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Abstract 16 

In unsaturated conditions, the durability of concrete structures is strongly dependent on the evolution 17 

of the amount of free water within concrete porosity. Reliable durability assessment of concrete 18 

structures in relation to their environment thus requires accurate unsaturated water transport 19 

description as well as reliable input data. The effect of carbonation on water transport remains poorly 20 

studied and data are lacking. It was then the purpose of this article to acquire all the data needed to 21 

describe unsaturated water transport in carbonated cementitious materials (porosity, water retention 22 

and unsaturated permeability). Four hardened pastes made with four different binders were 23 

carbonated at 3% CO2 to ensure representativeness with natural carbonation. Beyond the modification 24 



of the water retention curve and porosity clogging, significant microcracking due to carbonation 25 

shrinkage was observed. The consequence on permeability highlighted a competition between 26 

porosity clogging and microcracking that was dependent on the initial mineralogical composition.  27 

Keywords:  waste management (E); cement paste (D); drying (A); permeability (C); microstructure (B)  28 

1.  Introduction 29 

In unsaturated conditions, the durability of concrete structures is strongly dependent on the evolution 30 

of the amount of free water within concrete porosity (the term “free water” means the water that can be 31 

evaporated: it includes capillary and adsorbed water). This dependence is well illustrated by the 32 

results of Tuutti [1] that show the strong evolution of the corrosion current (over several orders of 33 

magnitude) of steel embedded in a carbonated mortar as a function of the external relative humidity 34 

(RH). In a more general way water significantly influences concrete performances and durability 35 

(shrinkage, creep, cracking, transport properties). Reliable durability assessment of concrete 36 

structures in relation to their environment thus requires accurate unsaturated water transport 37 

description. Many studies were published on this specific subject and a lot of data were acquired in the 38 

laboratory using different cement-based materials taking care to avoid interaction with carbon dioxide 39 

(CO2). These results are of course very important but they are not fully relevant for durability appraisal 40 

because they disregard the fact that concrete structures are being carbonated when exchanging water 41 

with the environment.  42 

Carbonation refers to the reaction between the calcium contained in concrete pore solution and 43 

gaseous CO2. It leads to hydrates dissolution (mainly portlandite and C-S-H) and precipitation of 44 

calcium carbonate (CaCO3). Beyond the fall of the pore solution pH that triggers rebar depassivation 45 

and corrosion, the precipitation of CaCO3 generates porosity clogging: the reduction of which depends 46 

on the cement type and water to cement ratio (w/c) [2-8]. The specific surface area is then significantly 47 

decreased (around 50%) despite conflicting observations [9, 10].  48 

The pore size distribution is also altered. Litvan and Meyer [11] studied carbonated concrete samples 49 

taken from a 20-year field exposure test (two concretes made with CEM I and CEM III). They found 50 

that carbonation led to significant coarsening of the pore structure of the CEM III concrete whereas the 51 

finer pores were affected for the CEM I one. Using pastes with different w/c (from 0.4 to 0.7) Ngala 52 



and Page [5] found that carbonation (using 5% of CO2) increased the proportion of capillary pores 53 

(pores larger than 30 nm) whatever the binder and water to binder ratio. More recently, Thiéry et al. [7] 54 

carbonated CEM I pastes with different w/c (using 50% of CO2) and found that carbonation was 55 

capable of producing large capillary pores (larger than 100 nm) for w/c greater than 0.45. This could 56 

be just a consequence of the high CO2 content used in this study because the authors noted that this 57 

phenomenon was reproduced using 10% of CO2. Morandeau [12, 13] conducted similar experiments 58 

using CEM I pastes with or without fly ash (using 10% of CO2). The pore volume of the CEM I pastes 59 

was almost uniformly reduced over the whole pore size distribution whereas a significant coarsening 60 

was obtained for pastes containing fly ash.  61 

The water retention curves (i.e. adsorption and desorption isotherms) are also transformed. Due to 62 

porosity clogging, the water retained at equilibrium is significantly reduced [2, 4, 14-16]. In addition, 63 

using CEM I pastes of different w/c Houst [14], Houst and Wittmann [4] (≈90% CO2) and Thiéry et al. 64 

[7] (50% CO2) showed that despite this reduction in water content (in percent by dry mass) the curves 65 

remained unchanged when they were expressed in saturation (Figure 1). This highlights the change in 66 

density induced by carbonation due to CO2 fixation (1.60 and 2.03 g/cm3 for non- and carbonated 67 

pastes respectively as estimated using mercury intrusion porosimetry [14]). This also means that all 68 

the pores were impacted in the same manner by CaCO3 precipitation. This is of course not consistent 69 

with the coarsening of the pore structure discussed above. This is also not consistent with the results 70 

of Hyvert [16] who obtained significant alteration of the water retention curve of CEM I and CEM III/A 71 

mortars (w/c = 0.5) after carbonation (50% CO2) (Figure 2).  72 

  
Figure 1: Effect of carbonation on the desorption i sotherm of a CEM I paste (w/c=0.4), redrawn 73 

after [14]. Key: � non-carbonated paste, ▲ carbonated paste.  74 
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Figure 2: Effect of carbonation on the desorption i sotherm of CEM I and CEM III/A mortars 75 

(w/c=0.5), redrawn after [16]. Key: � non-carbonated paste, ▲ carbonated paste. 76 

The effect of carbonation on permeability is also controversial. Martin [17] used CO2 in gas 77 

permeability tests and observed a reduction in permeability as a consequence of carbonation during 78 

the test. Using CEM I grouts, Dewaele et al. [9] obtained permeability decrease of several orders of 79 

magnitude after carbonation (by injection under pressure of CO2-rich water). Claisse et al. [6] 80 

carbonated CEM I concretes (5% CO2) and measured significant increase in the so-called 81 

impermeability index [18] indicating a fall in permeability. In the same way Song and Kwon [19] 82 

carbonated two CEM I concretes and found that the permeability coefficient of the carbonated 83 

concretes was three times less than that of the non-carbonated ones. These results are however not 84 

consistent with the observations of Borges et al. [20] who measured oxygen permeability on CEM I 85 

paste with or without slag (75% and 90%). The CEM I paste permeability values remained stable after 86 

carbonation (5% CO2) whereas the pastes incorporating slag showed significant increase in 87 

permeability. Moreover Thiéry et al. [7] and Wang et al. [21] showed that for a high w/c CEM I concrete 88 

(0.84) the permeability (evaluated using inverse analysis) was increased after carbonation (by one 89 

order of magnitude).  90 

In summary, there are not enough studies dealing with the effect of carbonation on water transport 91 

properties and the results are piecemeal and often conflicting. This might be due to differences in CO2 92 

content, cement type or even mix composition. It is then the purpose of this article to study the effect 93 

of carbonation and to acquire all the data needed to describe unsaturated water transport in 94 

carbonated cement pastes; that is to say: porosity, water retention curve and unsaturated permeability 95 

(see section 2).  96 
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2.  Theoretical framework 97 

Water transport within concretes involves three mechanisms: (i) permeation of the liquid phase; (ii) 98 

permeation of the gaseous phase (mix of vapour and dry air) and (iii) diffusion of vapour within the 99 

gaseous phase (the transport of adsorbed water is not accounted for here). The description of these 100 

phenomena results in a complex set of coupled differential equations [22-25]. The major disadvantage 101 

of this approach is the great number of input data that are required and the experimental difficulty 102 

related to their assessment.  103 

Water transport is then usually described in a simplified way using a single equation as for liquid 104 

permeation only (the two other motions are included). This approach was found to be valid (water 105 

transport in the gaseous phase was found to be negligible compared liquid permeation) for weakly 106 

permeable materials [24]: this was the case for a concrete with an intrinsic permeability equal to 1×10-107 

21 m2 [26]. More recently, Thiéry et al. [27, 28] estimated the respective contribution of each motion for 108 

three different concretes. They showed that this approach validity depends on the intrinsic permeability 109 

and the RH-domain that is considered. For instance for a high-performance concrete with low 110 

permeability (≈2×10-22 m2) the assumption appears to be valid between RH=20% and 100% whereas 111 

for a low-strength concrete with high permeability (≈4×10-19 m2) the validity domain is limited to 65%-112 

100% RH. 113 

To describe water transport in a simplified way, we have started using Darcy’s law extended to 114 

unsaturated flow [29] which allowed estimating the water flux �:  115 

 � = −� ��� �	
��
� (1) 

where P is the liquid pressure [Pa]; η and ρ the water viscosity [Pa·s] and density [kg/m3] respectively. 116 

Ke is the effective permeability that characterizes the resistance of the unsaturated concrete to water 117 

flow (under a pressure gradient) [m2]. It was expressed as the product �� × ��� in which � is the 118 

intrinsic permeability [m²] and �� the relative permeability that accounts for the effect of desaturation 119 

on the depercolation of the saturated porous network (ranges between 0 and 1). The mass 120 

conservation equation then wrote:  121 

 
��� ��∅�� = −��� ��� = ��� �� ��� �	
��
�� (2) 



S is the saturation index [without unit], it describes how pores are filled with liquid water and ranges 122 

between 0 (dry state) and 1 (saturated state). ∅ is the concrete porosity (volume per volume) [without 123 

unit]. In isothermal conditions, assuming that water is incompressible and that a differentiable relation 124 

between saturation S and water pressure P exists (this relation is known as the capillary pressure 125 

curve) eq. (3) could be easily obtained: 126 

 ∅ ����
� �
�� = ��� ���� �	
��
�� − � ��∅�� � (3) 

The right-hand term �� �∅��� accounted for porosity reduction induced by carbonation and the pressure 127 


 was calculated using the so-called Kelvin-Laplace equation:  128 

 
�ℎ� = −�!"# $%�ℎ� (4) 

& is the universal gas constant [J/mol/K], T is the absolute temperature [K]. ' is the liquid water molar 129 

mass [kg/mol] and ℎ is the relative humidity. The description of water transport within concrete thus 130 

required the knowledge of only three physical parameters: the concrete porosity (∅), the effective 131 

permeability (��) and the left-hand term �()(*� which was assessed using the water retention curve [30]. 132 

It must be noted that for constant porosity, eq. (3) could be simplified to eq. (5) which was used to 133 

describe unsaturated water transport in the non-carbonates pastes (part 4.4.1).  134 

 ∅ ����
� �
�� = ��� ���� �	
��
�� (5) 

3.  Materials and specimens 135 

3.1.  Materials 136 

Four different hardened cement pastes with constant water to binder ratio (0.40) were used (Table 1). 137 

These binders were chosen because they are being used for R&D studies by the French Agency for 138 

radioactive waste management (Andra) and its partners. The low-pH mix was designed in the field of 139 

geological disposal to limit the chemical interaction between clay minerals and concrete structures [31, 140 

32]. The CEM I, CEM V/A and Low-pH mix were already studied in a previous work [33, 34] in which 141 

the water transport properties of the non-carbonated materials were characterized. The cement pastes 142 

CEM I, CEM III/A, CEM V/A and Low-pH blend (T1 from [32]) are respectively noted PI, PIII, PV and 143 

PBP in this study.  144 



Table 1: Cement pastes composition. 145 

Compound CEM I CEM III/A CEM V/A Low-pH blend (T1) 
CEM I 100% 39% 56% 37.5% 
Slag - 61% 22% - 

Fly ash - - 22% 30% 
Silica fume - - - 32.5%  

Superplasticizer Chryso®Fluid Optima 175 - - - 1% of binder (by mass) 
Water to binder ratio 0.40 0.40 0.40 0.40 

 146 

3.2.  Specimens preparation 147 

The pastes were prepared in twelve consecutive batches of 2 L (3 batches for each composition) over 148 

two days. The appropriate amounts of cement and water were mixed in a planetary mixer until 149 

homogenization of the fresh mix. The paste was then poured into polypropylene cylindrical moulds 150 

(Ø50×100 mm) and vibrated to remove entrapped air bubbles. The specimens were kept two weeks 151 

after casting in their sealed moulds before unmoulding. The specimens were then cured for four 152 

months in sealed containers immersed in specific curing solutions. The composition of the curing 153 

solutions of the PI, PIII and PV specimens was designed to prevent calcium and alkalis leaching. The 154 

pore solutions were expressed at high-pressure [35] from specimens kept in sealed moulds for 4 155 

months. The use of the device optimized by Cyr & Daidié [36] allowed retrieving several millilitres of 156 

solution, the composition of which was analyzed using ionic chromatography (Table 2). 157 

Because the pore-solution of PBP was known to exhibit significant changes during the early months of 158 

hydration [32], a different protocol was chosen: several specimens were reduced into a rough powder 159 

and added to deionized water to generate the curing solution.  160 

 161 

Table 2: Ion chromatography results for the pore so lutions of PI, PIII and PV. 162 

Cations (mmol/L) PI PIII PV 
Na+ 52 130 98 
K+ 473 366 469 

Ca2+ 2.5 2.3 2.0 
pH 13.6 13.5 13.5 

 163 

The top and bottom parts of the samples that present different properties from the bulk [37-39] were 164 

cut off and discarded. The thickness of the parts to be removed was assessed by using accelerated 165 



chemical degradation [40]. One specimen of each paste was immersed in ammonium nitrate solution 166 

(6 mol/L). The leaching solution was stirred constantly but not renewed [41]. After one month, the 167 

samples were withdrawn from the solution, sawn in two parts and sprayed with phenolphthalein 168 

solution. Three zones could be observed (Figure 3):  169 

• the central part where the degradation depth was constant versus height, 170 

• the bottom part where the degradation depth was less due to sedimentation, 171 

• the top part where the degradation depth was higher due to bleeding and sedimentation.  172 

The removal of top and bottom ends (10 mm) was believed to yield homogeneous properties versus 173 

height. 140 disks per paste (6 mm-thick) were sawn from the central part of the resulting specimens. 174 

Most of these disks (110 per paste) were used for carbonation study and the remaining part was 175 

dedicated to the non-carbonated pastes characterization. 176 

 
 

Figure 3: Degradation profile of PI sample after on e month in ammonium nitrate (6M) at 177 

ambient temperature. 178 
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Accelerated carbonation was achieved using the device developed by Drouet [33]. It includes a 180 
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chosen to ensure representativeness of the mineralogical evolution compared to atmospheric 186 

carbonation [45]. The carbonation progress was monitored in a simple way through mass variation. 187 

The process was pursued until the complete carbonation state which was verified afterwards using X-188 

ray diffraction (XRD) and thermogravimetric analysis (TGA) (see section 5.1.). 189 

4.  Methods 190 

4.1.  Mineralogical assemblage 191 

The mineralogical changes induced by carbonation were identified using a PANalytical X’Pert 192 

diffractometer and Cu Kα radiation (λ = 1,54 Å) (XRD). The solid samples surface was scanned 193 

between 5 and 65°, with a step size of 0.017°. The use of the X’Celerator detector allowed the 194 

acquisition time of the diffractograms to be around 20 minutes.  195 

Thermogravimetric analysis experiments (TGA) were accomplished using a NETZSCH STA 409 PC 196 

LUXX device to determine the amount of portlandite (CH) and calcium carbonate (CC-). Following 197 

current methodology [46] the samples were powdered (120 ± 0.1 mg) and tested at a constant heating 198 

rate of 10°C/min up to 1150°C under N2 flowrate (80 mL/min).  199 

The C-S-H content was evaluated following the method proposed by Olson and Jennings [47] and the 200 

water content at equilibrium with RH = 20% (input data for the estimation process) was obtained from 201 

the water desorption isotherms.  202 

29Si Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) was used to probe the effect of 203 

carbonation on the C-S-H structure as commonly done [45, 48-51]. We did not use 13C NMR because 204 

it was found difficult to distinguish one calcium carbonate from the others [52]. The 29Si MAS NMR 205 

experiments were conducted following the current protocol of Brunet et al. [53]. Spectra were collected 206 

using a Bruker 300WB NMR spectrometer operating at a Larmor frequency of 59.3 MHz (magnetic 207 

field 7.05 T). Samples intended for MAS NMR analysis were powdered (around 100 mg sieved to 208 

remove the particles larger than 100 µm) and packed in ZrO2 4mm (outer diameter) rotors. Sample 209 

spinning frequency was 10,000 Hz and recycle delay was 2s. No differences in line shape were seen 210 

for longer recycle delays (20s, 200s) and spin rate of 10 kHz was found to be sufficient to remove 211 



paramagnetic effects (i.e. here spinning sidebands intensity minimized). Data were processed using 212 

an in-house made software [53]. 213 

4.2.  Porosity 214 

Water porosity ∅ was obtained using oven-drying. The specimens were preliminarily saturated under 215 

vacuum and water following the current standard used in France [54]. 80°C was chosen as the 216 

reference temperature in order to enable comparison with a previous study focused on similar 217 

materials [33] but supplementary tests were conducted at 105°C to enable comparison with literature.  218 

The pore size distribution was investigated by mercury intrusion porosimetry (MIP) using a 219 

Micrometrics Autopore IV. Samples were crushed into small parts (several millimetres), frozen by 220 

immersion into liquid nitrogen, let to dry under vacuum for seven days and then tested at 20 ± 2°C. 221 

Two samples of each formulation were used. 222 

4.3.  Water desorption isotherm 223 

The desorption isotherms were characterized using the desiccator method [55]. The non-carbonated 224 

samples were tested just after the cure (after 4 months) whereas the carbonated ones were tested 225 

after the cure (4 months) and carbonation (1 year). All the samples were resaturated before the test 226 

(4 h under vacuum and then 20 h under water and vacuum). A set of specimens (from 3 to 6) of each 227 

paste was inserted into a desiccator above a specific saturated salt solution to control the RH (Table 228 

3). Thirteen different sample-sets were placed simultaneously into thirteen different desiccators 229 

including different salt solutions. This procedure allowed reducing the test duration, but might have 230 

resulted in increasing variability.  231 

Table 3 Saturated salt solutions used in the desicc ator method [56-59]. 232 

Saturated salt solution Chemical formula RH (20°C) 
Calcium chloride CaCl2 ≈3% 
Lithium chloride LiCl 11% 

Potassium acetate C2H3KO2 23% 
Magnesium chloride MgCl2 33% 
Potassium carbonate K2CO3 43% 

Magnesium nitrate Mg(NO3)2 54% 
Sodium bromide NaBr 59% 

Ammonium nitrate NH4NO3 63% 
Potassium Iodide KI 70% 



Ammonium chloride NH4Cl 80% 
Potassium nitrate KNO3 92% 
Potassium sulfate K2SO4 98% 
Deionized water H2O 100% 

 233 

The thirteen desiccators were put in an air-conditioned room (20 ± 2°C). At given times, the 234 

desiccators were opened and the samples weight was measured. The results (relative mass variation 235 

at equilibrium .∆00 1�ℎ� enabled the calculation of the water retention curves expressed in terms of 236 

water content 2�ℎ�(ratio of the mass of water for the RH ℎ to the dry mass) [60]:  237 

 2�ℎ� = �3
��3
� − ∅ ��∆44 � �ℎ� + ∅�3
�� (6) 

where �78� is the specific gravity of the saturated paste. It was measured using the buoyancy method. 238 

The deviation from equilibrium was characterised using an indicator 9 defined as: 239 

 9��� = �∆44 ��:; − �∆44 ���∆44 ��
 (7) 

where �∆<< ��and �∆<< ��:;are the relative mass variation measured at the times t and one day after 240 

respectively. Once the indicator 9 became lower than 0.05%, the equilibrium was considered 241 

achieved. For instance, in the case of carbonated PI at 43% RH (Figure 4), the criterion was reached 242 

after 110 days. After 275 days, the indicator τ reached 0.01% (five time lower than the criterion) but 243 

the difference between the relative mass variations at 110 and 275 days remained very limited: about 244 

3.5% (relative value). 245 

 246 

Figure 4: Characterization of the desorption isothe rm (carbonated PI at 20°C and 43% RH).  247 
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Complementary tests were conducted using a sorption balance (SMS DVS Advantage) [10, 61]. This 248 

device presents two major benefits: (i) a complete desorption isotherm could be obtained in about ten 249 

days and (ii) it allowed testing some specific RH values that are difficult to achieve using saturated salt 250 

solutions (especially RH lower than 30%). A few disks were crushed and then powdered (sieved to 251 

remove the particles larger than 100 µm) in a CO2-free glove box. The powder was resaturated using 252 

deionized water: a sample of about 50 mg was taken and introduced into the sorption balance. The 253 

tests were performed at 25°C ± 0.1°C and the RH was decreased by steps under the “dm/dt” mode 254 

(the software automatically shifted from one RH step to another when equilibrium was considered to 255 

be reached).  256 

The specific surface area (�=) was assessed using the well-known BET model [62, 63]: 257 

 2�ℎ� = >2<ℎ�1 − ℎ�@1 + �> − 1�ℎA (8) 

where > and 2<are the two BET parameters. > is related to the energy of the first layer and 2< 258 

represents the water content needed to complete a monomolecular layer. The specific surface area 259 

(�=) was calculated using the BET monolayer parameters 2< following [64]:  260 

 �= = BC 2<D�E  (9) 

where BC is Avogadro's number, E is the molar volume of water vapour and D is the surface occupied 261 

by one molecule of liquid water obtained following [65, 66]: 262 

 D = 1.091 'BC� (10) 

4.4.  Permeability 263 

4.4.1.  Inverse analysis 264 

The intrinsic permeability (�) was fitted through numerical simulations to match experimental data [26, 265 

67]. Here, initially saturated specimens (Ø50×100 mm) were submitted to 55% RH and 25°C in a 266 

climatic chamber during 100 days. The finite-element code Cast3m1 was used to solve eq. (3). The 267 

relative permeability to liquid water �� was evaluated using the Mualem-van Genuchten model [68, 268 

69]. The water retention curves were fitted using the equation proposed by van Genuchten:  269 

                                                      
1 http://www-cast3m.cea.fr/changelang.php?lang=en  



 2 = 278� I1 + � 

J� ;;K<L
K<

 (11) 

where 
J and 4 are the two positive parameters of the model and 278� is the water content at 270 

saturation (RH = 100%). The relative permeability �� was calculated using Mualem’s model (the value 271 

of the parameters 
J and 4 are the same as above) [69]: 272 

 �� = M1 + � 

J� NNO0PK0Q R1 − � 

J� NNO0 M1 + � 

J� NNO0PK<S
T
 (12) 

where the exponent p is known as the pore-interaction factor (without unit) and embodies pore 273 

tortuosity. It was taken equal to +0.5 as suggested by Mualem [68], but p may be negative or positive 274 

[68].  275 

The moisture capacity (the left-hand term ∅.���
1 in eqs. 3 and 5) was then:  276 

 ∅ U���
V = 4∅�4 − 1�
J � 

J� ;;K< I1 + � 

J� ;;K<L
K;K<

 (13) 

The numerical restitution (solid line) of the experimental relative mass loss (circles) is illustrated on 277 

Figure 5 (a). The value of � is estimated by minimization of the quadratic difference between the 278 

computed and measured relative mass loss for each measuring time (Figure 5 b). The minimum 279 

yielded the value of the intrinsic permeability. In this example (non-carbonated PI), the optimal value of 280 

� was equal to 2.7×10-22 m². 281 
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Figure 5: (a) Numerical restitution of the relative  mass loss as a function of the intrinsic 282 

permeability W (non-carbonated PI) and (b) Evolution of the quadr atic deviation as a function of 283 

the intrinsic permeability  W. 284 

Inverse analysis was used for non-carbonated specimens only. The carbonated ones were too small 285 

(the specimens dry too quickly and the mass loss is too low to yield appropriate results) and another 286 

approach had to be used to assess permeability. 287 

4.4.2.  Cup-method 288 

The cup-method [70] is a direct way of determination of the effective permeability. In this experiment, 289 

disks do constitute a boundary separating two different environments (same temperature but two 290 

different RH: h1 and h2) through which water is transported (Figure 6) 291 

 292 

Figure 6 : Sketch and photos of the cup-method set up. 293 

The permeability was assumed to be constant on the RH range [h1; h2]. In steady state, Darcy’s law 294 

allows estimating the effective permeability �� based on the mass loss measurement (Figure 7): 295 

 �� = − 4X �
�Y Z
�     and    ∆
 = −� &'̂ $% �ℎ;ℎT� (14) 

where 4X  is the mass loss time derivative [kg/s], Y the disk cross sectional area [m²], � the thickness 296 

[m], Z
 the liquid pressure difference between the two environments (computed using eq.14) [Pa]. 297 



 298 

Figure 7 : Cup mass evolution (PI disk) vs. time fo r a 64% (_`) – 55% (_a) RH range at 25°C 299 

An experimental set-up was implemented by adapting existing diffusion cells (Figure 6). In practice, h1 300 

was controlled using a saturated salt solution whereas h2 was controlled using a climatic chamber 301 

(which also allows controlling temperature). In this test, initially saturated samples are used to focus on 302 

the drying path (and h1 was always greater than h2). The cup-method is implemented on carbonated 303 

disks (due to the small specimen thickness) as well as non-carbonated ones to validate the method. 304 

4.5.  Cracking 305 

Because cracks were observed on the disks surface after carbonation, some of them were 306 

impregnated with a fluid resin incorporating a fluorescent dye2. The disks were observed in the light of 307 

a ultra-violet (UV) lamp. The resin-filled cracks could clearly be seen thanks to the dye fluorescence. 308 

Pictures were taken and then processed using a specific software3 in order to provide a cracking index 309 

(bc) to compare qualitatively the pastes (grey-scale image processing). The cracking index was simply 310 

defined as the ratio of the number of pixels attributed to the cracks to the total number of pixels of the 311 

disk surface:  312 

 bc = Bd4ef	 gh i�jf$3 
��	�ed�f� �g �ℎf k	
k�3 ^g�
$ %d4ef	 gh i�jf$3 gh �ℎf 3d	h
kf  (15) 

                                                      
2 Struers EpoDye and EpoFix 
3 http://imagej.nih.gov/ij/ 
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5.  Results 313 

5.1.  Mineralogical changes 314 

The usual mineralogical changes could be highlighted using XRD (Figure 8): dissolution of the main 315 

hydrates (portlandite, AFt and AFm) and precipitation of calcium carbonate (calcite and vaterite, the 316 

presence of aragonite was not identified). These evolutions were supported by the TGA data (Figure 317 

9). 100 days were necessary to achieve a stabilized state of carbonation (constant concentration of 318 

calcium carbonate). As it was expected, the amount of calcium carbonate increased with the initial 319 

portlandite content. The remaining presence of portlandite was also observed after carbonation that 320 

was attributed to the calcium carbonate formation around the portlandite crystal inhibiting their 321 

dissolution [71-74].  322 

Figure 10 presents the results obtained using 29Si NMR. Q0 represents isolated SiO2 tetrahedra, Q1 323 

denotes chain end groups, Q2 middle groups, Q3 branching sites and Q4 cross-linking ones [48]. Q2
p 324 

represents the bridging SiO2 sites but other tetrahedra cannot be distinguished using 29Si MAS NMR. 325 

A more detailed analysis would be required to describe accurately the C-S-H structure [51]. 29Si NMR 326 

spectra showed that carbonation decreases the amount of anhydrous phases (Q0) in agreement with 327 

the XRD results. But above all this, the characteristic peaks of the C-S-H (Q1, Q2
p and Q2) drastically 328 

decreased revealing significant decalcification of the C-S-H. The end result was close to a silicate 329 

material (Q3 gel and Q4 gel) which could possibly contain calcium (Ca-enriched silica gel with a low C/S 330 

ratio).  331 
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Figure 8: X-ray diagrams acquired for non-carbonate d (NC) and carbonated (C) pastes PI, PIII, 332 

PV and PBP - AFt: ettringite, AFm: monosulfate, m: mullite, p: portlandite, q: quartz, Gy: 333 

gypsum, c: calcite, v: vaterite, a: aragonite, d: dolomite, an: anhydrous phases C2S and C3S, h: 334 

hematite. 335 

  

  

Figure 9: Evolution of the amounts of portlandite ( lm) and calcium carbonate ( ll-) as a function 336 

of carbonation time in PI, PIII, PV and PBP. 337 
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Figure 10: 29Si MAS NMR spectra of PI, PIII, PV and PBP. 338 

Many disks were cracked or even broken at the end of the carbonation campaign, regardless of the 339 

composition: more than 50% of the PI specimens and to a lesser extent PIII, PV and PBP (between 340 

25% and 40%). This was believed to be due to the combination of drying and carbonation shrinkage. 341 

Only the unbroken and non-cracked disks (as observed with the naked eyes) were used for further 342 

characterization.  343 

5.2.  Porosity 344 

The precipitation of calcium carbonate led to the reduction of water porosity (Table 4). The fall of 345 

porosity was of the same order of magnitude of those obtained by Ngala and Page [5]. The porosity 346 

variation was directly related to clinker substitution by pozzolanic additions: the higher the initial 347 

portlandite content, the higher the fall of porosity (Figure 9 and Table 4).  348 
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Table 4: Porosity to water of the cement pastes. 350 

  PI PIII PV PBP 

Water content 278� Non-carbonated 22.1% 26.2% 25.2% 30.6% 
Carbonated 10.0% 14.8% 14.1% 20.0% 

Porosity 
Non-carbonated 36.3% 39.8% 36.9% 41.0% 

Carbonated 21.1% 29.3% 27.6% 35.5% 
Variation -15.2% -10.5% -9.3% -5.5% 

 351 

Not only the total porosity was reduced but also the pore size distribution was modified (Figure 11). 352 

The critical pore diameter decreased for PI and PV whereas a slight, but significant, coarsening of the 353 

pore structure was observed for PIII and PBP. 354 

  

 

  
Figure 11: Impact of carbonation on the pore size d istribution (characterized by MIP two 355 

samples per formulation). 356 

5.3.  Water desorption isotherm 357 

Figure 12 presents the water desorption isotherms obtained using the desiccator method (filled circles) 358 

and the sorption balance (DVS, open diamonds). A satisfactory agreement between the two methods 359 
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was then obtained for all the binders in the non- and carbonated states. Carbonation led to a 360 

significant drop of water content at equilibrium that was directly related to porosity clogging (Table 4).  361 

The desorption isotherms morphology was also altered as a consequence of the pore size distribution 362 

modification. This is patent when saturation is used to plot the water retention curves (Figure 13). As 363 

already beheld by Houst and Whittmann [4], the modifications of the CEM I paste curve appeared 364 

moderate and remained limited to low RH. Those of the blended pastes were more significant and 365 

appeared to be all the more significant as the amount of addition was high.  366 

  

 

  

 

Figure 12: Water retention curves of the hardened c ement pastes (water content). The lines are 367 

guides for the eyes only.  368 

The van Genuchten parameters needed for the inverse analysis (pressure 
J and exponent 4) were 369 

evaluated; the results are presented on Figure 13 and the parameters are listed on Table 5. 370 
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Figure 13: Water retention curves of the hardened c ement pastes (saturation). The lines 372 

correspond to van Genuchten model (eq. 11).  373 

Table 5: The van Genuchten parameters ( no in MPa and p without unit) obtained by 374 

capillary-pressure curve fitting. 375 

 
PI PIII PV PBP 
J  4  
J 4 
J 4 
J  4 

Non-carbo 51.4 0.46 86.5 0.56 96.9 0.53 108.7 0.58 
Carbo 26.8 0.33 14.9 0.34 20.8 0.34 14.9 0.43 

 376 

Carbonation led to a reduction of the specific surface area (Table 6). Using the approach proposed by 377 

Olson and Jennings [47] together with the desorption isotherm (water content at 20% RH), the C-S-H 378 

content was estimated ( 379 

Table 7). It was then implicitly assumed that this approach remains valid for carbonated cementitious 380 

materials. It was found that ∆�= increased with ∆C-S-H indicating C-S-H carbonation and partial 381 

dissolution.  382 
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Table 6: Impact of carbonation on the specific surf ace area ( qq). 383 

�= (m²/g) PI PIII PV PBP 
Non-carbonated 190 300 298 382 

Carbonated 93 89 98 88 ∆�= -97 -211 -200 -294 

 384 

Table 7: Impact of carbonation on the C-S-H content . 385 

C-S-H concentration (mol/L of paste) PI PIII PV PBP 
Non-carbonated 5.2 6.5 6.5 7.6 

Carbonated 3.7 3.3 3.9 2.6 

∆C-S-H -1.4 -3.2 -2.5 -5.0 

 386 

5.4.  Cracking 387 

Figure 14 presents the pictures of the non- and carbonated disks surface. The absence of cracks on 388 

the non-carbonated disks could be noticed whereas the carbonated ones were more or less 389 

significantly cracked depending on the considered binder. Although only the disks surface could be 390 

observed, the resulting cracking pattern was believed to be representative of that of the bulk. The 391 

image processing results are reported on Figure 14 (“thresholded” binary image) and in Table 8 392 

(cracking index values). An average crack opening of 10-15 µm was measured for all the binders. 393 

Different values of the cracking index were found depending on the considered binder: PI presented 394 

the lowest value and PBP the highest.  395 
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Figure 14: Photos of the non- and carbonated impreg nated disks under UV light (on the left) 396 

and result of the image processing (on the right) 397 

Table 8: Cracking indices ( rs). 398 

 PI PIII PV PBP bc (%) 4% 9% 7% 10% 

 399 

5.5.  Permeability 400 

5.5.1. Inverse analysis 401 

The numerical restitution of the experimental drying kinetics of the Ø50×100 mm cylinders (55% RH 402 

and 25°C) is presented on Figure 15 (following the method presented in part 4.4.1). The obtained 403 

intrinsic permeability values are compiled in Table 9. These values are consistent with the pore size 404 

distributions: the finer the pore size distribution, the lower the permeability value.  405 



 406 

Figure 15: Numerical restitutions of the relative m ass loss as a function of the intrinsic 407 

permeability ( W) (PI, PIII, PV and PBP). 408 

Table 9: Values of the intrinsic permeability ( W) of non-carbonated paste. 409 

 PI PIII PV PBP �tu (×10-22 m²) 2.70 0.26 0.50 0.45 

 410 

5.5.2. Cup method 411 

Firstly, the cup-method was applied on non-carbonated PI to compare with inverse analysis (Figure 412 

16). A good agreement between both methods was noticed: the two datasets presented the same 413 

order of magnitude and described a similar trend. A small difference could however be observed that 414 

could be due to: 415 

- the variability linked to the differences between the batches used for the two methods (the data 416 

required for inverse analysis were extracted from a previous study [33], 417 

- uncertainties on the unsaturated properties (for instance water retention curve), 418 

- the error on the relative permeability (��) assessed using Mualem‘s model and more specifically 419 

the value of the pore interaction factor i (eq. 12) [68, 75, 76]. 420 
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 Cup method 
 Cup method (cracks) 
 Inverse analysis 

Figure 16: Effective permeability ( Wv) evolution vs. saturation state ( q), at 25°C, for non-421 

carbonated PI. 422 

It was noticed that for RH lower than 40%, a permeability increase was obtained for the non-423 

carbonated specimens. Cracks could be observed on the disk surface. They were believed to be due 424 

to restrained drying shrinkage. Beyond that, the authors think that the comparison was globally 425 

satisfactory and that the cup method is an efficient tool for unsaturated permeability evaluation. This 426 

statement could not however be generalized to the blended cements (Figure 17) for which the reliable 427 

permeability description was limited to a small range of saturation (around 0.8 to 1.0). This was due to 428 

their refined pore size distribution leading to flattened desorption isotherms at high RH (Figure 12). In 429 

the following sections, the permeability of non-carbonated blended cement pastes was then described 430 

using inverse analysis. 431 
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Figure 17: Effective permeability ( Wv) evolution vs. saturation state ( q), at 25°C, for non-433 

carbonated PIII, PV and PBP. 434 

The cup-method was applied to assess the unsaturated permeability of the carbonated pastes (Figure 435 

18). A decrease in the permeability of PI was observed subsequently to carbonation that is consistent 436 

with porosity clogging. On the opposite side, a significant increase of permeability was found for the 437 

blended cements despite the fall of porosity.  438 
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Figure 18: Impact of carbonation on the effective p ermeability ( Wv). The lines stand for the best 440 

fit using Mualem-van Genuchten model (with w ≠ o. y). 441 

Intrinsic permeability values of the carbonated pastes were assessed following eq. (16). This is the 442 

well-known Mualem-van Genuchten equation. It is the same as eq. (12) but it is expressed in terms of 443 

saturation instead of pressure. No restriction was imposed to the pore interaction factor value (the 444 

exponent i) to improve the fitting capacity [75-79]. The resulting i values were different from the 445 

default value (+0.5) proposed by Mualem [68]: they were all negative as it was already observed [75, 446 

76]. The corresponding values (pore interaction factor and intrinsic permeability) are compiled in  447 
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Table 10. 448 

 �� = �u�z{�{|1 − .1 − �;/<1<~T
 (16) 

 449 

Table 10: Intrinsic permeability value of the carbo nated pastes. 450 

 PI PIII PV PBP �u�z{ (×10-22 m²) 1.16 74.82 74.39 81.48 i -3.31 -2.59 -1.83 -2.18 

 451 

Two different explanations were explored to explain the significant permeability increase of the 452 

blended cement pastes: (i) coarsening of the pore structure and formation of large pores and (ii) 453 

microcracking. These points are discussed in the following section. 454 

6.  Discussion 455 

The coarsening of the pore structure and formation of large pores could not be observed using MIP. 456 

Microcracking was then believed to be the major cause of the permeability increase. This was 457 

supported by the fact that the permeability of the carbonated disks increases with the cracking index 458 

(bc) as depicted on Figure 19 (a). &� is the ratio of the intrinsic permeability of the carbonated paste 459 

�u�z{ to the non-carbonated one �tu (Table 11):  460 

 &� = �u�z{
�tu  (17) 

For &� ≤ 1 (PI), the high amount of calcium carbonates (due to the high initial portlandite content) led 461 

to significant porosity clogging that prevailed over the effect of microcracking. On the contrary, for 462 

&� ≥ 1 (PIII, PV and PBP), the effect of microcracking prevailed over porosity clogging. This fact was 463 

directly related to the initial mineralogical composition of the pastes. C-S-H rich pastes (with low 464 

portlandite) showed significant cracking after carbonation (Figure 19, b): the higher the initial C-S-H 465 

content, the higher the cracking index (bc). The authors believe that the cracking was induced by 466 

C-S-H carbonation following the proposition of Swenson and Sereda [71]. The C-S-H decalcification 467 

induced by carbonation and the subsequent polymerisation (increase of the main silica chain length) 468 

generated shrinkage [80]. This carbonation shrinkage [42, 71, 81-83] eventually led to cracking as it 469 



was already observed [20, 84, 85]. The substantial C-S-H decalcification observed for all the binders 470 

after complete carbonation using 29Si NMR supported this assumption (Figure 10).  471 

  
(a) (b) 

Figure 19: Influence of cracking on permeability (a ) and influence of C-S-H initial content on the 472 

cracking index ( rs).  473 

The dataset obtained was used to describe the effect of porosity clogging on permeability. A simple 474 

law derived from Kozeny-Carman model [86-89] was used: 475 

 �u�Kc = �tu � ∅u∅tu�� �1 − ∅tu1 − ∅u �T
 (18) 

where �tu, �u�Kc, ∅u and ∅tu are the intrinsic permeability and water porosity values of the non- and 476 

carbonated pastes respectively. The ratio &� was computed once again, but this time the permeability 477 

of the carbonated pastes was estimated using eq. (18) (�u�Kc, Table 11). The results are depicted on 478 

Figure 20. For the PI paste the measured permeability was of the same order as the one obtained 479 

using eq. (18) but was three times higher. This suggested that the effect of porosity clogging was 480 

counterbalanced by microcracking. The results were however very different for the blended cements, 481 

the discrepancy between experimental and computed data increased with the cracking index (bc). This 482 

suggested that in that specific case microcracking was the main cause of permeability increase and 483 

that clogging had negligible impact.  484 
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Table 11: Influence of clogging on permeability.  486 

Permeability (×10-22 m²) PI PIII PV PBP �tu  2.70 0.26 0.50 0.45 �u�z{  1.16 74.82 74.39 81.48 �u�Kc (eq. 18) 0.35 0.08 0.16 0.24 

 487 

 488 

Figure 20: Competition between porosity clogging an d cracking.  489 

Conclusion 490 

The impact of carbonation on unsaturated water transport was addressed using four pastes made with 491 

different binders (three commercial cements and a low-pH blend). In the framework of a simplified 492 

approach for the description of unsaturated water transport, three physical parameters were 493 

characterised: porosity, water desorption isotherm and permeability. The samples were carbonated at 494 

a CO2 content of 3% to ensure representativeness and mitigate cracking (as already observed at 495 

50%). The precipitation of calcium carbonate led to porosity reduction, the extent of which was related 496 

to the initial composition of the paste (portlandite and C-S-H contents). The water desorption curves 497 

were significantly altered by carbonation: 498 

• a drop of water content was observed over all the RH range according to porosity clogging; 499 

• the isotherms morphology was changed in relation to pore size distribution modification. 500 

The cup-method test was a good alternative to inverse analysis for the assessment of the unsaturated 501 

permeability. The results highlighted a competition between two concomitant phenomena: porosity 502 

clogging and microcracking. A decrease of permeability after carbonation was observed for Portland 503 
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cement (CEM I): porosity clogging prevailed over microcracking. On the contrary and despite the fall of 504 

porosity, significant permeability increase was obtained for the blended cements: microcracking 505 

prevailed over clogging. Permeability was found to increase with cracking (digital image processing) 506 

and more specifically with the initial C-S-H content. C-S-H decalcification revealed by 29Si NMR was 507 

believed to be the main cause of shrinkage resulting in cracking.  508 

This study was only a first step; these tests should also be conducted using concretes. The presence 509 

of aggregates might help mitigating the consequences of carbonation shrinkage and change the 510 

cracking pattern (the cracks could be concentrated around the aggregates).  511 
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