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Abstract

We propose an alternative variational principle whose critical point is the algebraic

plane curve associated to a matrix model (the spectral curve, i.e. the large N limit of

the resolvent). More generally, we consider a variational principle that is equivalent

to the problem of finding a plane curve with given asymptotics and given cycle

integrals. This variational principle is not given by extremization of the energy, but

by the extremization of an ”entropy”.

1 Introduction

To a random matrix model is associated an algebraic curve, often called ”spectral

curve”. Most often this is the Stieljes transform of the ”equilibrium spectral density”,

although not always. That algebraic curve is either obtained from the large N limit of

the loop equations, or the large N limit of the saddle point equation, see for instance

the review [4]. It is a curve with some specific type of singularities and boundary

conditions.

It has been known for long, in many cases, that the large N density of eigenvalues

can be found by extremizing an energy functional in the space of measures, and it turns

out that the extremal measure is an algebraic function.

Our goal in this article, is to present another (in fact several other) variational

principle, yielding the same spectral curve, but by extremizing only a functional in the

space of algebraic curves (not using measures).

2 1- matrix model

2.1 Introduction to random matrices

Consider a random hermitian matrix M of size N (see [16]), with probability law:

1

Z
e−

N
t

Tr V (M) dM (2-1)
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where dM =
∏

i dMi,i

∏

i<j dReMi,j dImMi,j is the U(N) invariant Lebesgue measure

on HN , and where V (x) =
∑

k
tk
k
xk is a polynomial called the ”potential”, and t > 0 is

often called ”temperature”. The normalization factor Z is called the partition function:

Z =

∫

HN

e−
N
t

Tr V (M) dM. (2-2)

One can also extend this, and replace random hermitian matrices, by random ”normal

matrices with eigenvalues on some contour Γ”:

HN(Γ) = {M = UΛU † |U ∈ U(N) , Λ = diag(λ1, . . . , λN) , λi ∈ Γ} (2-3)

equipped with the measure dM =
∏

i<j(λi − λj)
2 dU

∏

i dλi where dU is the Haar

measuer on U(N) and dλi is the curvilinear measure along Γ. For instance when

Γ = R this coincides with Hermitian matrices:

HN(R) = HN , dM = Lebesguemeasure onHN , (2-4)

and when Γ = S1 =unit circle in C, this coincides with the ”circular ensemble” U(N)

with its Haar measure:

HN(S
1) = U(N) , (detM)−NdM = Haarmeasure onU(N). (2-5)

The expectation value of the resolvent:

W (x) =
t

N
E
(

Tr (x−M)−1
)

(2-6)

plays an important role, indeed its singularities encode the information on the spectrum

of M .

In many cases (depending on the choice of potential V and on the choice of contour

Γ), it is known (see [12, 2, 16] for instance), that W (x) has a large N limit:

W (x) ∼
N→∞

ω(x) (2-7)

and in many cases (again depending on the choice of potential V and contour), it is an

algebraic function of x, i.e. it satisfies an algebraic equation:

P (x, ω(x)) = 0 , P (x, y) =
∑

i,j

Pi,jx
i yj. (2-8)

This algebraic equation has several solutions (several branches) y = Yk(x), k = 1, . . . , d

where d = degy P , and ω(x) = Y0(x) is only one branch (it has to be a branch which

behaves as ω(x) ∼ t/x at large x, due to eq.(2-6)). Alternatively, one can view ω(x) as

a multivalued function, or alternatively, it can be viewed as a meromorphic function

on the compact Riemann surface C defined by the algebraic equation P (x, y) = 0.



For the 1-matrix model, the polynomial P (x, y) is always quadratic in y (the alge-

braic equation is said to be ”hyperelliptical”), and always of the form:

P (x, y) = y2 − yV ′(x) + P (x) (2-9)

Finding ω(x) = y amounts to finding the polynomial P (x).

Since there is a branch of ω(x) which begaves as t/x at large x, this implies that

P (x) ∼ tV ′(x)/x at large x, i.e. P (x) has degree deg V ′ − 1.

Then we have:

ω(x) = y =
1

2

(

V ′(x)±
√

V ′(x)2 − 4P (x)
)

. (2-10)

Branchcuts occur at the odd zeroes of U(x) = V ′(x)2 − 4P (x). Since U(x) has even

degree, there is necessarily an even number of odd zeroes, say 2s+ 2 odd zeroes.

Let us denote:

U(x) = V ′(x)2 − 4P (x) = M(x)2 σ(x) (2-11)

σ(x) =
2s+2
∏

k=1

(x−ak) = product of odd zeroes , M(x) =

√

U(x)

σ(x)
= product of even zeroes.

(2-12)

The points ak are called the branchpoints.

2.1.1 Filling fractions

Let us define for α = 1, . . . , s:

Aα = clockwise contour surrounding [a2α−1, a2α]. (2-13)

Very often, it is interesting to consider matrix models with ”fixed filling fractions”,

i.e. where the number of eigenvalues of M in a certain region of the complex plane is

held fixed. The number nα of eigenvalues of M enclosed by a clockwise contour Cα is:

nα = − N

2iπ t

∮

Cα

W (x) dx (2-14)

In the large N limit, the fixed filling fraction condition amounts to fix:

t nα

N
= − 1

2iπ

∮

Aα

ω(x) dx = ǫα. (2-15)

The numbers ǫα are called ”filling fractions”, they tell the number (times t/N) of

eigenvalues of M which concentrate along the segment [a2α−1, a2α].



2.1.2 Loop equations

Our goal now is to find the polynomial P (x), as a function of the potential V (x), the

contour Γ and the filling fractions ǫα’s.

It is well known that this polynomial can be determined by the following equations

[4, 3]:

Definition 2.1 (Loop equations) The loop equations of the 1-matrix model with po-

tential V and with filling fractions ǫα is the following set of equations:























∃ polynomialP (x) such that ω2(x)− ω(x) V ′(x) + P (x) = 0

∃ branch ω(x)∼x→∞ t/x+O(1/x2)

∀α = 1, . . . , s , − 1
2iπ

∮

Aα
ω(x) dx = ǫα

(2-16)

Let us check that indeed this system implies as many equations as unknowns: let

d = deg V ′. Observe that the second equation (ω ∼ t/x) implies that degP = d − 1,

and this equation also fixes the leading coefficient of P (x), it gives:

lim
x→∞

xP (x)

V ′(x)
= t. (2-17)

P (x) has thus d− 1 unknown coefficients. The constraint that U(x) = V ′(x)2 − 4P (x)

has only 2s + 2 odd zeroes, i.e. d − s − 1 even zeroes, imposes d − s − 1 additional

constraints on P (x), i.e. there are only s unknown coefficients left in P (x). Those s

coefficients are then determined by the s filling fraction equations.

Our goal is not to study those equations, in particular the existence and unicity or

not of solutions, as there already is a large literature about them, but to show that the

same equation eq. (2-16) can be obtained from a local variational principle.

2.1.3 Usual energy variational principle

In the case where M is a hermitian matrix (eigenvalues ∈ R), and V (x) is a real

potential bounded from below on R, there is a known variational principle to find

ω(x). ω(x) is the Stieljes transform of a positive measure dρ(x) on R, such that:

ω(x) =

∫

x′∈supp. dρ

dρ(x′)

x− x′
, 2iπ

dρ(x)

dx
= ω(x− i0)− ω(x+ i0). (2-18)

It is well known that the measure dρ can be found as the unique minimum of the

convex functional on the space of measures dρ:

S[dρ] =

∫

x∈supp. dρ

V (x) dρ(x)−
∫

x∈supp. dρ

∫

x′∈supp. dρ

dρ(x) dρ(x′) ln |x− x′|



+
∑

α

ηα

∫ a2α

a2α−1

dρ(x) (2-19)

where ηα are Lagrange multipliers determined by requiring that

∫ a2α

a2α−1

dρ(x) = ǫα. (2-20)

This functional is convex when V is real, supp.dρ ⊂ R and dρ > 0, so that this

variational problem can be proved to have a unique minimum, and one finds that the

minimum dρ is algebraic dρ(x) = 1
π

√

4P (x)− V ′2(x) dx, and is solution of the loop

equations above.

In case V is not real, or Γ 6= R or dρ is not a positive measure on R, usually the

support of dρ is also unknown (free frontier problem), and the above functional is then

no longer convex, instead of an extremum, it has a saddle–point, and it is not known

in general whether saddle–points are unique or not (it might be known case by case).

However, in all cases, any continuous saddle–point of the functional S is a solution to

loop equations, and vice/versa, any solution of loop equations is a saddle–point of S.
Our purpose here is to propose another variational principle.

2.2 New variational principle

2.2.1 Algebro geometric notations

Consider a 2-sheeted hyperelliptical Riemann surface. Its complex structure is deter-

mined by the location of its branch points aα, α = 1, . . . , 2s+ 2, as well as a choice of

non–intersecting paths joining them, of the form:

Aα = counter− clockwise contour around [a2α−1, a2α] , Bα = [a2α , a2s+1]

(2-21)

so that

Aα ∩ Bβ = δα,β . (2-22)

Define:

σ(x) =

2s+2
∏

α=1

(x− aα) (2-23)

Define the ”Cauchy kernel”:

dS(x) =
xs + Ps−1(x)
√

σ(x)
dx (2-24)

where Ps−1 is the unique polynomial of degree s− 1, whose s coefficients are uniquely

determined by:

∀α = 1, . . . , s,

∫

Aα

dS = 0 (2-25)



Indeed, this system of equation is linear in the coefficients of Ps−1 and admits a unique

solution1.

We define:

Λ(x) =

∫ x

a2s+2

dS (2-26)

and since dS ∼ ±dx
x

at x → ∞± we may define:

γ = lim
∞+

x/Λ(x). (2-27)

We also define the ”fundamental 2nd kind form”:

B(x, x′) =
dxdx′ (

√

σ(x) +
√

σ(x′))2

4(x− x′)2
√

σ(x)
√

σ(x′)
+

dxdx′P (x, x′)
√

σ(x)
√

σ(x′)
= B(x′, x) (2-28)

where P (x, x′) is the unique2 symmetric polynomial in x and x′ of degree s− 1, deter-

mined by:

∀α = 1, . . . , s, ∀x,
∫

x′∈Aα

B(x, x′) = 0 (2-29)

We have:

dS(x) = − dx

2x
+

∫ ∞+

x′=∞−

B(x, x′) (2-30)

The holomorphic forms dui(x) are defined as:

dui(x) =
1

2ıπ

∮

x′∈Bi

B(x, x′) =
Li(x) dx
√

σ(x)
(2-31)

where Li(x) is the unique polynomial of degree ≤ s− 1 such that

∮

x∈Ai

duj(x) = δi,j . (2-32)

2.2.2 The Variational principle

Consider the following functional:

Definition 2.2 Let t > 0 and V ′(x) =
∑d

k=1 tkx
k−1 be a given potential, and let s ≤ d

be an integer, and ǫi, i = 1, . . . , s be given filling fractions. For any hyperelliptical

surface of genus s with branch points a1, . . . , a2s+2, we define:

µ({tk}, t; {ǫ}, {aα}) := −
∑

k

tk
k

Res
∞−

xkdS +

s
∑

i=1

ǫi

∮

Bi

dS − 2t ln γ

(2− 33)

1The fact that this linear system has a unique solution is a standard result in the theory of Riemann
surfaces, see [10, 11]. It can be seen as a consequence of Riemann-Roch theorem.

2Again, existence and unicity of such B is a classical result of Riemannian geometry [11].



It is such that the variational principle dµ = 0 is equivalent to loop equations

eq. (2-16), i.e. the following theorem:

Theorem 2.1 The set of equations

∀α = 1, . . . , 2s+ 2 ,
∂µ

∂aα
= 0 (2-34)

is equivalent to the loop equations eq. (2-16).

proof:

We have the Rauch variational formula [10, 11]:

∂B(p, q)

daα
= Res

ζ→aα

B(p, ζ)B(q, ζ)

dx(ζ)
(2-35)

thus:
∂dS(p)

daα
= Res

ζ→aα

B(p, ζ)dS(ζ)

dx(ζ)
(2-36)

∂ ln γ2

daα
= − Res

ζ→aα

dS(ζ)dS(ζ)

dx(ζ)
(2-37)

where ζ is a local coordinate on the Riemann surface, and residues are taken on the Rie-

mann surface. For instance near a branchpoint aα, a good coordinate is ζ =
√
x− aα.

By abuse of notation we identify the point ζ(aα) ≡ aα with its x value aα = x(ζ(aα)).

The differential form dx has a zeroe at aα, as can be seen from the choice of local

coordinate x = aα + ζ2, for which dx = 2ζ dζ , which vanishes at ζ = 0.

Thus:

∂µ

daα
= − Res

ζ→ζ(aα)

dS(ζ)

dx(ζ)

(

∑

k

tk Res
p→∞−

xk(p)B(p, ζ)− 2iπ
∑

i

ǫidui(ζ)− tdS(ζ)

)

(2-38)

The equation ∂µ
daα

= 0 implies that the differential form
∑

k tk Res p→∞−
xk(p)B(p, ζ) − 2iπ

∑

i ǫidui(ζ) − tdS(ζ) (which clearly has no

poles at the branch points), must vanish at all branch points, and thus is proportional

to dx. Let us write it:

ω(p)dx(p) =
∑

k

tk Res
q→∞−

xk(q)B(p, q)− 2iπ
∑

i

ǫidui(p)− tdS(p). (2-39)

Notice that

B(x, x′) =
dx dx′

2(x− x′)2
+

1
√

σ(x)
× rational function of x (2-40)

dS(x) =
1

√

σ(x)
× rational function of x (2-41)



dui(x) =
1

√

σ(x)
× rational function of x (2-42)

so that:

ω(x) =
V ′(x)

2
+
√

σ(x) × rational function of x. (2-43)

This implies that ω(x) is solution of an algebraic equation of the form

ω2(x)− V ′(x)ω(x) + P (x) = 0 (2-44)

where P (x) is some rational function.

Moreover, notice that Res q→∞−
xk(q)B(p, q) has a pole only when p → ∞−, i.e.

it converges when p → ∞+ in the first sheet (it diverges in the second sheet), this

implies that its contribution to ω(x) is O(1/x2) as x → ∞. Similarly, dui(x) has no

pole, so the contribution dui/dx to ω is O(1/x2) as x → ∞. The term dS(p) behaves

like ±dx/x at large p → ∞±. All this implies that P (x) has no other pole than x = ∞,

i.e. it is a polynomial, and ω(x) ∼ t/x at large x.

Moreover we have by definition
∮

x′∈Ai
B(x, x′) = 0,

∮

x∈Ai
dS(x) = 0,

∮

x∈Ai
duj(x) =

δi,j, so that
∮

x∈Ai

ω(x)dx = −2iπǫi. (2-45)

Therefore we have proved that the equations ∂µ/∂aα = 0 imply that there exists a

function ω(x) solution of







ω(x)2 − V ′(x)ω(x) + P (x) = 0
ω(x) ∼∞ t/x+O(1/x2)
∮

Ai
ωdx = −2iπǫi

(2-46)

i.e. ω(x) is a solution to the loop equation eq. (2-16).

Converse:

Now assume that ω is solution to loop equations, then it is of the form

ω =
V ′(x)

2
+
√

σ(x) × polynomial of x. (2-47)

One thus sees that

r(x) = ω(p)dx(p)−
∑

k

tk Res
q→∞−

xk(q)B(p, q) + 2iπ
∑

i

ǫidui(p) + tdS(p). (2-48)

is a meromorphic differential form on the Riemann surface of the form C(x)/
√

σ(x) dx

where C(x) is some polynomial of x. It is easy to see that this polynomial C(x) must

behave at most like O(xs−1) so that

C(x) =
∑

i

ci Li(x), (2-49)



i.e.

r(x) =
∑

i

cidui(x) (2-50)

and one has
∮

Aα
r(x) = 0 so that ci = 0, and thus

r(x) = 0. (2-51)

This implies that

∂µ

daα
= − Res

ζ→ζ(aα)

dS(ζ)

dx(ζ)
(ω(ζ)dx(ζ)) = − Res

ζ→ζ(aα)
dS(ζ)ω(ζ) = 0 (2-52)

since there is no pole at ζ(aα).

This proves the theorem.

�

2.3 Example: 1-cut case, s = 0

The previous variational problem can be further simplified in the genus zero case (1

cut, s = 0). For any α and γ, consider the function x : C∗ → C defined as:

x(p) = α + γ

(

p+
1

p

)

(2-53)

and consider the function:

µ({ti}, t;α, γ) = Res
p→∞

V (x(p))
dp

p
− 2t ln γ (2-54)

We have
∂µ

∂α
= Res

p→∞
V ′(x(p))

dp

p
(2-55)

∂µ

∂γ
= Res

p→∞
V ′(x(p))

(

p+
1

p

)

dp

p
− 2t

γ
(2-56)

Let us write:

V ′(x(p)) =

deg V ′

∑

k=0

uk(p
k + p−k) (2-57)

The equations ∂µ/∂α = 0 and ∂µ/∂γ = 0 imply:

u0 = 0 , u1 =
t

γ
(2-58)

Then, the function:

ω(p) :=

p
∑

k=1

ukp
−k (2-59)



is such that

V ′(x(p))− ω(p) =

p
∑

k=1

ukp
k (2-60)

and thus

(V ′(x(p))− ω(p))ω(p) (2-61)

is a polynomial of p and 1/p which is symmetric when p → 1/p, i.e. it is a polynomial

of p+ 1/p, and so can be written as a polynomial of x(p):

(V ′(x(p))− ω(p))ω(p) = P (x(p)). (2-62)

Moreover the condition u1 = t/γ implies that at p → ∞ one has

ω(p) ∼ t/x(p) +O(1/x(p)2). (2-63)

I.e. we get the loop equations of the 1-matrix model.

2.4 Link with the free energy

The free energy is the limit

F0 = lim
N→∞

t2

N2
lnZ (2-64)

where Z is the partition function eq.(2-2). It is well known [4] that it is worth

F0 =
1

2

(

Res
p→∞+

V (x(p))ω(p) + tµ∗ +
∑

α

ǫα

∮

Bα

ω
)

(2-65)

where ω is the solution of loop equations, and µ∗ is the value of the functional µ at its

extremum. It is also well known that:

∂F0

∂t
= µ∗. (2-66)

so that µ∗ is the value of the derivative of the free energy with respect to t. It can be

called the ”entropy”.

When the eigenvalues are real and V is real, i.e. when ω is the Stieljes transform

of a positive measure dρ on R, extremum of S[dρ] it is known that we have

F0 = −S[dρ∗]. (2-67)



2.4.1 Extremal filling fractions

Often the filling fractions ǫα are not fixed, and one determines the filling fractions by

requiring:
∂ReF0

∂ǫα
= 0 (2-68)

i.e.

Re

∮

Bα

ω = 0 (2-69)

Then notice that if ǫα ∈ R one has

Re

∮

Aα

ω = Re 2iπ ǫα = 0 (2-70)

and if t is real one has

Re

∮

∞±

ω = ±Re 2iπ t = 0 (2-71)

This implies that for any closed cycle C on the Riemann surface one has

Re

∮

C

ω = 0 (2-72)

This is the ”Boutroux property”.

Definition 2.3 An algebraic curve has the Boutroux property, iff there exists a one-

form ω, such that for all closed contour C one has

Re

∮

C

ω = 0. (2-73)

In this case, the primitive h(x) = Re
∫ x

.
ω, is a harmonic function globally defined on

the algebraic curve (indeed the value of h is independent of the choice of integration

contour).

An important property of F0 is that:

∂2F0

∂ǫα∂ǫβ
= 2iπ

∮

Bα

duβ := 2iπ τα,β (2-74)

and the s × s matrix τ , called the Riemann matrix of periods, has the well known

property [10, 11] that:

τ = τ t , Im τ > 0. (2-75)

Since the imaginary part is positive definite, we have that:

Re
∂2F0

∂ǫα∂ǫβ
= −2πIm τ < 0 (2-76)

i.e. ReF0 is a concave3 function of filling fractions, and thus it has a unique maximum.

So, in case the filing fractions were not fixed at the beginning, they are chosen as

the ones which maximize ReF0.

3Here we have a concave function because we defined Z = eF instead of the usual Gibbs convention
Z = e−F with which F = −F is convex.



3 The 2 matrix model

A similar variational principle can be found for the loop equations of the 2-matrix

model [13].

3.1 Introduction 2-matrix model

Consider two random hermitian matrices (or two random normal matrices with eigen-

values on some contours) M1,M2 of size N , with probability law:

1

Z
e−

N
t

Tr (V1(M1)+V2(M−2)−M1M2) dM1 dM2 (3-1)

where V1(x) =
∑

k
tk
k
xk, andV2(y) =

∑

k
t̃k
k
yk are polynomials called the potentials,

and t > 0 is often called ”temperature”, and Z is the partition function:

Z =

∫

HN×HN

e−
N
t

Tr (V1(M1)+V2(M−2)−M1M2) dM1 dM2. (3-2)

The expectation value of the resolvent of matrix M1:

W (x) =
t

N
E
(

Tr (x−M1)
−1
)

(3-3)

plays an important role, indeed it encodes the information on the spectrum of M1.

In many cases (depending on the choice of potentials V1, V2, and on the choices of

contours), it is known or conjectured (see [4] for instance), that W (x) has a large N

limit, which we write:

∃ lim
N→∞

V ′
1(x)−W (x) = ω(x) (3-4)

and in many cases (again depending on the choice of potentials V1, V2 and contours),

it is an algebraic function of x, i.e. it satisfies an algebraic equation [13, 14, 17, 5]:

P (x, ω(x)) = 0 , P (x, y) =
∑

i,j

Pi,jx
i yj. (3-5)

For the 2-matrix model, the polynomial P (x, y) is in general not quadratic in y,

instead it takes the form [5]:

P (x, y) = (y − V ′
1(x)) (x− V ′

2(y)) +Q(x, y) (3-6)

where Q(x, y) is a polynomial such that:

degxQ < deg V ′
1 , degy Q < deg V ′

2 . (3-7)

3.1.1 Some algebraic geometry

The equation P (x, y) = 0 is an algebraic equation, it defines a compact Riemann

surface C. This Riemann surface has a certain genus g.



3.1.2 Filling fractions

Let us define for α = 1, . . . , g, a basis of 2g non–contractible cycles on C:

Aα=1,...,g , Bα=1,...,g, (3-8)

with canonical symplectic intersections

Aα ∩ Bβ = δα,β , Aα ∩ Aβ = ∅ , Bα ∩ Bβ = ∅. (3-9)

Such a canonical basis always exists but is not unique.

Very often, it is interesting to consider matrix models with ”fixed filling fractions”,

i.e. where the number of eigenvalues of M1 or M2 in a certain region of the complex

plane is held fixed. The number nα of eigenvalues ofM1 enclosed by a clockwise contour

Cα is:

nα = − N

2iπ t

∮

Cα

W (x) dx (3-10)

In the large N limit, the fixed filling fraction condition amounts to fix:

t nα

N
=

1

2iπ

∮

Aα

ω(x) dx = ǫα (3-11)

The numbers ǫα are called ”filling fractions”, they tell the number (times t/N) of

eigenvalues of M1 which concentrate in regions enclosed by the Aα’s.

3.1.3 Loop equations

Our goal now is to find the polynomial Q(x, y).

It is well known [5, 14] that this polynomial can be determined by the following

equations:

Definition 3.1 (Loop equations) The loop equations of the 2-matrix model with po-

tentials V1, V2 and with filling fractions ǫα is the following set of equations [5, 14, 6]:







































∃ polynomialQ(x, y) such that (ω(x)− V ′
1(x)) (x− V ′

2(ω(x))) +Q(x, ω(x)) = 0

ω(x)∼∞+
V ′
1(x)− t/x+O(1/x2)

x∼∞−
V ′
2(ω(x))− t/ω(x) +O(1/ω(x)2)

∀α = 1, . . . , g , − 1
2iπ

∮

Aα
ω(x) dx = ǫα

(3-12)



Let us check that this system implies as many equations as unknowns. The 2

equations regarding the behaviors at ∞± imply that degxQ < deg V ′
1 and degy Q <

deg V ′
2 , and they also imply that the leading term (largest power of both x and y) is

of the form:

Q(x, y) ∼ t
V ′
1(x) V

′
2(y)

xy
. (3-13)

This implies that the number of unknown coefficients of Q(x, y) is deg V ′
1 × deg V ′

2 − 1,

which is also4 the genus g of the Riemann surface of equation P (x, y) = 0. Therefore

the number of unknown coefficients of Q(x, y) matches the number of filling fraction

conditions.

Our goal is not to study those equations, in particular their number of solutions

(existence or unicity questions), as there already is a large literature about them, but

to show that the same set of equations eq. (3-12) can be obtained from a variational

principle.

3.2 Algebro-geometric notations

Let C be a compact Riemann surface of genus g, defined by an algebraic equation

P (x, y) = 0.

This means that every point p ∈ C corresponds to a point (x(p), y(p)) ∈ C2 such that

P (x(p), y(p)) = 0. In other words there exists two analytical meromorphic functions

x : C → C, y : C → C

{

x : C → C

p 7→ x(p)
,

{

y : C → C

p 7→ y(p)
(3-14)

such that

{(x, y) ∈ C
2 | P (x, y) = 0} ≡ {(x(p), y(p)) | p ∈ C}. (3-15)

3.2.1 Branchpoints

We define branchpoints as the zeroes of the differential dx on C:

dx(eα) = 0. (3-16)

Their x–projection is denoted:

aα = x(eα). (3-17)

We assume that, generically, those zeroes are simple zeroes, i.e. a good local coordinate

on C near eα is:

ζ =
√
x− aα , x = aα + ζ2 , dx = 2ζdζ. (3-18)

4classical result of algebraic geometry, the genus is the number of interior points of the Newton’s
polygon. And here the Newton’s polygon has degV ′

1
× degV ′

2
− 1 interior points.



3.2.2 Holomorphic forms

There exists [11, 10]) a unique basis of holomorphic forms dui(p) on C normalized on

A-cycles such that:
∮

Ai

duj(p) = δi,j , i, j = 1, . . . , g. (3-19)

One can always write:

dui(p) =
Ri(x(p), y(p)) dx(p)

P ′
y(x(p), y(p))

(3-20)

where Ri(x, y) ∈ C[x, y] is the unique polynomial of degree degx Ri < deg V ′
1 and

degy Ri < deg V ′
2 , chosen such that dui(p) has no pole on C and

∮

Ai
duj(p) = δi,j.

3.2.3 2nd kind form

Similarly, there exists a unique symmetric bi–differential form B(x, y) ∈ T ∗(C)⊗T ∗(C),
having a double pole on the diagonal, and no other pole, and normalized on A-cycles:

B(p, p′) ∼
p→p′

dζ(p)⊗ dζ(p′)

(ζ(p)− ζ(p′))2
+ analytical at p = p′ (3-21)

∀ i = 1, . . . , g , ∀ p ∈ C
∮

p′∈Ai

B(p, p′) = 0 (3-22)

B(p, p′) is called the ”fundamental form of the second kind” or (derivative of) ”Green–

function” or ”heat kernel” on C.
It has the property [11] that:

∮

p′∈Bi

B(p, p′) = 2iπdui(p). (3-23)

We also define the 3-rd kind differential:

dS(p) =

∫ ∞+

p′=∞−

B(p, p′) (3-24)

where the integration path is chosen5 such that it doesn’t intersect any A-cycle or

B-cycle.
Then, let p0 be an arbitrary basepoint and define

Λ(p) = exp

∫ p

p0

dS (3-25)

where again the integration contour avoids A-cycles and B-cycles. Let
γ = lim

p→∞+

x(p)1/ deg∞+
(x) /Λ(p) (3-26)

γ̃ = lim
p→∞−

Λ(p)/ y(p)1/deg∞−
(y) (3-27)

Notice that the product γγ̃ is independent of the choice of p0.

5Notice that C \ ∪αAα ∪α Bα is simply connected, and thus dS is well defined.



3.3 The variational principle

Definition 3.2 Consider the following functional:

µ({tk}, {t̃k}, t; (C, x, y)) :=
∑

k

tk Res
p→∞+

x(p)kdS(p)−
∑

k

t̃k Res
p→∞−

ykdS(p)

−c Res
p→∞+

x(p)y(p) dS(p) +
∑

i

ǫi

∮

Bi

dS(p)− t ln γγ̃

(3− 28)

where (C, x, y) is a compact Riemann surface of genus g with 2 distinct marked points

called ∞+ and ∞−, and x and y any two meromorphic functions on C → P1.

It is such that an extremum of µ, i.e. dµ = 0 is a solution of the loop equation

eq. (3-12).

Theorem 3.1 The set of equations (differential with respect to variations of (C, x, y))

dµ = 0 (3-29)

is equivalent to the loop equations eq. (3-12).

proof:

Let (C, x, y) be a compact Riemann surface of genus g, with 2 marked points ∞±,

and x and y any two meromorphic functions on C → P1.

The tangent (infinitesimal variations) of the moduli space of (C, x, y) is isomorphic

to the space of meromorphic forms on C. Notice that one can vary at the same time

the complex structure of C, as well as the functions x and y.

Let δ denote a tangent direction, i.e.

δ(y)dx− δ(x)dy = Ω (3-30)

Ω is a meromorphic form.

The Rauch variational formula gives:

δ B(p, q)|x(p),x(q) =
∑

α

Res
s→eα

B(p, s)B(q, s)Ω(s)

dx(s)dy(s)
(3-31)

thus:

δ dS(p)|x(p) =
∑

α

Res
s→eα

B(p, s)dS(s)Ω(s)

dx(s)dy(s)
(3-32)

δ ln Λ(p)|x(p) =
∑

α

Res
s→eα

dEp(s)dS(s)Ω(s)

dx(s)dy(s)
(3-33)

δ ln γ = − Res
s→eα

dS∞x,o(s)dS(s)Ω(s)

dx(s)dy(s)
(3-34)



By the chain rule we have:

δ dS(p)|y(p) = δ dS(p)|x(p) − d

(

Ω(p)dS(p)

dx(p)dy(p)

)

(3-35)

δ dS(p)|y(p) = Res
s→eα

B(p, s)dS(s)Ω(s)

dx(s)dy(s)
(3-36)

δ ln Λ(p)|y(p) = Res
s→eα

dEp(s)dS(s)Ω(s)

dx(s)dy(s)
(3-37)

δ ln γ̃ = Res
s→eα

dS∞y,o(s)dS(s)Ω(s)

dx(s)dy(s)
(3-38)

and

δ ln(γγ̃) = − Res
s→eα

dS(s)dS(s)Ω(s)

dx(s)dy(s)
(3-39)

Thus:

δµ = Res
e

ΩdS

dxdy
(−cydx+

∑

tk Res
∞+

xkB −
∑

t̃k Res
∞y

ykB + c Res
∞y

xyB

+
∑

ǫidui + tdS)

(3− 40)

δµ = 0 for any meromorphic 1-form Ω implies that

cydx =
∑

tk Res
∞x

xkB −
∑

t̃k Res
∞y

ykB + c Res
∞y

xyB +
∑

ǫidui + tdS (3-41)

This expression of ydx implies that near ∞+ one has

cy ∼ V ′
1(x)−

t

x
+O(1/x2) (3-42)

Doing the same computation with fixed y instead of fixed x yields:

cxdy =
∑

t̃k Res
∞−

ykB −
∑

tk Res
∞+

xkB + c Res
∞+

xyB −
∑

ǫidui − tdS (3-43)

which gives that near ∞− one has

cx ∼ V ′
2(y)−

t

y
+O(1/y2) (3-44)

and moreover
∮

Ai

ydx = 2iπ ǫi. (3-45)

The reverse proposition is obvious, this concludes the proof.

�



3.4 Example: Genus zero curves

Genus 0 curves can be parametrized by rational functions. Consider (C, x, y) where C
is a genus zero curve with 2 marked points, i.e. it is the Riemann sphere P

1, and we

can chose the 2 marked points to be ∞+ = ∞ and ∞− = 0, and x and y are 2 rational

functions. Let us assume that x has a simple pole at p = ∞ and an arbitrary pole at

p = 0, and y has a simple pole at p = 0 and an arbitrary pole at p = ∞:

x(p) =

d2
∑

k=−1

αkp
−k

y(p) =

d1
∑

k=−1

βkp
k (3-46)

Consider the following function:

µ({ti}, {t̃i}, c, t; {αk}, {βk}) (3-47)

µ :=
∑

k

tk Res
∞

x(p)k
dp

p
+
∑

k

t̃k Res
∞

y(p)k
dp

p

−c Res
∞

x(p)y(p)
dp

p
− t ln (α−1β−1)

(3− 48)

We have:

∂µ

∂αj
= Res

∞
(
∑

k

ktkx(p)
k−1 − cy(p))

p−jdp

p
− t

δj,−1

α−1
(3-49)

∂µ
∂αj

= 0 implies:

∀ j = −1, . . . , d2
∂µ

∂αj
= 0 −→ cy(p) =

∑

k

ktkx(p)
k−1 − t

x(p)
+O(1/p2) (3-50)

and similarly with the βj’s

∀ j = −1, . . . , d1
∂µ

∂βj
= 0 −→ cx(p) =

∑

k

kt̃ky(p)
k−1 − t

y(p)
+O(p2) (3-51)

i.e. we obtain the loop equations, for instance as written in [7].

4 Generalization: algebraic plane curve with fixed

behaviors at poles

The 1-matrix and 2-matrix loop equations are special cases of the following problem

(related to the Witham hierarchy [15, 1]):



Problem: Let g, m, {tk,j}k=1,...,m, j=1,...,dk , {ǫi}i=1,...,g, {Xj}j=1,...,m be given.

Find (C, x, y) where C is a compact Riemann surface of genus g, with m marked

points {∞k}k=1,...,m, and with 2g closed cycles whose homology class form a symplectic

basis of cycles Ai∩Bj = δi,j , and x and y are 2 meromorphic functions on C, such that:

• y and x are holomorphic on C \ {∞k}k=1,...,m,

•
∀ k = 1, . . . , m x(∞k) = Xk. (4-1)

If Xk = ∞ we define the local coordinate ζk(p) = x(p)−1/deg∞k
(x), and if Xk 6= ∞ we

define ζk(p) = x(p)−Xk.

• the 1-form ydx has a prescribed negative part of its Laurent series expansion near

∞k:

y(p)dx(p) ∼
∞k

dk
∑

j=0

tk,j ζk(p)
−j−1 dζk(p) + analytical at∞k (4-2)

• one has prescribed filling fractions

1

2iπ

∮

Ai

ydx = ǫi. (4-3)

Here we shall not consider the question of existence and/or unicity of a solution.

We just mention that a necessary condition for a solution to exist is that the sum of

residues of a meromorphic form vanishes i.e.

∑

k

tk,0 = 0. (4-4)

From now on, we assume that this condition is fulfilled, and we shall merely refor-

mulate the question as a variational principle.

4.1 Variational principle

Definition 4.1 Let (C, x) be a Hurwitz space, where C is a Riemann surface of genus

g, with marked points ∞k, and with a given symplectic basis of cycles Ai∩Bj = δi,j, and

x is a meromorphic function on C, used as a projection on the base Riemann sphere:

x : C → C.

We define ∀ i, i′ any two distinct ∞i 6= ∞i′:

µi,i′({tk,j}; (C, x, y)) =
∑

k

Res
p→∞k

dk
∑

j=1

tk,j
j

ζj(p)
−j dS∞i,∞i′

(p)

+
∑

k

tk,0 ln γk +
∑

α

ǫα

∮

p∈Bα

dS∞i,∞i′
(p)

(4− 5)



where

dS∞i,∞i′
(p) =

∫ ∞i′

∞i

B(., p) (4-6)

and if o is an arbitrary generic point of C

γk =
E(∞i,∞k)E(∞i′, o)

E(∞i′,∞k)E(∞i, o)
. (4-7)

notice that since
∑

k tk,0 = 0, we have that
∑

k tk,0 ln γk is independent of the choice of

o ∈ C.

Theorem 4.1 For any i, i′, let µ = µi,i′, then a solution of dµ = 0 is a solution to the

problem above.

proof:

The tangent space to the moduli space of (C, x, y), is the space of meromorphic

forms Ω on C such that:

δy dx− xδy = Ω (4-8)

Moreover, if we consider that x and y have poles only at the ∞k’s, we require that Ω

can have poles only at the ∞k’s.

As before, we use Rauch formula and get:

∂µ

∂aα
= Res

p→eα

dS∞i,∞i′
(p)

dx(p)

(

∑

k

∑

j≥1

tk,j
j

Res
q→∞k

B(p, q)ζk(q)
−j

+
∑

k

tk,0dS∞k,o(p) + 2iπ
∑

α

ǫαduα(p)
)

(4− 9)

(notice again that since
∑

k tk,0 = 0, then
∑

k tk,0dS∞k,o is independent of the choice of

o ∈ C).
Notice that the quantity inside the bracket has no pole at eα, and thus the fact that

the residue vanishes implies that the quantity in the bracket vanishes at eα, and thus

can be divided by dx:

y =
1

dx

(

∑

k

∑

j≥1

tk,j
j

Res
q→∞k

B(p, q)ζk(q)
−j

+
∑

k

tk,0dS∞k,o(p) + 2iπ
∑

α

ǫαduα(p)
)

(4-10)

is a meromorphic function with the required Laurent series behavior near poles and

filling fractions, it is thus a solution to the problem.

�



5 Conclusion

We have seen that the loop equations of various matrix models, which consist in finding

a plane curve with prescribed asymptotic behaviors at poles and prescribed filling

fractions on A-cycles, are equivalent to a local variational principle.

Contrarily to the energy functional S or F0, the functional µ doesn’t have convexity

properties, so one cannot easily conclude to the existence of a solution of the variational

principle. However, the functional µ is in fact easier to compute, and the loop equations

easier to derive from µ. Also, the geometric meaning of that µ needs to be understood,

in particular the equation eq. (2-66).

In this article we have explicitly considered only the 1 and 2-matrix models, al-

though section 4 guarantees that it also applies to the ”chain of matrices” [7, 8] matrix

model, and possibly more. Also, we have written the explicit proof for 1 and 2 ma-

trix model only for polynomial potentials, and again section 4 guarantees that the

same works for potentials whose derivative is a rational function (called semi-classical

potentials [1]), or also for matrix models with hard edges [1, 9].
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