

Temperature influence on water transport in hardened cement pastes

Emeline Drouet, Stéphane Poyet, Jean-Michel Torrenti

► To cite this version:

Emeline Drouet, Stéphane Poyet, Jean-Michel Torrenti. Temperature influence on water transport in hardened cement pastes. Cement and Concrete Research, 2015, 76, pp.37-50. 10.1016/j.cemconres.2015.05.002. cea-01272801

HAL Id: cea-01272801 https://cea.hal.science/cea-01272801

Submitted on 11 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

¹ Temperature influence on water transport

in hardened cement pastes.

Emeline DROUET^a, Stéphane POYET^{a,*}, Jean-Michel TORRENTI^b 3 ^a CEA, DEN, DPC, SECR, Laboratoire d'Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur 4 5 Yvette Cedex, France. 6 ^b Université Paris-Est, IFSTTAR, Département Matériaux & Structures, 14-52 boulevard Newton, F-77447 7 Marne la Vallée cedex 2, France. Abstract 8 9 Describing water transport in concrete is an important issue for the durability assessment of radioactive 10 waste management reinforced concrete structures. Due to the waste thermal output such structures

- 11 would be submitted to moderate temperatures (up to 80°C). We have then studied the influence of
- 12 temperature on water transport within hardened cement pastes of four different formulations. Using a
- 13 simplified approach (describing only the permeation of liquid water) we characterized the properties
- 14 needed to describe water transport (up to 80°C) using dedicated experiments. For each hardened
- 15 cement paste the results are presented and discussed.

2

16 **Keywords:** Waste management (E) – Cement paste (D) – Drying (A) – Temperature (A) - Permeability (C).

17 **1. Introduction**

18 Water plays a very important role in concrete structures durability. This fact is well illustrated by the 19 results of Tuutti [1] which relate the variations of the corrosion current of steel embedded in a 20 carbonated mortar as a function of the external relative humidity (RH). In a more general way water is 21 necessary for the chemical reactions to occur (in solution) and presents a significant impact on concrete 22 transport properties. The durability assessment of concrete structures thus necessitates an accurate 23 description of water transport all along service life. Among the data needed to compute water flow in 24 unsaturated conditions, the water sorption isotherm and permeability are the most important (see part 25 2). In the field of radioactive waste management, the concrete structures and containers would also 26 have to cope with heating due to the waste thermal output (the maximal temperature to be reached is 27 80°C).

28 It has been known for long that water transport is strongly influenced by temperature. Experiments 29 performed on cementitious materials have shown that the higher the temperature, the faster the water 30 transport [2-9]. Several authors used the diffusion equation to describe isothermal drying experiments. 31 In so doing, the resulting moisture diffusivity D was found to increase with temperature. Glover and 32 Raask [4] showed the moisture diffusivity of a Portland cement paste (water-to-cement ratio w/c = 0.28) 33 was multiplied by 11 to 15 between 30 and 70°C whereas Wong et al. [7] obtained a factor 6 to 8 between 20 and 40°C for three concretes (Portland cement, w/c = 0.4, 0.5 and 0.6). In the same way 34 35 Powers [5] measured the permeability of Portland cement pastes (w/c from 0.5 to 0.8) between 0 and 27°C using water. The resulting hydraulic conductivity (that depends on water viscosity, in m/s) was 36 37 found to increase by a factor 3. Hughes et al. [2] and Hancox [3] dried Portland cement paste samples (w/c = 0.3 and 0.5) at temperatures ranging from 21 to 95°C. The diffusivity increase with temperature 38 39 was found to follow Arrhenius' equation. The mean activation energy was 43 kJ/mol (10.2 kcal/g/mol).

It must be mentioned that smaller increase in water transport properties were obtained in recent
studies. Jooss and Reinhardt [9] measured water permeability and diffusivity of several different
cementitious materials (using water permeametry and cup method). They found that permeability and
diffusivity were only increased by 18-92% and 18-41% respectively between 20 and 80°C. Černy et al. [8]
used the so-called PCK method (similar to an imbibition test) to estimate the moisture diffusivity of two
concrete used for nuclear power plants containment building in France and Czech Republic. The values
obtained at 80°C were greater than the ones obtained at 5°C by a factor 2.0-2.5.

47 Temperature is also known to affect the water retention properties of cementitious materials [6, 10-15]. 48 A temperature increase leads to the reduction of the amount of water retained at equilibrium with a 49 given RH: the greater the temperature increase, the more the reduction. For instance for a high-50 performance concrete kept at 60% RH, increasing temperature from 30 to 80°C led to the reduction of 51 the water content (by mass) at equilibrium from 3% to about 1% [13]. The isotherm shape is also 52 modified; the water content reduction is not constant over the RH-range. It depends on the temperature 53 increase. Another important point is the absence of temperature threshold: any change in temperature 54 is expected to impact the water retention curve.

55 The influence of temperature is generally attributed to the variation of water physical properties (density 56 and surface tension) [16] as well as the coarsening of the pore structure in relation to ettringite 57 dissolution and C-S-H alteration [14]. It was however suggested recently that another phenomenon 58 might be at work [13]. A temperature change at a constant RH leads to the shift of equilibrium between 59 the adsorbed phase and water vapor. Since adsorption is an exothermic process, a temperature increase 60 shifts the equilibrium towards the endothermic reaction (that is to say desorption). Consequently water 61 is released. A simple tool was then proposed to describe this so-called "thermal desorption" [17]. It is 62 based on Clausius-Clapeyron equation [18]:

$$q_{st}(w) = -R \left. \frac{\partial \ln(p_v)}{\partial \left(\frac{1}{T}\right)} \right|_{w} \tag{1}$$

64 where:

63

• *R* is the universal gas constant (8.3145 J/mol/K);

- 66 p_v vapor pressure (Pa) at equilibrium with the water content w;
- *T* absolute temperature (K);
- *q*_{st} isosteric energy (J/mol).

69 q_{st} corresponds to the amount of heat involved in the adsorption process (J/mol). Note that in eq. (1) the 70 derivation operation must be carried out for a constant amount of adsorbed water *w*. The isosteric 71 energy q_{st} can be obtained using two isotherms at two distinct temperatures. Once q_{st} is known, the 72 water retention curve for any arbitrary temperature *T* can be easily estimated using:

73
$$h(w,T) = h(w,T_0) \frac{p_{vs}(T_0)}{p_{vs}(T)} \exp\left[q_{st}(w) \frac{T-T_0}{RTT_0}\right]$$
(2)

74 where:

75 $p_{vs}(T)$ is the vapor pressure at saturation (Pa) for the absolute temperature T; • 76 h(w,T) relative humidity at equilibrium with the water content w at the absolute temperature T. ٠ 77 This simple model was found to satisfactorily reproduce the temperature-induced evolution of concrete 78 water retention curve [13, 17]. This model implicitly assumes that the shift of equilibrium is the only 79 mechanism at work and that the microstructure modifications can be neglected. 80 For the description of unsaturated water transport, the intrinsic permeability is commonly evaluated 81 through inverse analysis [19-22]: the temperature-induced modifications of the water retention curve 82 described above are then expected to have a significant influence on the permeability assessment [23]. 83 The main objective of this study was to assess the influence of temperature on unsaturated permeability.

With regards to Andra's (the French agency for radioactive waste management) requirements in the context of nuclear waste storage, we have designed an experimental campaign to acquire all the data needed to describe unsaturated water transport using a simplified model (see section 2) and cementitious materials of interest. The results do constitute a unique and consistent dataset.

88 2. Background

Water transport within porous media involves three different motions: (1) permeation of the liquid
water; (2) permeation of the gaseous phase (water vapor + dry air) and (3) diffusion of water vapor
within the gaseous phase. The neat description of these phenomena leads to three coupled differential
equations [20, 21, 24-27]. The major drawback of such an approach is the very large number of input
data that are difficult to acquire experimentally.

94 From a practical point of view, water transport can be profitably described in a simplified way using a 95 single equation accounting for liquid permeation only. The others motions (permeation of the gaseous 96 phase and water vapor diffusion) are neglected. This assumption was found to be valid for a hardened cement paste (w/c = 0.35) with a permeability equal to 1.0×10^{-21} m² [20]. In a recent study Thiery et al. 97 98 [28, 29] estimated the respective contribution of each motion to the overall water flow. They showed 99 that the assumption validity domain depends on the material properties and especially on permeability. 100 For a high-performance concrete (w/c = 0.27) with low permeability $(2 \times 10^{-22} \text{ m}^2)$ the assumption is valid 101 between RH=20% and 100% whereas it is only valid between RH=65% and 100% for a low-strength 102 concrete (w/c = 0.84) with high permeability ($4 \times 10^{-19} \text{ m}^2$).

103 The liquid water flow rate is given by the extension of Darcy's law for incompressible unsaturated media104 [30]:

105
$$\underline{j}_{W} = -\rho \frac{\kappa}{\eta} k_{r} \operatorname{grad}(P), \qquad (3)$$

106 In which:

107 η is the water viscosity [Pa s];108 ρ water density [kg/m³];

- *K* intrinsic permeability [m²];
- *k*_r relative permeability to water [without unit];
- *P* water pressure [Pa].

112 In unsaturated conditions the water pressure presents negative values $P \in]-\infty$; 0]. It is evaluated using 113 Kelvin-Laplace equation:

114
$$P = -\rho \frac{RT}{M} \ln(h), \tag{4}$$

115 where *M* is the water molar mass [0.018 kg/mol].

116 The mass conservation equation writes:

117
$$\frac{\partial}{\partial t}(\rho \phi S) = -\operatorname{div}\left(\underline{j}_{W}\right) = -\operatorname{div}\left[-\rho K \frac{k_{T}}{\eta}\operatorname{grad}(P)\right],$$
(5)

• *S* is the saturation index [without unit], it characterizes how pores are filled (by volume) with

120 liquid water. It ranges between 0 (dry state) and 1 (saturated state).

- Ø is the concrete porosity [volume per volume, without unit].
- 122 In isothermal conditions (as this is the case in this study, see after) and assuming that water is
- 123 incompressible and that water flow is the only phenomenon at work (absence of dissolution or
- 124 precipitation), ρ and \emptyset can be considered as constants. The following equation is obtained:

125
$$\emptyset \frac{\partial S}{\partial t} = \operatorname{div} \left[K \frac{k}{\eta} \operatorname{grad}(P) \right]$$
(6)

126 Assuming that a differentiable function exists between water saturation *S* and pressure *P* one can obtain:

This simple equation allows the water transport description within the cementitious materials knowing only four their properties, namely: the porosity \emptyset , the derivative of the capillary pressure function, the intrinsic and relative permeability *K* and *k_r*. Following Savage and Janssen [31] the water retention curve is almost described using the equation proposed by van Genuchten [32]:

132
$$S = \left[1 + \left(\frac{|P|}{P_0}\right)^{\frac{1}{1-m}}\right]^{-m}$$
(8)

where P_0 and m are two positive parameters: m (usually around 0.5) [without unit] whereas P_0 is equivalent to a pressure [several tenths of MPa]. The use of Mualem's model [33] together with eq. (8) allows deriving an analytical expression for the relative permeability k_r (the value of the parameters mand P_0 are the same as above):

137
$$k_r = \sqrt{S} \left[1 - \left(1 - S^{\frac{1}{m}} \right)^m \right]^2 = \left[1 + \left(\frac{|P|}{P_0} \right)^{\frac{1}{1-m}} \right]^{-\frac{m}{2}} \left\{ 1 - \left(\frac{|P|}{P_0} \right)^{\frac{1}{1-m}} \left[1 + \left(\frac{|P|}{P_0} \right)^{\frac{1}{1-m}} \right]^{-m} \right\}^2$$
(9)

138 The left-hand term $\left(\frac{\partial S}{\partial P}\right)$ of equation (7) is given by:

139
$$\left(\frac{\partial S}{\partial P}\right) = \frac{m}{(m-1)P_0} \left(\frac{|P|}{P_0}\right)^{\frac{1}{1-m}} \left[1 + \left(\frac{|P|}{P_0}\right)^{\frac{1}{1-m}}\right]^{-1-m}$$
(10)

140 **3. Methods**

141 **3.1. Materials**

142 We used hardened cement pastes prepared using four different binders that were selected for their

- 143 potential interest for radioactive waste management in France:
- The CEM I 52.5 R CE PM-ES-CP2 (according to the European standard EN-206) from Val
- 145 d'Azergues factory (France, Lafarge). This ordinary Portland cement (OPC) was selected by Andra
- 146 (the French Agency for radioactive waste management) as a reference cement for the study of
- 147 concrete structures and waste packages.
- The CEM II/B-LL 42.5 N CE CP2 from Le Teil factory (France, Lafarge). This cement (OPC + 25%
- 149 limestone filler) was selected because it was used for the realization of a scale-one subsurface
 150 storage structure mockup (Galatée) [34-36].
- The CEM V/A (S-V) 42.5 N CE PM-ES-CP1 from Airvault factory (Calcia, France). This cement was
 selected by Andra as a reference binder for concrete packages.
- A low-alkanity ternary mix of CEM I/OPC (37.5%), silica fume (32.5%) and fly ash (35%). The
- 154 cement used in this mix was provided by Lafarge, Le Teil factory, France (CEM I 52.5 N CE PM-
- 155 ES). The silica fume and fly ash were provided by Condensil (S 95 DM) and Calcia respectively.
- 156 This mix composition was designed in the field of geological disposal by [37, 38] to mitigate the
- 157 heat emitted during hydration and limit the chemical interaction between clay minerals and
- 158 concrete parts (alkaline plume) which could impair clay physical and chemical properties.
- 159 A unique water-to-binder ratio (w/b) was used to enable comparison between the four pastes. We chose
- 160 w/b = 0.40 because it allowed the CEM I paste to be representative of the concrete studied in [13]. The
- 161 resulting hardened cement paste is the same as the one embedding the concrete aggregates. For this

purpose, the paste water to binder ratio w/b was adjusted to account for the water brought by the
superplasticizer and absorbed by the aggregates. Moreover this value appeared to yield good properties
of each fresh paste (good workability, neither visible segregation nor bleeding). The composition of each
paste is given in Table 1.

1	6

Table 1. Composition of the pastes.

Compound	CEM I	CEM II	CEM V	Low-pH	Unit
OPC	1396	1023	759	468	g/L of paste
Calcareous filler	-	341	-	-	g/L of paste
Slag	-	-	298	-	g/L of paste
Fly ash	-	-	298	377	g/L of paste
Silica fume	-	-	-	405	g/L of paste
Water	558	545	542	500	g/L of paste
Superplasticizer	-	-	-	12.5	g/L of paste

167

168 The four pastes were prepared in the laboratory in ten consecutive batches (two liters each) spanning 169 over three days. Each specimen was cast in a cylindrical mold (Ø35 × H60 mm for water adsorption 170 experiments and Ø51 × H80 mm for permeability assessment experiments) which was then hermetically 171 closed and kept at 20°C for seven days before unmolding. All the specimens of the same formulation 172 were immersed in a special curing solution inside an air-tight chamber (to prevent carbonation) for three 173 months. The composition of the curing solution was adjusted to prevent calcium and alkalis leaching. For 174 the CEM I, CEM II and CEM V pastes we determined the curing solution composition by expression of the 175 pore solution [39] and analysis using ionic chromatography (Table 2). The samples used for extraction 176 were kept three months in sealed bags (rather than under water to prevent dilution of the alkalis). 177 Analysis of the solutions at the beginning and end of the cure showed limited change (Table 2).

178 Table 2. Composition of the interstitial solutions (in mmol/L) and pH of the curing solutions before and

179

after cure of the CEM I CEM II and CEM V pastes.

		CEMI				CEM II/B			CEM V/A			
	Na ⁺	K+	Ca ²⁺	рН	Na⁺	K+	Ca ²⁺	рН	Na⁺	K+	Ca ²⁺	рН
Interstitial solution	47	452	2	13.7	91	94	1	13.2	87	533	2	13.7
Begining of cure	49	439	2	13.6	90	93	3	13.3	90	518	4	13.7
End of cure	54	455	3	13.6	96	95	5	13.2	85	474	2	13.7

¹⁸⁰

181 The sodium content of the three cements is quite low (and especially in comparison to the potassium

182 content). This is a direct consequence of the cements composition, low in sodium (Table 3).

183

Table 3. Chemical composition of the cements.

		SiO ₂	AI_2O_3	Fe_2O_3	CaO	MgO	SO ₃	K ₂ O	Na_2O	MnO	TiO ₂	LOI	INS
CEN	/1 :	21.0	3.4	4.5	65.0	0.62	2.7	0.72	0.09	-	-	1.3	0.2
CEM	II/B	18.0	3.5	1.7	62.6	0.85	2.97	0.16	0.15	-	-	9.4	1.2
CEM	V/A	30.0	11.2	3.6	46.4	2.75	2.8	1.16	0.2	0.1	0.6	2.1	-

184

185 For the Low-pH which pore solution is known to exhibit great concentration variations in the first months

186 of hydration (portlandite is gradually consumed to precipitate new C-S-H: portlandite completely

disappears after two months) [38], a different approach was chosen. Several samples were reduced into

188 a rough powder and added to deionized water to generate the curing solution.

189 After the curing period, both ends (top and bottom) of each sample were sawn (using a diamond wire

190 saw with water) and discarded. This resulted in smaller cylinders (Ø35×H50 mm for water adsorption

191 experiments and Ø51×H60 mm for permeability assessment experiments) that were assumed to present

192 homogeneous properties versus height [40-42]. Because the specimens were kept under water for three

193 months after casting, full saturation at the cure end was assumed: no additional procedure was thus

used to ensure initial saturation (for instance saturation under vacuum). It was however verified on a few
samples that no water uptake was observed after 48 hours under water and vacuum.

196 **3.2. Mineralogical composition**

The portlandite content was measured using thermogravimetric analysis (TGA). Just after the cure, a specimen was powdered in a CO₂-free glove box and 120 mg (± 1 mg) were placed in an automated TG analyzer (Netzsch STA 409 PC). The temperature was increased at constant rate (10 °C/min) under dry nitrogen flowrate (60 mL/min). The portlandite content was computed using the mass loss obtained between 400 and 600°C.

The C-S-H concentration was estimated following the approach of Olson and Jennings [43] that relates the amount of water adsorbed at 20% RH to the C-S-H content. It was then implicitly assumed that the calcium-to-silicon (C/S) ratio of the C-S-H was equal to 1.7. We took advantage of the experimental water retention curves to assess the water content at equilibrium at 20%. The model proposed by Pickett [44] was fitted to the experimental results and used to compute the water content at 20% (see part 3.4.).

207

3.3. Porosity and microstructure

208 The specific gravity of the saturated materials d_s was measured using the buoyancy method following 209 current recommendations (French standard P18-459:2010): the saturated specimens were weighed 210 under water and in air (using a 1 mg accurate device). In air, the water in excess on the specimen surface 211 was removed using a wet cloth. The measurements were done in an air-conditioned room ($20 \pm 2^{\circ}$ C). 212 The porosity to water \emptyset (by volume) was determined by oven-drying until constant weight; different 213 drying temperatures were used from 20°C to 105°C for comparison purposes. At 20°C and 50°C we used silica gel as desiccant (RH \approx 3%) whereas calcium chloride proved to be much more efficient at 80°C (RH 214 215 measured at 0.0% using capacitive hygrometer). No desiccant was used at 105°C (the RH decrease

induced by heating at 105°C is high enough). A different five-sample set was used for each configuration.

217 Due to the great number of sample-sets all the five specimens were weighed together; this explains why

there is no variability information in this case (no standard deviation).

The pore-size distribution was characterized using mercury intrusion porosimetry (MIP). Some specimens were first kept a few months in sealed containers above silica gel (at 20°C and 50°C) or calcium chloride (at 80°C) to remove most of the evaporable water. They were crushed into pieces (several millimeters thick), freeze-dried using liquid nitrogen and eventually tested (up to 414 MPa). Three or four replicates were tested for each experiment.

The specific surface area of each paste was assessed either directly by MIP or by post-processing the
experimental water desorption isotherms using the linear form of the BET model [45]:

226
$$\frac{h}{(1-h)w} = \frac{1}{C^B w_m^B} + \frac{C^B - 1}{C^B w_m^B} h$$
(11)

where C^{β} and w_{m}^{β} are the two BET parameters. C^{β} is related to the energy of the first adsorbed layer and w_{m}^{B} is the water content needed to complete a monomolecular layer. The BET linear form was used to check the validity domain (for which the experimental points follow a straight line). The specific surface area S_{s} was evaluated using the BET monolayer values w_{m}^{B} using [46]:

$$S_S = N_A \frac{A_w}{\rho_V} w_m^B \tag{12}$$

where N_A is Avogadro's number ($N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$); V is water molar volume ($V = 1.80 \times 10^{-5} \text{ m}^3/\text{mol}$ at 20°C) and A_w is the surface area occupied by one water molecule on the sample surface. It was estimated using [47, 48]:

235
$$A_w = 1.091 \left(\frac{M}{\rho N_A}\right)^{\frac{1}{3}}$$
 (13)

236 *3.4. Water retention curves*

237 They were characterized in a classical way using the desiccator method [49] following the protocol used 238 in [13]. Four cylinders (Ø35×H50 mm) of each formulation were put in a desiccator above a saturated salt solution for RH control (sixteen specimens were then introduced into the same desiccator). The 239 240 specimen dimensions may seem big, but the low specific surface area of the specimens allowed us not to 241 take any precaution against carbonation and to limit the potential impact of sawing (superficial cracking). 242 The main disadvantage was the increase of the time needed to reach hygral equilibrium. We then 243 determined the whole desorption isotherm for each paste by submitting different sets of specimens to 244 different RHs (using different desiccators) simultaneously rather than submitting a unique set to 245 decreasing RH steps. This was expected to induce some variability but it allowed reducing drastically the 246 whole experiment duration. 247 This experiment was conducted at 20, 50 and 80°C. At 20°C, the desiccators were kept in an air-248 conditioned room ($20^{\circ}C \pm 2^{\circ}C$) whereas ovens were used for the two other temperatures: three different 249 ovens were used for 50°C and two for 80°C. At 50°C the regulation did not appear to be fully satisfactory: 250 the temperature in the three ovens was found to be ranging from 50 to 60°C. This is believed to have 251 induced some variability in the isotherm characterization. At 80°C, the temperature variability was far 252 less than 1°C. The salt solutions used and the resulting RHs are reported in Table 4.

253

Table 4. Relative humidity as a function of temperature and saturated salt solution [50-54].

Saturated salt s	olutions		Temperature	
		20°C	50°C	80°C
Calcium chloride	CaCl ₂	5%	3%	≈0%
Silica gel	SiO ₂	3%	3%	≈10%
Lithium chloride	LiCl	11%	11%	11%
Magnesium chloride	MgCl ₂	33%	31%	26%
Potassium carbonate	K ₂ CO ₃	43%	-	-
Magnesium nitrate	Mg(NO ₃) ₂	54%	-	-

Sodium bromide	NaBr	59%	51%	51%
Urea	CO(NH ₂) ₂	-	62%	-
Ammonium nitrate	NH_4NO_3	63%	-	-
Potassium iodide	KI	70%	64%	61%
Sodium nitrate	NaNO ₃	-	69%	65%
Sodium chloride	NaCl	-	74%	76%
Ammonium sulfate	(NH ₄) ₂ SO ₄	-	79%	-
Ammonium chloride	NH ₄ Cl	80%	-	-
Potassium chloride	KCI	-	-	80%
Potassium nitrate	KNO₃	-	85%	-
Sodium carbonate	Na ₂ CO ₃	-	-	85%
Barium chloride	BaCl ₂	90%	-	-
Sodium sulfate	Na_2SO_4	-	-	90%
Potassium sulfate	K_2SO_4	98%	96%	95%
Deionized water	H ₂ O	100%	100%	100%

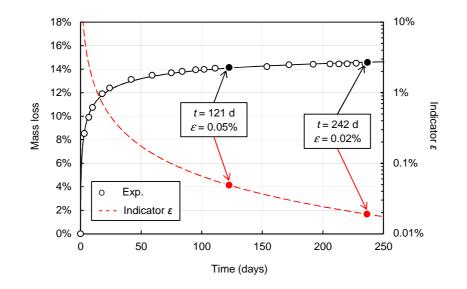
254

Periodically we opened each desiccator, weighed each specimen-set (weighing each sample would have
been too much time-consuming) and computed the corresponding relative mass variation to monitor
sample drying:

258
$$\left(\frac{\Delta m}{m}\right)(t) = \frac{m(t) - m(t_0)}{m(t_0)} \tag{14}$$

where m(t) is the mass for the time t and the mass for the time t (t_0 corresponds to the experiment

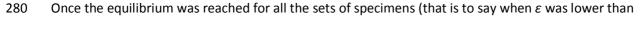
260 beginning). The difference from equilibrium was characterized using the following indicator ε which is an


261 estimator of the relative mass variation curve slope:

262
$$\varepsilon(t) = \frac{\left(\frac{\Delta m}{m}\right)(t+1) - \left(\frac{\Delta m}{m}\right)(t)}{\left(\frac{\Delta m}{m}\right)(t)}$$
(15)

where $\left(\frac{\Delta m}{m}\right)(t)$ and $\left(\frac{\Delta m}{m}\right)(t+1)$ are the relative mass variations at time *t* and one day after respectively. From a practical point of view the ε values were estimated using the equation proposed by Baroghel-Bouny [55] to fit the sample mass loss evolution:

266
$$\left(\frac{\Delta m}{m}\right)(t) = \frac{A\sqrt{t}}{B+\sqrt{t}}$$
(16)


267 where A and B are two parameters to be fitted on the experimental results. The samples were let to 268 equilibrate in their containers as long as possible but they all met the following requirement: $\varepsilon \leq 0.05\%$ 269 (note that many sets of specimens presented lower ε values at the end of the test). A graphical 270 illustration of this requirement significance is presented on Figure 1 for the CEM I specimens kept at 80°C 271 and 76% RH. The criterion was reached after 121 days. Leaving the samples for 121 more days (the 272 equilibration time was then increased by 100%) brought little improvement: the difference between the 273 relative mass variations at 121 and 242 days is about 3.5% (relative value). This value was found to be 274 lower than the variability induced by the use of a different sample-set for each RH. The resulting ε value 275 was then 0.02%.

276

277 Figure 1. Illustration of the criterion $\varepsilon \le 0.05\%$ for the CEM I paste kept at 80°C and 76% RH (in this 278 example A=-16.04% and B=1.522 d^{0.5}). Note the log-scale for the indicator ε .

279

281 0.05%), the desorption isotherm could be evaluated using the initial properties (specific gravity d_s and

porosity Ø) and the relative mass variations at equilibrium. It was found convenient to describe the
pastes saturation state using the water content w which is defined as the ratio of water to dry solid by
mass. In our case it could be easily calculated using the following equation:

285
$$w(T,h) = \frac{d_s}{d_s - \emptyset} \left[\frac{\emptyset}{d_s} + \left(\frac{\Delta m}{m} \right) (T,h) \right]$$
(17)

where $\left(\frac{\Delta m}{m}\right)(T,h)$ is the relative mass variation at equilibrium with the relative *h* for the temperature *T*. 286 287 To ensure comparison between the desorption isotherm for the three temperatures a common 288 reference dry state is necessary because temperature affects the free water amount. For instance drying 289 at 20°C using silica gel (RH=3%) as proposed by Baroghel-Bouny [19, 56] is unsuitable here. It is known 290 that heating at 80°C is harmful for cementitious materials mineralogy and microstructure [57-60]. Yet as 291 far as only the first desorption is concerned (no preliminary drying and no further resaturation) drying at 292 80°C (using CaCl₂) was chosen here for commodity. In so doing, it was implicitly assumed that the 293 80°C-induced degradation influence on total porosity could be neglected. The authors acknowledge that 294 drying at 80°C is not the common procedure. The reader should remind that porosity was also measured using different protocols (Table 8) and it is possible to use eq. (18) to recalculate the desorption 295 296 isotherms (for instance 105°C).

Two different models were used to fit the desorption isotherms: Mualem-van Genuchten equation (eq. 8) was used for unsaturated water transport and Pickett's model was used for adsorption physics. The model proposed by Pickett is considered by the authors to be the only simple model describing the physics of adsorption that can efficiently fit the results (type IV isotherms). Using a model based on adsorption physics instead of that of van Genuchten also proved to ensure a better estimation of the water content at 20% and isosteric energy q_{st} . Pickett's equation is an evolution of the well-known BET model. It can be written under the following form:

304
$$w = C^{P} w_{m}^{P} \frac{(1-h^{n})h+bnh^{n}(1-h)}{(1-h)[(1-h)+C^{P}(h+bh^{n})]}$$
(18)

305 where:

- 306 C^P is a positive constant that is related to the energy of adsorption of the first layer; 307 • w_m^P the monolayer value corresponds to the water content that is needed to complete a
- 308 monomolecular layer;
- *n* represents the maximal number of adsorbed layers;
- *b* is related to the rate of evaporation/condensation of water molecules in the layers.

311 *3.5. P*

3.5. Permeability assessment

We did not measure directly the intrinsic permeability K (m²), for instance using water permeametry [61]

because such results are known to be unsuitable for the simulation of unsaturated water flow in

- 314 concretes [22]. The intrinsic permeability was rather evaluated through inverse analysis as already
- proposed [20, 21]. For this purpose, the biggest cylinders (Ø51×H60 mm) were put in climatic chambers
- using the constant environmental conditions reported in Table 5. Periodically the chambers were opened
- 317 and the samples weighed. The tests were conducted for 65 days for 20°C and 14 days for 50 and 80°C

318 respectively.

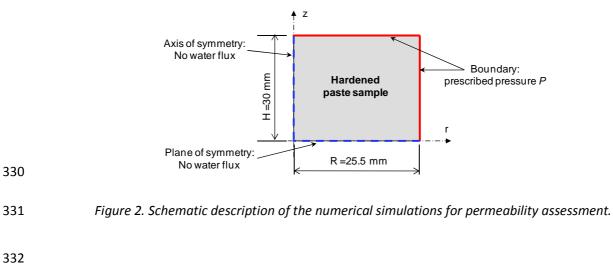

- 319
- 320

Table 5. Tests conditions for intrinsic permeability assessment tests.

Temperature	20°C	50°C	80°C	Unit
RH	54%	85%	85%	-
Liquid pressure (eq. 4)	-83.29	-23.96	-25.78	MPa
Duration	65	14	14	days

322 The experimental mass variations were then described using the simplified approach detailed in part 2. From a practical point of view, the finite-element code Cast3m¹ was used to solve eq. (7) and compute 323 the resulting theoretical mass variation. Different intrinsic permeability values were used and the best 324 325 value was selected using a least-squares minimization process. For more detail about the fitting process the reader is referred to [23]. A quarter of the specimen was described in axisymmetric conditions 326 (Figure 2). 7200 four-node quadrangles (80×90) were used. The time steps were adjusted to ensure 327 328 convergence (from a few seconds at the beginning of the simulations to one day at the end).

329

333 The heating stage was not described (the temperature was assumed to be constant). The initial

- 334 conditions were: uniform temperature (20, 50 or 80°C) and liquid pressure P=0.0 MPa (saturation). At
- 335 t=0, a constant pressure (Dirichlet condition) was prescribed all over the sample boundary (the
- 336 corresponding values are listed in Table 5).


¹ <u>http://www.cast3m.org</u>

337 **4. Results**

338 4.1. Feedback on the use of saturated salt solutions

339 Two major drawbacks were encountered when using saturated salt solutions. First, we did not find this 340 method to be successful for RH regulation: a good illustration is given on Figure 3. We prepared a sodium carbonate (Na_2CO_3) solution in a four-liter desiccator (the same kind as the ones used for the water 341 342 retention curve characterization) and left it four days in an oven at $80 \pm 1^{\circ}$ C. Temperature and RH were 343 constantly recorded using a commercial hygrometer: the RH target (85%, Table 4) was quickly reached. 344 After four days, we opened the desiccator and introduced four (saturated) paste specimens. The RH 345 within the desiccator then quickly increased to reach saturation (100%) due to the water release by the 346 four specimens. The RH only began to decrease 11 days after the samples introduction and returned to 347 the target value 14 days after.

349

350 Figure 3. RH and temperature evolution within a desiccator after the insertion of four paste samples (the

351

salt used is Na₂CO₃ resulting in RH=85% at 80°C).

352

353 In this example, only four specimens were introduced whereas sixteen of them were used in the water 354 retention curve experiments. In so doing, we did not expect the salt solutions to successfully maintain 355 the RH in the short term for the three tested temperatures. We believe that it did result in increasing the 356 time needed to reach equilibrium: the resulting mass loss evolutions of the specimens could not be used 357 for water transport properties evaluation. This explains why supplementary isothermal drying tests were 358 conducted for permeability assessment. In a more general way, when using saturated salt solutions to 359 maintain constant conditions one should at least monitor the RH evolution or if possible adjust the 360 chamber volume to the specimens water release rate and salt used. 361 The second major problem we had to face was the crystallization of salt above the solution on the 362 desiccator walls which could eventually come in contact with the specimens and result in unacceptable 363 pollution. This was believed (but it was not verified) to be due to the handling operations needed to have 364 the samples weighed (periodical withdrawal from the oven which could project some solution on the 365 desiccator walls) and to the supersaturation induced by the solution cooling and drying (due to the 366 desiccator opening). This was hindered by periodical examination (twice a week) of all the desiccators to 367 check the salt crystallization. When present, the desiccator walls were thoroughly rinsed and dried using 368 pure water and a clean towel. When the time between two remediation operations was too small, both 369 desiccator and salt solution were eventually changed. The salts under discussion are sodium bromide 370 (NaBr) which was found to be difficult to use at 50 and 80°C whereas sodium chloride (NaCl), potassium 371 chloride (KCl) and to a lesser extent magnesium chloride (MgCl₂) were only troublemaking at 80°C.

372 4.2. Mineralogical composition

The contents of portlandite and C-S-H of each paste are presented on Table 6. The CEM I and CEM II
pastes showed pretty similar results (despite the limestone filler substitution). As expected, the Low-pH

mix was free of portlandite as already observed by Codina et al. [38]. As a consequence of pozzolanic
reactions, the C-S-H content was high (7.4 mol/L). The CEM V paste laid between the CEM I and the LowpH pastes (2.1 mol/L).

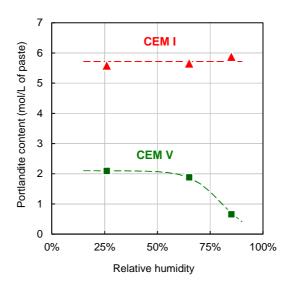

378

Table 6. Portlandite and C-S-H contents of the pastes after the cure.

Phase	CEM I	CEM II	CEM V	Low-pH	Unit
Portlandite	5.6	5.4	2.1	0.0	mol/L of paste
C-S-H	5.1	5.0	7.0	7.4	mol/L of paste

379

A few TGA tests were also conducted using some of the specimens kept at 80°C (and CaCl₂) for the desorption isotherm characterization. The portlandite content of the CEM I paste was found to be almost constant versus RH whereas that of the CEM V paste decreased when RH was increased. This was taken as an indication of ongoing hydration (due to pozzolanic reactions) in the case of the blended cements (CEM V and Low-pH). We believe that this might have had an impact on the resulting water retention curves (especially at high RH and temperature) but we were unable to quantify it.

386

387 Figure 4. Portlandite content of the CEM I and CEM V pastes kept at 80°C (dashed lines are guides for the

388

eye only).

389 4.3. Porosity and microstructure

390 The specific gravity of the saturated pastes d_s was measured using 134 specimens for each paste (Table 391 7). The mean values span from 1.73 (Low-pH) to 2.04 (CEM I): the value decreases when the amount of 392 supplementary cementing materials is increased. Table 8 summarizes the porosity results: the higher the 393 temperature, the higher the porosity. Yet whatever the drying temperature, the porosity value increases 394 with the amount of SCM. Table 9 presents the specific surface area values obtained for each paste using 395 MIP and the desorption isotherms (BET). Here again, the value of the specific surface area increases with 396 the amount of SCM in relation to the increased C-S-H content. The value obtained using the BET model is 397 always significantly higher than that of MIP.

398

Table 7. Specific gravity of the pastes (standard deviation in brackets).

Paste	CEM I	CEM II	CEM V	Low-pH
Saturated specific gravity d _{sat}	2.04 (0.01)	1.99 (0.01)	1.93 (0.01)	1.73 (0.01)

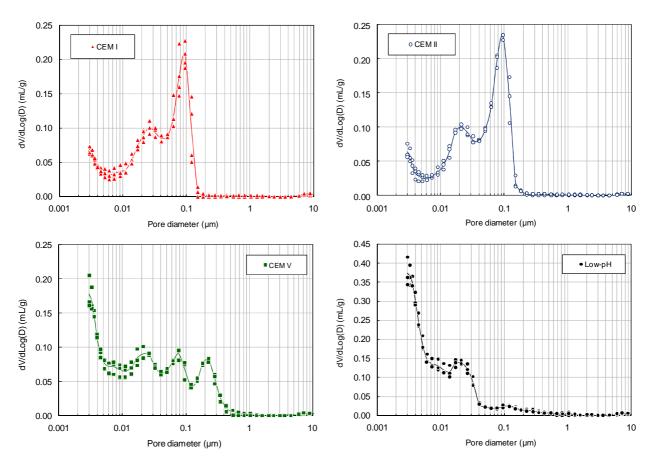
399

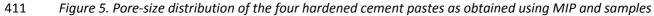
400

Table 8. Porosity as a function of drying temperature.

Temperature	Desiccant	RH	CEM I	CEM II	CEM V	Low-pH
20°C	SiO ₂	≈3%	30.4%	31.0%	28.5%	32.1%
50°C	SiO ₂	≈3%	35.2%	35.9%	34.2%	40.3%
80°C	CaCl ₂	≈0%	37.2%	39.5%	38.9%	41.3%
105°C	-	-	38.5%	40.4%	39.1%	45.7%

401


402


Table 9. Specific surface area of the four pastes.

Paste	CEM I	CEM II	CEM V	Low-pH	Unit
Specific surface area (BET)	190	199	297	380	m²/g
Specific surface area (MIP)	30	31	59	113	m²/g

The MIP results are presented on Figure 5. The CEM I & CEM II pastes exhibited almost the same poresize distribution. The CEM V and Low-pH pore-size distributions showed an important reduction of the pores of diameter larger than 50 nm (despite the presence of an unexpected and unexplained pore population around 200 nm for the CEM V) together with an important increase of pores of diameter lower than 50 nm. This was attributed to the presence of SCMs in the CEM V and Low-pH mix leading to supplementary C-S-H formation (see Table 6).

410

412

dried at 20°C (using silica gel and then freeze-drying).

The MIP results obtained using heated specimens are depicted on Figure 6. Whatever the considered paste, heating led to the coarsening of the pore structure: that is to say the increase of both capillary porosity and critical pore radius (corresponding to the sudden slope change in the MIP results). As suggested by Brue et al. [14] ettringite dissolution [62, 63] as well as C-S-H alteration [64-66] can be considered as the major causes of the pore structure modifications.

419

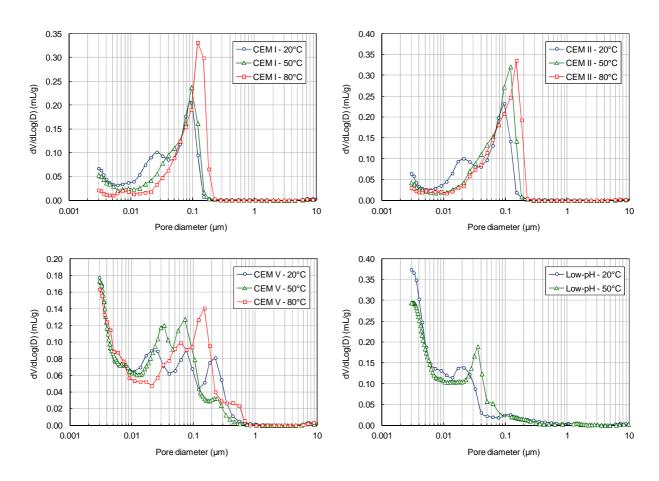
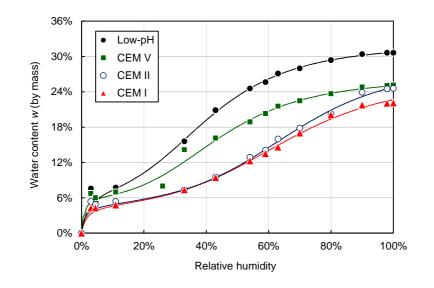
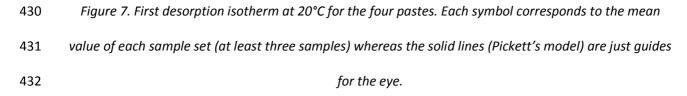


Figure 6. Pore size distribution versus temperature as obtained using MIP. Each curve corresponds to the
mean result of 3 or 4 tests. It was not possible to obtain reliable and repeatable results for the Low-pH


422


samples kept at 80°C: these results are not presented.

423 4.4. Desorption isotherms

The first desorption isotherm at 20°C of the four pastes are presented on Figure 7. The depicted curves are of type IV according to the classification originally proposed by Brunauer [46, 67]: one can note the monomolecular layer edification at low RH as well as the presence of a plateau near saturation (at least for CEMV and Low-pH) representative of capillary condensation within a meso-porous medium.

428

Similarly to the MIP results, the CEM I and CEM II pastes exhibit almost the same desorption curve
despite the 25% clinker-substitution by carbonate filler. The two curves differ at high RH: the CEM II
paste retains more water at saturation than the CEM I due to higher porosity. This isotherm shape is very
similar to the ones obtained using ordinary cementitious materials (pastes and concretes, w/c from 0.35
to 0.45) by Baroghel-Bouny [56]. The CEM V and Low-pH pastes show a different general pattern. The

presence of a plateau near saturation (RH=100%) is much more noticeable than for CEM I & II: the
desorption isotherm slope at high RH is lower than the ones of CEM I & II (due to a refined pore size
distribution). The water content at low RH (typically for monomolecular adsorption) is also higher than
for CEM I & II due to higher C-S-H content.

The impact of temperature on the water retention curve is depicted on Figure 8. Whatever the considered paste a temperature increase induces the reduction of the water retained at equilibrium with any arbitrary RH. This effect was observed over the whole RH-range and even at RH=100% for the CEM I and CEM II pastes but was hardly observed for the CEM V and Low-pH pastes. This was attributed to the effect of ongoing hydration as detected using TGA: the resulting mass gain helped reduce the fall in water content at high RH.

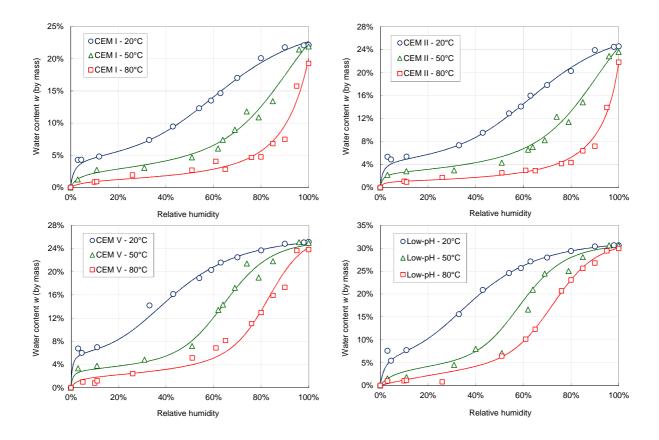


Figure 8. Desorption isotherm of the four hardened pastes as a function of temperature (water content).
Each symbol corresponds to the mean value of each sample set (at least three samples) whereas the solid
lines stand for the interpolation using Pickett's model.

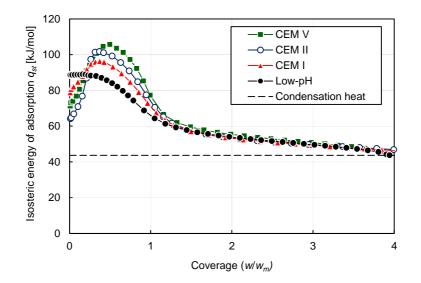
451 *4.5. Isoteric energy*

The isosteric energy of adsorption q_{st} was assessed using eq. (1). The RH *h* at equilibrium with the water content *w* was evaluated using Pickett's model (eq. 18) and the vapor pressure p_v was calculated using Rankine's equation:

455
$$p_{\nu}(w,T) = h(w,T)p_{\nu s}(T) = h(w,T)P_{a}exp\left(\alpha - \frac{\beta}{T}\right)$$
 (19)

456 with P_a =101325 Pa; α = 13.7 and β = 5120 K. The function used to interpolate $p_{vs}(T)$ is of first

457 importance because it appeared to influence the results obtained (the evolution remains unchanged but458 the values are modified). The resulting isosteric energy evolutions are plotted on Figure 9 as functions of


459 coverage $\frac{w}{w_m}$ (number of adsorbed layers). This presentation allows the results to be fully comparable

460 (and not to depend on density and porosity). Apart from the Low-pH mix all the curves exhibit the same

461 evolution: *q*_{st} increases at low coverage (typically between 0.0 and 0.5) from 70 kJ/mol to reach a

462 maximal value (around 100 kJ/mol) and then continuously decreases to get close to the average water

- 463 enthalpy of condensation (43.7 kJ/mol between 20 and 80°C) at high coverage. Note that the uncertainty
- 464 related to the maximal isosteric evaluation process was estimated to \pm 10 kJ/mol.

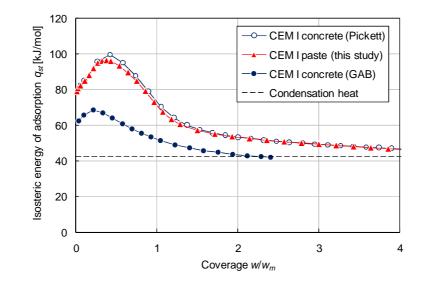
466

467

Figure 9. Isosteric energy of adsorption q_{st} of the four considered hardened cement pastes.

468

479

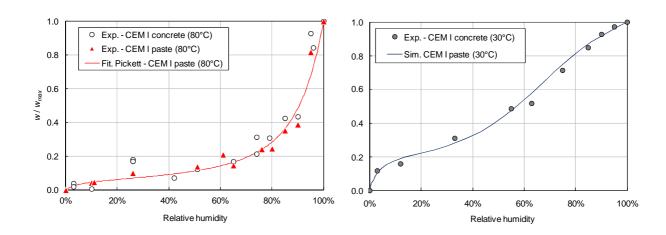

469 Most of q_{st} variations can be observed in the first layer (that is to say for w/w_m less than 1.0) which is 470 representative of the strong interaction between the first water layer and the hardened cement paste. 471 The q_{st} decrease (for w/w_m greater than 0.5) is representative of the decrease of the cementitious 472 material influence with the increase of the distance between the newly adsorbed water molecules and 473 substrate. The asymptotic value for high coverage (43.7 kJ/mol) corresponds to the average water 474 condensation energy (between 20 and 80°C): it can be considered that there is no more influence of the 475 cementitious material substrate and all water molecules are bonded the ones to the others (liquid state 476 representative of capillary condensation). 477 An increase in q_{st} in the first layer is not common: monotonic decrease is generally observed. In our case, 478 the maximum might just be due to the isosteric energy estimation process (use of Pickett's model rather

than another arbitrary function for instance) and to the lack (and variability) of the experimental results

in the monolayer zone (between 0 and 30% RH). Yet a maximum has already been observed for different

481 materials [68-76]. For hydrophobic materials such as activated carbons [70, 71] q_{st} increases from low 482 values at low coverage (due to the lack of hydrophilic sites) up to the condensation enthalpy in relation 483 to the formation of water clusters. For hydrophilic materials the increase is usually explained by the 484 swelling of the dry matrix resulting in the exposure of new adsorption sites of high binding energy. When 485 all the high energy sites are occupied water adsorption occurs on less energetic sites leading to the q_{st} 486 decrease. In the case of cementitious materials, the q_{st} increase might be due to the desaturation and 487 the subsequent collapse of the C-S-H interlayer space [77, 78] preventing water access to high-binding 488 energy adsorption sites within the C-S-H interlayer. This simple assumption would deserve additional 489 experiments to be confirmed (or infirmed).

490 Figure 10 presents the comparison between the isosteric energy obtained in this study (open circles) for 491 the CEM I paste and the corresponding concrete (filled circles) [13, 17]. It is obvious that the two 492 evolutions do not match: the maximal value obtained for the concrete is about 66 kJ/mol whereas it 493 reaches 100 kJ/mol for the paste. One could then conclude that there is no consistency between these 494 two results. As a matter of fact, two different models were used to describe the desorption isotherm in 495 both cases: GAB and Pickett models for the concrete and the paste respectively. These models were used 496 to calculate the RH (and then the vapor pressure) at equilibrium with any arbitrary water content as 497 needed for Clausius-Clapeyron equation, see [17] for more details. When we used Pickett's model to 498 evaluate the concrete isosteric energy from the CEM I paste results we obtained an almost perfect 499 match. The equation used for the description of the water retention curve (GAB or Pickett in our case) 500 appears to be very important since it greatly influences the resulting isosteric energy q_{st} . As a 501 consequence when handling such data, one has to be very careful and be consistent in the choice of the 502 model used to describe the water retention curve in order to avoid erroneous results.


503

504 Figure 10. Comparison between the isosteric energy evolutions obtained in this study and in a previous

505

506

507 This good isosteric energy correspondence was also supported by the comparison between paste and 508 concrete desorption isotherm as shown in Figure 11. Figure 11 (a) presents the experimental desorption 509 isotherm at 80°C for the CEM I paste tested in this study and the corresponding concrete studied in [13]. 510 To make the two isotherms comparable (porosity and density are different) the water content w was divided by its maximal value w_{max} . The two datasets describe almost the same curve (despite the 511 512 variability). Figure 11 (b) presents the comparison between the CEM I concrete desorption isotherm 513 acquired at 30°C and the CEM I paste curve estimated using Clausius-Clapeyron and Pickett's model and 514 the corresponding isosteric energy q_{st} (Figure 10). Once again, the comparison is very good. It is known 515 that for high-performance materials the presence of aggregates does not influence the water retention 516 curve [55, 56]: these results also show that it does not influence the isosteric energy (that is to say the variation induced by temperature). 517

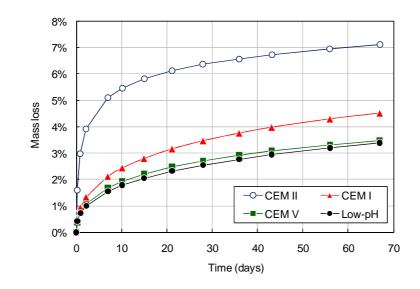
(a) Desorption isotherms at 80°C (CEM I paste and

corresponding concrete)

(b) Desorption isotherm at 30°C

Figure 11. Comparison between the desorption isotherms of the CEM I paste tested in this study and the
corresponding concrete [13].

521 4.6. Water transport

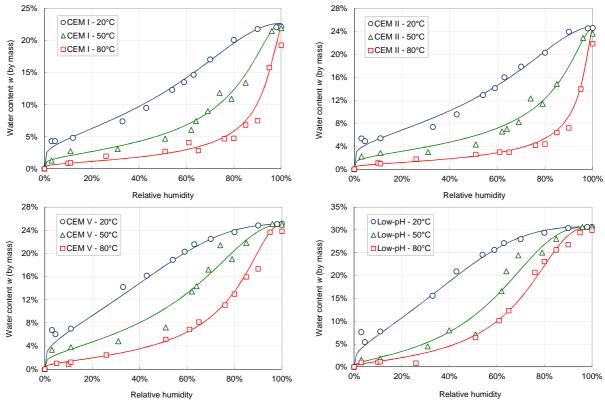

522 Figure 12 presents the experimental mass loss evolution of the samples dried at 20°C and 54% RH (the

523 initial mass of the saturated specimens was taken as reference/standard to compute mass loss). The

524 CEM II paste exhibited the fastest mass loss (7% after 60 days) far above the CEM I (4.5% after 60 days).

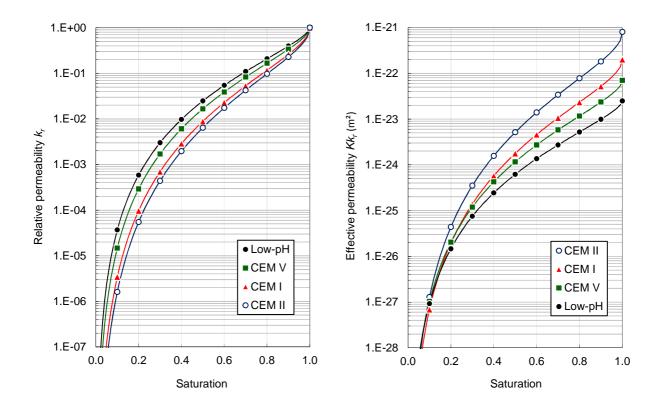
525 Here the effect of the 25% clinker substitution by limestone filler appeared to have a significant impact

- 526 (unlike the pore-network distribution and desorption isotherm). The CEM V and Low-pH pastes showed
- 527 almost the same mass loss evolution (3.3% after 60 days).



529

The two van Genuchten's parameters P_0 and m needed in eq. (8) were fitted on the experimental desorption isotherms (Figure 13): the corresponding values are reported in Table 10. At 20°C the values obtained are consistent with the literature [19, 22, 28]. It is noteworthy that when temperature increases the m values remain stable whereas those of P_0 decrease. The relative permeability evolutions at 20°C are depicted on Figure 14 (a). As expected the finer the pore size distribution, the lower the relative permeability decrease with saturation. The relative permeability evolutions can be classified in the following order: Low-pH > CEM V > CEM I > CEM II.



538 Figure 13. Desorption isotherm of the four hardened pastes as a function of temperature (saturation)

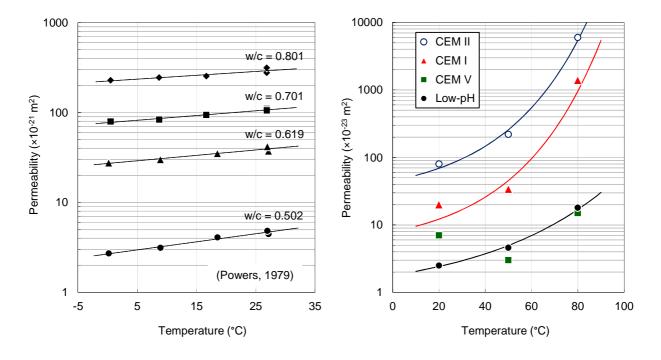
fitted using van Genuchten equation.

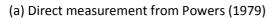
Table 10. Van Genuchten parameters and permeability values.

Past	e	CEM I	CEM II	CEM V	Low-pH	Unit
20°C	P_0	51.4	42.5	96.9	108.7	MPa
20 C	т	0.465	0.437	0.529	0.578	-
	К	2.0×10 ⁻²²	8.0×10 ⁻²²	7.0×10 ⁻²³	2.5×10 ⁻²³	m²
50°C	P ₀	18.9	14.7	47.1	56.8	MPa
50 0	т	0.457	0.425	0.506	0.605	-
	К	3.0×10 ⁻²²	22.0×10 ⁻²²	3.0×10 ⁻²³	4.6×10 ⁻²³	m²
80°C	P_0	8.1	5.2	23.5	40.3	MPa
80 C	т	0.458	0.436	0.517	0.595	-
	К	140.0×10 ⁻²²	600.0×10 ⁻²²	150.0×10 ⁻²³	18.0×10 ⁻²³	m²

(a) Relative permeability k_r

(b) Effective permeability Kkr


543 Figure 14. Relative (a) and effective (b) permeability of the four hardened cement pastes at 20°C.


Table 10 recapitulates the intrinsic permeability values assessed using inverse analysis. At 20°C they can be classified in the exact inverse order obtained for the relative permeability as shown in Figure 14 (b): CEM II > CEM I > CEM V > Low-pH. This order is consistent with the pastes pore-network fineness as well as the C-S-H content. Figure 15 presents the permeability variations induced by temperature. Unlike the results of Powers [5], they could not be described the classical Arrhenius law (the points were not aligned in the log-scale plot). For fitting purposes a double exponential law (eq. 20) was alternatively proposed:

551
$$K(T) = K_0 exp\left[exp\left(\frac{T-293.15}{T_c}\right) - 1\right]$$
(20)

where K_0 and T_c are two positive parameters, the values of which are reported in Table 11. It has to be noted that the CEM V paste showed an unexpected and unexplained permeability decrease between 20 and 50 °C which cannot be described using eq. (18).

555

(b) Inverse analysis from this study

556 Figure 15. Permeability versus temperature: (a) following Powers [5], using water permeametry between

557

558

0 and 30°C and (b) inverse analysis from this study.

Table 11. Parameters for the description of temperature influence on permeability (eq. 20).

Parameter	CEM I	CEM II	CEM V	Low-pH	Unit
K ₀	12.2×10 ⁻²³	69.1×10 ⁻²³	N/A	2.4×10 ⁻²³	m²
T_c	35.7	35.7	N/A	55.6	К

559 **5. Discussion**

560 The use of Clausius-Clapeyron to describe the water retention curve temperature induced modifications 561 implicitly assumes that the cementitious material pore structure remains unchanged. This assumption 562 was found to be acceptable for a high-performance concrete between 30 and 80°C [13]. The coarsening 563 of the pore structure observed using MIP in this study (from 20 to 80°C) is supported by the permeability 564 results and the unsuccessful comparison with the results of Powers [5] (Figure 15). He showed that 565 between 0 and 30°C (temperature range within which no temperature induced modification of the pore 566 structure was expected) the permeability variations can be fitted by a classical Arrhenius law. In our case 567 the permeability variations are too big to be fitted by such a function. This is consistent with an increase 568 of the transport properties associated to porosity opening. There is however other potential causes of 569 the important permeability increase. Heating up to 80°C might have caused microcracking or increased 570 the contribution of water transport in the gaseous phase which is not accounted for in our simplified 571 approach. This might have resulted in overestimating the pastes permeability values at high 572 temperature.

573 The coarsening of the pore structure observed calls into question the use of Clausius-Clapeyron and the 574 corresponding assumption of unaltered microstructure. Indeed it is true that the pore structure coarsens 575 when temperature increases: the error induced by our assumption also increases with temperature. 576 Nevertheless, we believe that thermal desorption is the major mechanism at work for moderate 577 temperatures (let us state up to 50°C). For temperatures up to 80°C, alteration of the pore structure 578 might have a non-negligible impact on the water retention curve. Unfortunately there is nowadays no 579 way to quantify the link the pore structure determined using MIP and the water retention curve and 580 Clausius-Clapeyron remains the only available tool to describe the influence of temperature. 581 Consequently it is difficult to estimate the error associated to our assumption. In a simple way one could

characterize the water retention curves at 20°C of samples preliminary treated at higher temperatures
(from 20 to 80°C) and analyze the results to evaluate the contribution of the microstructure variation.

584 6. Conclusion

585 Temperature has a great importance for water transport in cementitious materials. This issue is of first 586 importance for the durability assessment of reinforced concrete structures for radioactive waste 587 management. An experimental campaign was then designed to determine the influence of temperature 588 on cementitious materials water transport properties. Four hardened cement pastes of interest for 589 radioactive waste management were selected. Using a simplified approach, the transport of water was 590 described using liquid permeation only. This allowed reducing the number of properties to acquire 591 experimentally: porosity, water retention curve and (intrinsic and relative) permeability. 592 The water retention curve was characterized using the saturated salt solution method. The unsaturated 593 permeability was assessed using inverse analysis making use of the Mualem-van Genuchten model. 594 Three temperatures were tested: 20, 50 and 80°C. As expected, temperature was found to have a great 595 impact on the water retention curve: a temperature increase decreased the water content at equilibrium

596 for all the pastes. The intrinsic permeability value significantly increased with temperature, but the data

597 obtained do not follow Arrhenius activation law. These results constitute a valuable and consistent data

set for the description of water transport in the field of radioactive waste management.

599 The temperature induced alteration of the water retention curves were described using Clausius-

600 Clapeyron equation and the corresponding isosteric energy of adsorption was evaluated. In so doing, the

601 microstructure was assumed not to be altered during the heating. The coarsening of the pore structure

subsequent to heating was however highlighted using MIP. The water retention curve modifications

603 were then assumed to result from a combination of thermal desorption (described by Clausius-Clapeyron

604 equation) and pore structure coarsening. The influence of the latter remains to be evaluated.

605 Acknowledgements

606 This work was financially supported by the French agency for radioactive waste management (Andra).

607 **7. References**

- 608 [1] K. Tuutti, Corrosion of steel in concrete, Swedish Cement and Concrete Research Institute, 1982, pp.609 468.
- 610 [2] B.P. Hughes, I.R.G. Lowe, J. Walker, The diffusion of water in concrete at temperatures between 50
- and 95°C, British Journal of Applied Physics, 17 (1966) 1545-1452.
- 612 [3] N.L. Hancox, The role of moisture diffusion in the drying of cement paste under the influence of
- 613 temperature gradients, Journal of Physics D: Applied Physics, 1 (1968) 1769-1777.
- 614 [4] G.M. Glover, E. Rassk, Water diffusion and microstructure of hardened cement pastes, Materials and
- 615 Structures, 5 (1972) 315-322.
- 616 [5] T.C. Powers, The specific surface area of hydrated cement obtained from permeability data, Materials
- 617 and Structures, 12 (1979) 159-168.
- 618 [6] J.-F. Daïan, Condensation and isothermal water transfer in cement mortar, part I pore size
- distribution, equilibrium, water condensation and imbibition, Transport in Porous Media, 3 (1988) 563-
- 620 589.
- 621 [7] S.F. Wong, T.H. Wee, S. Swaddiwudhipong, S.L. Lee, Study of water movement in concrete, Magazine
- 622 of Concrete Research, 53 (2001) 205-220.
- [8] R. Černy, J. Drchalová, P. Rovnaníková, The effects of thermal load and frost cycles on the water
- transport in two high-performance concretes, Cement and Concrete Research, 31 (2001) 1129-1140.

- 625 [9] M. Jooss, H.W. Reinhardt, Permeability and diffusivity of concrete as function of temperature,
- 626 Cement and Concrete Research, 32 (2002) 1497-1504.
- 627 [10] J. Hundt, H. Kantelberg, Sorptionsuntersuchungen an zemestein, zementmörtel und beton (in
- 628 german), Deutscher Ausschuss für Stahlbeton, Heft 297 (1978) 25-39.
- 629 [11] F. Radjy, E.J. Sellevold, K.K. Hansen, Isosteric vapor pressure-temperature data for water sorption in
- 630 hardened cement paste: enthalpy, entropy and sorption isotherms at different temperatures, Report
- 631 BYG-DTU R057, Technical University of Denmark (DTU), Lyngby, Denmark, 2003, pp. 58.
- 632 [12] T. Ishida, K. Maekawa, T. Kishi, Enhanced modeling of moisture equilibrium and transport in
- 633 cementitious materials under arbitrary temperature and relative humidity history, Cement and Concrete
- 634 Research, 37 (2007) 565-578.
- [13] S. Poyet, Experimental investigation of the effect of temperature on the first desorption isotherm of
 concrete, Cement and Concrete Research, 39 (2009) 1052-1059.
- 637 [14] F. Brue, C.A. Davy, F. Skoczylas, N. Burlion, Effect of temperature on the water retution properties of
- two high-performance concretes, Cement and Concrete Research, 42 (2012) 384-396.
- [15] J. Jiang, Y. Yuan, Relationship of moisture content with temperature and relative humidity in
- 640 concrete, Magazine of Concrete Research, 65 (2013) 685-692.
- [16] M. Wu, B. Johannesson, M. Geiker, A study of the water vapor sorption isotherms of hardened
- 642 cement pastes: possible pore structure changes at low relative humidity and the impact of temperature
- on isotherms, Cement and Concrete Research, 56 (2014) 97-105.
- [17] S. Poyet, S. Charles, Temperature dependence of the sorption isotherms of cement-based materials:
- heat of sorption and Clausius-Clapeyron formula, Cement and Concrete Research, 39 (2009) 1060-1067.
- [18] H. Pan, J.A. Ritter, P. Balbuena, Examination of the approximations used in determining the isosteric
- heat of adsorption from the Clausius-Clapeyron equation, Langmuir, 14 (1998) 6323-6327.

- 648 [19] V. Baroghel-Bouny, M. Mainguy, T. Lassabatere, O. Coussy, Characterization and identification of
- 649 equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials,
- 650 Cement and Concrete Research, 29 (1999) 1225-1238.
- [20] M. Mainguy, O. Coussy, V. Baroghel-Bouny, Role of air pressure in drying of weakly permeable
- materials, Journal of Engineering Mechanics (ASCE), 127 (2001) 582-592.
- 653 [21] O. Coussy, Poromechanics, John Wiley & Sons Ltd2004.
- [22] V. Baroghel-Bouny, Water vapour sorption experiments on hardened cementitious materials. Part II.
- 655 Essential tool for assessment of transport properties and for durability prediction, Cement and Concrete
- 656 Research, 37 (2007) 438-454.
- 657 [23] S. Poyet, Determination of the intrinsic permeability to water of cementitious materials: influence of
- the water retention curve, Cement and Concrete Composites, 35 (2013) 127-135.
- [24] S. Whitaker, Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying,
- 660 Advances in Heat Transfer, 13 (1977) 119-203.
- 661 [25] D. Gawin, B.A. Schrefler, Thermo-hydro-mechanical analysis of partially saturated porous materials,
- 662 Engineering Computations, 13 (1996) 113-143.
- 663 [26] J. Selih, A.C.M. Sousa, T.W. Bremner, Moisture transport in initially fully saturated concrete during
- 664 drying, Transport in Porous Media, 24 (1996) 81-106.
- 665 [27] F. Meftah, S. Dal Pont, Staggered finite volume modeling of transport phenomena in porous
- 666 materials with convective boundary conditions, Transport in Porous Media, 82 (2010) 275-298.
- 667 [28] M. Thiery, V. Baroghel-Bouny, N. Bourneton, G. Villain, C. Stéfani, Modélisation du séchage des
- 668 bétons, analyse des différents modes de transfert hydrique (in French), European Journal of
- 669 Environmental and Civil Engineering, 11 (2007) 541-577.

- 670 [29] M. Thiery, P. Belin, V. Baroghel-Bouny, M.D. Nguyen, Modeling of isothermal drying process in
- 671 cementitious materials, analysis of the moisture transfer and proposal of simplified approaches, in: J.-F.
- 672 Shao, N. Burlion (Eds.) 3rd international conference GeoProc, Wiley, Lille (France), 2008, pp. 571-579.
- [30] L.A. Richards, Capillary conduction of liquids through porous mediums, Physics, 1 (1931) 318-333.
- [31] B.M. Savage, D.J. Janssen, Soil physics principles validated for use in predicting unsaturated moisture
- 675 movement in Portland cement concrete, ACI Materials Journal, 94 (1997) 63-70.
- 676 [32] M.T. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of
- unsaturated soils, Soil Science Society of America Journal, 44 (1980) 892-898.
- [33] Y. Mualem, A new model for predicting the hydraulic conductivity of unsaturated porous media,
- 679 Water Resources Research, 12 (1976) 513-522.
- 680 [34] H. Lagrave, G. Ranc, C. Gallé, S. Durand, Durability design of heated concrete structures.
- 681 Methodology and application to long-term interim storage, Journal de Physique IV, 136 (2006) 223-231.
- [35] J.-P. Silvy, N. Moulin, F. Laurent, Long-term (100-300 years) interim dry storage for spent fuel:
- 683 package and facilities development including safety aspects and durability assessment program, in: J.D.B.
- 684 Lambert, K.K. Kadyrzhanov (Eds.) Safety Related Issues of Spent Nuclear Fuel Storage, Springer, 2007, pp.
- 685 181-188.
- [36] P. de Coninck, G. Ranc, J. Iacono, J.-L. Martin, N. Moulin, K. Shirai, Y. Le Pape, E. Tronche,
- 687 Contribution of Galatée on reinforced concretesStructurebBehavior for a full scales subsurface storage
- laboratory, in: F. Bart, C.C.D. Coumes, F. Frizon, S. Lorent (Eds.) Proceedings of the 1st NUWCEM
- 689 SymposiumAvignon (France), 2011.
- [37] C. Cau Dit Coumes, S. Courtois, D. Nectoux, S. Leclercq, X. Bourbon, Formulating a low-alkalinity,
- high-resistance and low-heat concrete for radioactive waste repositories, Cement and Concrete
- 692 Research, 36 (2006) 2152-2163.

- [38] M. Codina, C. Cau-dit-Coumes, P. Le Bescop, J. Verdier, J.P. Ollivier, Design and characterization of
- low-heat and low-alkalinity cements, Cement and Concrete Research, 38 (2008) 437-448.
- [39] R. Barneyback, S. Diamond, Expression and analysis of pore fluid from hardened psates and mortars,
- 696 Cement and Concrete Research, 11 (1981) 279-285.
- [40] J. Khatib, P.S. Mangat, Absorption characteristics of concrete as a function of location relative to
- 698 casting position, Cement and Concrete Research, 25 (1995) 999-1010.
- [41] J. Khatib, P.S. Mangat, Porosity of cement paste cured at 45°C as a function of location relative to
- casting position, Cement and Concrete Research, 25 (2003) 97-108.
- 701 [42] E.E. Demirci, R. Şahin, Comparison of carbonation resistance and uniformity of SCC and CC core
- samples, Magazine of Concrete Research, 2014, pp. 531-539.
- 703 [43] R.A. Olson, H.M. Jennings, Estimation of C-S-H content in a blended cement paste using water
- adsorption, Cement and Concrete Research, 31 (2001) 351-356.
- 705 [44] G. Pickett, Modification of the Brunauer-Emmett-Teller theory of multimolecular adsorption, Journal
- 706 of the American Chemical Society, 67 (1945) 1958-1962.
- 707 [45] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, Journal of the
- 708 American Chemical Society, 60 (1938) 309-319.
- [46] J.B. Condon, Surface area and porosity determinations by physisorption Measurements & theory,
 Elsevier2006.
- 711 [47] P.H. Emmett, S. Brunauer, The Use of Low Temperature van der Waals Adsorption Isotherms in
- 712 Determining the Surface Area of Iron Synthetic Ammonia Catalysts, Journal of the American Chemical
- 713 Society, 59 (1937) 1553-1564.
- [48] S.J. Gregg, K.S.W. Sing, Adsorption, surface area and porosity, 2nd ed ed., Academic Press, London,
- 715 United Kingdom, 1982.

- 716 [49] L. Wadsö, K. Svennberg, A. Dueck, An experimentally simple method for measuring sorption
- 717 isotherms, Drying Technology, 22 (2004) 2427-2440.
- 718 [50] D.S. Carr, B.L. Harris, Solutions for maintaining constant relative humidity, Industrial and Engineering
- 719 Chemistry, 41 (1949) 2014-2015.
- 720 [51] A. Wexler, S. Hasegawa, Relative humidity-temperature relationships of some saturated salt
- solutions in temperature range 0°C to 50°C, Journal of Research of the National Bureau of Standards, 53
 (1954) 19-26.
- 723 [52] A. Scheider, Neue dagramme zur bestimmug der relativen luftfeuchtigkeit uber gesattigten
- 724 wasserigen salzslosungen und wasserigen schwefelsaurelosingen bei verschiedenen temperaturen (in
- 725 german), Hol als Rohund Werstoff, 18 (1960) 269-272.
- [53] J.F. Young, Humidity control in the laboratory using salt solutions a review, Journal of Applied
- 727 Chemistry, 17 (1967) 241-245.
- [54] L. Greenspan, Humidity fixed points of binary saturated aqueous solutions, Journal of Research of
- the National Bureau of Standards A, Physics and Chemistry, 81A (1977) 89-96.
- 730 [55] V. Baroghel-Bouny, Caractérisation des pâtes de ciment et des bétons : Méthodes, analyse,
- 731 interprétations (in french), Presses du Laboratoire Central des Ponts et Chaussées, Paris, France, 1994.
- [56] V. Baroghel-Bouny, Water vapour sorption experiments on hardened cementitious materials: Part I.
- 733 Essential tool for analysis of hygral behaviour and its relation to pore structure, Cement and Concrete
- 734 Research, 37 (2007) 414-437.
- 735 [57] C. Gallé, Effect of drying on cement-based materials pore structure as identified by mercury
- intrusion porosimetry. A comparative study between oven-, vacuum-, and freeze-drying, Cement and
- 737 Concrete Research, 31 (2001) 1467-1477.
- [58] M.C. Garci Juenger, H.M. Jennings, The use of nitrogen adsorption to assess the microstructure of
- cement paste, Cement and Concrete Research, 31 (2001) 883-892.

- 740 [59] J.J. Beaudouin, B.T. Tamtsia, Effect of drying methods on microstructural changes in hardened
- 741 cement paste: an A.C. impedance spectroscopy evaluation, Journal of Advanced Concrete Technology, 2
 742 (2004) 113-120.
- [60] A. Korpa, R. Trettin, The influence of different drying methods on cement paste microstructures as
- reflected by gas adsorption: comparison between freeze-drying, D-drying, P-drying and oven-drying,
- 745 Cement and Concrete Research, 36 (2006) 634-649.
- 746 [61] P.A.M. Basheer, Permeation analysis, in: V.S. Ramachandran, J.J. Beaudouin (Eds.) Handbook of
- analytical techniques in concrete science and technlogy, Noyes Publications, Park Ridge, New Jersey,
- 748 U.S.A., 2001, pp. 658-737.
- [62] W. Klemm, Ettringite and oxyanion-substituted ettringites their characterization and applications in
- the fixation of heavy metals: a synthesis of the literature, Portland Cement Association Research and
- 751 Development Bulletin RD116 (1998) 68p.
- 752 [63] Q. Zhou, F. Glasser, Kinetics and mechanism of the carbonation of ettringite, Advances in Cement
- 753 Research, 12 (200) 131-136.
- 754 [64] Y. Aono, F. Matsushita, S. Shibata, Y. Hama, Nano-structural changes of C-S-H in hardened cement
- paste during drying at 50°C, Journal of Advanced Concrete Technology, 5 (2007) 313-323.
- 756 [65] X. Cong, R.J. Kirkpatrick, Effects of the temperature and relative humidity on the structure of C-S-H
- 757 gel, Cement and Concrete Research, 25 (1995) 1237-1245.
- [66] E. Gallucci, X. Zhang, K. Scrivener, Effect of temperature on the microstructure of calcium silicate
- hydrate (C-S-H), Cement and Concrete Research, 53 (2013) 185-195.
- 760 [67] K.S.W. Sing, E. D.S., R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting
- 761 physisorption data for gas/solid systems with special reference to the determination of surface area and
- porosity (Recommendations 1984), Pure and Applied Chemistry, 57 (1985) 603-619.

- 763 [68] E. Palou, A. López-Malo, A. Argaiz, Effect of temperature on the moisture sorption isotherms of
- some cookies and corn snacks, Journal of Food Engineering, 31 (1997) 85-93.
- [69] M.M. Vivanco, O.M. Taboada, Thermodynamic behavior of fish meal during adsorption, Drying
 Technology, 16 (1998) 1827-1842.
- [70] I.I. Salame, T.J. Bandosz, Experimental study of water adsorption on activated carbons, Langmuir, 15
 (1999) 587-593.
- [71] I.I. Salame, T.J. Bandosz, Study of water adsorption on activated carbons with different degrees of
 surface oxidation, Journal of Colloid and Interface Science, 210 (1999) 367-374.
- [72] M. Das, S. Das, Analysis of moisture sorption characteristics of fish protein myosin, International
- Journal of Food Science and Technology, 37 (2002) 223-227.
- [73] N. Hamdami, J.-Y. Monteau, A. Le Bail, Transport properties of a high porosity model food at above
- and sub-freezing temperatures. Part 1: thermophysical properties and water activity, Journal of Food
- 775 Engineering, 62 (2004) 373-383.
- 776 [74] S. Timoumi, F. Zagrouba, D. Mihoubi, M.M. Tlili, Experimental study and modelling of water
- sorption/desorption isotherms on two agricultural products: apple and carrot, Journal de Physique IV,
- 778 122 (2004) 235-240.
- [75] E. Quirjins, A. van Boxtel, W. van Loon, G. van Straten, Sorption isotherms, GAB parameters and
- isosteric heat of sorption, Journal of the Science of Food and Agriculture, 85 (2005) 1805-1814.
- 781 [76] C. Pérez-Alonso, C.I. Beristain, C. Lobato-Calleros, M.E. Rodríguez-Huezo, E.J. Vernon-Carter,
- 782 Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers, Journal
- 783 of Food Engineering, 77 (2006) 753-760.
- 784 [77] R. Feldman, P. Sereda, A model for hydrated Portland cement paste as deduced from sorption-
- length change and mechanical properties, Materials and Structures, 1 (1968) 509-520.

- 786 [78] H.M. Jennings, Refinements to colloid model of C-S-H in cement: CM-II, Cement and Concrete
- 787 Research, 38 (2008) 275-289.