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ABSTRACT

We present an algorithm using principal component analysis (PCA) to subtract galaxies from imaging data and also two algorithms to
find strong, galaxy-scale gravitational lenses in the resulting residual image. The combined method is optimised to find full or partial
Einstein rings. Starting from a pre-selection of potential massive galaxies, we first perform a PCA to build a set of basis vectors. The
galaxy images are reconstructed using the PCA basis and subtracted from the data. We then filter the residual image with two different
methods. The first uses a curvelet (curved wavelets) filter of the residual images to enhance any curved/ring feature. The resulting
image is transformed in polar coordinates, centred on the lens galaxy. In these coordinates, a ring is turned into a line, allowing us
to detect very faint rings by taking advantage of the integrated signal-to-noise in the ring (a line in polar coordinates). The second
way of analysing the PCA-subtracted images identifies structures in the residual images and assesses whether they are lensed images
according to their orientation, multiplicity, and elongation. We applied the two methods to a sample of simulated Einstein rings as they
would be observed with the ESA Euclid satellite in the VIS band. The polar coordinate transform allowed us to reach a completeness
of 90% for a purity of 86%, as soon as the signal-to-noise integrated in the ring was higher than 30 and almost independent of the size
of the Einstein ring. Finally, we show with real data that our PCA-based galaxy subtraction scheme performs better than traditional
subtraction based on model fitting to the data. Our algorithm can be developed and improved further using machine learning and
dictionary learning methods, which would extend the capabilities of the method to more complex and diverse galaxy shapes.

Key words. gravitational lensing: strong – techniques: image processing – methods: data analysis – dark matter – surveys –
cosmological parameters

1. Introduction

With the many ongoing or planned sky surveys taking place in
the optical and near-infrared, gravitational lensing has become a
major scientific tool for studying the properties of massive struc-
tures on all spatial scales. On the largest scales, in the weak
regime, gravitational lensing constitutes a crucial cosmologi-
cal probe (e.g. Heymans et al. 2013; Frieman et al. 2008). On
smaller scales, weak galaxy-galaxy lensing allows us to study
the extended halo of individual galaxies or of groups of galax-
ies (e.g. Simon et al. 2012) and to constrain cosmology (e.g.
Mandelbaum et al. 2013; Parker et al. 2007).

In the strong regime, when multiple images of a lensed
source are seen, gravitational lensing offers an accurate way to
weigh galaxy clusters (Bartelmann et al. 2013; Hoekstra et al.
2013; Meneghetti et al. 2013; Kneib & Natarajan 2011, for

reviews), galaxy groups (e.g. Foëx et al. 2013; Limousin et al.
2009), and individual galaxies (e.g. Brownstein et al. 2012; Treu
et al. 2011; Bolton et al. 2006). However, all the strongly lensed
systems known today, combined together, represent only hun-
dreds of objects. Wide field surveys have the potential to pro-
duce samples that are three orders of magnitude larger, allowing
us to study statistically dark matter and its evolution in galaxies
as a function, say, of morphological type, mass, stellar, and gas
contents (see Gavazzi et al. 2012; Ruff et al. 2011; Sonnenfeld
et al. 2013b,a). For example, Pawase et al. (2012) predicts that a
survey like Euclid1 will find at least 60 000 galaxy-scale strong
lenses. To find and to use them efficiently, it is vital to de-
vise automated finders that can produce samples of lenses with
high completeness and purity and with a well defined selection

1 http://www.euclid-ec.org/
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function. The lenses of Pawase et al. (2012) are source-selected.
There is no volume-limited sample of lens-selected systems, so
the number of 60 000 systems is only given here as an estimate
of how many objects future wide-field surveys will have to deal
with.

Several automated robots exist to find strong lenses. Among
the best ones are Arcfinder (Seidel & Bartelmann 2007),
which was developed primarily to find large arcs behind clusters
and groups, and the algorithm by Alard (2006) used by Cabanac
et al. (2007) and More et al. (2012) to look for arcs produced
by individual galaxies and groups in the CFHT Strong Lensing
Legacy Survey. Other automated robots consider any galaxy as a
potential lens and predict where lensed images of a background
source should be before trying to identify them on the real data
(Marshall et al. 2009). To detect lenses with small Einstein radii
or with faint rings, most of these algorithms rely on foreground
lens subtraction (e.g. Gavazzi et al. 2012). So far, this subtrac-
tion has been performed through model fitting. An example of
a ring detector is given in Sygnet et al. (2010). It selects objects
with possible lensing configurations according to their lensing
convergence, estimated from the Tully-Fisher relation. This al-
gorithm relies on photometric information but requires a visual
check of a large number of candidates.

In the present paper, we propose a “lens finder” that uses
single-band images to find full and partial Einstein rings based
on purely morphological criteria. The algorithm uses a pre-
selection of potential lens galaxies as input, producing so-called
“lens-selected” samples. The thereby work sets the basis of
an algorithm using machine-learning techniques. Although fo-
cussed on finding Einstein rings, it can be adapted to other types
of lenses, such as those consisting of multiple, relatively point-
like components.

This paper is organised as follows. In Sects. 2 and 3 we out-
line our algorithm and introduce the principles behind each step
of the process. In Sect. 4 we show the performance of our al-
gorithm using a set of simulations designed to reproduce Euclid
images in the optical. We discuss the completeness and purity
of our algorithm as a function of signal-to-noise ratio (S/N) and
caustic radius of the lensing systems. Section 5 shows results of
our galaxy subtraction algorithm compared to those of galfit
software (Peng et al. 2011) on images from the CFHT optical
imaging of SDSS stripe 82, and Sect. 6 summarises our main
results.

2. A new automated lens finder

2.1. Principle of the algorithm

By construction, lens-selected samples display bright fore-
ground lenses and faint background sources, otherwise the pre-
selection of the lenses based on morphological type, lumi-
nosity, and colour would not be possible. As a consequence,
faint Einstein rings are hidden in the glare of the foreground
lenses, which must be properly removed before any search for
lensed rings can be undertaken. An efficient “lens finder” there-
fore involves two main steps: 1- removal of the lens galaxy,
2- identification of rings in the lens-subtracted image.

A traditional way of subtracting galaxies is to fit a two-
dimensional elliptical profile to the data, e.g. as done with the
galfit software (Peng et al. 2011). While this is sufficient for
characterising the main morphological properties of galaxies,
it turns out to be insufficient for detecting faint arcs seen su-
perposed on bright galaxies with a significant level of resolved
structures.

One way to circumvent the problem is to build an empirical
light model from the sample of galaxies itself, i.e. to use machine
learning techniques such as principal component analysis (PCA;
Jolliffe 1986). The sparsity and the diversity in terms of shape of
the lensed objects (rings, arcs, multiple images) prevents them
from being represented in the basis well enough, thus allowing
for an accurate separation of lenses and sources. This has already
been used to find lensed sources from PCA decomposition of
quasar spectra (e.g. Courbin et al. 2012; Boroson & Lauer 2010).
We now adopt a similar strategy to analyse images.

Once the foreground lenses have been properly removed, we
analyse the residual rings using methods described in Sect. 3.
The main steps of the algorithm can be summarised as follows:

1. Pre-selection of the galaxies with a predefined range of shape
parameters (size, ellipticities, magnitudes, colours, etc.);

2. Construction of the PCA basis either from the selected sam-
ple of galaxies or from an adapted training set;

3. Reconstruction of the central galaxies and subtraction from
the original images;

4. Detection of lensed objects using either island finding or po-
lar transform on the residual image.

2.2. Selection of galaxies

The first step in this method is to build stamp images of galaxies
in which to look for lensed objects. This step strongly depends
on the specific sample considered and may take advantage of
algorithms such as SExtractor (Bertin & Arnouts 1996).

For the PCA decomposition to work well, a compromise has
to be found between the number of objects used to build the
PCA basis, the size of the objects in pixels, and the range in
shape parameters. The more complex the galaxies are, the more
galaxies should be included in the training set; i.e., the sparsity
of the problem has to be evaluated carefully.

For relatively simple galaxy shapes, like elliptical galaxies,
the pre-selection may focus on galaxies with similar sizes and el-
lipticities, which ensures better morphological similarities. This
usually results in a satisfactory subtraction of the lens galaxy
with only a few PCA components. However, the window in
which the sizes and ellipticities are chosen has to be wide enough
to allow a full representation of any shapes of galaxies in this
range. The choice of this selection window is discussed later
when applying the method to specific data.

Computational time is an important parameter to consider as
well. Building the PCA basis involves finding the eigenvectors
and the eigenvalues of a n2 × Ngal matrix, where n is the number
of pixels per stamp and where Ngal is the number of stamps in
the training set.

2.3. Building the PCA basis

Before computing the PCA basis, we rotate all the galaxies in the
training set so that their major axes are all aligned, and we cen-
tre the galaxies in each stamp image. The rotation is performed
using a polynomial transformation and a bilinear interpolation.
This restricts the parameter space to be explored further and is
fully justified given that position angle of galaxies on the sky
are distributed in a random way: the position angle cannot be
a principal component. We do not apply any other re-scaling,
e.g. of parameters such as ellipticity, which do not distribute in
a random way.

Any companions to the galaxies used to build the PCA ba-
sis are a possible source of artefacts. Companion galaxies are
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Fig. 1. Examples of PCA components obtained using 1000 simulated galaxies from the Bologna Lens Factory (see Sect. 4).

frequent enough to have a strong weight in the final basis. This
can result in removing part of the lensed object at the end of the
process or, conversely, to create fake lensed objects.

To avoid this effect, we selected only galaxies with no bright
companions or with companions far away from the centre of
light. This method of course results in reducing the size of the
PCA basis. To include more “companion-free” galaxies, one of-
ten has to widen the original selection function, at least in sur-
veys of limited volume, and this may result in a PCA basis that
is less representative of the considered sample. To use galaxies
with companions in the PCA basis, one has to devise a masking
strategy. This can be an improvement to the algorithm presented
in this paper and may depend on the specific properties of the
sample of galaxies to be analysed.

The PCA analysis is computed by building a matrix Xb in
which each of the n columns is an image from the basis set,
reshaped as a vector of size n2. A singular value decomposition
is performed on the covariance matrix of the elements of the
basis, Xb, which boils down to finding V, and W verifying

XT
b Xb = VWVT, (1)

where W is a diagonal matrix. The singular value decomposition
of Xb is written

Xb = UΩVT, (2)

with Ω2 = W, and U the matrix of the eigenvectors for the de-
composition of Xb. Therefore, the eigenvectors Ei can be recov-
ered from the singular value decomposition of the covariance
matrix

Ei = XbVtW−1/2. (3)

The decomposition of an n × n image of galaxy reshaped as a
column vector, Xset (not necessarily in the basis) can now be
expressed as

αset = EiTXset, (4)

where αset is a Ngal-sized vector of PCA coefficients that rep-
resents the image Xset. A partial reconstruction of the image is
done by using only the k-first coefficients of the PCA, i.e. the k
most significant coefficients. The estimated reshaped image is

X̃set = Ei[0..n2,0..k]αset[0..k]. (5)

Since the basis does not represent anything but the variations in
shapes of the central parts of the galaxies, they will be the only
reconstructed objects. The remaining companions are much less
represented in the PCA basis. Rare structures such as Einstein
rings or multiply imaged objects are represented very little in the
PCA basis. Using a limited number of PCA coefficients during
the reconstruction will therefore create images of lens galaxies

without any significant lensed structure potentially present in the
original data. The reconstructed PCA images can therefore be
subtracted from the original data in order to unveil the lensing
structures, when present. Figure 1 displays examples of the first
PCA coefficients for the simulated Einstein rings described in
Sect. 4.

To evaluate the quality of reconstruction in an objective way,
we compute the reduced χ2 (per pixel) of the reconstruction in
some circular area S containing NS pixels:

q =
1

NS

N∑
i=1

di − mi

σ2
i

2 (6)

where di are the pixels in the original image along with their pho-
tometric error σi, and where mi are pixel values as predicted by
the PCA model/reconstruction. The radius of the circular area S
can be chosen to match the mean size of the galaxies in the
sample.

A critical step in the PCA reconstruction is the choice of
the number of PCA coefficients. If all of the coefficients are
used, the reconstruction will include elements of the basis that
represent the noise, hence resulting in an overfitting of the data
and to an apparent smoothing of the residual image obtained af-
ter subtraction of the galaxy. This can be damaging when try-
ing to detect faints rings and arcs. Conversely, if the number of
coefficients is insufficient, the central galaxy will only be par-
tially removed, leaving significant and undesired structures in
the residual image.

In Sect. 4, we describe a way to choose the number of
PCA coefficients in an objective way, using the reduced χ2,
and we illustrate the effect of this choice using a set of simu-
lated Einstein rings, as they would be seen with the ESA Euclid
satellite (Laureijs et al. 2011).

3. Finding the lensed images, arcs and rings

Once a galaxy is removed from the image, the second step is
to search for any residual lensed signal. In this paper, we focus
on partial or full Einstein rings. We have investigated two differ-
ent approaches. The first one uses a curvelet filter (Starck et al.
2002), optimised to enhance any arc-like structure, on images
reshaped on a polar grid. The second method uses SExtractor
(Bertin & Arnouts 1996) to identify the remaining sources in the
residuals and to assess whether they are lensed images according
to their orientation and elongation.

3.1. Polar transform

A simple way to detect full or partial rings can be devised by
turning the Cartesian coordinate system of the data into the po-
lar one. The polar coordinates (ρ, θ) are chosen so that the origin
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Fig. 2. Illustration of the ring finding process for two simulated Einstein rings from the Bologna Lens Factory (Sect. 4). For each row from left to
right are shown 1- an example of simulated Einstein ring (64 × 64 pixels), along with its lens galaxy, 2- the lensed ring after PCA subtraction of
the foreground galaxy, 3- the result of curvelet denoising, 4- the polar transform of the ring revealing a visible horizontal line whose position along
the y-axis gives a measurement of the radius of the Einstein ring.

is the centre of the galaxy that has been removed using the PCA
decomposition. The polar-transformed image is built by creating
a new grid of pixels and by asking, for each pair of (ρ, θ) coordi-
nates, the value of the pixels in the original (x, y) Cartesian grid.
This involves an interpolation process giving the pixel intensi-
ties Ipol(ρ, θ) as a function of the pixel intensities in the origi-
nal image I(x, y), with the standard relations x = ρ cos(θ) and
y = ρ sin(θ).

By construction, the polar transform centred on the lens
galaxy barycentre, turns a circle into a line, as illustrated in
Fig. 2. The problem of ring detection is then reduced to a prob-
lem of line detection. The polar image’s columns are collapsed
into a vector containing the median value of each column. If
the original image contains a ring, this vector will present a
spike, whose position gives the radius of the ring directly, as
illustrated in Fig. 3. In practice, we define a threshold that de-
termines whether the maximum of the vector stands for a ring or
not. Figures 2 and 3 show the different steps in the ring detection.

Since the rings are not always perfectly circular but ellip-
tical, their shape in polar coordinates can deviate significantly
from a straight line. In most cases, looking for straight lines in
polar coordinates is sufficient to detect rings, at least for mod-
erate ellipticities. However, it is possible to refine the detection
criterion by fitting an ellipse in polar coordinates,

ρ(θ) =
ab√

(b cos θ)2 + (a sin θ)2
, (7)

where a and b are the semi-major and semi-minor axes of the
ellipse, and where the origin of the system is centred on the
lensing galaxy. To find point-source components superposed
on the rings (or simply lensed point sources), one can add
simple Gaussian profiles to the fit or the actual instrumen-
tal/atmospheric PSF. Alternatively, one can implement the de-
tection scheme of Meneghetti et al. (2008) to find brightness
fluctuations along the arcs. Different typical lensing configura-
tions are shown to illustrate this in Fig. 4.

Radius (in pixels)

Fig. 3. Median pixel values along the pixel rows of the curvelet-filtered
images shown in the third column of Fig. 2. The black line corresponds
to the top row of Fig. 2, and the red line corresponds to the bottom
row. A simple thresholding scheme allows us to detect the spike and to
measure directly the size of the Einstein ring (see text).

3.2. Island finding: the use of SExtractor parameters

An alternative method for assessing the presence of lensed struc-
ture in fields is to characterise all sources in the field, and
use the measured parameters of these sources in order to iden-
tify patterns among them. This process begins with the use of
SExtractor to identify sources in the field above a S/N thresh-
old. The flux, ellipticity, tangentiality (closeness of the position
angle to 90◦ to a vector from the field centre to the object), and
distance from the field centre are measured. In addition, flux
islands (which may contain one or more SExtractor compo-
nents) are identified and the third moments of the flux distribu-
tion are measured. Third moments are sensitive to bent or arc-
like structures, which are hard to detect from single components
alone. For the current purpose, we define a combination of third
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Fig. 4. Left panels: schematic view of rings (dashed line) and multiple
images (blue dots along the ring tracks). Right panels: their correspond-
ing transform in polar coordinates.

moments ζ as

ζ =
1
2

log10

[
(µ30 + µ12)2 + (µ21 + µ03)2

]
, (8)

where

µmn =
∑
n,m

d(x, y)xmyn (9)

where d(x, y) is the data value in terms of offsets x and y from the
brightest pixel in the island. This statistics, as a combination of
third moments is sensitive to bending and is also invariant under
scaling and rotation.

A point-score is then assigned to each component accord-
ing to the elongation of the component and its tangential orien-
tation with respect to the field centre. In addition, components
with similar radii are weighted upwards in the point-score allo-
cation, and components that are part of an island with significant
third moment are also weighted up. Specifically, the point score
is given by the following procedure, using free parameters pi
where necessary:

– Each component, unless it has a flux less than a threshold p0,
is assigned a point score of 10ε2 exp(−t2/p2

1), where ε ≡ a/b
is its elongation and t the difference between its tangentiality
and the angle tangential to the radius vector to the point. In
general, we use Gaussian penalty functions where we wish
to select for a value close to one that would be expected for

lensing, and power laws for quantities that we wish to max-
imise. The ε2 dependence results from a limited amount of
experimentation by hand, although such dependencies can
ideally be optimised on a larger sample.

– The point score of any component within a factor of p2 in
radius from its neighbour is multiplied by (1.0 + N/p3) ∗
exp[−(r− 1)2/p2

4], where N is the number of points assigned
to the neighbour, and r is the ratio of their distances from
the centre of the field. This selection favours multiple lensed
images at the same radius, although the selection will have
more effect if the individual images are themselves elongated
and tangential.

– If a component is part of an island with third moment ζ > p5,
its point score is multiplied by [1 + (ζ − p5)]2.

The six parameters pi are then optimised on a small training set
of lenses before being applied to the dataset. A variable point-
score threshold can be used for lens detection, completeness gen-
erally being achieved at the expense of purity of the resulting
sample.

4. Application to Euclid-like simulated images

The “lens finder” described in Sect. 2 is designed to process large
imaging data sets. Although the pre-selection of the galaxies to
be searched for lensing may require colour information, the new
algorithm proposed in this paper can be applied to single-band
data to perform a purely morphological search. In the following,
we evaluate the performances of the method using simulated im-
ages of Einstein rings as they would be seen with the ESA Euclid
satellite (Laureijs et al. 2011).

The image simulations are provided through the Bologna
Lens Factory (BLF) project2. This is a project dedicated to per-
forming lensing simulations and providing realistic mock data
for a wide variety of lensing studies from large scale weak lens-
ing to galaxy cluster lensing and strongly lensed quasars. For
the purposes of this work, images were created to specifically
mimic the expected Euclid images in the visible instrument, as
described in Laureijs et al. (2011). The pixel size is 0.1′′ and
the PSF is Gaussian with a full-width half-maximum (FWHM)
of 0.18′′. The surface brightness is translated into photon counts
taking the expected instrumental throughput in the VIS band into
account. Background counts from zodiacal light are added, as-
suming a brightness equal to 22.8 mag/arcsec2. Noise is then
calculated by paying attention to Poisson statistics, flat-field er-
ror, and read-out (Meneghetti et al. 2008). The lensing and image
construction is done with the GLAMER lensing code (Metcalf
& Petkova 2013; Petkova et al. 2013). The pre-lensed galaxy
surface brightness models and mass distribution are provided by
the Millennium Run Observatory (MRObs; Overzier et al. 2013).
Each galaxy is represented by a bulge and a disk component
whose properties are predicted by a semi-analytic galaxy evolu-
tion model. The mass distribution consists of haloes identified in
the Millennium Nbody simulation.

The lensing simulations were done as follows. The haloes
in the catalogue are represented by NFW haloes (Navarro et al.
1997) with singular isothermal ellipsoids (SIEs) in their centres
to represent the baryonic galaxy. This model has been shown to
fit observed Einstein rings well (Gavazzi et al. 2007). The NFW
profile is fit to the mass and peak circular velocity of the halo
found in the Millennium simulation. The mass and velocity dis-
persion of the SIE component is set by the stellar mass to halo

2 http://www.bolognalensfactory.wordpress.com
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Fig. 5. Result of the galaxy removal on four of our simulated Einstein rings. The left panel displays the four original images. From left to right, the
other panels display galaxy removals when 10, 50, and 200 PCA coefficients are used. The reduced χ2 are q = 1.74, q = 1.00 (i.e. optimal number
of coefficients), and q = 0.9 respectively.

Fig. 6. Results of the island-finding algorithm. Each panel shows the residual image after the PCA galaxy subtraction, with the point score of each
component given separately and the total point score at the top (see text). The top row shows systems which have lenses and is ordered so that
the highest point-score is on the left and the lowest on the right. Objects with high ellipticity and high curvature, tangential to the radius vector
from the centre of the image, are preferred; lens systems without such objects are hard to recognise by eye and also tend to attract a lower point
score. The bottom row shows a sample of non-lenses, again ordered by point score. High point-score objects are generally those in which chance
coincidences produce configurations that mimic the presence of lensing.

mass relation of Moster et al. (2010) and the Faber-Jackson rela-
tion (Faber & Jackson 1976). The lensed image of every source
within a 0.1 deg2 light cone down to 28th magnitude in I band
is constructed and put into a master image. This image contains
only a few strongly lensed objects because the source density
is low enough that it is rare to have a visible object within a
caustic. To boost the number of strong galaxy-galaxy lenses, all
the critical curves and their associated caustics in the field are
found for a source redshift of zs = 2.5, and a source galaxy is
moved to be near the caustic. The sources are taken randomly
from galaxies within the light cone at a similar redshift. Then
the lensed image of this source is constructed and added to a
200 × 200 pixel cutout stamp from the master image. Images
with and without the added source are provided and an image
with only the added lensed source is provided. All images are
provided with and without the noise and PSF effects. A catalogue
of all the critical curves and caustics is also provided, with their
locations and properties such as average radius and area.

Since we are not concerned with predicting the statistical
properties of the lenses in this paper, many of the precise details
of these simulations are not important (for example the distri-
bution of source and lens redshifts, morphologies, luminosities).
The performance of the PCA lens finder will be stated in terms
of the S/N of the Einstein ring so the simulations are only re-
quired to represent the variety of expected lenses and not their
precise distribution.

The set of Euclid simulation images consists of 3000 galax-
ies with a full or partial background Einstein ring and of a train-
ing set of 1250 galaxies with no lensing. Among the 1250 non-
lensing galaxies of the training set, 1000 are used to build the
PCA basis in order to search for lensing in the 4250 images,
3000 of which containing Einstein rings. With real data, the
training set can be the whole data set itself, as galaxies with lens-
ing features are rare.

Building the PCA basis for the 1000 Euclid galaxies, which
are 128 pixels on a side, takes about 40 min on a single
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processor. Using this PCA basis, doing the galaxy reconstruc-
tion and subtraction takes less than a minute more for the whole
data set, i.e. 4250 images. In terms of cpu, the PCA method is
therefore very well tractable and applicable to large data sets.

4.1. Quality of the central galaxy reconstruction

The quality of the PCA reconstruction depends on three main
factors: 1- the range in galaxy sizes, 2- the presence of com-
panions near the galaxies used to build the PCA basis, 3- the
number of PCA coefficients to be used. To minimise the param-
eter space to explore, all galaxies are first centred on the central
pixel of the FITS stamp and rotated so that their long-axis aligns
with the image rows. If necessary, the resulting images are zero-
padded and trimmed to a common size. In the present case we
use 128 × 128 pixels.

In order to minimise the contamination of the PCA basis by
companions to the galaxies in our sample, we only select the
stamps that have no companion brighter than 50% of the max-
imum brightness of the main galaxy in a range of less than ten
pixels to the patch’s centre, i.e. 1′′ given the Euclid pixel size
of 0.1′′.

To estimate the number of PCA components, we carry out
different reconstructions with an increasing number of PCA co-
efficients. We stop adding coefficients when reaching an accept-
able quality, i.e. when there is no residual above the noise level.
A good reduced χ2 is when q, (Eq. (6)) remains between 1
and 1.5, i.e. when the mean χ2 per pixel is on average close
to 1σ. Indeed, if the pixels in the residuals are highly corre-
lated owing to a reconstruction that includes coefficients repre-
sentative of the noise, the reduced χ2 becomes smaller than 1.
Conversely, when the residuals contain important patterns due
to an insufficient reconstruction, q is much larger than 1. This
is illustrated in Figs. 7 and 8 for the specific case of our Euclid
simulation, where a good reconstruction is achieved for a num-
ber of PCA coefficients of about 50, i.e. the minimum number of
coefficients required to reach q ∼ 1.

4.2. The effect of galaxy sizes

Even for relatively smooth light distributions, like early type
galaxies, a careful balance must be found between the number
of galaxies in the training set and the range in galaxy sizes. We
investigate in the following the influence of the size distribution
of the galaxies for the specific case of our Euclid simulations.

To do so, we binned the sample in galaxy sizes, keeping
100 galaxies per bin and we built the PCA basis for each bin
of size, as in Fig. 7. Rescaling the galaxies in Reff is also an al-
ternative, but we try as much as we can to avoid alter the data
before building the PCA basis. Rescaling in Reff may be con-
sidered for small samples of galaxies that cannot be binned in
galaxy size. The images are then reconstructed using different
number of coefficients. The quality of reconstruction, estimated
using the median q factor over all images of the subsample, is
then evaluated. Figure 7 suggests that 50–70 coefficients is an
optimal number to reach a reduced χ2 close to 1.

Figure 8 shows how q rises when galaxies are getting bigger
than a semi-major axis itself larger than three pixels. Because
big galaxies are less represented in the PCA basis due to their
scarcity, their reconstruction is less accurate, leading to larger χ2.
It is therefore very important to carefully select the range of size
that we want to investigate when building the PCA basis and
to ensure that a sufficient number of galaxies are available to
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q
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number of coefficients

Fig. 7. Reduced χ2, as a function of the number of coefficients used
in the reconstruction. Only 50–70 coefficients are needed to reach a
reduced χ2 of q ∼ 1 in the case of our Euclid simulations.
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Fig. 8. Quality of the reconstruction of the simulated Euclid lenses as a
function of the average size of the galaxies in pixels, as measured with
SExtractor. The pixel size of the images matches that of Euclid, i.e.
0.1′′. Since big galaxies are rare, they are less well represented in the
PCA basis, hence less well modeled.

represent the full variety of structures in the sample. Indeed, for
bigger galaxies, where Einstein rings are more likely to be found,
the number of objects contributing to the basis is reduced, simply
because big galaxies are rare.

4.3. Completeness and purity

To evaluate the efficiency of the algorithm, we performed tests of
detection on simulated images for which the S/N and the caustic
radius of the lensing galaxies are known. For this study we used
a set of 3000 simulated full rings from the BLF. With these real-
istic Euclid-like ring images and the associated noise images we
can compute the S/N, for each Einstein ring:

S/N =
S

σ
√

Ni
, (10)

where Ni is the number of non-zero pixels in the noise free
ring image, σ the rms noise per pixel, and S the total flux in
the ring. The simulated images analysed by building a PCA ba-
sis using 1000 galaxies from a set of non lensing galaxies. The
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Fig. 9. Completeness as a function of purity for different thresholds of Einstein radii (expressed in terms of critical curve here) and signal-to-noise
ratio with the two methods described in Sect. 3: polar transform (in red) and island finding (in blue). The minimal radius in the sample is r = 0.02′′,
which means that the top left panel shows the results over the whole sample.

detection algorithms, described in Sect. 3 were then applied to
the 3000 images with lensing and to the 1250 images without
lensing. The island-finding algorithm was trained on a set of
167 images of lensed rings provided by the BLF, together with
another set of 200 images that did not contain lenses. The param-
eters were optimised here and then re-optimised on the dataset
itself. The output of the process was compared to the known an-
swer from the simulations to evaluate the completeness and the
purity of the derived lens catalogues.

Since the fraction of non-lens images in the sample is smaller
than in reality, we instead defined the purity as the fraction of
non-lens images that have not been detected instead of the frac-
tion of true positive among all the detected lensed images:

Purity = 1 −
Nfalse positive

Nfalse positive + Ntrue negative
· (11)

The completeness is expressed as the fraction of actual lens im-
ages that have been detected over the whole sample of lenses:

Compl. =
Ntrue positive

Ntrue positive + Nfalse positive
· (12)

Figure 9 shows the purity as a function of completeness for both
methods. Different thresholds in S/N and critical curve for the
lensing have been considered. Although both methods are com-
parable at low completeness, at high completeness levels the
SExtractor algorithm generally leads to lower purity, corre-
sponding to more false positives. This problem appears worse
at high S/N levels, because the number of false positive detec-
tions in the non-lens sample remains constant, while the num-
ber of true positives declines. This is likely to be due to the at-
tempt to preserve at least some sensitivity to only marginally

extended components, corresponding, for example, to quadru-
ply imaged sources of modest extent. The algorithm is there-
fore more vulnerable to chance alignments between external
components. Work is under way to alleviate this problem and,
particularly, to use colour information to distinguish between
genuine and chance alignments. In the context of the present
work, we stick to single-band detections. The results tend to
show that we can detect rings almost independently on the ra-
dius. For instance, with the polar transform method and a S/N
higher than 30, one can reach a completeness of 90% for a purity
of 86%.

5. Application to real data

In the above, we have tested our lens finder on simulated images
that mimic Euclid images in the VIS band. An obvious ques-
tion is whether the algorithm performs in a satisfactory way on
real data. While carrying out a ring search on a large data set
is beyond the scope of this paper, we can nevertheless test how
our PCA decomposition of galaxies compares with other more
traditional ways of removing lensing galaxies.

To do that, we used the deep and sharp optical images
taken with MEGACAM at the CFHT to map SDSS stripe 82.
Following the same procedure as with the Euclid simulations,
we set the optimal number of PCA coefficients by checking that
we can actually reach reduced χ21 < q < 1.2 depending on
the seeing and on the physical size of the galaxies we wanted to
subtract.

In Fig. 10, we compare our galaxy subtraction with what was
done in other lens searches using single or double Sérsic profiles
(e.g. Vegetti et al. 2012; Lagattuta et al. 2010). Not surprisingly,
the subtraction with Sérsic profiles performs rather well with low
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Fig. 10. Comparison of different galaxy-removal schemes applied to
deep CFHT images. The first column shows the original image. The
second shows the residual image after subtraction of a PCA reconstruc-
tion of the galaxy. The third and fourth columns show the subtraction of
a single and double elliptical Sérsic profile respectively, using GALFIT3.
The PCA-subtracted images are rotated by construction of the PCA ba-
sis, but the GALFIT-subtracted images are not, in order to avoid inter-
polation when not mandatory.

S/N galaxies or with small galaxies, but leaves significant resid-
uals for large galaxy sizes. Because these residuals often take the
shape of a ring, they may lead to large numbers of false positives
in a ring search.

The experiment we carry out here with real data uses only
one single field of the CFHT data of stripe 82, i.e. one square
degree out of the 180 available. This means that the PCA de-
composition uses only a limited number of large galaxies. As
a consequence, using the whole 180 fields has the potential to
improve further the galaxy subtraction, while profile fitting will
always be limited to the information in one single galaxy and
does not benefit from the information on the shape of all galax-
ies present in the whole data set. In other words, increasing the
survey size not only increases the number of potential lenses,
but also increases the density of galaxies per bin of size, hence
improving the quality of the PCA basis.

6. Conclusion

The two lens-finder algorithms developed here both rely on
a good subtraction of lensing galaxies with machine-learning
methods. Different ideas for ring detection then allow objects
with different properties to be detected on the residual images:

– The polar transform method enhances the signal in the resid-
ual image by applying curvelet denoising and uses a polar
transform of the images to turn the problem of circle detec-
tion to a line detection. It is designed to detect full or partial
rings with or without ellipticity.

– The “Island-finding algorithm” uses SExtractor to detect
structures in the PCA-subtracted images and to determine
whether they correspond to lensed sources according to their
elongation, orientation, and bending. This algorithm is ex-
pected to be more efficient at finding partial arcs and multiple
images.

The method was successfully applied to Euclid-like simulations.
With the polar transform method, a completeness of 90% was
reached for data where the S/N in the Einstein ring is at least 30.
The same simulations show that the purity of the derived ring
sample reaches 86% of the non lensed galaxies detected as false
positives.

The galaxy subtraction algorithm turns out to be efficient
when applied to real data as well: our tests with CFHT images
of SDSS Stripe 82 surpasses the subtraction obtained with direct
model fitting in quality.

In future work, ways to increase the purity of the algo-
rithms will be investigated by using adapted dictionary learn-
ing (e.g. Beckouche et al. 2013) for galaxy subtraction. The
strength of those machine-learning methods should allow us to
build bases adapted to more complicated problems, such as sub-
tracting galaxies in clusters to detect rings produced by multiple
galaxies. Better morphological selection based on PCA “cluster-
ing” or beamlet analysis (e.g. Donoho & Huo 2002) can be used
to distinguish ring-like shapes, to classify rings and arcs, and to
carry out galaxy classification in general, as done in the past with
quasar spectra (Boroson & Lauer 2010) and, more recently, with
galaxy multi-band photometry (Wild et al. 2014).
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