N

N

Compilation for the Composition of Software
Protections for Embedded Systems

Thierno Barry, Damien Couroussé, Bruno Robisson

» To cite this version:

Thierno Barry, Damien Couroussé, Bruno Robisson. Compilation for the Composition of Software
Protections for Embedded Systems. 5éme édition de la rencontre Crypto’Puce, May 2015, Ile de
Porquerolles, France. cea-01273410

HAL Id: cea-01273410
https://cea.hal.science/cea-01273410
Submitted on 13 Feb 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://cea.hal.science/cea-01273410
https://hal.archives-ouvertes.fr

Compilation for the composition
of software protections for
embedded systems

Thierno BARRY!?

Damien COUROUSSE? Bruno ROBISSON?

ICEA — LIST / DACLE
2CEA / DPACA

Firsthame.LASTNAME@cea.fr

Crypto’Puce 2015

Porquerolles Tuesday, May 5, 2015

www.cea.fr — —

———r—r—r

G : - 1 w_;;, . 2 ~,_"'~'l‘in: i n:‘—'.
leti s List = e T S — L]

AFFILIATION

DACLE

Département Architecture, Conception et Logiciels Embarqués

v
SCSN

Service Calcul et Systémes Numériques

:
LIALP

"

J

Ecole Nationale
J) Supérieure des Mines
SAINT-ETIENNE

/

=

CMP

Centre Microélectronique de Provence

Laboratoire Infrastructures Atelier Logiciels sur Puce

Automatic control (centralized and distributed)
Middleware and communication

Compilation and code generation

Methods and tools: design flow for HW/SW integration

—‘ Systemes et Architectures Sécurisés

| SAS

m Hardware security

& | Thierno | Crypto’Puce 2015 oceaAllrightsreserved DACLE Division May 2015 I 2

CONTEXT

m Nowadays, embedded systems have increasingly become critical part of our
daily life

B One of the major threats against these systems are physical attacks

There are two main categories

FY Side channel attacks

Observing physical quantities of the device ((K))
during operation =

Q

E2 Fault attacks

Injecting a fault in order to disrupt the normal S
functioning of the device

2 |

& | Thierno | Crypto’Puce 2015 ocea alrighisresened — DACLE Division | May 2015 I 3

OBIJECTIVE

Proposing a tool for composing several software protections against @ ’
physical attacks /9

m Through a compilation toolchain

m Our work involves two disciplines:
1] Physical security

Bl Compilation

also called: Compilation for security

& | Thierno

| Crypto’Puce 2015 ocen llrightsreseed — DACLE Division | May 2015 I 4

OUTLINE

m Existing countermeasures against physical attacks

== Concluding remarks

m Our approach

m A safariinside a compiler

== Why compilation + security is not obvious ?

m Why operating inside a compiler?

m First results

m Outlook

& | Thierno | Crypto’Puce 2015 oceaAlrightsreseved DACLE Division

May 2015 | 5

EXISTING COUNTERMEASURES

Side Channel Attacks

m Work because there is a correlation between the operations being
processed and some observable physical quantities

m The objective of countermeasures is: Operations = @- = Physical quantities

B Two concepts:

Masking

Concealing each intermediate
value v by a random value m such

F1 Hiding

m Software

== Insertion of dummy instructions

as:v,=vopm == Instructions shuffling

Vo, =vdm =» Boolean m Hardware

.. == Randomize the power consumption
V,=v+tm =» Modular addition 0 v

— o == Equalize the power consumption
Vi, =VXm =» Modular multiplication

& | Thierno | Crypto’Puce 2015 ocea alrighisresened — DACLE Division | May 2015 I 6

EXISTING COUNTERMEASURES

m Based on fault models where an attacker can:

== Skip an instruction
== Replace an instruction with another one

== Corrupt data being transferred from/to memory

N Proposed countermeasures are:

== INnstructions redundancy
== Control flow hardening

== CRC / Parity Check/ ...

& | Thierno

| CryptO'Puce 2015 © CEA. All rights reserved DACLE D|V|S|On

| May 2015 | 7

EXISTING COUNTERMEASURES

Concluding

m We notice two approaches for applying countermeasures

At the source code level

- t Problems:
t
o e T+ o o sere e
e m None of security properties applied to

5 the source code are guaranteed after

© the compilation
Compiler

m Except if all the compiler code
optimizers are disabled as suggested
Binary Code in [Eldib et al. 2014]

Secured ?

B Leads to very high execution overheads:

source to source approach =» + 400% in [Lalande et al. 2014]

& | Thierno | Crypto'Puce 2015 © CEA. All rights reserved DACLE D|V|S|On I May 2015 I 8

EXISTING COUNTERMEASURES

Concluding

B3 At Assembly level Problems:

m Lack of visibility program context

—I =» Overheads ++
[source code |

m Often ad-hoc [Barenghi et al., 2010]
. Assembly | _ Countermeasure Secure
Compiler code application Assembly code
y 1

Unsecure
i Secure Binary

____________________ ' code

O

Assembly approach

& | Thierno | Crypto'Puce 2015 © CEA. All rights reserved DACLE D|V|S|On I May 2015 I 9

EXISTING COUNTERMEASURES

Concluding

m A countermeasure is designed to protect against one single attack

B [Regazzoni et al. 2008] and [Luo et al. 2014] have shown that a code protected against
Fault attacks may increase the power leakage
=>» and then become more vulnerable to power analysis attacks

How to take into account several threats inside a countermeasure ?

& | Thierno | Crypto’Puce 2015 ocea alrighisresened — DACLE Division | May 2015 I 10

OUR APPROACH

Compilation
+ security

Composition of several protections

Binary code protected against several
Secure

binary code

attacks

leti & Lust | Thierno

| Crypto'Puce 2015 © CEA. All rights reserved DACLE D|V|S|On

11

OUTLINE

m A safariinside a compiler

== Why compilation + security is not obvious ?

m Why operating inside a compiler?

m First results

m Outlook

& | Thierno | Crypto’Puce 2015 ocea alrighisresened — DACLE Division | May 2015 I 12

A SAFARI INSIDE A COMPILER

| What is a compiler ?

// 7\\\ 3 -g"
. Sourcecode ~===- (&
N ,

o

1

|

|
L 2
<
Q
(@]
=3
5
@
(@]
o
Q.
)

Compiler

The source code passes through several transformations and representation
before the Machine code

m Each one is suitable for some kind of tasks of the compiler

m Modern compilers are structured in 3 phases:

< Front end Middle end Back end v)

Source code

Machine code

& | Thierno

| Crypto’Puce 2015

© CEA. All rights reserved DACLE D|V|S|On May 2015 I 13

A SAFARI INSIDE A COMPILER

Simplified LLVM-IR

| Front end
»cmp = 132 %x, 0
1l %cmp, label %if.then, ..
If (x > 0){ . %if.then:
return a+b; %add = 132 %a, %b
} 32 %add, i32* %retval
Source code label %return
L
/,/
Lexica.l s Synta>.(: Typse : IR .
Analysis Analysis Checking generation
Reads the source code if
and splits it into a list of Take the list of tokens, L
tokens e.g.. built the AST =» check > ret
the validity of the syntax
if [(Ix|>101) |{
Return 'a |+ (b |; |} X 0 +
a b

& ocenlrignsresened DACLE Division | May 2015 I 14

A SAFARI INSIDE A COMPILER

| Middle end

m Takes as input the Intermediate representation

m The IR is supposed to be language and target independent

Language dependent Target dependent

Front end Middle end _

' x86, ARM, MIPS, SPARC ...

C, C++, Java, Fortran, ...

m A countermeasure applied at the middle end remain valid for all languages
and targets supported by the compiler

& | Thierno

| CryptO'Puce 2015 © CEA. All rights reserved DACLE D|V|S|On

May 2015 | 15

A SAFARI INSIDE A COMPILER

| Middle end

The majority of code optimizer are applied at middle end

Among them we have:

* Global Value Numbering (GVN)] Remove all redundant instructions

e Dead Code Elimination (DCE)] Remove all unreachable instructions
e Dead Store Elimination (DSE)] Remove memory writings that are never read
int x = 0; int x = 0; int x = 0;
inty = f(xX); inty = f(X); int y = f(X);
for(int i=1; i<= 100; i++) for(int i=1l; i<= 100; i++) x = 100;
if(i > 0) X =X+ 1; y = £
X =X + 1; y = f(x)
else \/
X =X - 1;
y = T(x)

int vy £(0);
int y = £(100): < int x = 100
y = f(x)

& | Thierno | Crypto’Puce 2015 ocea alrighisresened — DACLE Division | May 2015 I 16

nnnnnnnnnn

vvvvvvvvvvvv

| Middle end

Loop Invariant Code Motion (LICM)

LOOP-UNROLLING / LOOP UNSWITCH

bool flag;
for(int i=7; i*i< 1000; i++){
flag = verdict(l);
if(flag ==)
foo();
else
bar();
}
bool flag = verdict(l);
if(flag ==)
for(int i=0; i<25; i++)
foo();
else
for(int i=0; 1<25; i++)
bar();
| Thierno | Crypto’Puce 2015

A SAFARI INSIDE A COMPILER

31*31 =961
32*%32 =1024
> i=(7-32] > [0-25])
O
O
bool flag;
for(int i=0; 1<25; i++){
flag = verdict(l);
if(flag ==)
foo();
else
bar();
}
N2
bool flag = verdict(l);
for(int i=0; i<25; i++){
1f(flag ==)
foo();
else
bar(Q);
}

© CEA. All rights reserved

DACLE Division | May 2015 | 17

A SAFARI INSIDE A COMPILER

| Back end

Takes the IR as input

|
B Instructions selections Convert the IR to a representation close to the
I target architecture

B Register allocation ! Find the best way to assign physical registers to

variables in order to reduce register pressure and
avoid memory spills

Rearrange instructions to obtain the best
execution order in order to avoid stalls inside the
pipeline

B Instruction scheduling

B Machine code emission l Emit executable code that is target-specific

& | Thierno

| CryptO'Puce 2015 © CEA. All rights reserved DACLE D|V|S|On

May 2015 | 18

COMPILATION VS. SECURITY

ICOMPILATION ISECURITY

m Generation of executable code for a m Safety

target architecture
m Making the execution as fast as m Resistance against attacks

possible
m Removing any instruction redundancy m Adding instruction redundancy
m Dead code/store elimination B Insertion of dummy instructions
m Smart scheduling m Random scheduling (shuffling)
m Simplifying and combining operation m Masking intermediate values

& | Thierno | Crypto’Puce 2015 ocea alrighisresened — DACLE Division | May 2015 I 19

WHY OPERATING INSIDE A COMPILER?

We have a complete view on the program being compiled

m Possibility to reduce the cost of the security

B3 We have control over code optimizers

m We can decide where and when to apply security

m We can ensure that the security won’t be removed by the compiler

m We can take advantage of code optimization

E] We can scale the security level relative to optimization level

& | Thierno | Crypto’Puce 2015 oceaAllrightsreserved DACLE Division May 2015 I 20

FIRST RESULTS

Instruction duplication (ID) inside the compiler

With a very optimal overhead thanks to our hacked register allocator

WHY?

With an Assembly approach, when comes to duplicate an instruction like: | add RO, RO, R1

add RO, RO, R1

Just doing | _ 44 RO, RO, R1 is invalid because RO is both source and destination

mov RZ2, RO

_ _ _ mov RZ2, RO R2, RO
An extra available register is needed to save RO: add RO, R2, R1 ran;):; RO, R2, R1

add RO, R2, R1

How to find an extra available register? @ save an restore

9 you are designing an ad-hoc countermeasure push R2
and you know how many registers are push R2 mov R2, RO
available [Barenghi et al., 2010] mov R2, RO mov R2, RO
add rRO, R2, R1 add RO, R2, RI1
9 you parse your assembly code (not easy) pop RZ add RO, RrR2, R1
pop RZ

&

| CryptO'Puce 2015 © CEA. All rights reserved DACLE D|V|S|On

| Thierno

May 2015 | 21

FIRST RESULTS

Instruction duplication (ID) inside the compiler

With a very optimal overhead thanks to our hacked register allocator (RA)

We modified our RA in such a way that the destination register is always
different to source registers:

opcode Rdst, Rsrcl, Rsrc?2 (Rdst !'= Rsrcl) and (Rdst != Rsrc2)

THAT’S WHY

Instead of generating: add RO, RO, R1

We automatically generate: add RO, RI1, R2

o) o) add RO, R1, R2
and duplicating such an instruction is straightforward add RO, R1, R2 X2

with a reduced overhead compared to:

push R2

mov RZ2, RO
mov R2, RO mov R2. RO
mov RZ2, RO and X 6 ’

add rRO, R2, R1
add rRO, R2, R1
pop RZ

X4 add RO, R2, R1
add RO, R2, RL

& | Thierno | Crypto’Puce 2015 ocea alrighisresened — DACLE Division | May 2015 I 22

FIRST RESULTS

Instruction duplication (ID) inside the compiler

With a very optimal overhead thanks to our hacked register allocator (RA)

B our duplication process is done before the instruction scheduling

m The compiler will rearrange the instructions in order to find the best execution order

B Asaconsequence:
=>» duplicated instructions may not necessary be glued

add RO, R1, R2
add RO, R1, RZ > store R9, r5
store R9, r5 add RO, R1, R2

=>» improve the execution speed

& | Thierno | Crypto’Puce 2015 ocea alrighisresened — DACLE Division | May 2015 I 23

OUTLOOK

Our objective is not to produce new unknown countermeasure

BuT
Finding a way to combine them in a single tool, without marginalizing
the execution performance

m The next step is to implement power analysis countermeasures in
our compiler

B And then implementing a unified countermeasure model

m Proving the validity of the model

& | Thierno

| CryptO'Puce 2015 © CEA. All rights reserved DACLE D|V|S|On

May 2015 | 24

Thank you for your attention

BINSTIT BINSTITUT

Ut
CARNOT CARNOT
« B - A ey

|'|ll ‘ ‘ HH I H H"”“HH ll | |“| II “I' @NATEC digiteo

http://thiernobarry.fr leti List

Centre de Grenoble Centre de Saclay

17 rue des Martyrs Nano-Innov PC 172
38054 Grenoble Cedex 91191 Gif sur Yvette Cedex

