André Voros 
email: andre.voros@cea.fr
  
Simplifications of the Keiper/Li approach to the Riemann Hypothesis

The Keiper/Li constants {λ n } n=1,2,... are asymptotically (n → ∞) sensitive to the Riemann Hypothesis, but highly elusive analytically and difficult to compute numerically. We present quite explicit variant sequences that stay within the abstract Keiper-Li frame, and appear simpler to analyze and compute.

The present work develops results that we announced in 2015. [START_REF] Voros | An asymptotic criterion in an explicit sequence[END_REF] 1 Generalities and notations

We use the standard basic notions (e.g., [8, chap. 8]): ζ(x) : the Riemann zeta function (analytic over C \ {+1}); 2ξ(x) : a completed zeta function, with its Riemann's Functional Equation:

2ξ(x) def = x(x -1)π -x/2 Γ(x/2) ζ(x) ≡ 2ξ(1 -x) (1) 
(this doubled Riemann's ξ-function is better normalized: 2ξ(0) = 2ξ(1) = 1).

{ρ} : the set of zeros of ξ (i.e., the nontrivial zeros of ζ, or Riemann zeros, counted with multiplicities if any, and grouped in pairs (ρ, 1 -ρ) in the sums that we write as ρ,1-ρ ); they all lie in the strip {0 < Re x < 1}.

The Riemann Hypothesis (RH) : all the Riemann zeros lie on the critical line L def = {Re x = 1 2 }. k!! : the double factorial, used here for odd integers k only, in which case

k!! def = k(k -2) • • • 1
for odd k > 0, def = 2 (k+1)/2 Γ( 1 2 k + 1)/ √ π for odd k ≷ 0 (e.g., (-1)!! = 1). ( 2)

B 2m : the Bernoulli numbers; γ : Euler's constant.

The Keiper and Li coefficients

In 1992 Keiper [START_REF] Keiper | Power series expansions of Riemann's ξ function[END_REF] considered a real sequence {λ n } of generating function

f (z) def = log 2ξ(M(z)) ≡ ∞ n=1 λ K n z n , M(z) def = 1 1 -z , (3) 
(λ K n : our notation for Keiper's λ n ), deduced that

λ K n ≡ n -1 ρ,1-ρ [1 -(1 -1/ρ) n ], (4) 
and argued that, under RH, λ K n > 0 (∀n) and moreover "if [...] the zeros are very evenly distributed, we can show that" [this without proof]

λ K n ≈ 1 2 log n + c, c = 1 2 (γ -log 2π -1) ≈ -1.130330700754 . (5) 
In [START_REF] Balian | Quartic oscillator[END_REF], the conformal mapping M : x = (1 -z) -1 acts to pull back the critical line L to the unit circle {|z| = 1}, with the fundamental consequence: RH ⇐⇒ f regular in the whole open unit disk {|z| < 1}. [START_REF] Coffey | Toward verification of the Riemann Hypothesis: application of the Li criterion[END_REF] Then, (3) specifies the sequence {λ n } as a particular encoding of the germ of log 2ξ(x) at the "basepoint" x = M(0) (here: x = 1).

In 1997 Li [START_REF] Li | The positivity of a sequence of numbers and the Riemann Hypothesis[END_REF] independently introduced another sequence λ n , through [START_REF] Coffey | New results concerning power series expansions of the Riemann xi function and the Li/Keiper constants[END_REF] deduced that

λ L n = 1 (n -1)! d n dx n [x n-1 log 2ξ(x)] x=1 , n = 1, 2, . . . (λ L n def = Li's λ n ),
λ L n ≡ ρ,1-ρ [1 -(1 -1/ρ) n ], (8) 
and proved the sharp equivalence: RH ⇐⇒ λ L n > 0 for all n (Li's criterion). Actually, by comparing (4) vs [START_REF] Davenport | Multiplicative Number Theory[END_REF] for instance,

λ L n ≡ n λ K n for all n = 1, 2, . . . ; (9) 
our superscripts K vs L will disambiguate λ n whenever the factor n matters.

1.2 Probing RH through the Keiper-Li {λ n }

In 2000 Oesterlé proved (but left unpublished) [START_REF] Oesterlé | Régions sans zéros de la fonction zêta de Riemann, typescript[END_REF] that RH alone implies

λ L n = n( 1 2 log n + c) + o(n), with c = 1 2 (γ -log 2π -1)
as in ( 5). [START_REF] Erdélyi | Asymptotic Expansions[END_REF] In 2004-2006, using the saddle-point method on an integral form of λ n , we gave an asymptotic criterion for RH [23] [START_REF] Voros | Zeta functions over zeros of zeta functions[END_REF] in the form of this alternative:

• RH false: λ L n ∼ - Re ρ>1/2 (1 -1/ρ) -n (mod o(r n ) ∀r > 1); (11) • RH true: λ L n ∼ n( 1 2 log n + c) (mod o(n)) (12) 
(erratum: we had the sign wrong in the case RH false, which did not affect the purely qualitative consequences we drew at the time; correction in [START_REF] Voros | Zeta functions over zeros of Zeta functions and an exponentialasymptotic view of the Riemann Hypothesis[END_REF]). In 2007 Lagarias [START_REF] Lagarias | Li coefficients for automorphic L-functions[END_REF] strengthened [START_REF] Erdélyi | Asymptotic Expansions[END_REF] by improving o(n) to O( √ n log n). In 2011 Arias de Reyna [START_REF] Arias De Reyna | Asymptotics of Keiper-Li coefficients[END_REF] further improved o(n) to n y n with {y n } ∈ ℓ 2 .

To assess how the above criteria may advance the testing of RH, one must bring in the height T 0 up to which RH is confirmed by direct means: T 0 ≈ 2.4 • 10 12 currently (since 2004). [START_REF] Gourdon | The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height[END_REF] (13)

It is then known that: first, no λ n can go negative as long as n < T 2 0 [21][4, § 2.3]; and more broadly, if a zero ρ = 1 2 ± t ± iT violates RH (with t > 0, T > T 0 ), then no effect of that will be detectable upon the λ n unless [START_REF] Voros | Zeta functions over zeros of zeta functions[END_REF] n T 2 /t > 2T 2 0 (since t < 1 2 ), currently implying n 10 25

(n T 2 /t actually states the uncertainty principle in the relevant geometry). At the same time, the λ n are quite elusive analytically [5][7], and also numerically (see Maślanka [START_REF] Maślanka | Li's criterion for the Riemann hypothesis -numerical approach[END_REF][19] and Coffey [START_REF] Coffey | Toward verification of the Riemann Hypothesis: application of the Li criterion[END_REF]) as their evaluation requires a recursive machinery, whose intricacy grows very rapidly with n, and which moreover destroys ca. 0.2 decimal place of precision per step n (if done ex nihilo -i.e., using no Riemann zeros as input) [19, fig. 6]; only λ n -values up to n ≈ 4000 were thus accessed. Upon posting this ms, we learnt from F. Johansson that he recently attained n = 10 5 [14, § 4.2] (seeing a loss of 1 bit ≈ 0.3 decimal place per step n). Now even this big improvement stays well below the range [START_REF] Johansson | Rigorous high-precision computation of the Hurwitz zeta function and its derivatives[END_REF] needed for up-to-date testing of RH.

2 An explicit variant sequence {Λ n }

We propose to deform the {λ K n } (in Keiper's normalization (3)) into a simpler sequence {Λ n } having a totally closed form. The original λ n appeared rigidly specified, but only inasmuch as the pole x = 1 of ζ(x) was invariably made the basepoint. Now while this choice can make sense, it is by no means compulsory. On the contrary, other conformal mappings than M in (3) realize the Keiper-Li idea (RH-sensitivity, embodied in ( 6)) just as well: the key condition is that all Riemann zeros on L must pull back to {|z| = 1}, achieving [START_REF] Coffey | Toward verification of the Riemann Hypothesis: application of the Li criterion[END_REF], while nothing binds the basepoints x to which z = 0 can map; the resulting λ n will just vary with x as functions of the derivatives ξ (m) (x). As such, Sekatskii's "generalized Li's sums" [START_REF] Sekatskii | Generalized Bombieri-Lagarias' theorem and generalized Li's criterion with its arithmetic interpretation[END_REF] 

have x = (1 -a) ∈ R \ { 1
2 }, whereas our "centered" λ 0 n were tailored to have x = 1 2 , the symmetry center for ξ(x) ([25, § 3.4], and Appendix). Our next construction will push this idea of deformation even further, and have no single distinguished basepoint (except, loosely, x = ∞ ?): we will substitute selected finite differences for the derivatives of log ξ that enter the original λ n (and, in the Appendix, our centered λ (0) n ), to attain more explicit sequences.

Construction of the new sequence

The original definition (3) is equivalent, by the residue theorem, to the contour integral formula

λ K n = 1 2πi dz z n+1 f (z), f (z) ≡ log 2ξ 1 1 -z , (15) 
with a positive contour in the unit disk around z = 0 excluding all other singularities (i.e., those of f ). Derivatives of log 2ξ(x) up to order n occur in λ n because the denominator z n+1 has all its zeros degenerate (at z = 0). Now at given n, if we split those zeros apart as 0, z 1 , . . . , z n (all distinct, and still inside the contour), then the so modified integral evaluates to a linear combination of the f (z m ) : derivatives become finite differences. To split the zeros, instead of plain shifts of the factors z → z -z m which fail to preserve the all-important unit disk, we use hyperbolic translates

z → B zm (z) = (z -z m )/(1 -z * m z) (Möbius transformations). ( 16 
)
The point z = 0 has now lost its special status, hence so does the particular mapping M (picked for pulling back the pole x = 1 to z = 0), so that the variable x, natural for the ζ-function, also becomes the simplest to use. Then [START_REF] Keiper | Power series expansions of Riemann's ξ function[END_REF] expresses as [START_REF] Li | The positivity of a sequence of numbers and the Riemann Hypothesis[END_REF] and the deformations as above read as

λ K n = 1 2πi dx x(x -1) x x -1 n log 2ξ(x) (integrated around x = 1),
1 2πi Cn dx x(x -1) 1 b x 1 (x) . . . b xn (x) log 2ξ(x), b x(x) ≡ x * x x - x x + x * -1 , (18) 
where the contour C n encircles the points 1, x 1 , . . . , x n positively (and may as well depend on n). Now the integral in ( 18) readily evaluates to

n m=1 1 x m (x m -1) 1 [b x 1 . . . b xn ] ′ (x m ) log 2ξ(x m ) (19) 
by the residue theorem (x = 1 contributes zero since log 2ξ(1) = 0). Finally, for each n we select x m ≡ 2m for m = 1, 2, . . . (independently of n) to benefit from the known values ζ(2m), and a contour C n just encircling the real interval [1, 2n] positively (encircling the subinterval [2, 2n] would suffice, however here it will always be of interest to dilate, not shrink, C n ). All that fixes the sequence

Λ n def = 1 2πi Cn dx x(x -1) G n (x) log 2ξ(x), (20) 
G n (x) def = n m=1 x + 2m -1 x -2m ≡ Γ( 1 2 x -n) Γ( 1 2 (x+1) + n) Γ( 1 2 x) Γ( 1 2 (x+1)) (21) 
≡ g(x)(-1) n Γ( 1 2 (x+1) + n) Γ(1 -1 2 x + n) , g(x) def = √ π 2 x-1 sin(πx/2) Γ(x) (22) 
(by the duplication and reflection formulae for Γ). For this case, [START_REF] Maślanka | Effective method of computing Li's coefficients and their properties[END_REF] yields

Λ n ≡ (-1) n n m=1 (-1) m A nm log 2ξ(2m), n = 1, 2, . . . , (23) 
with

A nm = 2 -2n 2m -1 2(n+m) n+m n+m 2m ≡ 2 m-n (2(n + m) -1)!! (2m -1) (n -m)! (2m)! ≡ 2 2m Γ(n + m + 1/2) (2m -1) (n -m)! (2m)! √ π (for m = 0, 1, 2, . . .), (24) 2ξ 
(2m) = |B 2m | |(2m -3)!!| (2π) m ≡ 2 |B 2m | |Γ(m -1 2 )| π m+1/2 (25) 
(the absolute values in the last two denominators only act for m = 0, resulting in log 2ξ(0) = 0 which vanishes thereafter). So, this particular deformation {Λ n } of Keiper's {λ K n } is specified by (23) in a totally explicit form (and fairly uniquely dictated as above). With no recursion involved, any single Λ n can be computed straight away and by itself, in welcome contrast to the original λ n .

Remarks.

1) n m=1

(-1) m A nm m is computable by the second sum rule (30) below (with 24)); the (log 2π)-contributions to (23) from the first expression [START_REF] Voros | Zeta functions over zeros of Zeta functions and an exponentialasymptotic view of the Riemann Hypothesis[END_REF] can thereby be summed, resulting in Λ n ≡ 1 2 log 2π + u n with

A n0 ≡ -2 -n (2n-1)!! / n! by (
u n def = (-1) n n m=1 (-1) m A nm log |B 2m | (2m -3)!! + 1 2A n0 log 2π : (26) 
it was through this sequence {u n } that we earlier announced our results [START_REF] Voros | An asymptotic criterion in an explicit sequence[END_REF].

Likewise, the last expression (25) leads to the partially summed form

Λ n ≡ 1 2 log π + (-1) n n m=1 (-1) m A nm log |B 2m | Γ(m-1 2 ) + 1 A n0 -A n0 log 2 + 1 A n0 - A n0 2 log π . (27)
2) If in place of (25) we use (1) and the expanded logarithm of the Euler prod-

uct: log ζ(x) ≡ p ∞ r=1 p -rx /r (x > 1)
where p runs over the primes, then (23) yields an arithmetic form for Λ n , in analogy with Bombieri-Lagarias's Thm 2 for λ L n . [5, § 3] 3) Báez-Duarte's sequential criterion for RH [START_REF] Báez-Duarte | A sequential Riesz-like criterion for the Riemann Hypothesis[END_REF] is similarly explicit in terms of the Bernoulli numbers, but there, any effect of RH-violating zeros seems hopelessly tiny until inordinately large n e πT 0 [20, § 4][11, § 7] (the latter quotes n 10 600,000,000 ). 4) With L-functions for real primitive Dirichlet characters χ in place of ζ, [8, chaps. 5, 6, 9] the whole argument carries over, essentially unchanged for χ even, whereas

Λ χ,n = (-1) n n m=1 (-1) m 2 m-n (2(n + m) + 1)!! (2m+1) (n-m)! (2m+1)! log ξ χ (2m + 1) (28) 
for χ odd, where ξ χ (x) is the completed

L χ -function (normalized to ξ χ (0) ≡ ξ χ (1) = 1, like 2ξ(x) for ζ in (1)
), whose values at x = 2m + 1 are explicit.

Expression of Λ n in terms of the Riemann zeros

Let the primitive

F n (x) def = x ∞ G n (y) y(y -1) dy ≡ (-1) n - 1 A n0 log(x -1) + n m=0 (-1) m A nm log(x -2m) (29)
be defined as single-valued from a neighborhood of x = ∞ to the whole xplane minus the cut [0, 2n]. E.g., F 1 (x) = 1 2 log [x(x -2) 3 /(x -1) 4 ]; and for general n, (29) follows from, e.g., [13, §2.102] using the A nm from [START_REF] Voros | Zeta functions over zeros of zeta functions[END_REF].

For x → ∞, F n (x) ∼

x ∞ dy/y 2 = -1/x; the consistency of this with (29) imposes the identities

n m=0 (-1) m A nm ≡ 1 A n0 , 2 n m=1 (-1) m A nm m ≡ (-1) n + 1 A n0 . ( 30 
)
In terms of (29), the Λ n result by summing the following series over the zeros (converging like ρ,1-ρ 1/ρ for any n):

Λ n ≡ ρ,1-ρ F n (ρ), n = 1, 2, . . . . (31) 
(For the original λ K n , (29) uses [x/(x -1)] n in place of G n by [START_REF] Li | The positivity of a sequence of numbers and the Riemann Hypothesis[END_REF], exceptionally yielding rational functions:

n -1 [1 -(1 -1/(1 -x)) n ],
for which (31) restores (4).)

Proof of (31) (condensed, see fig. 1): first stretch the contour C n in (20) to C ′ n fully enclosing the cut [0, 2n] of F n (as allowed by log 2ξ(0) = 0). Since F n is single-valued on C ′ n , the so modified ( 20) can be integrated by parts,

Λ n def = - 1 2πi C ′ n F n (x) ξ ′ ξ (x)dx, (32) 
then the contour C ′ n can be further deformed into a sum of an outer anticlockwise circle C R centered at 1 2 of radius R → ∞ (not drawn), and of small clockwise circles around the poles of the meromorphic function ξ ′ /ξ inside C R ; these poles are the Riemann zeros ρ, and each contributes F n (ρ). By the Functional Equation ( 1), the integral on

C R is also C R 1 2 [F n (x) + F n (1-x)] [ ξ ′
ξ ](x)dx, which tends to 0 if R → ∞ staying far enough from ordinates of Riemann zeros in a classic way (so that |ζ ′ /ζ|(s + iR) < K log 2 R for all s ∈ [-1, +2] [8, p. 108]), hence (31) results.

Criterion for RH based on the new sequence

We will sketch why the totally explicit sequence {Λ n } largely shares the sensitivity to RH of the highly elusive Keiper-Li sequence.

Asymptotic criterion

We will mainly argue an asymptotic sensitivity to RH as n → ∞, through this alternative for {Λ n } which parallels ( 11)-( 12) for {λ n } :

• RH false: Λ n ∼ Re ρ>1/2 F n (ρ) (mod o(n ε ) ∀ε > 0), ( 33 
)
1 0 1/2 2n x Re Im x C C' n L n ρ′ ρ 2
Figure 1: Deformation of the integration path for the integral (32) against the meromorphic function ξ ′ /ξ whose poles are the Riemann zeros, here exemplifiednot on scale -by ρ (on the critical line), and ρ ′ (off the line, putative, shown with its partner across the critical line). A symmetrical lower half-plane is implied.

and F n (ρ) ∼ g(ρ) ρ(ρ -1) (-1) n n ρ-1/2 log n (n → ∞), ( 34 
) =⇒ |F n (ρ)| ≈ 1 | Im ρ| 2 log n 2n | Im ρ| Re ρ for n ≫ | Im ρ| ≫ 1. (35) • RH true: Λ n ∼ log n + C, C = 1 2 (γ -log π-1) ≈ -0.783757110474, (36) 
the latter to be compared to [START_REF] Erdélyi | Asymptotic Expansions[END_REF], with C = c + 1 2 log 2. As for (33), the summation converges if the terms with ρ and ρ * are grouped together (as symbolized by the curly brackets), and more caveats are issued in § 3.2.

We give a condensed derivation. Past some common generalities, we will separate the cases RH true/false (short of a unified method as in [23]).

The general idea is nowadays known as large-order perturbative analysis or instanton calculus, but initially we just follow the pioneering Darboux's theorem [9, §7.2][3] to get the large-order behavior of Taylor series like (3) out of the integral form [START_REF] Keiper | Power series expansions of Riemann's ξ function[END_REF] or more simply, its integration by parts λ L n = (2πi) -1 z -n f ′ (z) dz because f ′ is meromorphic whereas f has branch cuts. Then this integrand has the large-n form e Φn(z) where Φ n tends to ∞ with n (Φ n (z) ∼ -n log z), hence the steepest-descent method applies: [10, § 2.5] we deform the integration contour C toward decreasing Re Φ n , i.e. here, into a circle of radius growing toward 1 (fig. 2); then, each of the encountered singularities of f ′ , here simple poles M -1 (ρ ′ ) for RH-violating zeros ρ ′ , yields an asymptotic contribution -z -n ρ ′ , all of which add up to [START_REF] Ph | On differences of zeta values[END_REF].

[23] If on the other hand RH is true, then the contour can arbitrarily approach the unit circle, (11) stays empty, and only a finer analysis of the limiting integral ( [START_REF] Oesterlé | Régions sans zéros de la fonction zêta de Riemann, typescript[END_REF], recalled in § 3.3.1 below) leads to a definite asymptotic form, as [START_REF] Erdélyi | Asymptotic Expansions[END_REF]. We then wish to do the same with an (x-plane) integral form for Λ n , be it [START_REF] Maślanka | Báez-Duarte's criterion for the Riemann Hypothesis and Rice's integrals[END_REF] (with the function G n (x) defined by ( 21)-( 22)), or (32) (with F n (x) defined by ( 29)). Now [START_REF] Sekatskii | Generalized Bombieri-Lagarias' theorem and generalized Li's criterion with its arithmetic interpretation[END_REF] at once implies 1) n e log n(x-1/2) for n → ∞ at fixed x, (37) hence now the large asymptotic parameter is log n and the large-n level lines of the integrand are {Re x = 1 2 + t 0 }. For the steepest-descent method, |z| → 1 -in fig. 2 thus becomes t 0 → 0 + . A new complication is that these level lines now all terminate at ∞, an essential singularity. Temporarily ignoring this, we note that the contour deformation on (32) for Λ n has already yielded (31), so we simply have to extract the asymptotically relevant part of ρ F n (ρ). For n → ∞, F n (ρ) is to be expressed using a steepest-descent path [10, § 2.5], as

G n (x) ∼ g(x)(-1) n n x-1/2 ∼ g(x)(-
F n (ρ) = ρ -∞ G n (x) x(x -1) dx ∼ ρ -∞ g(x) x(x -1) (-1) n n x-1/2 dx : (38) 
a Laplace transform in the variable log n, of asymptotic form [10, eq. 2.2(2)]

F n (ρ) ∼ g(ρ) ρ(ρ -1) (-1) n n ρ-1/2 log n . ( 39 
)
Consequently, the removal of all o(n t 0 +ε ) terms from (31) unconditionally leaves us with

Λ n = Re ρ>t 0 F n (ρ) + o(n t 1 ) for all t 1 > t 0 ≥ 0, ( 40 
)
where the summation converges if the terms with ρ and ρ * are grouped together (as symbolized by the curly brackets). However, in the RH true case, (40) with t 0 = 0 delivers no better than Λ n = o(n ε ) ∀ε > 0, and only a finer analysis of the limiting integral on the critical line L will lead to a definite asymptotic form, in § 3.3.2. Hence we pursue the case RH false first.

Details for the case RH false

If RH-violating zeros exist, we cannot ensure that they are finitely many, nor that they otherwise can be enumerated according to non-increasing real parts. Then, unlike [START_REF] Ph | On differences of zeta values[END_REF], the series (40) ought not to be directly readable as an explicit asymptotic expansion, to whatever order t 0 < 1 2 . Instead, any closed-form asymptotic statement on Λ n would have to involve the detailed 2D distribution of RH-violating zeros toward ∞, currently unknown. Indeed, for no t 0 < 1 2 can we perform or describe the sum of the series (40) explicitly (barring the purely hypothetical case of finitely many terms). In particular, it ought to be unlawful to substitute the individual asymptotic forms (39) in bulk into any of the series (40); we can only interpret the latter as a total of individual RH-violating zeros' contributions to the large-n behavior of Λ n .

Moreover, any such zero ρ = 1 2 + t ± iT with t > 0 must have T > T 0 hence T ≫ 1, which implies

|g(ρ)| ≈ 2 T t =⇒ |F n (ρ)| ≈ 1 T 2 log n 2n T t . (41) 
All in all, letting t 0 = 0 we obtain (33)-(35) in the case RH false.

The upshot of (34) is that each RH-violating zero ρ imparts Λ n with a growing n ρ-1/2 -like oscillation; one consequence (in view of § 3.4 below) is that it would take improbable cancellations to have Λ n > 0 forever, if RH was false.

Details for the case RH true

Here our quickest path is to adapt: 3.3.1 Oesterlé's argument for λ L n (as reworded by us). We start from this real integral giving λ K n : [START_REF] Oesterlé | Régions sans zéros de la fonction zêta de Riemann, typescript[END_REF][23]

λ K n = π 0 2 sin nθ N ( 1 2 cot( 1 2 θ)) dθ ; (42) 
here

N(T ) = #{ρ ∈ [ 1 2 , 1 2 + iT ] ⊂ L} is the zeros' staircase counting function; T ≡ 1 2 cot( 1 2 θ)
where θ ∈ (0, π] is the angle subtended by the real segment [0, 1] from the point 1 2 + iT , dT ≡ -( 1 4 + T 2 ) dθ, and the integrand is actually the reduction of 2 Im

x x -1 n log 2ξ(x) dx x(x -1) (43) 
once the integration path in [START_REF] Maślanka | Báez-Duarte's criterion for the Riemann Hypothesis and Rice's integrals[END_REF] has reached {x = 1 2 + 0 + iT } (under RH) and θ reparametrizes T .

Then λ K n mod o(1) will stem from the Riemann-von Mangoldt theorem: [8, chaps. 8, 15]

N(T ) = T 2π log T 2π -1 + δN(T ), δN(T ) = O(log T ) as T → +∞. (44) 
Proof: (42) mod o(1) evaluates as follows: 1) in N(•), the term δN(•) is integrable up to θ = 0 included, then its integral against sin nθ is o(1) (Riemann-Lebesgue lemma) hence negligible;

2) change to the variable Θ n ≡ nθ; then, change the resulting upper integration bound nπ to +∞ and use On the other hand, our criterion (33)-( 36) is synonymous of large-n positivity for Λ n if and only if RH holds (invoking the last sentence of § 3.2), while low-n positivity is numerically patent (see next §).

T ∼ 1/θ = n/Θ n to get, mod o(1), λ K n ∼ ∞ 0 2 sin Θ n n 2πΘ n log n 2πΘ n -1 dΘ n n . (45) 
All in all, as an aside we then also conjecture that: Li's criterion works for the sequence Λ n (RH ⇐⇒ Λ n > 0 for all n).

4 Quantitative aspects

Numerical data

Low-n calculations of Λ n (fig. 3) agree very early with the logarithmic behavior (36), just as they agreed for λ n with its leading behavior under RH [START_REF] Keiper | Power series expansions of Riemann's ξ function[END_REF] [START_REF] Maślanka | Li's criterion for the Riemann hypothesis -numerical approach[END_REF]. The remainder term δΛ n = Λ n -(log n + C) looks compatible with an o(1) bound (fig. 4 

Imprints of putative zeros violating RH

RH-violating zeros ρ (if any) seem to enter the picture just as for the λ n : their contributions (34) will asymptotically dominate log n, but numerically they will emerge and take over extremely late. For such a zero ρ = 1 2 + t + iT , with 0 < t < 1 2 and T 2.4 • 10 12 [START_REF] Gourdon | The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height[END_REF], its contribution sizes like T -2 (2n/T ) t / log n in modulus, by (35). We then get its crossover threshold (in order of magnitude, neglecting logarithms and constants relative to powers) by solving

T -2 (n/T ) t ≈ 1 (52) =⇒ n T 1+2/t (best case: O(T 5+ε ) for t = 1 2 -0). ( 53 
)
This is worse than [START_REF] Johansson | Rigorous high-precision computation of the Hurwitz zeta function and its derivatives[END_REF] for λ n , all the more if a negativity test is pursued (the right-hand side of (52) must then be log 2 n). There is however room for possible improvement: the core problem is to filter out a weak ρ-signal from the given background (36), therefore any predictable structure in the latter is liable to boost the gain. For instance, the hyperfine structure of δΛ n is oscillatory of period 2 (fig. 4); this suggests to average over that period, which empirically discloses a rather neat (1/n)-decay trend (fig. 5): The same operation on a ρ-signal F n (ρ) in (33) roughly applies 1 2 (d/dn) to the factor n T therein (again neglecting t ≪ T and log n), i.e., multiplies it by 1 2 (T /n). Thus heuristically, i.e., conjecturing the truth of (54) for n → ∞ under RH, the crossover condition improves from (52) to

δΛ n def = 1 2 (δΛ n + δΛ n-1 ) ≈ 0.25/n. ( 54 
(T /n) T -2 (n/T ) t ≈ δΛ n ≈ 1/n =⇒ n T 1+1/t (best case: O(T 3+ε ) for t = 1 2 -0). ( 55 
)
We can hope that efficient signal-analysis techniques may still lower this detection threshold. And an empirical attitude may suffice here: once a violating zero would be suspected and roughly located, other rigorous algorithms exist to find it accurately (or disprove it). [START_REF] Gourdon | The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height[END_REF] 4. ). Even then, a crude feed of (23), [START_REF] Voros | An asymptotic criterion in an explicit sequence[END_REF] or ( 27) into a mainstream arbitrary-precision system (Mathematica 10 [START_REF] Wolfram | Mathematica[END_REF]) suffices to readily output the Λ n -values of § 4.1. Computing times varied erratically but could go down to ca. 4 min for Λ 10000 , 43 min for Λ 20000 using (27) (CPU times on an Intel Xeon E5-2670 0 @ 2.6 GHz processor). Now with |T | 2.4 • 10 12 currently, the challenge is to probe n 2 • 10 36 (if the more favorable estimate (55) holds, 10 60 otherwise), which then needs a working precision 1.6 • 10 36 decimal places at times. This need for a huge precision already burdened the original λ n but somewhat less and amidst several steeper complexities, now for the Λ n the ill-conditioning worsened while the other difficulties waned.

As advantages of {Λ n } over {λ n }, inversely: the Λ n are fully explicit; their evaluations are recursion-free, thus very few samples (at high enough n, for sure) might suffice to signal that RH is violated somewhere; and the required working precision peaking at ≈ 0.766 n stands as the only stumbling block, and as a purely logistic problem, which might still be eased if (23) came to admit better conditioned variants. Thus in [START_REF] Voros | An asymptotic criterion in an explicit sequence[END_REF], a much lower precision (growing like 1 2 log 10 n) suffices for log 2π with its factor (2A n0 ) -1 ∼ -√ πn/2 which grows negligibly, compared to the A nm log(|B 2m |/(2m -3)!!) : only these simpler expressions demand maximal precision, and only for m ≈ n/ √ 2.

While other sequences sensitive to RH for large n are known [2][11], not to mention Keiper-Li again, we are unaware of any previous case combining a fully closed form like (23) with a practical sensitivity-threshold of tempered growth n = O(T ν ).

Figure 2 :

 2 Figure 2: Contour deformation for λ L n , n → ∞, in the steepest-descent method. (The symmetrical poles in the lower half-plane are not drawn.)

Now the classic formulae ∞ 0 Figure 3 :

 03 Figure 3: The coefficients Λ n computed by (23)-(25) up to n = 4000, on a logarithmic n-scale (straight line: the function (log n + C) of (36)).

Figure 4 :

 4 Figure 4: The remainder sequence δΛ n = Λ n -(log n+C) (in gray: the connecting segments are drawn for visual clarity only), and a rectified form (-1) n δΛ n (black dots) to cancel the period-2 oscillations.

Figure 5 :

 5 Figure 5: The averaged remainder sequence (54) rescaled by n, namely: n δΛ n .(Some further values: 0.27027 for n = 10000, 0.23970 for n = 20000.)

Figure 6 :

 6 Figure 6: Minimum decimal precisions needed for the summands of Λ n in (23), as estimated by log 10 |A nm log 2ξ(2m)| which is plotted against m in axes rescaled by 1/n. Dotted curve: the case n = 200; continuous curve: the n → ∞ limiting form ̟ = -2 r log 10 r + (1 + r) log 10 (1 + r) -(1 -r) log 10 (1 -r) (r = m/n).

  It would be interesting to comprehend the bumpy fine structure of δΛ n .

	), albeit much less neatly than δλ K n [15, fig. 1][18, fig. 6b], (note: both of these plot δλ L n = n δλ K n ). For the record,
	Λ 1 = 3 2 log π 3 ≈ 0.069176395771, Λ 2 ≈ 0.22745427267, Λ 3 ≈ 0.45671413349; (51) Λ 10000 ≈ 8.428662659671506 (δΛ 10000 ≈ +0.0020794), Λ 20000 ≈ 9.120189975922122 (δΛ 20000 ≈ -0.000485565),

3

  The hitch A major computational issue is that, according to (23), the (log n)-sized values Λ n result from alternating summations of much faster-growing terms: this entails a loss of precision increasing with n. Thus in our case (sums s m of order comparable to unity), to reach the slightest end accuracy we must use each summand s m up to ≈ log 10 |s m | significant digits (in base 10 throughout); plus uniformly D more to obtain s m accurate to D digits.We quantify the precision loss in (23) at large fixed n by using the Stirling formula, to find that m * ≈ n/ √ 2 is where the largest summand occurs and the minimum required precision log 10 |s m | peaks, reaching log 10 |A nm * log 2ξ(2m * )| ∼ log 10 (3 + 2 √ 2) n ≈ 0.76555 n digits, see fig. 6 (vs (0.2 to 0.3) n digits for λ n [19, fig. 6][14, § 4.2]

Parallel treatment for Λ n

Basically for Λ n , x x -1 n in (43) is to be replaced by G n (x) from [START_REF] Oesterlé | Régions sans zéros de la fonction zêta de Riemann, typescript[END_REF], hence (42) changes to

where Θ n ∈ (0, nπ] (previously ≡ nθ) is now the sum of the n angles subtended by the real segments [1 -2m, 2m] from the point 1 2 + iT , for m = 1, 2, . . . , n. The two endpoint slopes of the function Θ n (θ) will mainly matter (independently):

We then follow the same steps as with λ K n just above. 1)

if a nonstationary-phase principle can apply for the oscillatory function sin Θ n (θ), i.e., if the minimum slope of Θ n (θ) (θ ∈ [0, π]) goes to ∞ with n: previously (with Θ n ≡ nθ) that slope was n, now it is Θ ′ n (π) ∼ 1 4 log n which still diverges for n → ∞ therefore gives the o(1) bound; but due to Θ ′ n (π) ≪ n, this o(1) may decay much slower than the corresponding o(1) for λ K n . 2) In this step (i.e., T → +∞), only θ → 0 behaviors enter; here Θ n ∼ Θ ′ n (0) θ, vs nθ previously, so it suffices to substitute Θ ′ n (0) for n in the asymptotic result (46) for λ K n , to get

Asymptotic or full-fledged Li's criterion?

We do not control well enough the function F n in (29) or for that matter, the primitive sin Θ n (θ) dθ in (47), to be able to infer that RH implies Λ n > 0 for all n, as was the case for λ n straightforwardly from (4).

Appendix: Centered variant

We sketch a treatment parallel to the main text for our Li-type sequences having the alternative basepoint x = 1 2 (the center for the ξ-function). We recall that the Functional Equation ξ(1 -x) ≡ ξ(x) allows us, in place of the mapping z → x = (1 -z) -1 within ξ as in [START_REF] Balian | Quartic oscillator[END_REF], to use the doublevalued one y → x w(y) = 1 2 ± √ w y 1/2 /(1 -y) on the unit disk (parametrized by w > 0). That still maps the unit circle {|y| = 1} to the completed critical line L ∪ ∞, but now minus its interval {| Im x| < 1 2

√

w}. As before, all Riemann zeros on L have to pull back to {|y| = 1} which then imposes w < 4 min ρ | Im ρ| 2 ≈ 799.1618. We thus define the sequence {λ 0 n ( w)} by

( [25, §3.4], where only the case w = 1 is detailed), or

We now build an explicit variant for this sequence (57), similar to {Λ n } for {λ K n }. First, the deformations of (57) analogous to those in §2.1 read as 1 2πi

for which the simplest analytical form we found, similar to [START_REF] Maślanka | Li's criterion for the Riemann hypothesis -numerical approach[END_REF], is now

all in terms of the new variable

Then with x m ≡ 2m as before (but now including m = 0), the integral (59) evaluated by the residue theorem yields the explicit result (akin to ( 23)-( 25))

(61) This result is, however, algebraically less simple and less analyzable than for Λ n before. A potential asset is that it openly relies on the Functional Equation, but we saw no practical benefit accruing from that yet.

The corresponding asymptotic alternative for RH analogous to (33)-(36) reads as

• RH true:

The latter is proved by extending Oesterlé's method just as with Λ n ; whereas the former needs large-n estimations of the product in (59), but the ones we have remain crude compared to the full Stirling formula available for [START_REF] Oesterlé | Régions sans zéros de la fonction zêta de Riemann, typescript[END_REF]; that precludes us from reaching the absolute scales of the ∆ ρ Λ 0 n ( w) and the values of n from which any such terms might become detectable.

As for numerical tests, all results are very close to those shown above for Λ n , aside from the overall factor √ w in (64) (but nothing about the case RH false can be tested: that is still way beyond numerical reach).