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ABSTRACT

Context. Tidal dissipation in planetary interiors is one of the key physical mechanisms that drive the evolution of star-planet and
planet-moon systems. New constraints on this dissipation are now obtained both in the solar and exo-planetary systems.
Aims. Tidal dissipation in planets is intrinsically related to their internal structure. Indeed, the dissipation behaves very differently
when we compare its properties in solid and fluid planetary layers. Since planetary interiors consist of both types of regions, it is
necessary to be able to assess and compare the respective intensity of the reservoir of dissipation in each type of layers. Therefore,
in the case of giant planets, the respective contribution of the potential central dense rocky/icy core and of the deep convective fluid
envelope must be computed as a function of the mass and the radius of the core. This will allow us to obtain their respective strengths.
Methods. Using a method that evaluates the reservoir of dissipation associated to each region, which is a frequency-average of
complex tidal Love numbers, we compared the respective contributions of the central core and of the fluid envelope.
Results. For Jupiter- and Saturn-like planets, we show that the viscoelastic dissipation in the core could dominate the turbulent
friction acting on tidal inertial waves in the envelope. However, the fluid dissipation would not be negligible. This demonstrates that
it is necessary to build complete models of tidal dissipation in planetary interiors from their deep interior to their surface without any
arbitrary assumptions.
Conclusions. We demonstrate how important it is to carefully evaluate the respective strength of each type of dissipation mechanism
in planetary interiors and to go beyond the usually adopted ad-hoc models. We confirm the significance of tidal dissipation in the
potential dense core of gaseous giant planets.

Key words. hydrodynamics – waves – celestial mechanics – planets and satellites: interiors – planet-star interactions –
planets and satellites: dynamical evolution and stability

1. Introduction and context

The dissipation of tides is one of the key physical mechanisms
that drive the evolution of planetary systems (Goldreich & Soter
1966). At the same time, we understand little of the related dis-
sipative processes acting both in rocky/icy and in fluid plane-
tary layers even though they significantly affect the dynamics of
star-planet and planet-moon systems (e.g. Efroimsky & Lainey
2007; Auclair-Desrotour et al. 2014). Therefore, a strong effort
must be undertaken to make realistic and reliable predictions
for the dissipation rate of the kinetic energy of tidal displace-
ments in planetary interiors. In this context, progress is achieved
by using observational constraints in the solar and exoplanetary
systems (e.g. Lainey et al. 2009; Husnoo et al. 2012; Albrecht
et al. 2012). For example, tidal dissipation has been quantified
for Jupiter and Saturn thanks to high-precision astrometric mea-
surements as reported by Lainey et al. (2009, 2012) respectively.
These works have demonstrated that these planets are likely to be
the seat of strong dissipation, with in the case of Saturn at least
a smooth dependence on the tidal excitation frequency. These
results seem to favour the inelastic dissipation in their potential
central dense rocky/icy core (e.g. Remus et al. 2012; Storch &
Lai 2014). However, the mass, the size, and the rheology of these
cores are still unknown. Moreover, tides excite inertial waves in
the deep fluid convective envelope. Their restoring force is the

Coriolis acceleration, and their dissipation by turbulent friction
may be strong and therefore non-negligible (e.g. Ogilvie & Lin
2004; Ogilvie 2013). As a result, it becomes necessary to ex-
plore and compare the reservoirs of tidal dissipation in each re-
gion with respect to their corresponding dissipative mechanism.
This objective must be reached for all types of planets since
they all potentially consist of a combination of solid and fluid
layers.

In this first work, we focus on gaseous giant planets. By
using simplified two-layer models as an exploratory tool for
Jupiter- and Saturn-like planets, we apply the method described
by Ogilvie (2013), which uses the frequency-dependent Love
number to evaluate the reservoirs of dissipation both in their
envelope and their core as a function of their mass and aspect
ratios. This provides the first direct evaluation of the relative
strength of the different mechanisms of tidal dissipation in a
planet, which consists of different types of layers. In Sect. 2,
we describe the main characteristics of our simplified planetary
model. Next, we recall the method we used to compute the reser-
voirs of dissipation that is a result of viscoelastic dissipation in
the core (Remus et al. 2012) and turbulent dissipation in the fluid
envelope (Ogilvie 2013). In Sect. 3, we explore their respective
strength for realistic values of the radius and the mass of the core,
and we show why this approach is interesting. In conclusion, we
discuss our results and the potential applications of this method.
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Fig. 1. Two-layer planet A of mass Mp and mean radius Rp and point-
mass tidal perturber B of mass MB orbiting with a mean motion n. The
rocky/icy solid core of radius Rc, density ρc, and rigidity G (see Eq. (4))
is surrounded by a convective fluid envelope of density ρo.

2. Modelling tidal dissipation in gaseous giant
planets

2.1. Two-layer model

To study the respective contributions to the tidal dissipation
of both the potential rocky/icy core and the fluid envelope of
gaseous giant planets, we chose to adopt the simplified two-
layer model used in Remus et al. (2012) and Ogilvie (2013, see
Fig. 1). This model features a central planet A of mass Mp and
mean radius Rp along with a point-mass tidal perturber B of mass
m orbiting with a mean motion n. Body A is assumed to be in
moderate solid-body rotation with an angular velocity Ω, so that

ε2 ≡ Ω2/

√
GMp/R3

p � 11, where G is the gravitational constant.
The rocky (or icy) solid core of radius Rc and density ρc is sur-
rounded by a convective fluid envelope of density ρo. Both are
assumed to be homogeneous for the sake of simplicity.

2.2. Evaluating the tidal dissipation reservoirs

The Love numbers quantify the response to the tidal perturba-
tion induced on A by the companion B. More precisely, the
Love number km

l , associated with the (l,m) component of the
time-dependent tidal potential U that corresponds to the spher-
ical harmonic Ym

l , measures the ratio of the tidal perturbation
of its self-gravity potential over the tidal potential at the sur-
face of body A (r = Rp). These numbers are real for perfectly
elastic or non-viscous layers, and in general depend on the tidal
frequency ω = sn − mΩ (with s ∈ ZZZ) (e.g. Efroimsky 2012;
Remus et al. 2012) just like in any forced oscillating system.
However, they are complex quantities in realistic planetary in-
teriors where dissipation occurs, with a real part that accounts
for the energy stored in the tidal perturbation, while the imagi-
nary part accounts for the energy losses. Note that Im

[
km

l (ω)
]

is
proportional to sgn(ω).

This imaginary part can be expressed in terms of the quality
factor Qm

l (ω), or equivalently, the tidal angle δm
l (ω), which both

depend on the tidal frequency

Qm
l (ω)−1

= sin
[
2 δm

l (ω)
]

= sgn(ω)
∣∣∣km

l (ω)
∣∣∣−1

Im
[
km

l (ω)
]
. (1)

Then, following Ogilvie (2013), we calculate a weighted
frequency-average of the imaginary part of the second-

1 In this regime, the Coriolis acceleration, which scales as Ω, is taken
into account, while the centrifugal acceleration, which scales as Ω2 is
neglected.

Fig. 2. Mechanisms of tidal dissipation in our two-layer planetary
model: the inelastic dissipation in the dense rocky/icy core (left) and
the dissipation due to the tidal inertial waves that reflect onto the core
in the fluid convective envelope (right).

order Love number k2
2, which we call the tidal dissipation

reservoir:∫ +∞

−∞

Im
[
k2

2(ω)
] dω
ω

=

∫ +∞

−∞

∣∣∣k2
2(ω)

∣∣∣
Q2

2(ω)
dω
ω
· (2)

This quantity can be defined for any values of (l,m), but we
here chose to consider the simplest case of a coplanar system
for which the tidal potential (U) reduces to the component (2, 2)
as well as the quadrupolar response of A.

We now examine the two possible mechanisms of dissipation
(see Fig. 2):

– in Sect. 2.3, we consider the dissipation associated to the
inelasticity of the rocky/icy core following Remus et al.
(2012);

– in Sect. 2.4, we focus on the dissipation of tidally excited
inertial waves by the turbulent friction in the deep gaseous
convective envelope following Ogilvie (2013). The integral
in Eq. (2) then reduces to ω ∈ [−2Ω, 2Ω] because higher-
frequency acoustic waves are filtered out.

2.3. Inelastic dissipation in the core

The inelastic tidal dissipation in the solid core is the result of
its internal viscosity (η). For the studied two-layer model, it is
modified by the set of mechanical constraints, namely the grav-
itational forces ( f TN

1 ), the loading of the core due to its defor-
mation ( f TN

2 ), and the hydrostatic pressure exerted by the sur-
rounding fluid envelope ( f TN

3 ), which is here assumed to be static
and non-dissipative (see Dermott 1979; Remus et al. 2012, for a
complete discussion and Fig. 2).

Following Remus et al. (2012) and Remus (2013), the
second-order Love number k2

2(ω) is given by

k2
2(ω) =

H̃ + α + 3
2
3αH̃ − 3

2

, (3)

where α and H̃ are functions of the aspect ratio (Rc/Rp), the den-
sity ratio (ρo/ρc), and the complex effective shear modulus µ̂ of
the core:

α = 1 +
5
2
ρc

ρo

(
Rc

Rp

)3 (
1 −

ρo

ρc

)
,

H̃ = β

[(
1 +

3
2
ρo

ρc

) (
1 −

ρo

ρc

)
+ µ̂(ω)

]
,

β =

(
Rc

Rp

)−5 (
1 −

ρo

ρc

)−2

,
µ̂(ω)
µ̄(ω)

= γ =
19

2 ρc gc Rc
,

L9, page 2 of 4

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424010&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424010&pdf_id=2


M. Guenel et al.: Unravelling tidal dissipation in gaseous giant planets

where µ̄ is the complex shear modulus and gc is the gravity at
r = Rc. Note also that Im

[
k2

2(ω)
]

scales as (Rc/Rp)5 as Rc/Rp →

0. This result is valid for any linear rheology, but the mechanical
behaviour of the dense central rocky/icy cores in gaseous giant
planets is poorly constrained (see e.g. Henning et al. 2009). For
that reason, we used the simplest linear viscoelastic Maxwell
model for which

Re
[
µ̄(ω)

]
=

η2 Gω2

G2 + η2 ω2 and Im
[
µ̄(ω)

]
=

ηG2 ω

G2 + η2 ω2 , (4)

where G is the rigidity and η is the viscosity (see Henning et al.
2009; Remus et al. 2012). For this model, the core behaves as a
rigid body when ω � ωM , and as a fluid body when ω � ωM ,
where ωM = G/η is the Maxwell frequency. We find that∫ +∞

−∞

Im
[
k2

2(ω)
] dω
ω

=
πG (3 + 2α)2 β γ

δ (6 δ + 4α β γG)
, (5)

with δ =

[
2
3
α β

(
1 −

ρo

ρc

) (
1 +

3
2
ρo

ρc

)
−

3
2

]
,

which is remarkably independent of the viscosity η and vanishes
for low values of G.

2.4. Dissipation of inertial waves in the envelope

Tidal dissipation in the fluid convective envelope of A originates
from the excitation by B of inertial waves, which are driven by
the Coriolis acceleration. They are damped by the turbulent fric-
tion, which can be modelled using a turbulent viscosity (Ogilvie
& Lesur 2012). Its evaluation in our two-layer model was con-
ducted by Ogilvie (2013), who assumed an homogeneous and
perfectly rigid solid core without inelastic dissipation, while the
envelope is homogenous and incompressible. The solutions of
the system of dynamical equations for the fluid envelope written
in the co-rotating frame are separated into a non-wavelike part
(with subscripts nw), which corresponds to the immediate hydro-
static adjustment to the external tidal potential (U), and a wave-
like part (with subscript w) driven by the action of the Coriolis
acceleration on the non-wavelike part:


s̈nw = −∇Wnw,

h′nw + Φ′nw + U = 0,
ρ′nw = −∇ · (ρ snw),
∇2Φ′nw = 4 πG ρ′nw,

and


s̈w + 2 Ω ez × ṡw = −∇Ww + f ,
h′w = Φ′w = ρ′w = 0,
∇ · (ρ sw) = 0,

(6)

where s is the displacement, ez the unit vector along the rotation
axis, h the specific enthalpy, Φ the self-gravitational potential
of A, and ρ is the density. Primed variables denote an Eulerian
perturbation in relation to the unperturbed state with unprimed
variables. Note that U and s are actually perturbations as well.
Finally, W ≡ Wnw + Ww = h′ + Φ′ + U, while f = −2 Ω ez × ṡnw
is the acceleration driving the wavelike part of the solution.

The kinetic energy of the wavelike part of the solution can be
derived without solving the whole system of equations, thanks
to an impulsive calculation. This kinetic energy will eventually
be dissipated (regardless of the exact physical processes at stake
here, even if we know that it can be modelled by a turbulent vis-
cosity) and is related to the tidal dissipation reservoir introduced
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Fig. 3. Dissipation reservoirs for the viscoelastic dissipation in the core
(red curves) and the turbulent friction in the fluid envelope (blue curves)
in Jupiter- (above) and Saturn-like planets (below) as a function of the
aspect ratio Rc/Rp, the rotation rate Ω, and the rigidity of the core G,
with fixed Rp and Mp. We use the values Mc/Mp = {0.02, 0.196} from
Guillot (1999) and Hubbard et al. (2009) for Jupiter and Saturn, respec-
tively. The vertical green line corresponds to Rc/Rp = {0.126, 0.219}.

in Eq. (2). The final result is (Ogilvie 2013)∫ +∞

−∞

Im
[
k2

2(ω)
] dω
ω

=
100π

63
ε2

(
Rc/Rp

)5

1 −
(
Rc/Rp

)5 (7)

×

[
1 +

1 − ρo/ρc

ρo/ρc

(
Rc/Rp

)3
] [

1 +
5
2

1 − ρo/ρc

ρo/ρc

(
Rc/Rp

)3
]−2

.

3. Comparison of the two dissipation mechanisms

Our goal is to quantitatively compare the respective strength
of the two dissipation mechanisms to determine if and when
either one of them can be neglected in gaseous giant planets
similar to Jupiter and Saturn. Their respective mass and ra-
dius are Mp = {317.83, 95.16}M⊕ and Rp = {10.97, 9.14}R⊕
with M⊕ = 5.97 × 1024 kg and R⊕ = 6.37 × 103 km
being the Earth’s mass and radius. Their rotation rate are
Ω{J,S} =

{
1.76 × 10−4, 1.63 × 10−4

}
s−1. Internal structure mod-

els for these bodies are still only poorly constrained. This is
why we chose to explore wide ranges of core radii in Fig. 3
(covering the values considered possible by Guillot 1999, for
Jupiter; and Hubbard et al. 2009, for Saturn) and core masses
in Fig. 4 (covering the values considered possible by Guillot
1999; Nettelmann 2011; and Nettelmann et al. 2013). To do this,
we used fixed values for the mass ratios Mc/Mp (in Fig. 3) or
for the aspect ratios Rc/Rp (in Fig. 4), along with specific val-
ues of the angular velocity, Ω, for tidal inertial waves (Eq. (7))
and of the rigidity G (Eq. (5)) for the viscoelastic model. We
chose to use as a reference GR

{J,S} =
{
4.46 × 1010, 1.49 × 1011

}
Pa

which allows this dissipation model to match the dissipation
measured by Lainey et al. (2009, 2012) in Jupiter at the tidal fre-
quency of Io and in Saturn at the frequency of Enceladus (with
η{J,S} =

{
1.45 × 1014, 5.57 × 1014

}
Pa · s). We assumed the core

masses proposed by Guillot (1999) and Hubbard et al. (2009),
that is Mc = {6.41, 18.65}M⊕, which yields the smallest core
radii of Rc = {0.126, 0.219}Rp. This allows us to avoid under-
estimating the solid dissipation reservoir that a poor choice of
parameters could cause (see Fig. 9 in Remus et al. 2012).

L9, page 3 of 4

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424010&pdf_id=3


A&A 566, L9 (2014)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

1�10�7

5�10�7
1�10�6

5�10�6
1�10�5

5�10�5
1�10�4

Mc�Mp

� �
��
�

Im
�K

22
�Ω
���
Ω
�Ω

VE : GJ
R

VE : GJ
R�10

VE : GJ
R�100

IW : �J

IW : �J�2
IW : �J�3

0.05 0.10 0.15 0.20 0.25
1�10�5

5�10�5
1�10�4

5�10�4
0.001

0.005

Mc�Mp

� �
��
�

Im
�K

22
�Ω
���
Ω
�Ω

VE : GS
R

VE : GS
R�10

VE : GS
R�100

IW : �S

IW : �S�2
IW : �S�3

Fig. 4. Same as Fig. 3, but as a function of the mass ratio Mc/Mp with
fixed Mp and Rp. We adopt Rc/Rp = {0.126, 0.219} for Jupiter and
Saturn. The wide Mc-ranges [1, 3−25] M⊕ for Jupiter and [2−24] M⊕ for
Saturn are those considered as possible by Guillot (1999), Nettelmann
(2011), Nettelmann et al. (2013). The vertical green line corresponds to
Mc/Mp = {0.02, 0.196}.

3.1. As a function of the core radius

Figure 3 shows that for both dissipation models and both plan-
ets, the tidal dissipation reservoirs generally increase with the
core radius until a critical value is reached, where ρo/ρc = 1,
which is a singularity of the model; the density ratio decreases
with the core radius since Rp and Mc/Mp are fixed. Here, we
adopted the values Mc/Mp = {0.02, 0.196} given by Guillot
(1999) and Hubbard et al. (2009) respectively for Jupiter and
Saturn. This result agrees with the predictions of Remus et al.
(2012) for the core and of Ogilvie & Lin (2004), Goodman
& Lackner (2009), Rieutord & Valdettaro (2010), and Ogilvie
(2013), who explained that inertial waves in a fluid spherical
shell experience multiple reflections on its boundaries and fol-
low specific paths called attractors, where shear layers occur,
leading to a higher viscous dissipation than for a full sphere (Wu
2005, and Fig. 2). These plots show that in Jupiter- and Saturn-
like gaseous giant planets, the two distinct mechanisms exposed
in Sect. 2 can both contribute to tidal dissipation, and that there-
fore none of them can be neglected in general. Moreover, when
Rc/Rp > {0.126, 0.219}, Ω = Ω{J,S}, and G = GR

{J,S}, the viscoelas-
tic dissipation slightly dominates that in the fluid envelope until
the singularity of the model is reached.

3.2. As a function of the core mass

If we now study the problem as a function of the core mass,
we observe that the two tidal dissipation reservoirs associated
with each model slightly decrease because the density ratio
ρo/ρc decreases since Mp and Rc/Rp are fixed. Here, we adopted
Rc/Rp = {0.126, 0.219} for Jupiter and Saturn following previous
sections. Again, the order of magnitude of each dissipation reser-
voir can be similar and there is no clear indication that either one
of them is negligible. For Mc/Mp = {0.02, 0.196}, Ω = Ω{J,S},
and G = GR

{J,S}, the viscoelastic dissipation slightly dominates
that in the fluid envelope.

4. Conclusions and perspectives

We computed for the first time a direct comparison of the rela-
tive strength of tidal dissipation mechanisms in the interiors of

gaseous giant planets. Even if it is necessary to keep in mind that
this quantitative comparison was obtained using simplified two-
layer planetary models, we are confident that this approach is
reliable enough to explore and to evaluate the amplitude of both
solid and fluid tidal dissipations and to compare them. In this
framework, we find that to be able to reproduce the observed
values of the tidal dissipation in Jupiter and in Saturn obtained
thanks to high-precision astrometry (Lainey et al. 2009, 2012),
we are in a situation where the viscoelastic dissipation in the core
may dominate the turbulent friction acting on tidal inertial waves
in the envelope. However, the fluid mechanism is not negligible,
which shows that it is necessary to compute models that take
into account all the possible dissipation mechanisms for complex
planetary interiors. The action of each of them on the spins of
bodies that constitute planetary systems and on their orbital ar-
chitecture would be unveiled thanks to their behaviour as a func-
tion of the excitation frequency (Auclair-Desrotour et al. 2014)
and of realistic formation/evolution simulations (e.g. Charnoz
et al. 2011; Laskar et al. 2012). Moreover, this method which
uses frequency-dependent complex Love numbers can be ap-
plied in the near future to realistically stratified solid and fluid
regions (e.g. Ogilvie & Lin 2004; Tobie et al. 2005) and to other
types of planets such as icy giant planets and super-Earths, which
are also composed of a superposition of both solid and fluid
regions.

To derive reliable predictions from an ab-initio treatment of
the mechanisms of tidal dissipation, it would be also necessary
to simultaneously improve our understanding of the rheologi-
cal behaviour of rocky and icy planetary layers and to take into
account possible stable stratification, differential rotation, mag-
netic fields, and non-linear processes such as instabilities and
turbulence in fluid regions.
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