a 1-loop quantity while the gluon spectrum is a tree

level quantity. It is well known that the single inclusive quark spectrum can be expressed

in terms of a basis of solutions of the Dirac equation, with a color background field that

corresponds to the LO gluons (i.e. the classical solution of the Yang-Mills equations). The

choice of this basis of solutions is not unique. When they are chosen in such a way that

they coincide with the free spinors vs(k)eik·x or us(k)e−ik·x in the remote past, they are

often called mode functions in the literature, and we will also adopt this terminology in

the rest of this paper.

– 1 –
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This approach can be used to study the production of fermions or scalar particles

in any situation where the production is due to a classical background field [19–23]. In

the context of heavy ion collisions, this formulation1 has been used first in studies of

electron production in nuclear collisions [29, 30] (although this is a pure QED process, its

treatment in the “equivalent photon” approximation is very similar to the CGC), and later

in a computation of quark production in heavy ion collisions [31, 32]. This earlier work was

limited in a number of ways: (i) the basis of mode functions that was used was expressed

in terms of proper time and the Cartesian coordinates x, y, z, making the boost invariance

of the problem highly non-obvious, (ii) the sum over the modes was restricted to a subset

of all the possible modes, and (iii) the resulting quark spectrum may be contaminated by

spurious lattice doublers at high momentum.

The goal of this work is to revisit this study in order to overcome all these limitations.

In this first paper, we first obtain a new basis for the Dirac mode functions, that naturally

depend on the proper time τ , on the rapidity η and on the transverse position x⊥. These

mode functions are indexed by the transverse momentum k⊥ and a wave number ν which

is the Fourier conjugate to η, making them very convenient for a lattice implementation

where the grid covers a fixed range in η. In order to improve the sampling of the mode

functions, we use spinors that are random linear superpositions of all the possible mode

functions. A proper choice of the distribution of the random weights ensures that the exact

result is recovered in the limit of infinite statistics. With finite statistics, this procedure

provides a straightforward way to estimate the statistical errors. Numerical results based

on a lattice implementation of this framework will be presented in a forthcoming paper.

The contents of the paper is the following: in the section 2, we briefly remind the

reader of the Color Glass Condensate and of the expression of the quark spectrum in this

framework. We also show in this section how to choose a basis of mode function that makes

boost invariance manifest. In the section 3, we present a statistical method to sample the

modes, and derive the formula for the corresponding statistical errors. The initial value

of the mode functions on the forward light-cone (i.e. just after the collision of the two

nuclei) is derived in the section 4. The section 5 is devoted to concluding remarks. A few

appendices collect more technical material. The derivation of the expression of the quark

inclusive spectrum in terms of Dirac mode functions is recalled in the appendix A, and

an alternate derivation following more closely standard Feynman perturbation theory is

presented in the appendix B. The appendix C discusses a technicality in the derivation of

the initial value of the mode functions, and the appendix D is devoted to the study of a

conserved inner product between the mode functions. We make an extensive use of this

inner product in order to properly normalize the mode functions, and as a consistency

check at various stages of the calculation. In the section E, we use the QED version of

the mode functions derived in the section 4 in order to recover the electron production

amplitude in the collision of two electrical charges.

1In the case of proton-nucleus collisions, or in any situation where it is legitimate to expand in powers

of the color sources of one of the projectiles, a more direct approach is possible, that leads to analytical

results at leading order [24–28].

– 2 –
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2 Quark yield in the CGC framework

2.1 Color Glass Condensate

The Color Glass Condensate framework is an effective theory that can be used to study

the early stages of heavy ion collisions, summarized by the following Lagrangian density,

L = −1

4
FµνFµν +Aµ(Jµ1 + Jµ2 ) + ψ(i/D −m)ψ , (2.1)

written here for one family2 of quarks of mass m. The color charge content of the incoming

nuclei is described by the two currents Jµ1,2, whose supports are restricted to the light-cones,

Jµ1 ∝ δ(x−) and Jµ2 ∝ δ(x+), in a collision at very high energy. These currents fluctuate

event-by-event, with a Gaussian probability distribution in the McLerran-Venugopalan

(MV) model3 [9, 10] that we use in this paper. If one is interested in the production of

quarks in a given collision, one could draw randomly one configuration of Jµ1,2, and not

perform an average over these currents.4

In the gluon saturation regime, the currents J1,2 are inversely proportional to the gauge

coupling,

Jµ1,2 ∼
1

g
. (2.2)

For this reason, gluonic observables at leading order are expressible in terms of a classical

color field that obeys the Yang-Mills equation with the source J1 + J2,[
Dµ, F

µν
]

= Jµ1 + Jµ2 . (2.3)

One should in principle also impose the covariant conservation of the current [Dµ, J
µ
1 +Jµ2 ] =

0. This constraint becomes trivial in the Fock-Schwinger gauge, x+A− + x−A+ = 0, since

it ensures that the gauge potential vanishes on the support of the current. We adopt this

gauge in the following. Furthermore, for inclusive observables, one can prove that this

equation of motion must be supplemented by a retarded boundary condition [33], such

that the gauge field vanishes in the remote past, thereby making this classical solution

unique. In the saturation regime, this classical gauge field is strong, of order Aµ ∼ 1/g.

2.2 Inclusive quark spectrum

In the CGC framework, the fermions do not couple directly to the currents Jµ1,2, but only

indirectly through the gauge field that appears in the covariant derivative in the Dirac

2As long as we do not include the effect of virtual quark loops, we can consider one quark family at a

time.
3At very high energies, this distribution evolves according to the JIMWLK equation and will become

non-Gaussian. The MV model may be viewed as a model of initial condition for the JIMWLK evolution.
4Note however that the theoretical basis for doing this is not very robust, and becomes inconsistent

beyond leading order. Indeed, for fixed Jµ1,2, loop corrections to observables contain unphysical logarithms

of the longitudinal momentum cutoff that separate the gluon modes that are described by the sources Jµ

and those that are described as gauge fields. These logarithms can be absorbed into a redefinition of the

probability distribution W [J ] of these sources (that must now evolve according to the JIMWLK equation).

But this procedure only works if one performs an average over the sources.

– 3 –
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operator i/D − m. Therefore, the natural order of magnitude of the spinors is ψ ∼ 1, in

accordance with the fact that the occupation number of fermions is bounded by unity.

Thus, observables that contain quark fields are of higher order in the gauge coupling. For

instance, the g2 power counting for the quark spectrum at LO is the same as that of the

gluon spectrum at NLO: both are 1-loop quantities, the only difference being the nature

of the field running in the loop (quark versus gluon). In a fixed background color field, the

quark spectrum at LO is given by the following formula,5 whose derivation is recalled in

the appendix A:

2ωp
dNq

d3p
=

1

(2π)3

∑
σ,s=↑,↓
a,b

∫
d3k

(2π)32ωk
lim

x0→+∞

∣∣∣(ψ0+
pσb

∣∣ψ−ksa)x0

∣∣∣2 , (2.4)

(ωk ≡
√
k2 +m2) where ψ0+

pσb is a free positive energy spinor of momentum p, spin σ and

color b (since quarks live in the fundamental representation of the gauge group SU(Nc),

this color index runs from 1 to Nc). In the absence of background field, these spinors are

given by,6

ψ0+
pσb(x) = uσ(p) e−ip·x (p0 = ωp) . (2.5)

However, it may also happen that the gauge fields at x0 → +∞ evolve into a nonzero

pure gauge configuration. In this case, the above spinor should be replaced by a color

rotated one:

ψ0+αb′

pσb (x) = uασ(p) Ωb′b′′(x)δbb′′ e
−ip·x , (2.6)

where SU(Nc) is the SU(Nc) matrix defining the pure gauge background.

In contrast, ψ−ksa is a spinor that has evolved over the background color field, starting

at x0 = −∞ from a negative energy free spinor of momentum k and spin s:

(i/Dx −m)ψ−ksa(x) = 0 , lim
x0→−∞

ψ−ksa(x) = vs(k)eik·x . (2.7)

Note that the subscripts a, b refer to the initial color of the quarks. The color they carry at

the point x is not written explicitly, and is encoded in the Nc (color)×4 (Dirac) components

of the spinors.

The inner product
(
·
∣∣ · )

x0 that appears under the integral in eq. (2.4) is defined by

(
ψ
∣∣χ)

x0 ≡
∫
d3x ψ†(x0,x)χ(x0,x) . (2.8)

5This formula is true to all orders in the currents Jµ1 and Jµ2 . If one expands it to lowest order in

these currents (i.e. dNq/d
3p ∝ O((J1J2)2)), one recovers the standard result for the process gg → qq with

off-shell incoming gluons, derived in the framework of kT -factorization in refs. [34, 35] (see ref. [24] for this

comparison).
6In this equation and in the rest of this paper, we write explicitly only the indices that characterize the

initial value of the spinor. A more complete notation would read:

ψ0+αb′

pσb (x) = uασ(p) δbb′ e
−ip·x ,

where α is the Dirac index and b′ is the color of the quark at the point x.

– 4 –
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(In the product ψ†χ, all the unwritten color and Dirac indices are contracted.) The prop-

erties of this inner product are studied in detail in the appendix D. In this appendix, we

also use its conservation as a consistency check of the results that will be derived in the

section 4. Note that the formula for the quark spectrum requires that one takes the limit

of infinite time. As we shall discuss later in this section, this is also a requirement for the

quark spectrum to be gauge invariant.

Eq. (2.4) is the expression for the fully inclusive spectrum that we are going to use in

the rest of this paper. The virtue of this formula is that it reduces the calculation of a

one-loop graph in a background field to solving a (linear) partial differential equation with

retarded boundary conditions. Even if this can be done analytically only for very simple

backgrounds, this problem can in principle be tackled numerically for completely general

backgrounds.

Note that in eq. (2.4), the spectrum is summed over all the possible final states and

over the spin of the tagged quark. In order to obtain the polarized spectrum, one simply

needs to remove the sum over the spin index σ. This formula also contains sums over the

colors of the initial and final fermion. These sums should not be undone, as the spectrum

of quarks with a given color has no gauge invariant meaning. k and s can be viewed as

the momentum and spin of the antiquark that must be produced along with the quark to

satisfy the conservation of the flavor quantum number, as reflected by the initial condition

for the spinor ψks in the remote past.

2.3 Boost invariance

2.3.1 Change of coordinates

Since collisions in the high energy limit are invariant under boosts along the longitudinal

axis,7 it is convenient to trade the longitudinal components of the momenta pz, kz in favor

of the corresponding rapidities yp and yk. Likewise, the proper time τ and spatial rapidity

η are more suitable than x0 and z to map the space-time:

τ ≡
√
t2 − z2 , η ≡ 1

2
ln

(
t+ z

t− z

)
. (2.9)

Besides the obvious change in the measure dpz/ωp = dy, one must alter the definition

of the inner product so that the integration is on a surface of constant τ (instead of a

constant x0), (
ψ
∣∣χ)

τ
≡ τ

∫
d2x⊥dη ψ

†(τ,x⊥, η) e−ηγ
0γ3

χ(τ,x⊥, η) . (2.10)

(See the appendix D.) When doing this, eq. (2.4) becomes

dNq

dypd2p⊥
=

1

8π(2π)3

∑
σ,s=↑,↓
a,b

∫
d2k⊥
(2π)2

dyk lim
τ→+∞

∣∣∣(ψ0+
p⊥ypσb

∣∣ψ−k⊥yksa)τ ∣∣∣2 . (2.11)

7Here, we are disregarding the small-x evolution of the color sources in the incoming nuclei. This effect

would break the boost invariance of the problem due to gluon loop corrections, and make the quark spectrum

depend on rapidity on scales ∆y ∼ α−1
s .

– 5 –
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The boost invariance of the problem implies that the inner product depends only on the

difference of the rapidities yp− yk. After integration over yk, the resulting quark spectrum

is independent of the rapidity yp.

2.3.2 Boost invariant spinors

The boost invariance can be made manifest at the level of the spinors ψ0+
p⊥ypσb

and ψ−k⊥yksa
themselves. Even when the background field is invariant under boosts in the z direction,

these spinors depend separately on the momentum rapidity y and on the spacetime rapidity

η. This can be trivially seen on the vacuum spinors, whose rapidity dependence can be

made explicit as follows

ψ0+
p⊥ypσb

(τ, η,x⊥) = e
yp
2 γ0γ3

uσ(p⊥, y = 0) e−iMpτ cosh(yp−η) eip⊥·x⊥ , (2.12)

where Mp ≡
√
p2
⊥ +m2 is the transverse mass. To turn the prefactor into a function of

yp − η, it is convenient to define transformed spinors as follows,

ψ̂k⊥ysa ≡
√
τ e−

η
2
γ0γ3

ψk⊥ysa . (2.13)

The factor
√
τ has been introduced for later convenience. After this transformation, the

new spinors ψ̂k⊥ysa are boost invariant, in the sense that they depend on the spatial rapidity

η and on the momentum rapidity y only through the difference y − η (provided that the

background field does not depend on η).

The boosted spinors introduced in eq. (2.13) also offer the advantage of obeying a sim-

pler form of the Dirac equation where rapidity does not appear explicitly in the coefficients.

In order to see this, first note that

γ0∂0 + γ3∂3 = γ0 e−ηγ
0γ3

∂τ +
1

τ
γ3 e−ηγ

0γ3
∂η . (2.14)

Then, multiply this operator on the left by exp(−η
2γ

0γ3). A simple calculation gives

e−
η
2
γ0γ3 [

γ0∂0 + γ3∂3

]
=

[
γ0 ∂τ +

γ3

τ
∂η +

γ0

2τ

]
e−

η
2
γ0γ3

. (2.15)

From this observation, we conclude that the modified spinors ψ̂ obey the following Dirac

equation: [
i

(
γ0Dτ +

γ3

τ
Dη + γiDi

)
−m

]
ψ̂ = 0 . (2.16)

One can see that the coefficients of this equation are independent of the rapidity η

when the background field is boost invariant (so that there is no η dependence hidden in

the covariant derivatives). In terms of the boost invariant spinors defined in eq. (2.13), the

inner product on a constant proper time surface takes a particularly simple form,

(
ψ
∣∣χ)

τ
≡
∫
d2x⊥dη ψ̂

†(τ,x⊥, η) χ̂(τ,x⊥, η) . (2.17)

– 6 –
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2.3.3 Mode functions in the ν basis

Another useful transformation is to go from a basis where the spinors have a definite

momentum rapidity y to a basis where they have a fixed Fourier conjugate ν to the space-

time rapidity η,

ψ̂k⊥ysa → ψ̂k⊥νsa ≡
∫
dy eiνy ψ̂k⊥ysa . (2.18)

When the background field is boost invariant (i.e. independent of η), ψ̂k⊥ysa depends only

on y − η and the spinor ψ̂k⊥νsa in the new basis has a trivial η dependence in exp(iνη):

ψ̂k⊥νsa(τ,x⊥, η) = eiνη ψ̃k⊥νsa(τ,x⊥) . (2.19)

ν is a conserved quantum number and the η dependence of these spinors is not altered by

their propagation over the background field. Moreover, the Dirac equation obeyed by these

spinors is effectively 2 + 1 dimensional,[
i

(
γ0Dτ + i

γ3

τ
(ν − gAη) + γiDi

)
−m

]
ψ̃k⊥νsa = 0 , (2.20)

since the η dependence can be factored out.

When calculating the inner product of two such spinors (see eq. (D.20)), the integration

over η trivially yields a delta function,(
ψp⊥νσb

∣∣ψk⊥ν′sa

)
τ

= 2πδ(ν − ν ′)
∫
d2x⊥ ψ̃

†
p⊥νσb

(τ,x⊥)ψ̃k⊥ν′sa(τ,x⊥)︸ ︷︷ ︸
≡
[
ψp⊥νσb

∣∣ψk⊥ν′sa

]
τ

, (2.21)

where we denote by
[
·
∣∣ ·]

τ
the “reduced” inner product that remains after one has factored

out the delta function. In this basis, the quark spectrum is given by

dNq

dypd2p⊥
=

1

8π(2π)3

∑
σ,s=↑,↓
a,b

∫
d2k⊥
(2π)2

dν

2π
lim

τ→+∞

∣∣∣[ψ0+
p⊥νσb

∣∣ψ−k⊥νsa]τ ∣∣∣2 . (2.22)

In this formula, it is tempting to ignore the limit τ → +∞ and to interpret the resulting

expression as the quark spectrum at the finite proper time τ . One should however consider

such a generalization with caution, since it is not possible to rigorously define asymptotic

states at a finite time.

2.4 Gauge invariance

Under a local gauge transformation, a spinor ψ(x) is transformed as follows

ψ(x) → Ω(x)ψ(x) , (2.23)

where Ω(x) is an SU(Nc) matrix. Since the inner product that enters in the quark spectrum

given by eqs. (2.4) or (2.22) is local, it is gauge invariant provided of course that the spinors

ψ− and ψ0+† are gauge rotated consistently.

– 7 –
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In eq. (2.6), we have already indicated that the spinors ψ0+† should be obtained from

the free solutions in a null background (2.5) by an appropriate color rotation, if the back-

ground field at the time of quark measurement is a nonzero pure gauge. The square of the

inner product that appears in eq. (2.4) can be written as∣∣∣(ψ0+
pσb

∣∣ψ−ksa)x0

∣∣∣2 =

∫
d3xd3y eip·(y−x)

[
ψ−ksa(x

0,y)
]†
uσ(p)

×
[
Ω(y)Ω†(x)

]
u†σ(p)ψ−ksa(x

0,x) . (2.24)

For the time being, let assume that the background field is a pure gauge at the time x0

where the quarks are being measured.8 The factor Ω(y)Ω†(x) depends on this pure gauge,

and can be obtained by a Wilson line between the points x and y,

Ω(y)Ω†(x) = Uγ(y,x) ≡ P exp

(
ig

∫
γ
dzµAµ(z)

)
, (2.25)

where γ is a path from x to y in the hyperplane of fixed time x0. Thus, in practice one

would calculate∣∣∣(ψ0+
pσb

∣∣ψ−ksa)x0

∣∣∣2 =

∫
d3xd3y eip·(y−x)

[
ψ−ksa(x

0,y)
]†
uσ(p)

× Uγ(y,x) u†σ(p)ψ−ksa(x
0,x) . (2.26)

When the background field is a pure gauge, this does not depend on the path γ chosen

between x and y. If one extends the use of eq. (2.26) to a situation where the background

field at the time x0 is not a pure gauge, one still obtains a gauge invariant result, but

there is now an ambiguity due to the choice of the path. Indeed, Wilson lines Uγ and Uγ′

evaluated on two different paths differ by a Wilson loop,

UγU
†
γ′ = P exp

(
ig

∮
γ∪γ′−1

dzµ Aµ(z)

)
(2.27)

defined over the closed loop γ ∪ γ′−1 made of the path γ followed by the reverse of the

path γ′. This Wilson loop measures the chromo-magnetic flux across the closed loop, and

is therefore equal to the identity only if the background field is a pure gauge. One expects

this irreducible ambiguity to decrease with the quark momentum. On the one hand, in the

spectrum of quarks of momentum p, the typical spatial separation
∣∣x−y∣∣ is of order 1/|p|

(since x−y and p are Fourier conjugates in eq. (2.24)), and the closed loops that one would

have to consider in the above argument have a typical area of order 1/|p|2. On the other

hand, numerical studies of the gauge fields produced in the McLerran-Venugopalan model

indicate that the expectation value of Wilson loops decreases exponentially with the area

of the loop when it becomes larger than Q−2
s [36, 37]. This suggests that this ambiguity

should not affect much the quark spectrum for |p| & Qs.

8This should be the case at least when x0 → +∞ in a sensible model of the gauge fields produced in

heavy ion collisions, thanks to the expansion and dilution of the system.
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3 Statistical sampling method

3.1 Sketch of a direct algorithm

Eq. (2.22) contains the essence of our procedure for calculating the quark spectrum:

i. Draw randomly a pair of sources Jµ1,2, and solve the classical Yang-Mills equation (2.3)

with null retarded initial conditions.

ii. For a given transverse momentum k⊥, wavenumber ν, spin s and color a, initialize

the spinor ψk⊥νsa as a free negative energy spinor.

iii. Solve the reduced 2+1 dimensional Dirac equation (2.20) for the time evolution of

this spinor over the color field found in the step i.

iv. At some sufficiently large time, project the spinor ψk⊥νsa on a free positive energy

spinor of transverse momentum p⊥, same wavenumber ν, spin σ and color b. This

gives the reduced inner product
[
ψ0+
p⊥νσb

∣∣ψ−k⊥νsa]τ .

v. Repeat the steps ii to iv in order to sum over all k⊥, ν, s, a’s.

vi. (optional) Repeat steps i to v in order to average over the configurations of the color

sources Jµ1,2.

If we discretize the transverse plane into a Nx ×Ny grid and the rapidity axis into a

grid with Nη points, the computational cost for solving the Dirac equation for one mode

function scales as NxNyNτ where Nτ is the number of timesteps. Note that this cost

does not depend on Nη since the η dependence can be factored out for a boost invariant

background. This must be repeated for the NxNyNη mode functions. Therefore, the total

computational cost scales as (NxNy)
2NηNτ .

3.2 Statistical method

The algorithm described in the previous subsection is deterministic, but it suffers from

an unfavorable scaling with the size of the transverse grid, since the computational cost

scales as (NxNy)
2. Instead of doing in full the sum over all the modes, it is possible to

do it by a Monte-Carlo sampling in which one uses random linear superpositions of the

mode functions

ψ−c ≡
∑
s=↑,↓
a

∫
d2k⊥
(2π)2

dν

2π
ck⊥νsa ψ

−
k⊥νsa

, (3.1)

where the coefficients ck⊥νsa are random numbers with the following variance〈
ck⊥νsac

∗
k′⊥ν

′s′a′
〉

= (2π)3 δ(k⊥ − k′⊥) δ(ν − ν ′) δss′ δaa′ . (3.2)

The justification of this approach is to note that the projector on the subspace of negative

energy spinors can be rewritten as follows∑
s=↑,↓
a

∫
d2k⊥
(2π)2

dν

2π

∣∣ψ−k⊥νsa)(ψ−k⊥νsa∣∣ =

∫
[Dc] P[c]

∣∣ψ−c )(ψ−c ∣∣ , (3.3)

– 9 –



J
H
E
P
0
2
(
2
0
1
6
)
1
2
6

where P[c] is a normalized probability distribution (in practice a Gaussian distribution)

with zero mean value and a variance given in eq. (3.2). In eq. (2.22), the integrals over k⊥, ν

and the sums over s, a are then replaced by a statistical average over these random numbers,

2πδ(0)︸ ︷︷ ︸
Lη

dNq

dypd2p⊥
=

1

8π(2π)3

∑
σ=↑,↓
b

∫
dν

2π
[Dc] P[c] lim

τ→+∞

∣∣∣(ψ0+
p⊥νσb

∣∣ψ−c )τ ∣∣∣2 . (3.4)

(Lη is the total length of the η interval represented in the lattice implementation.) Since

the random sum in eq. (3.1) mixes9 the various ν’s, the evolution of ψ−c is governed by the

3+1 dimensional Dirac equation (2.16), and the computational cost of this approach scales

as NxNyNηNτNconf where Nconf is the number of samples used in the statistical average.

Compared to the direct deterministic method, a power of NxNy has been replaced by Nconf ,

which is advantageous for large grids if Nconf � NxNy.

3.3 Statistical errors

The statistical method summarized by the eqs. (3.3) and (3.4) is exact only in the case of a

perfect sampling of the Gaussian distribution P[c]. In practice, this sampling is performed

by generating a large but finite number Nconf of configurations. In doing this, the left hand

side of eq. (3.3) is replaced by

1

V 2

∑
~J ,~J
′

CNconf
(~J , ~J

′
)
∣∣ψ−~J )(ψ−~J ′∣∣ (3.5)

where we have used discrete notations that correspond to the lattice implementation, and

we use the following shorthands:

V ≡ LxLyLη (total lattice volume)

~J ≡ (jx, jy, jη, s, a) . (3.6)

(The integers jx,y,η label the momentum modes k⊥, ν in the lattice implementation, and

s, a are the spin and color quantum numbers.) The coefficients that appear in the sum in

eq. (3.5) result from Nconf samplings of the Gaussian distribution:

CNconf
(~J , ~J

′
) ≡ 1

Nconf

Nconf∑
n=1

c
(n)
~J
c

(n)∗
~J
′ . (3.7)

In this equation, c
(n)
~J

is the n-th random sample for the mode ~J .

With Nconf samples, the observables we are interested in (e.g. the inclusive quark

spectrum given by eq. (3.4)) are generically approximated by

ONconf
= N

∑
~f

1

V 2

∑
~J ,~J
′

CNconf
(~J , ~J

′
)
(
ψ0+
~F

∣∣ψ−~J )(ψ−~J ′∣∣ψ0+
~F

)
, (3.8)

9One may replace eq. (3.1) by a random sum in which the modes ν are not mixed. These restricted

linear superpositions obey the reduced 2+1 dimensional Dirac equation (2.20), but one must repeat the

resolution of the equation for each mode ν, so that this modification has no merit in terms of computational

cost. In fact, using eq. (3.1) and solving the 3+1 dimensional Dirac equation has the advantage that it is

immediately generalizable to a non-boost invariant background color field if necessary.
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where ~F denotes the quantum numbers of the final state,
∑

~f
a partial sum over these

quantum numbers (in the case of eq. (3.4), this partial sum is over the wave number ν,

the spin and color of the produced quark), and N a normalization factor. CNconf
(~J , ~J

′
)

is itself a random number, whose distribution can be determined in the large Nconf limit

by a method similar to the derivation of the central limit theorem. The mean value and

variance of this approximation can be obtained from those of CNconf
(~J , ~J

′
). Let us first

recall that 〈
c

(n)
~J

〉
= 0 ,

〈
c

(n)
~J
c

(n′)

~J
′
〉

= 0 ,
〈
c

(n)∗
~J

c
(n′)

~J
′
〉

= V δnn′ δ~J ,~J ′ . (3.9)

This leads easily to 〈
CNconf

(~J , ~J
′
)
〉

= V δ~J ,~J ′ ,〈
CNconf

(~J , ~J
′
)CNconf

( ~K, ~K
′
)
〉

=
〈
CNconf

(~J , ~J
′
)
〉〈
CNconf

( ~K, ~K
′
)
〉

+
V 2

Nconf
δ~J , ~K′ δ~J ′, ~K . (3.10)

The formula for the variance is exact if the distribution of c~J is Gaussian. Like in the

central limit theorem, the variance of CNconf
decreases as 1/Nconf .

From the first of eqs. (3.10), we obtain the mean value of ONconf〈
ONconf

〉
= N

∑
~f

1

V

∑
~J

(
ψ0+
~F

∣∣ψ−~J )(ψ−~J ∣∣ψ0+
~F

)
, (3.11)

which is indeed the exact value of the observable. Using the second of eqs. (3.10), we get〈
O2
Nconf

〉
=
〈
ONconf

〉2

+
1

Nconf

N 2

V 2

∑
~f ,~f
′

∑
~J , ~K

(
ψ0+
~F

∣∣ψ−~J )(ψ−~K∣∣ψ0+
~F

)(
ψ0+
~F
′

∣∣ψ−~K)(ψ−~J ∣∣ψ0+
~F
′
)
. (3.12)

We see that the standard deviation of ONconf
decreases as 1/

√
Nconf , with a coefficient that

has a non-trivial covariance. It can itself be estimated by the statistical method as follows:

i. Define two random linear superpositions of the negative energy mode functions:

ψ−1,2 ≡
1

V

∑
~J

c
(1,2)
~J

ψ−~J
(3.13)

with uncorrelated random weights c
(1)
~J

and c
(2)
~J

,

ii. Evolve these two spinors in time by solving the Dirac equation,

iii. Compute the following quantity:

N 2
∑
~f ,~f
′

(
ψ0+
~F

∣∣ψ−1 )(ψ−2 ∣∣ψ0+
~F

)(
ψ0+
~F
′

∣∣ψ−2 )(ψ−1 ∣∣ψ0+
~F
′
)

=

∣∣∣∣N∑
~f

(
ψ−2
∣∣ψ0+

~F

)(
ψ0+
~F

∣∣ψ−1 )∣∣∣∣2 ,
(3.14)
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iv. Repeat the steps i-iii in order to average over the random numbers c
(1,2)
~J

. Since this

is just an error estimate, a small number of samples is sufficient. In practice, one may

divide the Nconf samples already calculated in two subsets, and use these subsets to

evaluate the error.

The standard deviation of ONconf
is the square root of the result of this computation,

divided by
√
Nconf . Note that the summand in eq. (3.14) is a complex number, which

can lead to phase cancellations when summing over the final quantum numbers ~f . These

cancellations are more effective for more inclusive observables, thanks to a more extended

sum on ~f .

3.4 Relation to “low-cost fermions”

In real-time lattice simulations of fermions, the so-called low-cost fermion method [38]

has been used in several works, e.g. [39–44]. Let us briefly compare this method with our

approach. In our statistical method, we compute the following quantity using the stochastic

field (3.1):

〈ψ−†c (x)Oψ−c (y)〉c =
∑
~J

ψ−†~J
(x)Oψ−~J (y) , (3.15)

where ~J comprises all quantum numbers including momentum, and O is a matrix that

depends on the observable we wish to compute. In the case of the spectrum (3.4), O ≡
ψ0+
~J
′ (x)ψ0+ †

~J
′ (y). In the low-cost fermion method, instead of using one stochastic field (3.1),

one employs two kinds of stochastic fields called “male” and “female” fields:

ψM ≡
1√
2

∑
~J

[
c~Jψ

+
~J

+ d~Jψ
−
~J

]
, ψF ≡

1√
2

∑
~J

[
c~Jψ

+
~J
− d~Jψ

−
~J

]
, (3.16)

where c~J and d~J are independent random numbers that have the same variance as eq. (3.9).

Combining these two fields, one can compute

− 〈ψ†
M

(x)OψF(y)〉 =
1

2

∑
~J

ψ−†~J
(x)Oψ−~J (y)− 1

2

∑
~J

ψ+ †
~J

(x)Oψ+
~J

(y) , (3.17)

instead of eq. (3.15). By using the completeness relation∑
~J

[
ψ+
~J

(t,x)ψ+ †
~J

(t,y) + ψ−~J
(t,x)ψ−†~J

(t,y)
]

= 1l (3.18)

(1l is the unit matrix in the spin, color and position of the spinors at the time t), we can relate

the quantities evaluated in our method (3.15) and in the low-cost fermion method (3.17) by

〈ψ−†c (x)Oψ−c (y)〉 = −〈ψ†
M

(x)OψF(y)〉+ 2δ(x− y) . (3.19)

(for 2 spin states and 2 colors.) Therefore, the two methods provide the same result10

up to a trivial additive term, that can be interpreted as a constant vacuum contribution.

10This is not the case if the initial state is not charge neutral.
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x
+

x
-

A1

+

A2

i

x
+
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Figure 1. Left: decomposition of the solution of the Dirac equation into left-moving and right-

moving partial waves. Right: structure of the gauge field produced by the two nuclei in the A− = 0

gauge, that we use for solving the Dirac equation for the right-moving partial wave. x± denote

light-cone coordinates, x± ≡ (t± z)/
√

2.

However, our method has two advantages over the low-cost fermion method. Firstly, it

is numerically less costly than the low-cost fermion method, simply because it uses only

one kind of stochastic field. Secondly, the statistical errors are smaller for the evaluation

of the spectrum. In our method (3.15), the spectrum is directly obtained from the sta-

tistical ensemble, without any subtraction. On the other hand, in the low-cost fermion

method (3.17), one gets directly access to 1
2 − f (f being the fermion occupation number),

and the vacuum 1/2 must be subtracted later. Because this vacuum 1/2 also contains

statistical errors due to the Monte-Carlo sampling, the low-cost fermion method suffers

from comparatively larger statistical errors, especially when the value of the occupation

number is small compared to 1/2.

4 Fermionic mode functions on the light-cone

4.1 Background gauge field

In order to use the classical-statistical method in the calculation of the quark spectrum, we

should solve the Dirac equation with a background color field, starting with a free spinor

at x0 = −∞. However, it is not straightforward to do this numerically, due to the singular

nature of the gauge field on the light-cones x± = 0. The field strength on these lines is

proportional to a δ(x±), which cannot be handled easily in a numerical program. Similarly

to the case of gluon production, one should first solve the Dirac equation analytically up

to a surface τ = τ0 � Q−1
s , and perform the numerical resolution only in the forward

light-cone for τ ≥ τ0.

In this section, we generalize to the case of spinors the derivation that was performed

in ref. [45]. Since the Dirac equation is linear, its solution can be written as the sum of

a left-moving and a right-moving partial waves, as illustrated in the left diagram in the

figure 1. These two partial waves are totally independent. We take advantage of this fact to

choose the gauge for the background field differently for each of them, in order to simplify

the resolution of the Dirac equation. Of course, before adding up the two partial waves in

order to construct the full solution, we must perform a gauge rotation that brings them to

a common gauge.
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For the right-moving partial wave, it is convenient to work in the light-cone gauge

A− = 0, in the same spirit as what was done in ref. [45] for the gluons. After having

determined the right-moving spinor at the proper time τ0 inside the forward light-cone, we

will rotate it to the Fock-Schwinger gauge. The calculation for the left-moving spinor (to

be performed in the light-cone gauge A+ = 0) will not be performed here, since the result

can be guessed from the other partial wave by symmetry. The structure of the background

field in the A− = 0 is shown in the right diagram of the figure 1. It is made of the following

two elements:

1. the nucleus moving in the +z direction produces a field A+
1 , proportional to a δ(x−)

and independent of x+.

2. in the region x+ > 0, x− < 0, the nucleus moving in the −z direction produces a field

Ai1, which has the form of a transverse pure gauge,

Ai2 =
i

g
U †2∂

iU2 . (4.1)

3. in the strip corresponding to the shock-wave of the nucleus moving in the +z direction,

this field Ai2 receives a color precession induced by the first nucleus. This color rotated

field reads

αia2 =
i

g
U1ab(x

−,x⊥) (U †2∂
iU2)b , (4.2)

where

U1(x−,x⊥) = T exp ig

∫ x−

0
dz− A+

1 (z−,x⊥) . (4.3)

Note that eq. (4.2) is equivalent to

αi2 ≡ αia2 ta = U1A
i
2U
†
1 . (4.4)

Therefore, by starting the evolution at x0 = −∞, the right-moving partial wave encounters

first the field Ai2 and then the field A+
1 . In order to express the quark spectrum, we need

the negative energy spinors, ψ−ksa (k is the 3-momentum of the incoming quark, s its spin

and a its color). Before they encounter the background color field, they read simply

ψ−ksa(x) = vs(k) e+ik·x . (4.5)

Since the background color field has only a finite jump on the half-line x+ = 0, x− < 0, the

spinors are continuous across this line, and the above formulas remain valid up to x+ = 0+

(just above this line).

4.2 Evolution in the region x− < 0, x+ > 0

The next step is to solve the Dirac equation in the region x+ > 0, x− < 0. Since the

background field is a pure gauge in this region, the covariant derivative can be written as

Dµ = U †2 ∂
µ U2 . (4.6)
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Therefore, the new spinor defined by ψ̆−ksa ≡ U2 ψ
−
ksa obeys the free Dirac equation:

(i/∂ −m)ψ̆−ksa = 0 . (4.7)

The solution of this equation can be expressed in terms of the initial value of ψ̆−ksa on the

surface x+ = 0+ by the following Green’s formula,

ψ̆−ksa(x) = i

∫
y+=0

dy−d2y⊥ S
0
R

(x, y) γ+ ψ̆−ksa(y) , (4.8)

where S0
R

(x, y) is the bare retarded propagator for a quark,

S0
R

(x, y) ≡
∫

d4p

(2π)4

e−ip·(x−y)

/p−m+ ip0γ0ε
. (4.9)

Note that, even if we have not restricted the integration range for the variable y− in

eq. (4.8), the fact that the support of the retarded propagator S0
R

is limited to x0 >

y0, (x − y)2 ≥ 0 imposes that y− ≤ x−. Therefore, for a point x located in the region

x+ > 0, x− < 0 (shaded in green in the figure 1), only points with y− < 0 on the initial

surface can contribute. This is the reason we can solve independently the equation for the

left- and right-moving partial waves.

By introducing the Fourier representation (4.9) of the retarded propagator in the

Green’s formula (4.8), one can perform most of the integrations analytically except the

final integration over transverse momentum. This leads to

ψ−ksa(x) = U †2(x⊥)

∫
d2p⊥
(2π)2

eip⊥·x⊥ ei(k
+x−+

M2
p

2k+ x
+) Ũ2(p⊥ + k⊥)

×
(

1− γ+ p
iγi +m

2k+

)
P+vs(k) , (4.10)

where Mp ≡
√
p2
⊥ +m2 is the transverse mass and where we have introduced the projector

P+ ≡ γ−γ+/2. We have also introduced the Fourier transform of the Wilson line U2

Ũ2(k⊥) ≡
∫
d2y⊥ e

−ik⊥·y⊥ U2(y⊥) . (4.11)

One can check that eq. (4.10) falls back to the free spinor vs(k) exp(ik ·x) if the background

field is turned off (U2 = 1).

4.3 Evolution across the line x− = 0 (x+ > 0)

The next step is to propagate the spinor (4.10) across the field A+
1 of the nucleus moving

in the +z direction. The region of space-time supporting this field is infinitesimal (since

A+
1 ∼ δ(x−)), but the infinite strength of the gauge field in this region nevertheless produces

a finite change of the spinors. In this region, there is also an O(1) transverse component

of the gauge field, given in eq. (4.2). The Dirac equation,[
i(∂+ − igA+

1 )γ− + i∂−γ+ − iDiγi −m
]
ψ− = 0 , (4.12)

– 15 –



J
H
E
P
0
2
(
2
0
1
6
)
1
2
6

can be separated into a part that depends on the background field A+
1 and a constraint

independent of A+
1 by multiplying11 it by the projectors P+ or P− ≡ γ+γ−/2:

i∂−P+ψ−ksa =
m− iγiDi

2
γ−P−ψ−ksa

i(∂+ − igA+
1 )P−ψ−ksa =

γ+(iγiDi +m)

2
ψ−ksa . (4.13)

The first equation, independent of the background field, is a constraint that relates the

two projections of the spinors at every x− (note that this equation does not contain the

∂+ derivative). The second equation determines the dynamical evolution (in the variable

x−) of the P− projection under the influence of the background field A+
1 . Inserting the

first equation into the second gives a second order equation that drives the evolution of the

P− projection, (
2∂−(∂+ − igA+

1 )−D2
⊥ +m2

)
P−ψ−ksa = 0 . (4.14)

In this equation, the ∂+ derivative and the field A+
1 are large (inversely proportional to the

thickness of the shock-wave that supports the A+
1 field), while all the other terms do not

have this large factor. Physically, keeping only the term in ∂+ − igA+
1 leads to the eikonal

approximation, where the fermion would propagate on a straight line along the x− axis,

while the terms −D2
⊥ +m2 lead to some transverse diffusion with respect to this axis. In

the limit where the thickness of the shock-wave goes to zero, we can neglect it:

i(∂+ − igA+
1 )P−ψ−ksa = 0 . (4.15)

(Note that this approximation is only valid to cross the shock-wave, and should not be

used to evolve at a finite distance from the shock-wave.) The solution of this equation is

very simple,

P−ψ−ksa(x) = U1(x−,x⊥)P−ψ−ksa(0, x
+,x⊥) , (4.16)

where the x−-dependent Wilson line U1 was defined in eq. (4.3). The spinor at x− = 0

that appears in the right hand side is given by eq. (4.10). Then, the constraint equation

can be solved to give

P+ψ−ksa(x) = −i
∫ x+

dz+ m− iγiDi

2
γ− U1(x−,x⊥)P−ψ−ksa(0, z

+,x⊥) . (4.17)

Note that the constraint defines the P+ projection of the spinor only up to an arbitrary

function of x− and x⊥. This “integration constant” can be determined by requesting that

we recover the P+ projection of a free spinor when all the Wilson lines are set to the

identity.

11One may use the following identities: P+γ+ = P−γ− = 0, P−γ+ = γ+P+ and P+γ− = γ−P−.
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4.4 Transformation to Fock-Schwinger gauge

In order to gauge transform these spinors to the Fock-Schwinger gauge, it is sufficient12 to

multiply them by U †1 ,

ψ−ksa FS
(x) = U †1(x⊥)ψ−ksa(x) . (4.18)

When this transformation is applied to eqs. (4.16) and (4.17), the Wilson line U1 appears

in two types of combinations:

U †1U1 = 1 and U †1D
iU1 . (4.19)

The second of these structures can be simplified if we recall that Di is the covariant

derivative built with the field of eq. (4.4). Therefore,

U †1D
iU1 = U †1(∂i − igU1A

i
2U
†
1)U1

= ∂i − ig(Ai1 +Ai2)︸ ︷︷ ︸
Di

FS

, (4.20)

where Ai1 is defined in the same way as Ai2 (see the eq. (4.1)),

Ai1 ≡
i

g
U †1∂

iU1 . (4.21)

Note that the field Ai1 + Ai2 that appears in this equation is nothing but the transverse

component of the gauge potential in the Fock-Schwinger gauge at τ = 0+, hence the

notation Di
FS

for the resulting covariant derivative. Therefore, the two projections of the

right-moving negative energy spinors in the Fock-Schwinger gauge read (at x− = 0+, just

above the shock-wave)

P−ψ−ksa FS
(x) = U †2(x⊥)

∫
d2p⊥
(2π)2

eip⊥·x⊥ ei
M2

p

2k+ x
+

× Ũ2(p⊥ + k⊥)
piγi −m

2k+
γ+ vs(k)

P+ψ−ksa FS
(x) = (iγiDi

FS
−m)U †2(x⊥)

∫
d2p⊥
(2π)2

eip⊥·x⊥ ei
M2

p

2k+ x
+

× Ũ2(p⊥ + k⊥) γ−
piγi −m

2M2
p

γ+ vs(k) (4.22)

The eqs. (4.22) for the right-moving spinors must be completed by a set of similar equations

for the left-moving spinors. These can be obtained from the above formulas by the following

substitutions

U2 → U1

x+ → x−, k+ → k−

P+ → P−, P− → P+

γ+ → γ−, γ− → γ+ . (4.23)

12In the case of the background gluon field, an additional transformation was necessary, see the eq. (18)

of ref. [45]. But since the color rotation Ω that characterizes this transformation is equal to the identity for

proper times τ � Q−1
s (see the eq. (19) in ref. [45]), it has no effect on the spinors.
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At this point, we have the components of the negative energy mode functions on the light-

cone τ = 0+ (i.e. just after the collision), which provides all the necessary initial data for

studying their evolution after the collision. As explained in the appendix C, these formulas

can also be used as initial conditions at some initial time τ0 > 0, provided that τ0 � a⊥
where a⊥ is the transverse lattice spacing used in the numerical resolution.

4.5 Mode functions in the ν basis

So far, we have derived the mode functions ψksa in terms of the Cartesian 3-momentum k.

However, as explained in the section 2.3,the boost invariance of a high energy collision is

more manifest if one uses the modified spinors defined in eq. (2.13) and if one further goes

to a basis where the spinors are labeled by the quantum number ν (Fourier conjugate to η)

instead of y. It is easy to obtain these new mode functions by the following transformation:

ψ̂k⊥νsa ≡
√
τ e−

η
2
γ0γ3

∫ +∞

−∞
dy eiνy ψk⊥ysa . (4.24)

For the right-moving partial waves, the integral that enters in the transformation of Pεψ−

is of the form

Iε
R
≡
∫ +∞

−∞
dy eiνy eε

y
2 eiαe

−y
, (4.25)

while for the left moving partial waves, one needs

Iε
L
≡
∫ +∞

−∞
dy eiνy eε

y
2 eiαe

+y
. (4.26)

These integrals can be expressed in terms of the Γ function,

Iε
R

= (−iα)iν+ ε
2 Γ

(
− iν − ε

2

)
, Iε

L
= (−iα)−iν−

ε
2 Γ

(
iν +

ε

2

)
. (4.27)

Let us now recapitulate our results for the fermionic mode functions on the light-cone

after this transformation, after summing the right-moving and left-moving partial waves,

and including both the P+ and P− projections

ψ̂−k⊥νsa FS
(x) =

τ→0+
− ei

π
4

√
Mk

eiνη
∫

d2p⊥
(2π)2

eip⊥·x⊥

Mp

×

{
e
πν
2

(
M2

pτ

2Mk

)iν
Γ

(
− iν+

1

2

)
U †2(x⊥)Ũ2(p⊥+k⊥)γ+

+e−
πν
2

(
M2

pτ

2Mk

)−iν
Γ

(
iν+

1

2

)
U †1(x⊥)Ũ1(p⊥+k⊥)γ−

}
(piγi+m)vs(k⊥, y=0) .

(4.28)

In this formula, we have kept only the terms that are non-vanishing in the limit τ → 0+.

Therefore, its use should be restricted to very early times.
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5 Summary and outlook

In this paper, we have reconsidered the problem of quark production in heavy ion collisions

in the color glass condensate framework. Our approach is closely following that of refs. [31,

32], which expresses the leading order inclusive quark spectrum in terms of a set of mode

functions of the Dirac equation, but overcomes a number of limitations of this earlier work.

Firstly, we have defined a basis of fermionic mode functions that are more appropriate

for the boost invariant expanding geometry of a high energy collision. In particular, since

these mode functions are indexed by the Fourier conjugate ν to rapidity, they are especially

suitable for a lattice implementation in which one discretizes the rapidity axis. We have

calculated analytically the value of these mode functions just after the collision, at a proper

time Qsτ � 1 and in the Fock-Schwinger gauge, in terms of the Wilson lines that represent

the classical color background field of the two colliding nuclei. Thanks to these analytical

initial values, one will not have to deal with crossing the light-cones in the numerical

resolution of the Dirac equation.

Secondly, we have exposed a statistical method for sampling the set of modes over

which one must sum in the calculation of the quark spectrum. This method ensures that

no mode is left out, while considerably reducing the computing time compared to a complete

sum over all the modes. This approach also provides a more robust way of estimating the

error one makes in the sum over the modes functions.

In a forthcoming paper, we will apply the formalism that we have setup in the present

paper to a study of quark production in two situations. Firstly, we will present a test

of the method in the case of a background field for which one can solve analytically the

Dirac equation for the mode functions (a constant SU(2) chromo-electrical field). Then,

we will present results on quark production in heavy ion collisions, in the case where the

background color field is given by the MV model. In order to mitigate the problems caused

by the lattice fermion doubler modes, we will also explain how our framework must be

modified in order to include a Wilson term in the fermionic action.
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A Quark spectrum in the Schwinger-Keldysh formalism

In this appendix, we recall the derivation of the formulas (2.4) for the inclusive quark

spectrum, starting from the standard LSZ reduction formulas. For simplicity, we consider

only one flavor of quarks. Since in the CGC framework, the external sources are only

coupled to gluons and quarks can only produced in quark-antiquark pairs (the net flavor

number is always zero).
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A.1 Single quark pair amplitude

Firstly, let us consider the amplitude for producing a single quark-antiquark pair,

M1(p, q) ≡
〈
Q(p), Q(q)out

∣∣0in

〉
=
〈
0out

∣∣bout(p)dout(q)
∣∣0in

〉
. (A.1)

In order to keep the notations concise, we are not writing explicitly the color and spin

indices of the quark and antiquark. The operator b†out(p) (resp. d†out(q)) creates a quark

of momentum p (resp. an antiquark of momentum q).

Using the decomposition of the free field operator ψout(x) as a superposition of free

modes, we have

bout(p) =

∫
d3x u(p)γ0 ψout(t,x) eip·x

dout(q) =

∫
d3x ψout(t,x)γ0 v(q) eiq·x . (A.2)

(In these formulas, p0 =
√
p2 +m2 and q0 =

√
q2 +m2.) Note that the time t at which

these formulas are evaluated do not change the result. Using these formulas, standard

manipulations lead to the LSZ reduction formulas for the single quark pair production

amplitude,

M1(p, q) =

∫
d4x d4y eip·x u(p)(i

→
/∂ x −m)

×
〈
0out

∣∣Tψ(x)ψ(y)
∣∣0in

〉
(i
←
/∂ y +m) v(q) eiq·y . (A.3)

Note that the 2-point correlation function that appears in this formula is a Feynman (i.e.

time-ordered) propagator. Its evaluation to all orders in the background gluon field cannot

be performed in practice. Indeed, even though it obeys the Dirac equation, its determi-

nation is made extremely complicated by the fact that it must satisfy mixed boundary

conditions, both at x0 = −∞ and at x0 = +∞.

A.2 Inclusive quark spectrum

There is no practical way to calculate the single quark amplitude considered in the previous

subsection, in the presence of a strong background gluon field, as is the case in the high

energy heavy ion collisions. This is not a big limitation however, because this quantity is

also not very phenomenologically useful in such a context. Indeed, for light quarks (quark

flavors for which m . Qs), quark production is not a rare process and more than one quark

pair are produced in a collision. Therefore, the probability P1 of producing exactly one

quark pair (given by the square of M1) is not very interesting.

Much more useful would be the complete probability distribution, P1, P2, P3, etc.

Unfortunately, calculating them is as complicated as calculating P1. But it turns out

that the moments of the probability distribution are much easier to compute. Besides the

trivial one (
∑∞

n=0 Pn = 1), the simplest of these moments is the first moment,
∑

n nPn, that
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gives the mean number of produced pairs. A little more information can be gathered by

considering the same quantity in differential form, which is precisely the quark spectrum.

In terms of transition amplitudes, this quantity reads

dNq

d3p
≡ 1

(2π)32ωp

+∞∑
n=0

(n+ 1)
1

(n+ 1)!2

∫
dΦq

n∏
i=1

dΦpidΦqi (A.4)

×
∣∣〈0out

∣∣bout(p)dout(q)bout(p1)dout(q1) · · · bout(pn)dout(qn)
∣∣0in

〉∣∣2 .

where we have used the shorthand

dΦq ≡
d3q

(2π)32ωq
(A.5)

for the invariant phase-space of final state quarks and antiquarks. In this formula, the

differential probability for producing n+1 quark-antiquark pairs is weighted by the number

of quarks (n+ 1), and then integrated over the phase-space of all the antiquarks and of n

of the quarks. This quantity is normalized in such a way that it gives the mean number of

produced quarks after integration over d3p,∫
d3p

dNq

d3p
=

+∞∑
n=0

nPn ≡ 〈Nq〉 . (A.6)

Most of eq. (A.4) is in fact the projector on the subspace of states with net flavor num-

ber −1,

1 ≡
+∞∑
n=0

1

n!(n+ 1)!

∫
dΦq

n∏
i=1

dΦpidΦqi

×
∣∣[p1 · · ·pn]Q [qq1 · · · qn]

Q out

〉〈
[p1 · · ·pn]Q [qq1 · · · qn]

Q out

∣∣ , (A.7)

that has a trivial action on the state bout(p)
∣∣0in

〉
(since this state has also flavor number

−1), and eq. (A.4) can then be reduced to the much more compact form

dNq

d3p
=

1

(2π)32ωp

〈
0in

∣∣b†out(p)bout(p)
∣∣0in

〉
. (A.8)

The interpretation of this formula is quite transparent, since it amounts to evaluating the

expectation value of the final quark number operator, for a system prepared in the pure

state
∣∣0in

〉
.

Using eqs. (A.2), this can be rewritten in terms of the quark field operator as follows,

dNq

d3p
=

1

(2π)32ωp

∫
d4x d4y eip·x u(p) (i

→
/∂ x −m)

×
〈
0in

∣∣ψ(x)ψ(y)
∣∣0in

〉
(i
←
/∂ y −m) e−ip·y u(p) . (A.9)

The main differences between this expression and the similar expression for the amplitude

M1 are the following:
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1. The vacuum state is the in-vacuum state on both sides.

2. The two spinors are not time ordered.

These differences in fact lead to considerable simplifications in the evaluation of this quan-

tity in the presence of a strong background gluon field.

The first step is to note that the 2-point correlator that appears in the integrand of

eq. (A.9) is the component S−+(x, y) of the fermion 2-point function in the Schwinger-

Keldysh formalism. In the presence of a background field Aµ, its tree level expression (to

all orders in the background field) can be obtained by noticing that it obeys the following

equations

(i
−→
/D x −m)S−+(x, y) = 0 , S−+(x, y) (i

←−
/D y −m) = 0

lim
x0,y0→−∞

S−+(x, y) = Svacuum
−+ (x, y) . (A.10)

Next, one should recall the expression of the vacuum propagator Svacuum
−+ (x, y),

Svacuum
−+ (x, y) =

∑
s=↑,↓
a

∫
d3k

(2π)32ωk
eik·(x−y) vs(k)vs(k) . (A.11)

It is then easy to construct a semi-explicit expression for the dressed propagator S−+(x, y)

in terms of a basis of solutions of the Dirac equation:

S−+(x, y) =
∑
s=↑,↓
a

∫
d3k

(2π)32ωk
ψksa(x)ψksa(y)

(i/Dx −m)ψksa(x) = 0 , lim
x0→−∞

ψksa(x) = vs(k) eik·x . (A.12)

When this expression is inserted into eq. (A.9), one must evaluate the following expression∫
d4x eip·x uσ(p) (i

→
/∂ x −m) ψksa(x) . (A.13)

It is useful to note that

eip·x uσ(p) (i
←
/∂ x +m) = 0 . (A.14)

Adding this identity to the integrand of eq. (A.13), we obtain∫
d4x eip·x uσ(p) (i

→
/∂ x−m)ψksa(x) = i

∫
d4x ∂µ

[
eip·x uσ(p)γµ ψksa(x)

]
, (A.15)

which can be rewritten as a 3-dimensional integral since it is the integral of a total deriva-

tive. The boundary at spatial infinity can be dropped if there are no background fields

there. The boundary at x0 → −∞ does not contribute because it leads to the vanishing

overlap u†(p)v(p). The only remaining contribution comes from x0 →∞,∫
d4x eip·x uσ(p) (i

→
/∂ x −m) ψksa(x) = i lim

x0→+∞

∫
d3x eip·x u†σ(p) ψksa(x) . (A.16)

This formula leads immediately to eq. (2.4).
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B Quark spectrum from Feynman amplitudes

In the previous appendix, we presented a derivation of the quark spectrum based on

fairly standard many-body manipulations: we first related this spectrum to the expec-

tation value of the quark number operator, and then we evaluated the latter using the

Schwinger-Keldysh formalism. However, a more elementary derivation is possible, where

the many-body aspects of the problem are treated “by hand”. In the present appendix, we

present such an alternate derivation, starting from the Feynman amplitudes for producing

1,2,3,. . . quark-antiquark pairs, and combining them in the appropriate way to obtain the

single quark spectrum. This method is a bit more involved since it requires to account for

all the final state particle permutations, but it has the advantage of making more tangible

the combinatorics that happens under the hood in the derivation of the appendix A.

B.1 Pair production amplitudes

The starting point is the amplitude M1(p, q) for producing one quark-antiquark pair, al-

ready introduced in eq. (A.1). This amplitude is made of a time ordered 2-point function

connecting the quark of momentum p and the antiquark of momentum q, times a discon-

nected sum of vacuum-vacuum graphs. The latter is crucial in the presence of a background

field, since the sum of the vacuum-vacuum graphs is not a pure phase (unlike when the

background is the vacuum). In practice, we do not need to calculate this factor, since it is

the same in all amplitudes and can therefore be determined at the very end by the request

that the sum of all probabilities to produce 0,1,2,3,. . . quarks is equal to one. For now, we

will simply write

M1(p, q) ≡
〈
0out

∣∣0in

〉︸ ︷︷ ︸
sum of vacuum graphs

×Mc
1(p, q) , (B.1)

where Mc
1 is the connected part of the pair production amplitude (only this factor carries

a dependence on the momenta of the produced quark and antiquark).

In the rest of this appendix, we limit the discussion to the lowest order for the factor

Mc
1. At this order, it is simply made of a Feynman propagator connecting the produced

quark and antiquark, dressed by the background field:

Mc
1(p, q) =

p

q

(B.2)

For the sake of simplicity, we will represent this dressed propagator as follows:

p

q

=

p

q

. (B.3)
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A more explicit expression of the connected part of the single pair production amplitude is

Mc
1(p, q) = u(p)TF (p,−q)v(q) , (B.4)

where TF is the dressed Feynman propagator, amputated of its final free propagators. In

terms of the dressed (GF ) and free (G0
F

) Feynman propagators, it is given by

GF = G0
F

+G0
F
TF G

0
F
. (B.5)

The convention for the momenta in eq. (B.4) is that the 4-momentum −q enters on one

side of the propagator and the 4-momentum p exits on the other side.

At the same level of approximation, the amplitude for producing n pairs is obtained

as follows:

Mn(p1 · · ·pn, q1 · · · qn) =
〈
0out

∣∣0in

〉 ∑
σ∈Sn

ε(σ)Mc
1(p1, qσ1

) · · ·Mc
1(pn, qσn) , (B.6)

where Sn is the symmetry group of the set [1, n]. The sum over all the permutations

σ ∈ Sn is necessary in order to account of all the possible ways to connect the quarks with

antiquarks. ε(σ) is the signature of the permutation σ, resulting from the signs collected

when permuting fermion fields.

B.2 Final state combinatorics

It is possible to encapsulate all the information about the distribution of the produced

quarks in the following generating functional,

F [z(p)] ≡
∞∑
n=0

∫ +

p1···pn
q1···qn

z(p1) · · · z(pn)

n!2
∣∣Mn(p1 · · ·pn, q1 · · · qn)

∣∣2 , (B.7)

where we have used the following shorthand for 1-particle phase-space integrals:∫ +

p
≡
∫

d3p

(2π)32ωp
=

∫
d4p

(2π)4
2πθ(p0)δ(p2 −m2) . (B.8)

The + superscript on the integration symbol indicates that we keep only the positive

on-shell energy. Likewise, a − superscript will indicate that the negative on-shell energy

is retained: ∫ −
p
≡
∫

d4p

(2π)4
2πθ(−p0)δ(p2 −m2) . (B.9)

From its definition, it is easy to see that the single quark spectrum is obtained as

dNq

d3p
=
δF [z]

δz(p)

∣∣∣∣
z≡1

. (B.10)

Note also that unitary (the sum that all probabilities should be one) implies that

F [z ≡ 1] = 1. Inserting eq. (B.6) into eq. (B.7), we obtain

F [z] =
∣∣〈0out

∣∣0in

〉∣∣2∑
n

1

n!2

∑
σ,σ′∈Sn

ε(σ)ε(σ′)

∫ +

p1···pn
q1···qn

z(p1) · · · z(pn)

×Mc∗
1 (p1, qσ1

)Mc
1(p1, qσ′1) · · ·Mc∗

1 (pn, qσn)Mc
1(pn, qσ′n) . (B.11)
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When all the spin and Dirac indices are summed over, the product in the second line forms

closed quark loops, from which the spinors can be eliminated by using u(p)u(p) = /p + m

and v(q)v(q) = /q −m. It is convenient to change q → −q for all the antiquarks, so that

we have:

F [z] =
∣∣〈0out

∣∣0in

〉∣∣2∑
n

(−1)n

n!

∑
ρ∈Sn

ε(ρ)

∫ −
q1···qn

n∏
i=1

L[z]qiqρi
, (B.12)

where we have defined13

L[z]qq′ ≡
∫ +

p
z(p) T ∗

F
(q, p)(/p+m)TF (p, q′)(/q′ +m) ≡

q

q’

z(p)

. (B.13)

In the diagrammatic representation used for this quantity, the dotted line represents the

final state. Right of this line is an amplitude and left of this line is a complex conjugated

amplitude. In order to go from eq. (B.11) to eq. (B.12), we have used the symmetry of the

n-quark and n-antiquark phase-spaces and the permutation ρ is defined as ρ ≡ σ−1σ′.

Every permutation ρ ∈ Sn has a unique decomposition in a product of cycles.14 In

eq. (B.12), each of these cycles will produce a closed quark loop, that depends on z through

the quantity L[z] (linear in z) defined in eq. (B.13). The degree in z of such a quark

loop is the order of the cycle (the number of iterations before the cycle returns to the

starting point). For a cycle of order r, we will denote the value of the corresponding quark

loop tr ((L[z])r), where the trace symbol compactly encapsulates the integrals over all the

momenta along the loop, as well as the contractions over Dirac and color indices. The

important point is that in eq. (B.12) the product of L’s depends only on the orders of the

cycles into which the permutation ρ can be decomposed: if ρ = c1c2 · · · cl where the cj ’s

are cycles of orders r1, r2 · · · rl, then we have∫ −
q1···qn

n∏
i=1

L[z]qiqρi
=

l∏
j=1

tr
(
(L[z])rj

)
. (B.14)

In order to perform the sum over the permutations ρ, it is sufficient to know the number

of ρ’s that admit a decomposition into a1 cycles of order 1, a2 cycles of order 2, . . . , an
cycles of order n (with the constraint a1 + 2a2 + · · ·+ nan = n),

n!

a1! · · · an!

1

1a1 · · ·nan
, (B.15)

and its signature

ε(ρ) = (−1)n
n∏
j=1

(−1)aj . (B.16)

13We denote T ∗
F

(q, p) ≡ γ0 T †
F

(p, q) γ0.
14We recall the reader that a cycle is a circular permutation 1→ σ1 → (σσ)1 → · · · → 1.
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Combining these results, we can rewrite15

∑
n≥0

(−1)n

n!

∑
ρ∈Sn

ε(ρ)

∫ −
q1···qn

n∏
i=1

L[z]qiqρi
=
∑
n≥0

∑
a1+2a2+···
···+nan=n

n∏
j=1

1

aj !

(
−

tr
(
(L[z])j

)
j

)aj

=
∑
n≥0

∑
a1+2a2+···=n

∞∏
j=1

1

aj !

(
−

tr
(
(L[z])j

)
j

)aj

=
∑
p≥0

∑
a1+a2+···=p

∞∏
j=1

1

aj !

(
−

tr
(
(L[z])j

)
j

)aj

=
∑
p≥0

1

p!

(
− tr

∞∑
j=1

(L[z])j

j

)p
= exp (tr ln(1− L[z])) . (B.17)

The first and second lines are equivalent because the constraint
∑

j≥1 jaj = n prevents aj ’s

with j > n from being nonzero. Going from the second to the third line merely corresponds

to a different way of slicing the sum over all aj ’s.

The only missing ingredient is the prefactor
∣∣〈0out

∣∣0in

〉∣∣2, that can trivially determined

in order to satisfy unitarity. The final expression for the generating functional is therefore

F [z] =
exp (tr ln(1− L[z]))

exp (tr ln(1− L[1]))
. (B.18)

Taking a functional derivative leads to the following expression for the quark spectrum:

dNq

d3p
= −tr

((
1− L[1]

)−1 δL[z]

δz(p)

∣∣∣∣
z≡1

)

=

p

p

+

p

+ + . . . (B.19)

At this stage, we have a representation of the quark spectrum in terms of the object L[z],

which is itself quadratic in the Feynman propagator of a quark in a background field.

However, this expression contains terms of arbitrary order in this propagator, because of

the prefactor (1−L[1])−1. Note that in a weak background field, the quantity L[1] is small

and the first term, quadratic in the Feynman propagator, dominates the sum. This is the

limit where the pair production probability is small and where at most one pair is produced

in a collision. Therefore, the quark spectrum is almost equal to the differential probability

15The final expression is reminiscent of the determinant of a Dirac operator, and could probably be

derived more straightforwardly by path integral methods.
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of producing a single quark, given by the first diagram in the above series. The second,

third, etc. . . diagrams encode Fermi-Dirac correlations that are only important when more

than one quark are likely to be produced (which is the case in heavy ion collisions for

quarks whose mass is comparable to the gluon saturation momentum or smaller).

B.3 Expression in terms of retarded amplitudes

It turns out that a much simpler expression, quadratic in the propagator, can be obtained

if we rewrite eq. (B.19) in terms of the retarded propagator of the quark. One can define a

retarded analogue TR of TF , built with free retarded propagators instead of free Feynman

propagators. The free Feynman and retarded propagators are related by

G0
F

(p) = G0
R

(p) + 2π(/p+m)θ(−p0)δ(p2 −m2)︸ ︷︷ ︸
ρ−(p)

. (B.20)

If we denote by V one insertion of the background field, the following two equations define

TF and TR recursively

TF = V + V G0
F
TF = V + TFG

0
F
V

TR = V + V G0
R
TR = V + TRG

0
R
V , (B.21)

from which one first obtains:

TF =
(
1− V G0

F

)−1
V

=
(
1− V G0

F

)−1(
1− V G0

R

)
TR =

(
1− V G0

R
− V ρ−

)−1(
1− V G0

R

)
TR

=
(
1− (1− V G0

R
)−1V ρ−

)−1
TR =

(
1− TRρ−

)−1
TR . (B.22)

In terms of these compact notations, L[1] can be written as

L[1] = T ∗
F
ρ+TF ρ− , (B.23)

where ρ+(p) ≡ 2π(/p+m)θ(+p0)δ(p2 −m2), and manipulations similar to above lead to an

expression that depends only on the retarded TR :

L[1] =
(
1− T ∗

R
ρ−
)−1(

T ∗
R
ρ+TRρ−

)(
1− TRρ−

)−1
. (B.24)

Note that since L[z] is a linear functional of z(p), the derivative δL[z]/δz(p) is similar to

L[1], but with the intermediate momentum p fixed instead of being integrated over. We

will denote this as follows:

δL[z]

δz(p)
=
(
1− T ∗

R
ρ−
)−1(

T ∗
R

(/p+m)TRρ−
)(

1− TRρ−
)−1

. (B.25)

In the same fashion, one also obtains the following identities:(
1− T ∗

R
ρ−
)(

1− TRρ−
)

= 1 +
(
T ∗
R
ρ+TRρ−

)
,

1− L[1] =
(
1− T ∗

R
ρ−
)−1(

1− TRρ−
)−1

. (B.26)
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τ = 0
+τ0

Figure 2. Evolution between the forward light-cone (τ = 0+) and the time τ0 at which the

numerical solution of the Dirac equation starts.

Therefore,

dNq

d3p
= −tr

((
1− L[1]

)−1 δL[z]

δz(p)

)
= −tr

(
T ∗
R

(/p+m)TRρ−
)
. (B.27)

The outcome of these algebraic manipulations can be pictorially summarized as

p

p

+

p

+ + . . . =

p

, (B.28)

where the blue lines in the right hand side are retarded propagators. The connection with

the previous appendix and the formula (2.4) resides in the following identities:

−tr
(
T ∗
R

(/p+m)TRρ−
)

=
∑
σ,s

∫ +

q

∣∣uσ(p)TR(p,−q)vs(q)
∣∣2 ,

uσ(p)TR(p,−q)vs(q) = lim
x0→+∞

∫
d3x ψ0+†

pσ (x0,x)ψ−qs(x
0,x) . (B.29)

C Evolution from τ = 0+ to τ0 > 0

The eqs. (4.22) (and their counterparts for the left-moving partial waves) give the value

of the fermionic mode functions immediately after the collision, one the semi-axis x− =

0+, x+ > 0 for the right-moving partial waves and on the semi-axis x+ = 0+, x− > 0 for

the left-moving partial waves. Therefore these formulas provide for each mode function the

complete initial data on the light-cone τ = 0+.

However, the transformation to the quantum number ν (Fourier conjugate of the spatial

rapidity η) introduces a non-analyticity in the time dependence, in the form of factors τ±iν .

For this reason, the numerical resolution of the Dirac equation should be started at a strictly

positive proper time τ0 > 0. Therefore, one should evolve the mode functions from the
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time τ = 0+ to the time τ0 (see the figure 2), by using the Green’s formula for solutions of

the Dirac equation,

ψ(τ0, η,x⊥) = i

[∫
y−=0+

y+>0

dy+ +

∫
y+=0+

y−>0

dy−

]∫
d2y⊥ SR(τ0, η,x⊥; y) /n ψ(y) . (C.1)

This Green’s formula in principle contains the Dirac propagator dressed by the background

color field, which is not known analytically inside the forward light-cone. However, if one

is interested only in very small propagation times Qsτ0 � 1 one can use the bare Dirac

propagator instead, the effects of the background field on the evolution of the spinors start

becoming important only at Qsτ0 & 1. But even with a bare propagator, the evaluation

of eq. (C.1) is cumbersome. It turns out that this is not necessary, if the time τ0 is chosen

small enough.

For elementary plane waves, the basic formula to justify this is the following:∫
dy eiνy

(
eik

+x− + eik
−x+

)
≈

Mkτ0�1

∫
dy eiνy ei(k

+x−+k−x+) , (C.2)

where k± = (Mk/
√

2) e±y and x± = (τ0/
√

2) e±η. This formula can be checked by an

explicit calculation of the integrals on both sides, which can be expressed in terms of

Hankel functions for the right hand side and in terms of Gamma functions in the left

hand side, and by doing the Taylor expansion to first order of the Hankel functions. The

interpretation of this formula is the following:

• the left hand side is the sum of the left- and right-moving partial waves, evaluated

as if the time was τ = 0+ (i.e. neglecting the evolution from τ to τ0),

• the right hand side contains the plane wave evolved to the time τ0 (i.e. the result of

using the Green’s formula from τ to τ0).

In other words, eq. (C.2) shows that it is legitimate to neglect the time evolution of the

spinors in the forward light-cone, provided that the time obeys Mkτ0 � 1. This exercise

shows that if the time τ0 obeys this condition, it is sufficient to add up the two partial

waves on the light-cone, and to apply the transformation y → ν to their sum. Let us

end this appendix by an important remark regarding the condition Mkτ0 � 1: it must be

satisfied for all the transverse masses Mk =
√
k2
⊥ +m2 that can exist in the problem. In

the lattice discretization of the Dirac equation, this implies that one must have τ0 � a⊥
where a⊥ is the transverse lattice spacing.

D Conserved inner product

D.1 Definition and main properties

Let us consider a locally space-like surface16 Σ. For every point y ∈ Σ, we can define an

orthogonal vector such that

nµdy
µ = 0 for any displacement dyµ around y ∈ Σ

n0 > 0

nµn
µ = 1 . (D.1)

16This means that if nµ is the local orthogonal vector to this surface, then nµnµ ≥ 0.
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Given two spinors ψ and χ, one can define the following inner product on Σ,(
ψ
∣∣χ)

Σ
≡
∫

Σ
d3Sy ψ(y) /nχ(y) , (D.2)

where d3Sy is the 3-dimensional measure17 on the surface Σ. One sees immediately that

this inner product is Hermitean, (
ψ
∣∣χ)∗

Σ
=
(
χ
∣∣ψ)

Σ
. (D.3)

The main property of the inner product defined in eq. (D.2) is that it is independent

of the surface Σ if both ψ and χ are solutions of the same Dirac equation,18

(i/D −m)ψ = 0 . (D.4)

(This is true for any real valued background potential Aµ.) From now on, we can thus drop

the subscript Σ in our notation for this inner product. Note also that this inner product

is gauge invariant, since it involves the product of a spinor and the Hermitean conjugate

of another spinor at the same space-time point.

Let us give more explicit expressions of the inner product (D.2) for two important

types of surface Σ. On a constant x0 surface, it takes the following form,(
ψ
∣∣χ)

const x0 ≡
∫
d3y ψ†(y)χ(y) . (D.5)

On a surface of constant proper time, the integration measure is d3Sy =τdηd2y⊥ and the

normal unit vector nµ has the following components

n+ =
e+η

√
2

, n− =
e−η√

2
, ni = 0 . (D.6)

Therefore, the inner product reads(
ψ
∣∣χ)

τ
= τ

∫
dηd2y⊥ ψ

†(τ, η,y⊥) e−ηγ
0γ3

χ(τ, η,y⊥) . (D.7)

D.2 Inner product at x0 = −∞

This conserved inner product can be used as a consistency check for the various analytic

formulas that we have obtained for the mode functions in the section 4. The first step is

to evaluate the inner product on the surface y0 = −∞, where the mode functions ψ±ksa are

not yet modified by the background field. We get(
ψ+
ksa

∣∣ψ+
k′s′a′

)
= (2π)32ωkδ(k − k′)δss′δaa′ ,(

ψ−ksa
∣∣ψ−

k′s′a′

)
= (2π)32ωkδ(k − k′)δss′δaa′ ,(

ψ+
ksa

∣∣ψ−
k′s′a′

)
= 0 . (D.8)

17The measure on Σ is defined in such a way that d3Syd(n · y) is the usual 4-dimensional measure d4y.

Therefore, there is some freedom in how we normalize the vector nµ, provided we change accordingly d3Sy

in such a way that d3Syd(n · y) is left unchanged.
18Note that the quark spectrum involves the inner product between a spinor that has evolved over the

background field and a free spinor. This inner product is therefore not conserved, reflecting the fact that

the quark yield is time dependent and settles to a fixed value only in the limit τ → +∞.
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D.3 Inner product at τ = 0+ in LC gauge and y basis

Now, let us use the eqs. (4.22) and their counterparts for the left-moving partial wave

in order to check that the spinors (in light-cone gauge, and in the y basis) evolved to

the forward light-cone are consistent with eqs. (D.8). First of all, from the definition of

eq. (D.2), we immediately see that

(
ψ
∣∣χ)

τ=0+ ≡
√

2

∫
y−=0+,y+>0

dy+d2y⊥ ψ
†(y)P− χ(y)

+
√

2

∫
y+=0+,y−>0

dy−d2y⊥ ψ
†(y)P+ χ(y) . (D.9)

In words, on the right branch of the light-cone we need only the P− projection of the

spinors, and their P+ projection on the left branch of the light-cone. The other projections

do not contribute to the inner product evaluated on the light-cone.19

Adding the contributions of the two branches of the light-cone, we find the following

expression for the inner product,

(
ψ−ksa

∣∣ψ−
k′s′a′

)
τ=0+ = i

√
2(2π)2δ(k⊥ − k′⊥)δaa′

[
v†s(k⊥, y)P+vs′(k⊥, y

′)

k+ − k′+ + iε
(D.10)

+
v†s(k⊥, y)P−vs′(k⊥, y′)

k− − k′− + iε

]
,

where y, y′ are the momentum rapidities corresponding to the 3-momenta k,k′. Using

Gordon’s identities, one sees that the imaginary part of the right hand side vanishes.

Thanks to

δ(k+ − k′+) =

√
2

Mkey
δ(y − y′) , δ(k− − k′−) =

√
2

Mke−y
δ(y − y′) , (D.11)

where we denote Mk ≡
√
k2
⊥ +m2, we arrive at

(
ψ−ksa

∣∣ψ−
k′s′a′

)
τ=0+ = (2π)3δ(y − y′)δ(k⊥ − k′⊥)δaa′

1

Mk

× v†s(k⊥, y)(e−yP+ + eyP−)vs′(k⊥, y) . (D.12)

The second line can be simplified by noticing that

γ0γ3 = P+ − P− ,
[
P+,P−

]
= 0 . (D.13)

From these identities, we obtain easily

e−yγ
0γ3

= e−yP
+
eyP

−
= eyP− + e−yP+ . (D.14)

19Likewise, these projections do not contribute to the subsequent evolution of the spinors, because the

relevant Green’s formula also contains a /n.
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Using the fact that exp(−yγ0γ3/2) acts on spinors as a boost of rapidity −y in the z

direction, we have

v†s(k⊥, y)
[
eyP−+e−yP+

]
vs′(k⊥, y) = v†s(k⊥, y)e−

y
2
γ0γ3

e−
y
2
γ0γ3

vs′(k⊥, y)

= v†s(k⊥, 0)vs′(k⊥, 0)

= 2Mkδss′ . (D.15)

Therefore, we obtain20(
ψ−ksa

∣∣ψ−
k′s′a′

)
τ=0+ = 2(2π)3δ(y − y′)δ(k⊥ − k′⊥)δss′δaa′

= 2ωk(2π)3δ(k − k′)δss′δaa′ , (D.16)

which is consistent with the conservation of the inner product. A similar verification can

be performed for the positive energy mode functions ψ+
ksa.

D.4 Inner product at τ = 0+ in FS gauge and ν basis

We can perform the same check for the mode functions in the Fock-Schwinger gauge and

ν basis given by eq. (4.28). Firstly, let us apply the transformation

ψk⊥νsa ≡
∫
dy eiνy ψk⊥ysa (D.17)

to eqs. (D.8) in order to know what to expect for the inner product in the ν basis. This

trivial calculation tells us that we should obtain(
ψ−k⊥νsa

∣∣ψ−
k′⊥ν

′s′a′

)
= 2(2π)4δ(ν − ν ′)δ(k⊥ − k′⊥)δss′δaa′ . (D.18)

Let us now calculate this inner product directly from eq. (4.28). The inner product

on a surface of constant τ is given by eq. (D.7). It is convenient to absorb the factor

τ exp(−ηγ0γ3) by defining new spinors that are the original ones boosted to the comoving

frame at the rapidity η, times a factor
√
τ ,

ψ̂(τ, η,y⊥) ≡
√
τ e−

η
2
γ0γ3

ψ(τ, η,y⊥) . (D.19)

In terms of these boosted spinors, the inner product reads simply:(
ψ
∣∣χ)

τ
=

∫
dηd2y⊥ ψ̂

†(τ, η,y⊥)χ̂(τ, η,y⊥) . (D.20)

When we insert two instances of the formula (4.28) in this equation, we see immediately

that the crossed terms vanish because they contain (γ+)2 = (γ−)2 = 0. Using the following

identities, ∫
d2p⊥
(2π)2

[
Ũ †2(p⊥+k⊥)Ũ2(p⊥+k′⊥)

]
aa′

= (2π)2δ(k⊥ − k′⊥)δaa′

Γ

(
1

2
+ iν

)
Γ

(
1

2
− iν

)
=

π

cosh(πν)
, (D.21)

20The second equality follows from δ(y − y′) = ωk δ(k
z − k′z).
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we first arrive at(
ψ−k⊥νsa

∣∣ψ−
k′⊥ν

′s′a′

)
= (2π)3δ(k⊥ − k′⊥)δ(ν − ν ′)δaa′

π

Mk cosh(πν)

× v†s(k⊥, y=0)
[
eπνγ−γ+ + e−πνγ+γ−

]
vs′(k⊥, y=0) .

(D.22)

The second line can then be simplified as follows:

v†s(k⊥, y=0)
[
eπνγ−γ+ + e−πνγ+γ−

]
vs′(k⊥, y=0) =

= 2 v†s(k⊥, y=0)
[
eπνP+ + e−πνP−

]
vs′(k⊥, y=0)

= 2 v†s(k⊥, y=0) eπνγ
0γ3

vs′(k⊥, y=0)

= 2 v†s(k⊥, y=πν) vs′(k⊥, y=πν)

= 4Mk cosh(πν) δss′ . (D.23)

Inserting this into eq. (D.22) gives the expected result (D.18).

E Abelian case: electron spectrum in QED

The initial value of the mode functions just above the forward light-cone, given in eq. (4.28),

can also be used in the Abelian case. The analogous problem in QED would be that of

the production of electrons in a high-energy collision of two large electrical charges Z1 and

Z2. When they collide, the electromagnetic field of the two charges can produce electron-

positron pairs. The spectrum of the produced electrons can be calculated by a formalism

which is very similar to the Color Glass Condensate considered in this paper. In this

description, the two colliding charges are replaced by the electrical currents they carry

along their trajectories. These currents are the source of electromagnetic fields, that can

be obtained by solving the Maxwell’s equations with sources:

∂µF
µν = Jν1 + Jν2 . (E.1)

It is then this electromagnetic field that produces the charged fermions (in QED, this

approach is known as the equivalent photon approximation.)

Since QED is an Abelian gauge theory, it is much simpler than QCD in certain re-

spects. Firstly, the Wilson lines U1 and U2 are simply complex valued phases, that can

be commuted at will. Secondly, each of the colliding charge produces transverse E and

B which are localized in a shockwave transverse to its trajectory. In the Fock-Schwinger

gauge, the corresponding gauge potential is a pure gauge in the half-space located after the

shockwave. But since Maxwell’s equations are linear, the solution for the 2-charge problem

is the sum of the solutions for individual nuclei, i.e. a sum of two pure gauge fields, which is

itself a pure gauge. In QED, the fields are thus trivial inside the forward light-cone, unlike

the QCD case.

The formula (4.28), that gives the mode functions just above the forward light-cone,

is therefore sufficient to obtain in closed form the amplitude. One can evaluate it by
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computing the inner product of eq. (2.10) at an infinitesimal time τ → 0+, since the

evolution at τ > 0 is trivial. The only subtlety when doing so is that, since there is a

non-zero pure gauge field in the forward light-cone, one should use a gauge rotated free

positive energy spinor instead of ψ0+
pσ ,

ψ
(U1U2)+
pσ (x) ≡ U †1(x⊥)U †2(x⊥) uσ(p) e−ip·x . (E.2)

This free spinor must be first transformed as in eq. (4.24),

ψ̂
(U1U2)+
p⊥νσ (x) ≡

√
τ U †1(x⊥)U †2(x⊥)

∫
dy eiνy e−

η
2
γ0γ3

uσ(p) e−ip·x . (E.3)

In order to perform the integral over the momentum rapidity y, we need first to extract

the y dependence hidden in the spinor uσ(p),

uσ(p⊥, y) = e
y
2
γ0γ3

uσ(p⊥, 0) =
[
e
y
2P+ + e−

y
2P−

]
uσ(p⊥, 0) . (E.4)

Therefore, we have

ψ̂
(U1U2)+
p⊥νσ (x) =

√
τ U †1(x⊥)U †2(x⊥) eiνη eip⊥·x⊥

×
∫
dy eiνy e−iMpτ cosh(y)

[
e
y
2P+ + e−

y
2P−

]
uσ(p⊥, 0) , (E.5)

where Mp =
√
p2
⊥ +m2 denotes the transverse mass (in this equation, we have redefined

the integration variable y − η → y). The result of the integration over y can be expressed

in terms of Hankel functions, thanks to∫ +∞

−∞
dy e−αy e−iz cosh(y) = −iπ e−i

πα
2 H(2)

α (z) , (E.6)

where H
(2)
α (z) ≡ Jα(z) − iYα(z). In the limit τ → 0+, we need only the beginning of the

Taylor expansion of the Hankel function,

H(2)
α (z) =

z→0+

i

sin(πα)

[(z
2

)−α 1

Γ(1− α)
−
(z

2

)α eiπα

Γ(1 + α)

]
. (E.7)

Note that when α has a non-zero real part, only one of the two terms dominates when z → 0,

depending on the sign of this real part. Therefore, in the combination
√
zH

(2)
−iν− ε

2
(z), only

one of the two terms survives when z → 0+,

√
z e−i

π
2

(−iν− 1
2

) H
(2)

−iν− 1
2

(z) =
z→0+

√
2 ei

π
4 e

πν
2

cosh(πν)Γ(1
2 − iν)

(z
2

)−iν
√
z e−i

π
2

(−iν+ 1
2

) H
(2)

−iν+ 1
2

(z) =
z→0+

√
2 ei

π
4 e−

πν
2

cosh(πν)Γ(1
2 + iν)

(z
2

)iν
. (E.8)

Therefore,

ψ̂
(U1U2)+
p⊥νσ (x) =

τ→0+
πe−i

π
4 U †1(x⊥)U †2(x⊥)

√
2

Mp

eiνη eip⊥·x⊥

cosh(πν)

×

[
e
πν
2

Γ(1
2 − iν)

(
Mpτ

2

)−iν
P+ +

e−
πν
2

Γ(1
2 + iν)

(
Mpτ

2

)iν
P−
]
uσ(p⊥, 0) .

(E.9)
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Similarly, the negative energy spinors evolved from the remote past up to τ = 0+ read,

ψ̂−k⊥µs(x) = − ei
π
4

√
Mk

eiµη
∫

d2q⊥
(2π)2

1

Mq

×

{(
M2

qτ

2Mk

)iµ
e
πµ
2 Γ

(
1

2
− iµ

)
U †2(x⊥)Ũ2(q⊥ + k⊥) γ+

+

(
M2

qτ

2Mk

)−iµ
e−

πµ
2 Γ

(
1

2
+ iµ

)
U †1(x⊥)Ũ1(q⊥ + k⊥) γ−

}

×eiq⊥·x⊥ (qiγi +m) vs(k⊥, y = 0) . (E.10)

Using P+γ+ = P−γ− = 0, the inner product between ψ
(U1U2)+
p⊥νσ and ψ−k⊥µs reads

(
ψ

(U1U2)+
p⊥νσ

∣∣ψ−k⊥µs) = 2πδ(ν − µ)
π ei

π
2

cosh(πν)

√
2

MpMk

∫
d2q⊥
(2π)2

1

Mq
u†σ(p⊥, 0)

×
{(

MkMp

M2
q

)iν
Ũ2(p⊥−q⊥)Ũ1(q⊥+k⊥) γ−

+

(
MkMp

M2
q

)−iν
Ũ1(p⊥−q⊥)Ũ2(q⊥+k⊥) γ+

}
(qiγi+m) vs(k⊥, 0) .

(E.11)

In order to compare with existing results in the literature (e.g. eq. (52) in ref. [29]), one

should perform the inverse transformation ν → yp, µ→ yk to return to momentum rapid-

ity variables:

(
ψ

(U1U2)+
pσ

∣∣ψ−ks) =

∫
dνdµ

(2π)2
eiνype−iµyk

(
ψ

(U1U2)+
p⊥νσ

∣∣ψ−k⊥µs) . (E.12)

Thanks to the following formula,∫
dν

2π

eiνz

cosh(πν)
=

1

2π cosh( z2)
, (E.13)

it is easy to perform these integrals and one obtains

(
ψ

(U1U2)+
pσ

∣∣ψ−ks) = i
√

2

∫
d2q⊥
(2π)2

u†σ(p⊥, y = 0)

×

{
Ũ2(p⊥ − q⊥)Ũ1(q⊥ + k⊥)e

yp−yk
2 γ−

M2
q + 2k−p+

+
Ũ1(p⊥−q⊥)Ũ2(q⊥+k⊥)e

yk−yp
2 γ+

M2
q + 2k+p−

}
(m+ qiγi)vs(k⊥, y = 0) .

(E.14)
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The final step to compare with ref. [29] is to use the identities

e
yp−yk

2 u†σ(p⊥, y = 0)γ−(m+ qiγi)vs(k⊥, y = 0)

= u†σ(p⊥, yp)γ
−(m+ qiγi)vs(k⊥, yk)

e
yk−yp

2 u†σ(p⊥, y = 0)γ+(m+ qiγi)vs(k⊥, y = 0)

= u†σ(p⊥, yp)γ
+(m+ qiγi)vs(k⊥, yk) , (E.15)

thanks to which we finally obtain

(
ψ

(U1U2)+
pσ

∣∣ψ−ks) = i
√

2

∫
d2q⊥
(2π)2

u†σ(p⊥, yp)

×

{
Ũ2(p⊥ − q⊥)Ũ1(q⊥ + k⊥)γ−

M2
q + 2k−p+

+
Ũ1(p⊥ − q⊥)Ũ2(q⊥ + k⊥)γ+

M2
q + 2k+p−

}
(m+ qiγi)vs(k⊥, yk) .

(E.16)

This formula is identical to the eq. (52) in ref. [29]. Note that in order to recover this

known result, it was crucial to gauge rotate the free spinor used in the projection, because

the gauge field inside the forward light-cone is a non-zero pure gauge in the Fock-Schwinger

gauge.
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