Puce

| Thierno

Crypto ' Puce

Thierno Barry

Crypto'

Keywords: C, C++, Java, Fortran

have shown that a code protected against Fault aaacks may increase the power leakage è and then become more vulnerable to power analysis aaacks How to take into account several threats inside a countermeasure ?

A countermeasure is designed to protect against one single aaack Cliquez pour modifier le style du (tre

Problems:

Lack of visibility program context

Oeen ad--hoc [Barenghi et al., 2010] è Overheads ++ Assembly approach We modified our RA in such a way that the desVnaVon register is always different to source registers:

| 11 & Crypto'
Instead of generaVng:

THAT'S WHY add R0, R0, R1

We automaVcally generate: add R0, R1, R2

and duplicaVng such an instrucVon is straigh•orward add R0, R1, R2 add R0, R1, R2

with a reduced overhead compared to:

1

 Side channel aaacksObserving physical quanVVes of the device during operaVonOne of the major threats against these systems are physical aMacksThere are two main categories InjecVng a fault in order to disrupt the normal funcVoning of the device Fault aaacks OBJECTIVE Proposing a tool for composing several soeware protecVons against physical Work because there is a correlaVon between the operaVons being processed and some observable physical quanVVes The objecVve of countermeasures is: None of security properVes applied to the source code are guaranteed aeer the compilaVon Except if all the compiler code opVmizers are disabled as suggested in [Eldib et al. 2014] Leads to very high execuVon overheads: è + 400% in [Lalande et al.

 passes through several transformaVons and representaVon before the Machine code Each one is suitable for some kind of tasks of the compiler Modern compilers are structured in 3 phases: to a representaVon close to the target architecture Rearrange instrucVons to obtain the best execuVon order in order to avoid stalls inside the pipeline Find the best way to assign physical registers to variables in order to reduce register pressure and avoid memory spills Emit executable code that is target--specific With an Assembly approach, when comes to duplicate an instrucVon like: add R0, R0, R1 Just doing add R0, R0, R1 add R0, R0, R1 is invalid because R0 is both source and desVnaVon An extra available register is needed to save R0: mov R2, R0 add R0, R2, R1 How to find an extra available register? Instruc(on duplica(on (ID) inside the compiler you are designing an ad--hoc countermeasure and you know how many registers are available [Barenghi et al., 2010] 1 you parse your assembly code (not easy) opVmal overhead thanks to our hacked register allocator (RA) 1 Instruc(on duplica(on (ID) inside the compiler opcode Rdst, Rsrc1, Rsrc2 (Rdst != Rsrc1) and (Rdst != Rsrc2)

 opVmal overhead thanks to our hacked register allocator (RA) 1 Instruc(on duplica(on (ID) inside the compiler Our duplicaVon process is done before the instrucVon scheduling 2 The compiler will rearrange the instrucVons in order to find the best execuVon order As a consequence: è duplicated instrucVons may not necessary be glued add R0not to produce new unknown countermeasure The next step is to implement power analysis countermeasures in our compiler BUT Finding a way to combine them in a single tool, without marginalizing the execuVon performance And then implemenVng a unified countermeasure model Proving the validity of the model Centre de Grenoble 17 rue des Martyrs 38054 Grenoble Cedex Centre de Saclay Nano--Innov PC 172 91191 Gif sur Yveae Cedex Thank you for your aaenVon hap://thiernobarry.fr

© CEA. All rights reserved

A SAFARI INSIDE A COMPILER Middle end

The majority of code opVmizer are applied at middle end Among them we have: