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Another algebraic variational principle for the spectral curve of matrix models

We propose an alternative variational principle whose critical point is the algebraic plane curve associated to a matrix model (the spectral curve, i.e. the large N limit of the resolvent). More generally, we consider a variational principle that is equivalent to the problem of finding a plane curve with given asymptotics and given cycle integrals. This variational principle is not given by extremization of the energy, but by the extremization of an "entropy".

Introduction

To a random matrix model is associated an algebraic curve, often called "spectral curve". Most often this is the Stieljes transform of the "equilibrium spectral density", although not always. That algebraic curve is either obtained from the large N limit of the loop equations, or the large N limit of the saddle point equation, see for instance the review [START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF]. It is a curve with some specific type of singularities and boundary conditions.

It has been known for long, in many cases, that the large N density of eigenvalues can be found by extremizing an energy functional in the space of measures, and it turns out that the extremal measure is an algebraic function.

Our goal in this article, is to present another (in fact several other) variational principle, yielding the same spectral curve, but by extremizing only a functional in the space of algebraic curves (not using measures).

2 1-matrix model

Introduction to random matrices

Consider a random hermitian matrix M of size N (see [START_REF] Mehta | Random Matrices[END_REF]), with probability law:

1

Z e -N t Tr V (M ) dM (2-1)
where dM = i dM i,i i<j dRe M i,j dIm M i,j is the U(N) invariant Lebesgue measure on H N , and where V (x) = k t k k x k is a polynomial called the "potential", and t > 0 is often called "temperature". The normalization factor Z is called the partition function:

Z = H N e -N t Tr V (M ) dM. (2-2)
One can also extend this, and replace random hermitian matrices, by random "normal matrices with eigenvalues on some contour Γ":

H N (Γ) = {M = UΛU † | U ∈ U(N) , Λ = diag(λ 1 , . . . , λ N ) , λ i ∈ Γ} (2-3)
equipped with the measure dM = i<j (λ iλ j ) 2 dU i dλ i where dU is the Haar measuer on U(N) and dλ i is the curvilinear measure along Γ. For instance when Γ = R this coincides with Hermitian matrices:

H N (R) = H N , dM = Lebesgue measure on H N , (2-4) 
and when Γ = S 1 =unit circle in C, this coincides with the "circular ensemble" U(N) with its Haar measure:

H N (S 1 ) = U(N) , (det M) -N dM = Haar measure on U(N).

(

The expectation value of the resolvent:

W (x) = t N E Tr (x -M) -1 (2-6)
plays an important role, indeed its singularities encode the information on the spectrum of M.

In many cases (depending on the choice of potential V and on the choice of contour Γ), it is known (see [START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF][START_REF] Borot | Large-N asymptotic expansion for mean field models with Coulomb gas interaction[END_REF][START_REF] Mehta | Random Matrices[END_REF] for instance), that W (x) has a large N limit:

W (x) ∼ N →∞ ω(x) (2-7)
and in many cases (again depending on the choice of potential V and contour), it is an algebraic function of x, i.e. it satisfies an algebraic equation:

P (x, ω(x)) = 0 , P (x, y) = i,j P i,j x i y j .

(2-8)

This algebraic equation has several solutions (several branches) y = Y k (x), k = 1, . . . , d where d = deg y P , and ω(x) = Y 0 (x) is only one branch (it has to be a branch which behaves as ω(x) ∼ t/x at large x, due to eq. [START_REF] Borot | Large-N asymptotic expansion for mean field models with Coulomb gas interaction[END_REF][START_REF] David | Loop equations and nonperturbative effects in two-dimensional quantum gravity[END_REF][START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model, multicut case[END_REF]). Alternatively, one can view ω(x) as a multivalued function, or alternatively, it can be viewed as a meromorphic function on the compact Riemann surface C defined by the algebraic equation P (x, y) = 0.

For the 1-matrix model, the polynomial P (x, y) is always quadratic in y (the algebraic equation is said to be "hyperelliptical"), and always of the form:

P (x, y) = y 2 -yV ′ (x) + P (x) (2-9)
Finding ω(x) = y amounts to finding the polynomial P (x). Since there is a branch of ω(x) which begaves as t/x at large x, this implies that P (x) ∼ tV ′ (x)/x at large x, i.e. P (x) has degree deg V ′ -1.

Then we have:

ω(x) = y = 1 2 V ′ (x) ± V ′ (x) 2 -4P (x) .
(2-10)

Branchcuts occur at the odd zeroes of U(x) = V ′ (x) 2 -4P (x). Since U(x) has even degree, there is necessarily an even number of odd zeroes, say 2s + 2 odd zeroes. Let us denote:

U(x) = V ′ (x) 2 -4P (x) = M(x) 2 σ(x) (2-11) σ(x) = 2s+2 k=1 (x-a k ) = product of odd zeroes , M(x) = U(x) σ(x)
= product of even zeroes.

(2-12) The points a k are called the branchpoints.

Filling fractions

Let us define for α = 1, . . . , s:

A α = clockwise contour surrounding [a 2α-1 , a 2α ]. (2-13)
Very often, it is interesting to consider matrix models with "fixed filling fractions", i.e. where the number of eigenvalues of M in a certain region of the complex plane is held fixed. The number n α of eigenvalues of M enclosed by a clockwise contour C α is:

n α = - N 2iπ t Cα W (x) dx (2-14)
In the large N limit, the fixed filling fraction condition amounts to fix:

t n α N = - 1 2iπ Aα ω(x) dx = ǫ α . (2-15)
The numbers ǫ α are called "filling fractions", they tell the number (times t/N) of eigenvalues of M which concentrate along the segment [a 2α-1 , a 2α ].

Loop equations

Our goal now is to find the polynomial P (x), as a function of the potential V (x), the contour Γ and the filling fractions ǫ α 's.

It is well known that this polynomial can be determined by the following equations [START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] David | Loop equations and nonperturbative effects in two-dimensional quantum gravity[END_REF]: Definition 2.1 (Loop equations) The loop equations of the 1-matrix model with potential V and with filling fractions ǫ α is the following set of equations:

           ∃ polynomial P (x) such that ω 2 (x) -ω(x) V ′ (x) + P (x) = 0 ∃ branch ω(x) ∼ x→∞ t/x + O(1/x 2 ) ∀ α = 1, . . . , s , -1 2iπ Aα ω(x) dx = ǫ α (2-16)
Let us check that indeed this system implies as many equations as unknowns: let d = deg V ′ . Observe that the second equation (ω ∼ t/x) implies that deg P = d -1, and this equation also fixes the leading coefficient of P (x), it gives:

lim x→∞ xP (x) V ′ (x) = t. (2-17) 
P (x) has thus d -1 unknown coefficients. The constraint that U(x) = V ′ (x) 2 -4P (x) has only 2s + 2 odd zeroes, i.e. ds -1 even zeroes, imposes ds -1 additional constraints on P (x), i.e. there are only s unknown coefficients left in P (x). Those s coefficients are then determined by the s filling fraction equations.

Our goal is not to study those equations, in particular the existence and unicity or not of solutions, as there already is a large literature about them, but to show that the same equation eq. (2-16) can be obtained from a local variational principle.

Usual energy variational principle

In the case where M is a hermitian matrix (eigenvalues ∈ R), and V (x) is a real potential bounded from below on R, there is a known variational principle to find ω(x). ω(x) is the Stieljes transform of a positive measure dρ(x) on R, such that:

ω(x) = x ′ ∈supp. dρ dρ(x ′ ) x -x ′ , 2iπ dρ(x) dx = ω(x -i0) -ω(x + i0). (2-18)
It is well known that the measure dρ can be found as the unique minimum of the convex functional on the space of measures dρ:

S[dρ] = x∈supp. dρ V (x) dρ(x) - x∈supp. dρ x ′ ∈supp. dρ dρ(x) dρ(x ′ ) ln |x -x ′ | + α η α a 2α a 2α-1 dρ(x) (2-19)
where η α are Lagrange multipliers determined by requiring that

a 2α a 2α-1 dρ(x) = ǫ α . (2-20)
This functional is convex when V is real, supp.dρ ⊂ R and dρ > 0, so that this variational problem can be proved to have a unique minimum, and one finds that the minimum dρ is algebraic dρ(x) = 1 π 4P (x) -V ′2 (x) dx, and is solution of the loop equations above.

In case V is not real, or Γ = R or dρ is not a positive measure on R, usually the support of dρ is also unknown (free frontier problem), and the above functional is then no longer convex, instead of an extremum, it has a saddle-point, and it is not known in general whether saddle-points are unique or not (it might be known case by case). However, in all cases, any continuous saddle-point of the functional S is a solution to loop equations, and vice/versa, any solution of loop equations is a saddle-point of S.

Our purpose here is to propose another variational principle.

New variational principle 2.2.1 Algebro geometric notations

Consider a 2-sheeted hyperelliptical Riemann surface. Its complex structure is determined by the location of its branch points a α , α = 1, . . . , 2s + 2, as well as a choice of non-intersecting paths joining them, of the form:

A α = counter -clockwise contour around [a 2α-1 , a 2α ] , B α = [a 2α , a 2s+1 ] (2-21) so that A α ∩ B β = δ α,β . (2-22) Define: σ(x) = 2s+2 α=1 (x -a α ) (2-23)
Define the "Cauchy kernel":

dS(x) = x s + P s-1 (x) σ(x) dx (2-24)
where P s-1 is the unique polynomial of degree s -1, whose s coefficients are uniquely determined by: ∀α = 1, . . . , s,

Aα dS = 0 (2-25)
Indeed, this system of equation is linear in the coefficients of P s-1 and admits a unique solution 1 . We define:

Λ(x) = x a 2s+2 dS (2-26)
and since dS ∼ ± dx x at x → ∞ ± we may define:

γ = lim ∞ + x/Λ(x).
(2-27)

We also define the "fundamental 2nd kind form":

B(x, x ′ ) = dxdx ′ ( σ(x) + σ(x ′ )) 2 4(x -x ′ ) 2 σ(x) σ(x ′ ) + dxdx ′ P (x, x ′ ) σ(x) σ(x ′ ) = B(x ′ , x) (2-28)
where P (x, x ′ ) is the unique2 symmetric polynomial in x and x ′ of degree s -1, determined by: ∀α = 1, . . . , s, ∀x,

x ′ ∈Aα B(x, x ′ ) = 0 (2-29)
We have:

dS(x) = - dx 2x + ∞ + x ′ =∞ - B(x, x ′ ) (2-30)
The holomorphic forms du i (x) are defined as:

du i (x) = 1 2ıπ x ′ ∈B i B(x, x ′ ) = L i (x) dx σ(x) (2-31)
where L i (x) is the unique polynomial of degree ≤ s -1 such that

x∈A i du j (x) = δ i,j .
(2-32)

The Variational principle

Consider the following functional:

Definition 2.2 Let t > 0 and V ′ (x) = d k=1 t k x k-1
be a given potential, and let s ≤ d be an integer, and ǫ i , i = 1, . . . , s be given filling fractions. For any hyperelliptical surface of genus s with branch points a 1 , . . . , a 2s+2 , we define:

µ({t k }, t; {ǫ}, {a α }) := - k t k k Res ∞ - x k dS + s i=1 ǫ i B i dS -2t ln γ (2 -33)
It is such that the variational principle dµ = 0 is equivalent to loop equations eq. (2-16), i.e. the following theorem: Theorem 2.1 The set of equations

∀ α = 1, . . . , 2s + 2 , ∂µ ∂a α = 0 (2-34)
is equivalent to the loop equations eq. [START_REF] Borot | Large-N asymptotic expansion for mean field models with Coulomb gas interaction[END_REF][START_REF] David | Loop equations and nonperturbative effects in two-dimensional quantum gravity[END_REF][START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model, multicut case[END_REF][START_REF] Eynard | Eigenvalue distribution of large random matrices, from one matrix to several coupled matrices[END_REF][START_REF] Eynard | Master loop equations, free energy and correlations for the chain of matrices[END_REF][START_REF] Eynard | Loop equations for the semiclassical 2-matrix model with hard edges[END_REF][START_REF] Farkas | Riemann surfaces[END_REF][START_REF] Fay | Theta functions on Riemann surfaces[END_REF][START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF][START_REF] Kazakov | Ising model on a dynamical planar random lattice: exact solution[END_REF][START_REF] Kazakov | Complex Curve of the Two Matrix Model and its Tau-function[END_REF][START_REF] Krichever | The τ -function of the universal Whitham hierarchy, matrix models and topological field theories[END_REF][START_REF] Mehta | Random Matrices[END_REF].

proof:

We have the Rauch variational formula [START_REF] Farkas | Riemann surfaces[END_REF][START_REF] Fay | Theta functions on Riemann surfaces[END_REF]:

∂B(p, q) da α = Res ζ→aα B(p, ζ)B(q, ζ) dx(ζ) (2-35) thus: ∂dS(p) da α = Res ζ→aα B(p, ζ)dS(ζ) dx(ζ) (2-36) ∂ ln γ 2 da α = -Res ζ→aα dS(ζ)dS(ζ) dx(ζ) (2-37)
where ζ is a local coordinate on the Riemann surface, and residues are taken on the Riemann surface. For instance near a branchpoint a α , a good coordinate is

ζ = √ x -a α .
By abuse of notation we identify the point ζ(a α ) ≡ a α with its x value a α = x(ζ(a α )).

The differential form dx has a zeroe at a α , as can be seen from the choice of local coordinate x = a α + ζ 2 , for which dx = 2ζ dζ, which vanishes at ζ = 0.

Thus:

∂µ da α = -Res ζ→ζ(aα) dS(ζ) dx(ζ) k t k Res p→∞ - x k (p)B(p, ζ) -2iπ i ǫ i du i (ζ) -tdS(ζ) (2-38) The equation ∂µ daα = 0 implies that the differential form k t k Res p→∞ -x k (p)B(p, ζ) -2iπ i ǫ i du i (ζ) -tdS(ζ)
(which clearly has no poles at the branch points), must vanish at all branch points, and thus is proportional to dx. Let us write it:

ω(p)dx(p) = k t k Res q→∞ - x k (q)B(p, q) -2iπ i ǫ i du i (p) -tdS(p).
(2-39)

Notice that

B(x, x ′ ) = dx dx ′ 2(x -x ′ ) 2 + 1 σ(x) × rational function of x (2-40) dS(x) = 1 σ(x) × rational function of x (2-41) du i (x) = 1 σ(x) × rational function of x (2-42)
so that:

ω(x) = V ′ (x) 2 + σ(x) × rational function of x. (2-43)
This implies that ω(x) is solution of an algebraic equation of the form

ω 2 (x) -V ′ (x)ω(x) + P (x) = 0 (2-44)
where P (x) is some rational function. Moreover, notice that Res q→∞ -x k (q)B(p, q) has a pole only when p → ∞ -, i.e. it converges when p → ∞ + in the first sheet (it diverges in the second sheet), this implies that its contribution to ω(x) is O(1/x 2 ) as x → ∞. Similarly, du i (x) has no pole, so the contribution du i /dx to ω is O(1/x 2 ) as x → ∞. The term dS(p) behaves like ±dx/x at large p → ∞ ± . All this implies that P (x) has no other pole than x = ∞, i.e. it is a polynomial, and ω(x) ∼ t/x at large x.

Moreover we have by definition

x ′ ∈A i B(x, x ′ ) = 0, x∈A i dS(x) = 0, x∈A i du j (x) = δ i,j , so that x∈A i ω(x)dx = -2iπǫ i .
(2-45)

Therefore we have proved that the equations ∂µ/∂a α = 0 imply that there exists a function ω(x) solution of

   ω(x) 2 -V ′ (x)ω(x) + P (x) = 0 ω(x) ∼ ∞ t/x + O(1/x 2 ) A i ωdx = -2iπǫ i (2-46)
i.e. ω(x) is a solution to the loop equation eq. [START_REF] Borot | Large-N asymptotic expansion for mean field models with Coulomb gas interaction[END_REF][START_REF] David | Loop equations and nonperturbative effects in two-dimensional quantum gravity[END_REF][START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model, multicut case[END_REF][START_REF] Eynard | Eigenvalue distribution of large random matrices, from one matrix to several coupled matrices[END_REF][START_REF] Eynard | Master loop equations, free energy and correlations for the chain of matrices[END_REF][START_REF] Eynard | Loop equations for the semiclassical 2-matrix model with hard edges[END_REF][START_REF] Farkas | Riemann surfaces[END_REF][START_REF] Fay | Theta functions on Riemann surfaces[END_REF][START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF][START_REF] Kazakov | Ising model on a dynamical planar random lattice: exact solution[END_REF][START_REF] Kazakov | Complex Curve of the Two Matrix Model and its Tau-function[END_REF][START_REF] Krichever | The τ -function of the universal Whitham hierarchy, matrix models and topological field theories[END_REF][START_REF] Mehta | Random Matrices[END_REF].

Converse:

Now assume that ω is solution to loop equations, then it is of the form

ω = V ′ (x) 2 + σ(x) × polynomial of x.
(2-47)

One thus sees that

r(x) = ω(p)dx(p) - k t k Res q→∞ - x k (q)B(p, q) + 2iπ i ǫ i du i (p) + tdS(p). (2-48)
is a meromorphic differential form on the Riemann surface of the form C(x)/ σ(x) dx where C(x) is some polynomial of x. It is easy to see that this polynomial C(x) must behave at most like O(x s-1 ) so that

C(x) = i c i L i (x), (2-49) 
i.e.

r(x) = i c i du i (x) (2-50)
and one has Aα r(x) = 0 so that c i = 0, and thus

r(x) = 0. (2-51)
This implies that

∂µ da α = -Res ζ→ζ(aα) dS(ζ) dx(ζ) (ω(ζ)dx(ζ)) = -Res ζ→ζ(aα) dS(ζ)ω(ζ) = 0 (2-52)
since there is no pole at ζ(a α ). This proves the theorem.

Example: 1-cut case, s = 0

The previous variational problem can be further simplified in the genus zero case (1 cut, s = 0). For any α and γ, consider the function x : C * → C defined as:

x(p) = α + γ p + 1 p (2-53)
and consider the function:

µ({t i }, t; α, γ) = Res p→∞ V (x(p)) dp p -2t ln γ (2-54)
We have

∂µ ∂α = Res p→∞ V ′ (x(p)) dp p (2-55) ∂µ ∂γ = Res p→∞ V ′ (x(p)) p + 1 p dp p - 2t γ (2-56)
Let us write:

V ′ (x(p)) = deg V ′ k=0 u k (p k + p -k ) (2-57)
The equations ∂µ/∂α = 0 and ∂µ/∂γ = 0 imply:

u 0 = 0 , u 1 = t γ (2-58)
Then, the function:

ω(p) := p k=1 u k p -k (2-59) is such that V ′ (x(p)) -ω(p) = p k=1 u k p k (2-60)
and thus

(V ′ (x(p)) -ω(p))ω(p) (2-61)
is a polynomial of p and 1/p which is symmetric when p → 1/p, i.e. it is a polynomial of p + 1/p, and so can be written as a polynomial of x(p):

(V ′ (x(p)) -ω(p))ω(p) = P (x(p)).
(2-62)

Moreover the condition u 1 = t/γ implies that at p → ∞ one has

ω(p) ∼ t/x(p) + O(1/x(p) 2 ).
(2-63)

I.e. we get the loop equations of the 1-matrix model.

Link with the free energy

The free energy is the limit

F 0 = lim N →∞ t 2 N 2 ln Z (2-64)
where Z is the partition function eq.(2-2). It is well known [START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF] that it is worth

F 0 = 1 2 Res p→∞ + V (x(p)) ω(p) + tµ * + α ǫ α Bα ω (2-65)
where ω is the solution of loop equations, and µ * is the value of the functional µ at its extremum. It is also well known that:

∂F 0 ∂t = µ * .
(2-66) so that µ * is the value of the derivative of the free energy with respect to t. It can be called the "entropy".

When the eigenvalues are real and V is real, i.e. when ω is the Stieljes transform of a positive measure dρ on R, extremum of S[dρ] it is known that we have

F 0 = -S[dρ * ].
(2-67)

Extremal filling fractions

Often the filling fractions ǫ α are not fixed, and one determines the filling fractions by requiring: ∂Re F 0 ∂ǫ α = 0 (2-68)

i.e. Re In this case, the primitive h(x) = Re

x . ω, is a harmonic function globally defined on the algebraic curve (indeed the value of h is independent of the choice of integration contour).

An important property of F 0 is that:

∂ 2 F 0 ∂ǫ α ∂ǫ β = 2iπ Bα du β := 2iπ τ α,β (2-74) 
and the s × s matrix τ , called the Riemann matrix of periods, has the well known property [START_REF] Farkas | Riemann surfaces[END_REF][START_REF] Fay | Theta functions on Riemann surfaces[END_REF] that:

τ = τ t , Im τ > 0. (2-75)
Since the imaginary part is positive definite, we have that:

Re ∂ 2 F 0 ∂ǫ α ∂ǫ β = -2πIm τ < 0 (2-76)
i.e. Re F 0 is a concave3 function of filling fractions, and thus it has a unique maximum. So, in case the filing fractions were not fixed at the beginning, they are chosen as the ones which maximize Re F 0 .

A similar variational principle can be found for the loop equations of the 2-matrix model [START_REF] Kazakov | Ising model on a dynamical planar random lattice: exact solution[END_REF].

Introduction 2-matrix model

Consider two random hermitian matrices (or two random normal matrices with eigenvalues on some contours) M 1 , M 2 of size N, with probability law:

1 Z e -N t Tr (V 1 (M 1 )+V 2 (M -2)-M 1 M 2 ) dM 1 dM 2 (3-1)
where

V 1 (x) = k t k k x k , andV 2 (y) = k
tk k y k are polynomials called the potentials, and t > 0 is often called "temperature", and Z is the partition function:

Z = H N ×H N e -N t Tr (V 1 (M 1 )+V 2 (M -2)-M 1 M 2 ) dM 1 dM 2 . (3-2)
The expectation value of the resolvent of matrix M 1 :

W (x) = t N E Tr (x -M 1 ) -1 (3-3) 
plays an important role, indeed it encodes the information on the spectrum of M 1 .

In many cases (depending on the choice of potentials V 1 , V 2 , and on the choices of contours), it is known or conjectured (see [START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF] for instance), that W (x) has a large N limit, which we write:

∃ lim

N →∞ V ′ 1 (x) -W (x) = ω(x) (3-4) 
and in many cases (again depending on the choice of potentials V 1 , V 2 and contours), it is an algebraic function of x, i.e. it satisfies an algebraic equation [START_REF] Kazakov | Ising model on a dynamical planar random lattice: exact solution[END_REF][START_REF] Kazakov | Complex Curve of the Two Matrix Model and its Tau-function[END_REF][START_REF] Staudacher | Combinatorial solution of the 2-matrix model[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model[END_REF]:

P (x, ω(x)) = 0 , P (x, y) = i,j P i,j x i y j . (3-5)
For the 2-matrix model, the polynomial P (x, y) is in general not quadratic in y, instead it takes the form [START_REF] Eynard | Large N expansion of the 2-matrix model[END_REF]:

P (x, y) = (y -V ′ 1 (x)) (x -V ′ 2 (y)) + Q(x, y) (3-6)
where Q(x, y) is a polynomial such that:

deg x Q < deg V ′ 1 , deg y Q < deg V ′ 2 .
(3-7)

Some algebraic geometry

The equation P (x, y) = 0 is an algebraic equation, it defines a compact Riemann surface C. This Riemann surface has a certain genus g.

Filling fractions

Let us define for α = 1, . . . , g, a basis of 2g non-contractible cycles on C: A α=1,...,g , B α=1,...,g ,

with canonical symplectic intersections

A α ∩ B β = δ α,β , A α ∩ A β = ∅ , B α ∩ B β = ∅. (3-9)
Such a canonical basis always exists but is not unique. Very often, it is interesting to consider matrix models with "fixed filling fractions", i.e. where the number of eigenvalues of M 1 or M 2 in a certain region of the complex plane is held fixed. The number n α of eigenvalues of M 1 enclosed by a clockwise contour C α is:

n α = - N 2iπ t Cα W (x) dx (3-10)
In the large N limit, the fixed filling fraction condition amounts to fix:

t n α N = 1 2iπ Aα ω(x) dx = ǫ α (3-11)
The numbers ǫ α are called "filling fractions", they tell the number (times t/N) of eigenvalues of M 1 which concentrate in regions enclosed by the A α 's.

Loop equations

Our goal now is to find the polynomial Q(x, y).

It is well known [START_REF] Eynard | Large N expansion of the 2-matrix model[END_REF][START_REF] Kazakov | Complex Curve of the Two Matrix Model and its Tau-function[END_REF] that this polynomial can be determined by the following equations: Definition 3.1 (Loop equations) The loop equations of the 2-matrix model with potentials V 1 , V 2 and with filling fractions ǫ α is the following set of equations [START_REF] Eynard | Large N expansion of the 2-matrix model[END_REF][START_REF] Kazakov | Complex Curve of the Two Matrix Model and its Tau-function[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model, multicut case[END_REF]:

                   ∃ polynomial Q(x, y) such that (ω(x) -V ′ 1 (x)) (x -V ′ 2 (ω(x))) + Q(x, ω(x)) = 0 ω(x) ∼ ∞ + V ′ 1 (x) -t/x + O(1/x 2 ) x ∼ ∞ -V ′ 2 (ω(x)) -t/ω(x) + O(1/ω(x) 2 ) ∀ α = 1, . . . , g , -1 2iπ Aα ω(x) dx = ǫ α (3-12)
Let us check that this system implies as many equations as unknowns. The 2 equations regarding the behaviors at ∞ ± imply that deg

x Q < deg V ′ 1 and deg y Q < deg V ′ 2 ,
and they also imply that the leading term (largest power of both x and y) is of the form: -13) This implies that the number of unknown coefficients of 4 the genus g of the Riemann surface of equation P (x, y) = 0. Therefore the number of unknown coefficients of Q(x, y) matches the number of filling fraction conditions.

Q(x, y) ∼ t V ′ 1 (x) V ′ 2 (y) xy . ( 3 
Q(x, y) is deg V ′ 1 × deg V ′ 2 -1, which is also
Our goal is not to study those equations, in particular their number of solutions (existence or unicity questions), as there already is a large literature about them, but to show that the same set of equations eq. (3-12) can be obtained from a variational principle.

Algebro-geometric notations

Let C be a compact Riemann surface of genus g, defined by an algebraic equation P (x, y) = 0.

This means that every point p ∈ C corresponds to a point (x(p), y(p)) ∈ C 2 such that P (x(p), y(p)) = 0. In other words there exists two analytical meromorphic functions

x : C → C, y : C → C x : C → C p → x(p) , y : C → C p → y(p) (3-14) such that {(x, y) ∈ C 2 | P (x, y) = 0} ≡ {(x(p), y(p)) | p ∈ C}. (3-15) 

Branchpoints

We define branchpoints as the zeroes of the differential dx on C:

dx(e α ) = 0. (3-16)
Their x-projection is denoted:

a α = x(e α ). (3-17) 
We assume that, generically, those zeroes are simple zeroes, i.e. a good local coordinate on C near e α is:

ζ = √ x -a α , x = a α + ζ 2 , dx = 2ζdζ. (3-18)
4 classical result of algebraic geometry, the genus is the number of interior points of the Newton's polygon. And here the Newton's polygon has deg

V ′ 1 × deg V ′ 2 -1 interior points.

Holomorphic forms

There exists [START_REF] Fay | Theta functions on Riemann surfaces[END_REF][START_REF] Farkas | Riemann surfaces[END_REF]) a unique basis of holomorphic forms du i (p) on C normalized on A-cycles such that:

A i du j (p) = δ i,j , i, j = 1, . . . , g. (3-19) 
One can always write:

du i (p) = R i (x(p), y(p)) dx(p) P ′ y (x(p), y(p)) (3-20) 
where

R i (x, y) ∈ C[x, y] is the unique polynomial of degree deg x R i < deg V ′ 1 and deg y R i < deg V ′
2 , chosen such that du i (p) has no pole on C and A i du j (p) = δ i,j .

2nd kind form

Similarly, there exists a unique symmetric bi-differential form B(x, y) ∈ T * (C)⊗T * (C), having a double pole on the diagonal, and no other pole, and normalized on A-cycles:

B(p, p ′ ) ∼ p→p ′ dζ(p) ⊗ dζ(p ′ ) (ζ(p) -ζ(p ′ )) 2 + analytical at p = p ′ (3-21) 
∀ i = 1, . . . , g , ∀ p ∈ C p ′ ∈A i B(p, p ′ ) = 0 (3-22) 
B(p, p ′ ) is called the "fundamental form of the second kind" or (derivative of) "Greenfunction" or "heat kernel" on C. It has the property [START_REF] Fay | Theta functions on Riemann surfaces[END_REF] that:

p ′ ∈B i B(p, p ′ ) = 2iπdu i (p). (3-23) 
We also define the 3-rd kind differential:

dS(p) = ∞ + p ′ =∞ - B(p, p ′ ) (3-24)
where the integration path is chosen 5 such that it doesn't intersect any A-cycle or B-cycle. Then, let p 0 be an arbitrary basepoint and define

Λ(p) = exp p p 0 dS (3-25)
where again the integration contour avoids A-cycles and B-cycles. Let

γ = lim p→∞ + x(p) 1/ deg ∞ + (x) /Λ(p) (3-26) γ = lim p→∞ - Λ(p)/ y(p) 1/ deg ∞ -(y) (3-27)
Notice that the product γγ is independent of the choice of p 0 .

5 Notice that C \ ∪ α A α ∪ α B α is simply connected, and thus dS is well defined.

The variational principle

Definition 3.2 Consider the following functional:

µ({t k }, { tk }, t; (C, x, y)) := k t k Res p→∞ + x(p) k dS(p) - k tk Res p→∞ - y k dS(p) -c Res p→∞ + x(p)y(p) dS(p) + i ǫ i B i dS(p) -t ln γγ (3 -28)
where (C, x, y) is a compact Riemann surface of genus g with 2 distinct marked points called ∞ + and ∞ -, and x and y any two meromorphic functions on C → P 1 .

It is such that an extremum of µ, i.e. dµ = 0 is a solution of the loop equation eq. [START_REF] David | Loop equations and nonperturbative effects in two-dimensional quantum gravity[END_REF][START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model, multicut case[END_REF][START_REF] Eynard | Eigenvalue distribution of large random matrices, from one matrix to several coupled matrices[END_REF][START_REF] Eynard | Master loop equations, free energy and correlations for the chain of matrices[END_REF][START_REF] Eynard | Loop equations for the semiclassical 2-matrix model with hard edges[END_REF][START_REF] Farkas | Riemann surfaces[END_REF][START_REF] Fay | Theta functions on Riemann surfaces[END_REF][START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF].

Theorem 3.1 The set of equations (differential with respect to variations of (C, x, y))

dµ = 0 (3-29)
is equivalent to the loop equations eq. [START_REF] David | Loop equations and nonperturbative effects in two-dimensional quantum gravity[END_REF][START_REF] Di Francesco | 2D Gravity and Random Matrices[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model[END_REF][START_REF] Eynard | Large N expansion of the 2-matrix model, multicut case[END_REF][START_REF] Eynard | Eigenvalue distribution of large random matrices, from one matrix to several coupled matrices[END_REF][START_REF] Eynard | Master loop equations, free energy and correlations for the chain of matrices[END_REF][START_REF] Eynard | Loop equations for the semiclassical 2-matrix model with hard edges[END_REF][START_REF] Farkas | Riemann surfaces[END_REF][START_REF] Fay | Theta functions on Riemann surfaces[END_REF][START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF].

proof: Let (C, x, y) be a compact Riemann surface of genus g, with 2 marked points ∞ ± , and x and y any two meromorphic functions on C → P 1 .

The tangent (infinitesimal variations) of the moduli space of (C, x, y) is isomorphic to the space of meromorphic forms on C. Notice that one can vary at the same time the complex structure of C, as well as the functions x and y.

Let δ denote a tangent direction, i.e. This expression of ydx implies that near ∞ + one has

cy ∼ V ′ 1 (x) - t x + O(1/x 2 ) (3-42)
Doing the same computation with fixed y instead of fixed x yields:

cxdy = tk Res ∞ - y k B - t k Res ∞ + x k B + c Res ∞ + xyB - ǫ i du i -tdS (3-43)
which gives that near ∞ -one has

cx ∼ V ′ 2 (y) - t y + O(1/y 2 ) (3-44)
and moreover

A i ydx = 2iπ ǫ i . (3-45)
The reverse proposition is obvious, this concludes the proof.

Example: Genus zero curves

Genus 0 curves can be parametrized by rational functions. Consider (C, x, y) where C is a genus zero curve with 2 marked points, i.e. it is the Riemann sphere P 1 , and we can chose the 2 marked points to be ∞ + = ∞ and ∞ -= 0, and x and y are 2 rational functions. Let us assume that x has a simple pole at p = ∞ and an arbitrary pole at p = 0, and y has a simple pole at p = 0 and an arbitrary pole at p = ∞:

x(p) = d 2 k=-1 α k p -k y(p) = d 1 k=-1 β k p k (3-46)
Consider the following function:

µ({t i }, { ti }, c, t; {α k }, {β k }) (3-47) µ := k t k Res ∞ x(p) k dp p + k tk Res ∞ y(p) k dp p -c Res ∞ x(p)y(p) dp p -t ln (α -1 β -1 ) (3 -48)
We have:

∂µ ∂α j = Res ∞ ( k kt k x(p) k-1 -cy(p)) p -j dp p -t δ j,-1 α -1 (3-49) ∂µ ∂α j = 0 implies: ∀ j = -1, . . . , d 2 ∂µ ∂α j = 0 -→ cy(p) = k kt k x(p) k-1 - t x(p) + O(1/p 2 ) (3-50)
and similarly with the β j 's

∀ j = -1, . . . , d 1 ∂µ ∂β j = 0 -→ cx(p) = k k tk y(p) k-1 - t y(p) + O(p 2 ) (3-51)
i.e. we obtain the loop equations, for instance as written in [START_REF] Eynard | Eigenvalue distribution of large random matrices, from one matrix to several coupled matrices[END_REF].

4 Generalization: algebraic plane curve with fixed behaviors at poles

The 1-matrix and 2-matrix loop equations are special cases of the following problem (related to the Witham hierarchy [START_REF] Krichever | The τ -function of the universal Whitham hierarchy, matrix models and topological field theories[END_REF][START_REF] Bertola | Free Energy of the Two-Matrix Model/dToda Tau-Function[END_REF]):

Problem: Let g, m, {t k,j } k=1,...,m, j=1,...,d k , {ǫ i } i=1,...,g , {X j } j=1,...,m be given.

Find (C, x, y) where C is a compact Riemann surface of genus g, with m marked points {∞ k } k=1,...,m , and with 2g closed cycles whose homology class form a symplectic basis of cycles A i ∩ B j = δ i,j , and x and y are 2 meromorphic functions on C, such that:

• y and x are holomorphic on C \ {∞ k } k=1,...,m ,

• ∀ k = 1, . . . , m x(∞ k ) = X k . (4-1) If X k = ∞ we define the local coordinate ζ k (p) = x(p) -1/ deg ∞ k (x) , and if X k = ∞ we define ζ k (p) = x(p) -X k .
• the 1-form ydx has a prescribed negative part of its Laurent series expansion near ∞ k :

y(p)dx(p) ∼ ∞ k d k j=0 t k,j ζ k (p) -j-1 dζ k (p) + analytical at ∞ k (4-2)
• one has prescribed filling fractions

1 2iπ A i ydx = ǫ i . (4-3) 
Here we shall not consider the question of existence and/or unicity of a solution. We just mention that a necessary condition for a solution to exist is that the sum of residues of a meromorphic form vanishes i.e. k t k,0 = 0.

(4-4)

From now on, we assume that this condition is fulfilled, and we shall merely reformulate the question as a variational principle.

Variational principle

Definition 4.1 Let (C, x) be a Hurwitz space, where C is a Riemann surface of genus g, with marked points ∞ k , and with a given symplectic basis of cycles A i ∩B j = δ i,j , and x is a meromorphic function on C, used as a projection on the base Riemann sphere:

x : C → C. We define ∀ i, i ′ any two distinct ∞ i = ∞ i ′ : µ i,i ′ ({t k,j }; (C, x, y)) = k Res p→∞ k d k j=1 t k,j j ζ j (p) -j dS ∞ i ,∞ i ′ (p) + k t k,0 ln γ k + α ǫ α p∈Bα dS ∞ i ,∞ i ′ (p) (4 -5)
where

dS ∞ i ,∞ i ′ (p) = ∞ i ′ ∞ i B(., p) (4-6)
and if o is an arbitrary generic point of C

γ k = E(∞ i , ∞ k ) E(∞ i ′ , o) E(∞ i ′ , ∞ k ) E(∞ i , o) . (4-7)
notice that since k t k,0 = 0, we have that k t k,0 ln γ k is independent of the choice of o ∈ C.

Theorem 4.1 For any i, i ′ , let µ = µ i,i ′ , then a solution of dµ = 0 is a solution to the problem above.

proof:

The tangent space to the moduli space of (C, x, y), is the space of meromorphic forms Ω on C such that: δy dxxδy = Ω (4-8)

Moreover, if we consider that x and y have poles only at the ∞ k 's, we require that Ω can have poles only at the ∞ k 's.

As before, we use Rauch formula and get: (notice again that since k t k,0 = 0, then k t k,0 dS ∞ k ,o is independent of the choice of o ∈ C).

Notice that the quantity inside the bracket has no pole at e α , and thus the fact that the residue vanishes implies that the quantity in the bracket vanishes at e α , and thus can be divided by dx: is a meromorphic function with the required Laurent series behavior near poles and filling fractions, it is thus a solution to the problem.

Conclusion

We have seen that the loop equations of various matrix models, which consist in finding a plane curve with prescribed asymptotic behaviors at poles and prescribed filling fractions on A-cycles, are equivalent to a local variational principle. Contrarily to the energy functional S or F 0 , the functional µ doesn't have convexity properties, so one cannot easily conclude to the existence of a solution of the variational principle. However, the functional µ is in fact easier to compute, and the loop equations easier to derive from µ. Also, the geometric meaning of that µ needs to be understood, in particular the equation eq. .

In this article we have explicitly considered only the 1 and 2-matrix models, although section 4 guarantees that it also applies to the "chain of matrices" [START_REF] Eynard | Eigenvalue distribution of large random matrices, from one matrix to several coupled matrices[END_REF][START_REF] Eynard | Master loop equations, free energy and correlations for the chain of matrices[END_REF] matrix model, and possibly more. Also, we have written the explicit proof for 1 and 2 matrix model only for polynomial potentials, and again section 4 guarantees that the same works for potentials whose derivative is a rational function (called semi-classical potentials [START_REF] Bertola | Free Energy of the Two-Matrix Model/dToda Tau-Function[END_REF]), or also for matrix models with hard edges [START_REF] Bertola | Free Energy of the Two-Matrix Model/dToda Tau-Function[END_REF][START_REF] Eynard | Loop equations for the semiclassical 2-matrix model with hard edges[END_REF].

Definition 2 . 3

 23 if ǫ α ∈ R one has Re Aα ω = Re 2iπ ǫ α = 0 (2-70)and if t is real one has Re∞ ± ω = ±Re 2iπ t = 0 (2-71)This implies that for any closed cycle C on the Riemann surface one has Re C An algebraic curve has the Boutroux property, iff there exists a oneform ω, such that for all closed contour C one has

δ

  δ(y)dxδ(x)dy = Ω (3-30)Ω is a meromorphic form. The Rauch variational formula gives:δ B(p, q)| x(p),x(q) ln Λ(p)|x(p) = α Res s→eα dE p (s)dS(s)Ω(s) dx(s)dy(s) (3-33) δ ln γ = -Res s→eα dS ∞x,o (s)dS(s)Ω(s) dx(s)dy(s) (3-34) By the chain rule we have: δ dS(p)| y(p) = δ dS(p)| x(p)d Ω(p)dS(p) dx(p)dy(p) (3-35) δ dS(p)| y(p) = Res s→eα B(p, s)dS(s)Ω(s) dx(s)dy(s) (3-36) δ ln Λ(p)| y(p) = Res s→eα dE p (s)dS(s)Ω(s) dx(s)dy(s) (3-37) δ ln γ = Res s→eα dS ∞y,o (s)dS(s)Ω(s) dx(s)dy(s) (3-38) and δ ln(γγ) = -Res s→eα dS(s)dS(s)Ω(s) dx(s)dy(s) i + tdS) (3 -40) δµ = 0 for any meromorphic 1-form Ω implies that cydx = t k Res ∞x x k B -tk Res ∞y y k B + c Res ∞y xyB + ǫ i du i + tdS (3-41)

  , q)ζ k (q) -j + k t k,0 dS ∞ k ,o (p) + 2iπ α ǫ α du α (p) (4 -9)

  q)ζ k (q) -j + k t k,0 dS ∞ k ,o (p) + 2iπ α ǫ α du α (p) (4-10)

The fact that this linear system has a unique solution is a standard result in the theory of Riemann surfaces, see[START_REF] Farkas | Riemann surfaces[END_REF][START_REF] Fay | Theta functions on Riemann surfaces[END_REF]. It can be seen as a consequence of Riemann-Roch theorem.

Again, existence and unicity of such B is a classical result of Riemannian geometry[START_REF] Fay | Theta functions on Riemann surfaces[END_REF].

Here we have a concave function because we defined Z = e F instead of the usual Gibbs convention Z = e -F with which F = -F is convex.
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